— IR Around the & -
Statistical Analysis of a Massive Multi-Language Corpus of IR

Andrew Kallai* Khoi Nguyen => Ludger Paehler 3> Aiden Grossman 4° Johannes Doerfert > Sunita Chandrasekaran *

tUniversity of Delaware 2University of California, Berkeley 3Technical University of Munich 4University of California, Davis SLawrence Livermore National Laboratory

Abstract Preliminary Outlier Analysis (1.5 = 1025) Outlier Function Extraction (n,,, ... = 1841)
- Statistical analysis demonstrates various The largest transformation pass (wall) times are listed iterate to next function
relationships between different features of the here, taken from the result of -ftime-report, for the
| . o longest compile times.
LLVM's optimization pipeline. Start Write changes
= Qutlier extraction toolset provides insights into Table 1. Total Execution Time: 16.04 wall clock

Yes

functions causing runtime abnormalities, giving

it - N Pass N Wall Ti ds) Percent
opportunities for further analysis and optimization. 55 IName all Time (seconds) Percentage

InstCom bine 3.38 21.1 Is current \ e B Dereference calls Is module
. Inliner 1.82 11.4 function the to function & still an
The ComPile Dataset (n:fn dules = 202751) GVN 1.20 75 last one? remove body outlier?

= A large IR-level dataset from production sources. Table 2. Total Execution Time: 26.10 wall clock Yes No
C (0.4%) Pass Name Wall Time (seconds) Percentage m
wift (1.2%) ++ (4.8%)
Puatt .2 N\ ‘ e e 148 InstCombine 4.68 17.9
! Inliner 4.59 17.6
ﬁJulia (27.2%) SlmpllfYCFG 1.49 5.7 iterate to next function
Table 3. Total Execution Time: 45.24 wall clock = An outlier function is defined to be a function
, contributing to its module being an outlier for a
Name Wall Time (seconds) Percentage :
specific pass.
Inliner 7.75 17.1
InstCombine 7.01 15.5
Loopvectorize 4.39 37 _ Outlier Functions for GVN Pass
: |
: : L : I —-=— 25th percentile=0.02
\ Relative Wall Time Distribution (n,,,7.,/.. = H5699R) l ,p
Rust (66.4%) 10 - : — Median=0.08
105] B Inliner [———— 75th perCentﬂe:O.26
] B SimplifyCFG [
: B InstCombine :
1 B ToopVectorize
Bitcode Deduplicated Licensed Licensed ' — évﬁv t 30 [
Programming Language (GB) Bitcode Bitcode Text 104] Inliner (95th percentile=0.2) - :
(GB) (G B) (G B) P L Ir.lstC(.)mbine (95th percentiole:O.23) g l
<@ _ SimplifyCFG (95th percentile=0.16) O I
e C 16 8) 10 g - === [oopVectorize (95th percentile=0.02) O 9 O _ :
N GVN (95th percentile=0.08
S C++ 109 74 29 103 o 10° (95¢h percentile=0.05) |
julia Julia 200 184 164 1088 é | :
& Rust 656 580 400 1524 - | |
Swift 8 7 7 36 = 102 10 - |
= z
Total 990 853 602 2761 S :
D |
Distribution of Compile Times (n = 1025) 10! 0 = -
P modules = | 0.0 0.2 0.4 0.6 0.8 1.0
| Fraction of Outlier Functions in a Module
0 | . L .
o2 - 107 | = Threshold for outlier extraction is 95th percentile for
0.0 0.9 0.4 0.6 0.8 relative wall time with at least 0.005 seconds for
0 Fraction of Total Run Time absolute wall time to minimize noise.
o . L
5 » Relative pass time in =03 for C++ modules. Conclusion
s .
Absolute Time vs. Relative Time (n,,, 7,7, = H6998) ' C.om.p|lahon fimes ap.pe.ar tp be non-normally
distributed for all optimization levels when
| 23 0 10! CUR 10! nfiner compiling C/C++.
10° 9 ol L = As compile time appears to grow polynomially in
10° 10° | relation to the text segment size, outlier detection
Compile Time (seconds) 1071 - et 1071 { ,

should be able to detect passes that do not conform
o | | | to this trend.
* IR files were optimized and timed via clang -03. _ -3 = An initial outlier analysis seems to suggest specific

o 1073
5 passes encapsulate the majority of compilation time
Scatter Plot of Compile Times (1, qucs = 1025) — in some modules.
+ 107 . . 107° . .
= 1079 1077 107 100 1077 107° 107 10!
Compile Time vs. Text Segment Size (C++) B [nstCombine 10! Simplify CFG What do you want to see?
® compile_time 0.287 + 3.71E-05x + -1.17E-11x"2 %
+ . .
10000 S P = Interested in specific analyses? Please contact us!
1000 e 1077 T 107" 1 Lo
. f Of a0
3 . : +f . _3 | -3 |
GEJ * - . . ‘ 10 10 1. h
~ 1 . vo o A :
° Y 1079 . . 1079 . .
oo 107° 1072 10~ 10t 107 107? 10~ 101
. 100 1000 10000 100000 1000000 AbSOlU.te W&H Tlme (S)

Text Segment Size (bytes)

= Pass times in =03 for C++ modules.
= WWe hypothesize these trends are due to the following:

: -D- ile 4 ' : : : : Acknowledgements
End-2-end compile times vs. text segment sizes. . Instructions per BB going up with text size g
= Growth trend appears to be polynomial as a function = Modules with little/no work cause horizontal This work was in parts prepared by Lawrence Livermore National Laboratory under
Of text Segment Size. N3 nding. Contract DE-AC52-0/NA27344 (LLNL-POST-862479).
This material is based upon work supported by the U.S. Department of Energy un-
]LNumber of LLVM IR modules. der Contract DE-FOA-000317//, S4PST: Next Generation Science Software Tech-

nologies Project.

SITYor B Lawrence Livermore
EIAWARE LL% National Laboratory Bel'kdey TI.I."

