
Apple logo is a trademark of Apple Inc.

Doug Gregor
2022 LLVM Developers’ Meeting | Apple, Inc. | November 8, 2022

Implementing Language
Support for ABI-Stable Software
Evolution in Swift and LLVM

What is an Application Binary Interface (ABI)?

Optional footnote

🧩

🧩
📄.h📄.c 📄.cimplements includes

Binary compatibility between separately-compiled artifacts

What is an Application Binary Interface (ABI)?

Optional footnote

🧩🧩

📄.h📄.c 📄.cimplements includes

clang 15 clang 15clang 22

Binary compatibility between separately-compiled artifacts

ABI Stability

Optional footnote

🧩🧩

📄.h📄.c 📄.cimplements includes

clang 15 clang 22

Binary compatibility across compiler versions

gcc 12

ABI Standardization

Optional footnote

🧩🧩

📄.h📄.c 📄.cimplements includes

clang 15

Binary compatibility across different compilers

gcc 12

Developer benefits of ABI stability / standardization

You don’t have to share the source code to your library

You can use the best compiler for your library

You don’t have to recompile the world

Optional footnote

🧩🧩

Systemic benefits of ABI stability

Binary artifacts can be shipped and updated independently

Multiple programs can use the same shared library

Optional footnote

🧩
Operating System Application🧩v1 v1v2v3 v2

Application🧩
Application🧩

May I Have A Stable ABI,
Please?

NOPE

Why Can’t I Have A Stable
ABI?

What Goes Into An ABI?

Calling convention

Layout of types
• Size and alignment
• Offsets and types of every field
• Virtual table entries

Mangled names

Metadata

Optional footnote

Foreclosing On Future Compiler Optimizations

Stabilizing the ABI “too early” might miss optimizations
• Could implement a faster custom calling convention!
• Could implement optimal structure layout!
• Could change the way dynamic casting works!

These are solvable engineering problems

Optional footnote

Language ABI Stability Is
An Engineering Problem

Language ABI Stability Is
Only Half Of the Solution

Evolution of Software Libraries

Developers want to evolve their software libraries without breaking ABI
• Add new functionality
• Fix bugs
• Improve performance

Most of these things break ABI!
• Add a private field to a class?
• Add a new virtual function?
• Use some existing padding for that new field?

Optional footnote

💣
💣

💣

C++ and ABI Stability

Optional footnote

“All problems in computer
science can be solved by
another level of indirection”

— Attributed to David Wheeler

C++: The pImpl Idiom

// widget.h
class widget {
 struct impl;
 std::unique_ptr<impl> pImpl;
 // …
}

// widget.cpp
struct widget::impl {
 // implementation details
}

Optional footnote

✅ Stable public type layout

✅ Can fix bugs

✅ Can add functionality

❌ Maintenance burden

❌ Not all features work

❌ Not the default

❌ Performance

Designing a Language
for Library Evolution

Principles For ABI-Stable Library Evolution

Make all promises explicit

Delineate what can and cannot change in a stable ABI

Provide a performance model that indirects only when necessary

Optional footnote

Evolving A Simple Struct

public struct Person {
 public var name: String
 public let birthDate: Date?
 let id: Int
}

Optional footnote

Evolving A Simple Struct

public struct Person {
 let id: Int
 public let birthDate: Date?
 public var name: String
}

Optional footnote

Evolving A Simple Struct

public struct Person {
 let id: Int
 public var birthDate: Date?
 public var name: String
}

Optional footnote

Evolving A Simple Struct

public struct Person {
 let id: UUID
 public var birthDate: Date?
 public var name: String
}

Optional footnote

Evolving A Simple Struct

public struct Person {
 let id: UUID
 public var birthDate: Date?
 public var name: String
 public var favoriteColor: Color?
}

Optional footnote

Challenges For Compiling Client Code

import PersonLibrary
struct Classroom {
 var teacher: Person
 var students: [Person]

 func getTeacherName() -> String { teacher.name }
 var numStudents: Int { students.count }
}

Person struct changes size when new fields are added

Offset of fields changes whenever layout changes

Optional footnote

📦❌

Optimize Data Layout,
Indirect In The Code

Type Layout Should Be As-If You Had The Whole Program

Person library should layout the type without indirection

Expose metadata with layout information:
• Size/alignment of type
• Offsets of each of the public fields

Imagine the metadata in C:
 size_t Person_size = 32;
 size_t Person_align = 8;
 size_t Person_name_offset = 0;
 size_t Person_birthDate_offset = 8;

Optional footnote

Person
Offset 0: name

Offset 8: birthDate
Offset 24: id

Client Code Indirects Through Layout Metadata

How to access a field?
• Read the metadata for the field offset (e.g., Person_birthDate_offset)
• Add that offset to the base object
• Cast the new pointer and load the field

How do I store an instance on the stack?
• Read the metadata for instance size (e.g., Person_size, Person_align)
• Emit an alloca instruction

Library Code Eliminates All Indirection

How to access a field?
• Read the metadata for the field offset (e.g., Person_birthDate_offset)
• Add that offset to the base object
• Cast the new pointer and load the field

How do I store an instance on the stack?
• Read the metadata for instance size (e.g., Person_size, Person_align)
• Emit an alloca instruction

Optional footnote

Classroom

Offset 0: teacher

Offset 56: students

Classroom

Offset 0: teacher

Offset 32: students

Type Layout Can Occur After Compilation

Optional footnote

Person (v1)
Offset 0: name

Offset 8: birthDate
Offset 24: id

Person (v5)
Offset 0: id

Offset 16: birthDate
Offset 32: name

Offset 40: favoriteColor

Generics Make Everything More Complicated

public struct Pair<First, Second> {
 public var first: First
 public var second: Second
}

When can we know the layout of Pair<Classroom, Person>?

All generic implementations need to employ indirection

Optional footnote

Resilience Domains

A resilience domain contains code that will be compiled together

A program can be composed of many different resilience domains

Optional footnote

Person
 library

Classroom
app

Operating
system

Pair

Person

Classroom

Optimization and Resilience Domains

Across resilience domains, maintain stable ABI

Within a resilience domain, all implementation details are fair game

Optimizations need to be aware of resilience domain boundaries

Trading Future Evolution For Client Performance

Inline code is exposed to the client
extension Pair {
 @inline public func swapped() -> Pair<Second, First> {
 return .init(first: second, second: first)
 }
}

Enables caller optimization, generic specialization

Prevents any changes to the function’s semantics

Optional footnote

Trading Future Evolution For Client Performance

Fixed-layout types promise never to change layout
@fixedLayout
public struct Pair<First, Second> {
 public var first: First
 public var second: Second
}

Enables layout of types in client code

Gives up ability to add/remove/reorder stored fields

Optional footnote

Challenges & Downsides

Large runtime component
• Runtime type layout
• Generics are particularly hard

Every language feature is harder

Older runtimes don’t support new language features

Optional footnote

What If There Is Only One
Resilience Domain?

What If There Is Only One Resilience Domain?

There are no ABI-stable boundaries
• All type layouts are fixed at compile time
• Stable ABI is completely irrelevant

You don’t pay for library evolution when you don’t use it

This is how Swift scales down

Optional footnote

ABI Stability with Library Evolution

ABI stability enables systems to scale up

Library evolution provides flexibility to continually improve

Resilience domains control where the costs of ABI stability are paid

Optional footnote

www.swift.org

