
Chris Bieneman 
Microsoft

Implementing the Unimplementable
Bringing HLSL's Standard Library into Clang

1



Introduction

• Who am I?


• Long time LLVM contributor


• HLSL team at Microsoft


• What am I talking about?


• Ongoing effort to add HLSL support to Clang


• Where am I?

2



What is HLSL?

• High Level Shader Language was introduced with DirectX 9


• Initially supported vertex and pixel “shading”


• Started as a C-like language, but has evolved to be more C++-like 


• Largely source compatible with other commonly used shader languages


• First graphics-focused language coming to Clang!

3



• Supports enough C syntax to be 
familiar


• Has enough differences to be 
strange


• Implicitly parallel programming 
model


• Some C/C++ features just don’t 
make sense

Language Features

4



• GPU hardware is not all the 
same


• Wide SIMD


• Implicit parallelism enables 
source portability


• Vectors are vectors of vectors

Implicit Parallelism

5



• HLSL has a rich ecosystem


• Can target every major graphics 
API


• Used everywhere modern 3d 
games run


• DXC is shipped in the DirectX 
and Vulkan SDKs

Where is HLSL used?

6



• Key C/C++ features are missing


• No support for pointers or 
references


• User defined templates were not 
supported until 2021


• No C++ 11 anything…


• Organic language growth led to 
gaps in features

Missing Features

7



Compiler Performance Concerns

8



Compiler Performance Concerns

XKCD. #303 - Compiling. https://xkcd.com/303/

• Shader compilers sometimes run 
at runtime


• Re-parsing standard library 
headers can be slow


• Re-loading or initializing full 
serialized ASTs can be slow too


• Lazy AST initialization is a _big_ 
win

9



• Pre-defined typedefs for 
common data types


• Built-in vector and matrix types


• Large collection of built-in 
functions


• Some complex data types

HLSL’s Library

10



• Scalability & Maintainability


• Compiler speed


• Robust Tooling

Balancing Priorities

11



• Header implementations are 
easy to write and test


• Re-parsing is slow


• Only typedefs and mapping 
functions to builtins


• Limited to older language 
features

hlsl.h

12



Built-in vector Type

• HLSL Vectors behave like clang’s vector extension


• User-defined templates aren’t supported in older language modes


• HLSL 2018 can’t parse this code

13



• Define trivial types on AST 
initialization


• Types with no methods


• Types that are frequently used


• Makes the type available 
immediately


• Allows us to bypass parsing 
unsupported features

AST Initialization

14



clang::ExternalASTSource

• Forward declare types


• Populate definitions on use


• Solves exactly this problem!

AST On Demand

15



• Basis for precompiled headers 
and modules


• Designed to enable lazy 
deserialization of bitcode ASTs


• Also used by lldb and Tooling 
APIs

External ASTs

16



BuiltinTypeDeclBuilder

• Forward declare on initialization


• Hook through 
ExternalSemaSource:: 
CompleteType


• Called whenever the language 
requires completed types

Lazily Building Decls

17



• Extending HLSL with internal 
attributes


• Complete ASTs for methods


• Minimize codegen changes


• Better tooling experience!

Everything in the AST

18



• Attributes have no spelling


• Never string-match type names 


• Model special behaviors of built-
in types


• Special code generation


• Initialization behavior

Internal Attributes

19



Even more in the AST

• Moving IR-based analysis to 
AST & Clang CFG


• Augment with internal 
attributes


• Provide higher quality 
diagnostics 


• earlier & more consistently

Future Directions

20



• Are HLSL features valuable to 
C++?


• New attributes might enable 
expressing API constraints


• HLSL matrix syntax might be 
nice for C++

Are we yolo yet?

21



• Scalability & Maintainability


• Do as much as possible in HLSL


• Compiler speed


• Lazy AST population


• Works with PCH


• Robust Tooling


• Complete ASTs


• Source available

Balancing Priorities

22



• Working hard on HLSL Support 
in Clang


• Want to have clangd support in 
clang-16


• Public language design process


• https://github.com/microsoft/
hlsl-specs


• Actively working to make HLSL 
more like C++

HLSL Future Directions

23

https://github.com/microsoft/hlsl-specs
https://github.com/microsoft/hlsl-specs


More Resources

• Join the monthly HLSL Working Group meetings


• https://github.com/orgs/llvm/projects/4


• https://clang.llvm.org/docs/HLSL/HLSLDocs.html


• Find us on Discord, Discourse and IRC

24

https://github.com/orgs/llvm/projects/4
https://clang.llvm.org/docs/HLSL/HLSLDocs.html


Consolation Prize

25


