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ABI Stability
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ABI Standardization

Optional footnote

🧩🧩

📄.h📄.c 📄.cimplements includes

clang 15

Binary compatibility across different compilers

gcc 12



Developer benefits of ABI stability / standardization

You don’t have to share the source code to your library 

You can use the best compiler for your library 

You don’t have to recompile the world 
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Systemic benefits of ABI stability

Binary artifacts can be shipped and updated independently 

Multiple programs can use the same shared library 
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May I Have A Stable ABI, 
Please?



NOPE



Why Can’t I Have A Stable 
ABI?



What Goes Into An ABI?

Calling convention 

Layout of types 
• Size and alignment 
• Offsets and types of every field 
• Virtual table entries 

Mangled names 

Metadata
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Foreclosing On Future Compiler Optimizations

Stabilizing the ABI “too early” might miss optimizations 
• Could implement a faster custom calling convention! 
• Could implement optimal structure layout! 
• Could change the way dynamic casting works! 

These are solvable engineering problems
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Language ABI Stability Is 
An Engineering Problem



Language ABI Stability Is 
Only Half Of the Solution



Evolution of Software Libraries

Developers want to evolve their software libraries without breaking ABI 
• Add new functionality 
• Fix bugs 
• Improve performance 

Most of these things break ABI! 
• Add a private field to a class? 
• Add a new virtual function? 
• Use some existing padding for that new field?
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C++ and ABI Stability

Optional footnote



“All problems in computer 
science can be solved by 
another level of indirection”

— Attributed to David Wheeler



C++: The pImpl Idiom 

// widget.h 
class widget { 
  struct impl; 
  std::unique_ptr<impl> pImpl; 
  // … 
} 
 
// widget.cpp 
struct widget::impl { 
  // implementation details 
}

Optional footnote

✅ Stable public type layout 

✅ Can fix bugs 

✅ Can add functionality

❌ Maintenance burden 

❌ Not all features work 

❌ Not the default 

❌ Performance



Designing a Language 
for Library Evolution



Principles For ABI-Stable Library Evolution

Make all promises explicit 

Delineate what can and cannot change in a stable ABI 

Provide a performance model that indirects only when necessary
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Evolving A Simple Struct

public struct Person { 
  public var name: String 
  public let birthDate: Date? 
  let id: Int 
} 
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Evolving A Simple Struct
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Evolving A Simple Struct

public struct Person { 
  let id: UUID 
  public var birthDate: Date? 
  public var name: String 
  public var favoriteColor: Color? 
} 
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Challenges For Compiling Client Code

import PersonLibrary 
struct Classroom { 
  var teacher: Person 
  var students: [Person] 
 
  func getTeacherName() -> String { teacher.name } 
  var numStudents: Int { students.count } 
} 

Person struct changes size when new fields are added 

Offset of fields changes whenever layout changes
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Optimize Data Layout, 
Indirect In The Code



Type Layout Should Be As-If You Had The Whole Program

Person library should layout the type without indirection 

Expose metadata with layout information: 
• Size/alignment of type 
• Offsets of each of the public fields 

Imagine the metadata in C:
  size_t Person_size = 32; 
  size_t Person_align = 8; 
  size_t Person_name_offset = 0; 
  size_t Person_birthDate_offset = 8;
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Client Code Indirects Through Layout Metadata

How to access a field? 
• Read the metadata for the field offset (e.g., Person_birthDate_offset) 
• Add that offset to the base object  
• Cast the new pointer and load the field 

How do I store an instance on the stack? 
• Read the metadata for instance size (e.g., Person_size, Person_align) 
• Emit an alloca instruction



Library Code Eliminates All Indirection

How to access a field? 
• Read the metadata for the field offset (e.g., Person_birthDate_offset) 
• Add that offset to the base object  
• Cast the new pointer and load the field 

How do I store an instance on the stack? 
• Read the metadata for instance size (e.g., Person_size, Person_align) 
• Emit an alloca instruction 
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Classroom 
 

Offset 0: teacher 
 
 
 
 
 

Offset 56: students

Classroom 
 

Offset 0: teacher 
 
 
 
 

Offset 32: students

Type Layout Can Occur After Compilation
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Generics Make Everything More Complicated

public struct Pair<First, Second> { 
  public var first: First 
  public var second: Second 
} 

When can we know the layout of Pair<Classroom, Person>? 

All generic implementations need to employ indirection
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Resilience Domains

A resilience domain contains code that will be compiled together 

A program can be composed of many different resilience domains
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Optimization and Resilience Domains

Across resilience domains, maintain stable ABI 

Within a resilience domain, all implementation details are fair game 

Optimizations need to be aware of resilience domain boundaries 



Trading Future Evolution For Client Performance

Inline code is exposed to the client
extension Pair { 
  @inline public func swapped() -> Pair<Second, First> { 
    return .init(first: second, second: first) 
  }
} 

Enables caller optimization, generic specialization 

Prevents any changes to the function’s semantics
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Trading Future Evolution For Client Performance

Fixed-layout types promise never to change layout
@fixedLayout  
public struct Pair<First, Second> { 
  public var first: First 
  public var second: Second 
} 

Enables layout of types in client code 

Gives up ability to add/remove/reorder stored fields
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Challenges & Downsides

Large runtime component 
• Runtime type layout 
• Generics are particularly hard 

Every language feature is harder 

Older runtimes don’t support new language features
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What If There Is Only One 
Resilience Domain?



What If There Is Only One Resilience Domain?

There are no ABI-stable boundaries 
• All type layouts are fixed at compile time 
• Stable ABI is completely irrelevant 

You don’t pay for library evolution when you don’t use it 

This is how Swift scales down
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ABI Stability with Library Evolution

ABI stability enables systems to scale up  

Library evolution provides flexibility to continually improve 

Resilience domains control where the costs of ABI stability are paid
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