Using LLVM's libc

Guillaume Chatelet
Michael Jones
Siva Chandra

Tue Ly

Agenda

Brief introduction to LLVM'’s libc and its current status
Building and installing the libc

Using the libc to link real applications
Quick guide to bringing up LLVM's libc for a new platform/architecture

Future plans and guide to participating in the libc development

a bk~

Introduction

What is LLVM's libc?

e A greenfield libc developed with certain goals
o Sanitizer friendly
Implemented in C/C++ source code without assembly

o Tested
m Unit tests, integration tests, exhaustive tests, all running on CI.
o Modular
Configurable

m Performance sensitive server side use-cases
m Size-sensitive embedded use-cases
m Use only the parts you need (e.g. omit i18n, floating point, etc.)

> Visit https:/libc.llvm.org/ for more information

https://libc.llvm.org/

Implementation Status

e About 400 functions (from the C standard and POSIX) are available [*]

Most of the single precision math functions (link)
String functions not sensitive to locale (link)
A thread library which supports both the pthreads and the C11 threads (link)
A large part of stdio is available (link)
Scudo standalone allocator can be packaged with the libc
m See https:/llvm.org/docs/ScudoHardenedAllocator.html for more information on Scudo

o O O O O

e Startup code to support fully static Linux/ELF executables

[*] - Some of the implementations are incomplete with respect to standards conformance.

https://libc.llvm.org/math.html#implementation-status
https://libc.llvm.org/strings.html#implementation-status
https://github.com/llvm/llvm-project/tree/main/libc/src/threads
https://libc.llvm.org/strings.html#implementation-status
https://llvm.org/docs/ScudoHardenedAllocator.html

Cl Coverage - Compiler, Platform and Architecture

Currently Supported Platforms

Linux - x86-64, aarch64, arm32
Windows - x86-64

MacOS - arm64

Gradually integrating into Fuchsia libc

Continuous Integration

e Linux-x86-64, aarch64 and arm32
e Windows - x86-64
e Compilers - clang

Building the libc

The libc can be built in two different modes:

e Overlay mode
o Use system headers and system libc for missing functions.

e Fullbuild mode
o Use LLVM libc's headers and only functions provided by LLVM’s libc.

The Overlay Mode

In the overlay mode, LLVM's libc cannot be used by itself

(@)

Exploit link order semantics to use whatever is available in LLVM'’s libc and get the rest from
the system libc
User programs use headers from the system libc
Startup objects and the libraries like libc.a not provided by LLVM's libc are also picked from the
system libc
Only pieces which are not dependent on the implementation specific ABI are included

m Functions like strlen, round are included

m Functions like fopen are not included - they depend on the implementation specific

definition of the FILE data structure

Building the Overlay Mode libc

e |east complicated and straightforward way to use LLVM'’s libc

e Build using the standard LLVM conventions:
o Build libc by itself

$> cmake ../1llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc” \
-DCMAKE_C_COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>

$> ninja llvmlibc

$> ninja install-1llvmlibc

o Build libc as part of the bootstrap build

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="clang” \

-DCMAKE ENABLE RUNTIMES="libc” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \

-DCMAKE INSTALL PREFIX=<Your prefix of choice>
$> ninja llvmlibc
$> ninja install-llvmlibc

> See https://libc.llvm.org/overlay_mode.html

https://libc.llvm.org/overlay_mode.html

Building the Overlay Mode libc

e |east complicated and straightforward way to use LLVM'’s libc

e Build using the standard LLVM conventions:
o Build libc by itself

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="libc” \
-DCMAKE_C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>

$> ninja llvmlibc

$> ninja install-1llvmlibc

o Build libc as part of the bootstrap build

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="clang” \

-DCMAKE ENABLE RUNTIMES="libc” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \

-DCMAKE INSTALL PREFIX=<Your prefix of choice>
$> ninja llvmlibc
$> ninja install-llvmlibc

> See https://libc.llvm.org/overlay_mode.html

https://libc.llvm.org/overlay_mode.html

Building the Overlay Mode libc

e |east complicated and straightforward way to use LLVM'’s libc

e Build using the standard LLVM conventions:
o Build libc by itself

$> cmake ../1llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc” \
-DCMAKE_C_COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>

$> ninja llvmlibc

$> ninja install-1llvmlibc

o Build libc as part of the bootstrap build

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="clang” \

-DCMAKE ENABLE RUNTIMES="1libc” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \

-DCMAKE INSTALL PREFIX=<Your prefix of choice>
$> ninja llvmlibc
$> ninja install-llvmlibc

> See https://libc.llvm.org/overlay_mode.html

https://libc.llvm.org/overlay_mode.html

The Overlay Mode in Action

e Use the link order to overlay symbols from 1ibllvmlibc.a

$> clang <...> file.<c|cpp> -L <path to libllvmlibc.a> -11llvmlibc

o Tryit:
o Addllvmlibc asatarget link library tollvm-objcopy
m The number of symbols it pulls from glibc drops from 112 to 58
m Runninja check-11vm to make sure that linking 1ibllvmlibc.a did not cause any
regressions
o Ifyouarebold enough,add 11vmlibc asa target link library toall LLVM tools
m NOTE: Running ninja check-11vmshows some regressions

The Full Build Mode

e Inthe full mode LLVM's libc is used as the only libc

o User programs use headers from LLVM's libc
o The main libc.a static archive and the startup objects like crt1.0 come from LLVM's libc

NOTE: Currently the full build mode only supports fully statically linked binaries
(no dynamic loader etc.)

Building Full Build Mode

e Building the full libc is straightforward
e Installation is more involved than installing the overlay static archive

e Install a sysroot with an LLVM only toolchain
o Install clang, lld and compiler-rt along with the libc

e Cannot use a C++ standard library or build C++ programs yet
o Thelibc is not complete enough to satisfy libc++ requirements

Building and Install the full toolchain

Standard LLVM CMake conventions

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc;1lld;compiler-rt;clang” \
-DCMAKE C_COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>
-DLLVM LIBC_FULL BUILD=ON \ # We want the full libc
-DLLVM LIBC INCLUDE SCUDO=ON \ # Include Scudo in the libc
-DCOMPILER RT BUILD SCUDO_ STANDALONE WITH LLVM LIBC=ON \ # Build Scudo against libc headers
-DCOMPILER RT BUILD GWP ASAN=OFF \ # Do not include GWP-ASAN with Scudo
-DCOMPILER RT SCUDO_STANDALONE BUILD SHARED=OFF # Do not build the Scudo shared object

Install:

$> ninja install-clang install-builtins install-compiler-rt \
install-core-resource-headers install-libc install-11d

Linux Headers:
o libc headers include few safe linux headers
o Install linux headers into the sysroot

Using the libc - Building and Install the full toolchain

e Standard LLVM CMake conventions

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc;1lld;compiler-rt;clang” \
-DCMAKE C_COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>
-DLLVM LIBC FULL BUILD=ON \ # We want the full libc
-DLLVM LIBC_INCLUDE SCUDO=ON \ # Include Scudo in the libc
-DCOMPILER RT BUILD SCUDO_ STANDALONE WITH LLVM LIBC=ON \ # Build Scudo against libc headers
-DCOMPILER RT BUILD GWP ASAN=OFF \ # Do not include GWP-ASAN with Scudo
-DCOMPILER RT SCUDO_STANDALONE BUILD SHARED=OFF # Do not build the Scudo shared object

e Install:

$> ninja install-clang install-builtins install-compiler-rt \
install-core-resource-headers install-libc install-11d

e Linux Headers:
o libc headers include few safe linux headers
o Install linux headers into the sysroot

Using the libc - Building and Install the full toolchain

e Standard LLVM CMake conventions

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc;1lld;compiler-rt;clang” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>
-DLLVM LIBC FULL BUILD=ON \ # We want the full libc
-DLLVM LIBC INCLUDE SCUDO=ON \ # Include Scudo in the libc
-DCOMPILER RT BUILD SCUDO_STANDALONE WITH LLVM LIBC=ON \ # Build Scudo against libc headers
-DCOMPILER RT BUILD GWP ASAN=OFF \ # Do not include GWP-ASAN with Scudo
-DCOMPILER RT SCUDO_STANDALONE BUILD SHARED=OFF # Do not build the Scudo shared object

e Install:

$> ninja install-clang install-builtins install-compiler-rt \
install-core-resource-headers install-libc install-11d

e Linux Headers:
o libc headers include few safe linux headers
o Install linux headers into the sysroot

Using the libc - Building and Install the full toolchain

e Standard LLVM CMake conventions

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc;1lld;compiler-rt;clang” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>
-DLLVM LIBC FULL BUILD=ON \ # We want the full libc
-DLLVM LIBC INCLUDE SCUDO=ON \ # Include Scudo in the libc
-DCOMPILER RT BUILD SCUDO_STANDALONE WITH LLVM LIBC=ON \ # Build Scudo against libc headers
-DCOMPILER RT BUILD GWP_ASAN=OFF \ # Do not include GWP-ASAN with Scudo
-DCOMPILER RT SCUDO_STANDALONE BUILD SHARED=OFF # Do not build the Scudo shared object

e Install:

$> ninja install-clang install-builtins install-compiler-rt \
install-core-resource-headers install-libc install-11d

e Linux Headers:
o libc headers include few safe linux headers
o Install linux headers into the sysroot

Using the libc - Building and Install the full toolchain

e Standard LLVM CMake conventions

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc;1lld;compiler-rt;clang” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>
-DLLVM LIBC FULL BUILD=ON \ # We want the full libc
-DLLVM LIBC INCLUDE SCUDO=ON \ # Include Scudo in the libc
-DCOMPILER RT BUILD SCUDO STANDALONE WITH LLVM LIBC=ON \ # Build Scudo against libc headers
-DCOMPILER RT BUILD GWP ASAN=OFF \ # Do not include GWP-ASAN with Scudo
-DCOMPILER RT SCUDO_STANDALONE BUILD SHARED=OFF # Do not build the Scudo shared object

e Install:

$> ninja install-clang install-builtins install-compiler-rt \
install-core-resource-headers install-libc install-11d

e Linux Headers:
o libc headers include few safe linux headers
o Install linux headers into the sysroot

Using the libc - Building and Install the full toolchain

e Standard LLVM CMake conventions

$> cmake ../llvm -G Ninja -DLLVM ENABLE PROJECTS="1libc;1lld;compiler-rt;clang” \
-DCMAKE C COMPILER=clang -DCMAKE CXX COMPILER=clang++ \
-DCMAKE BUILD TYPE=<Debug|Release> \
-DCMAKE INSTALL PREFIX=<Your prefix of choice>
-DLLVM LIBC FULL BUILD=ON \ # We want the full libc
-DLLVM LIBC INCLUDE SCUDO=ON \ # Include Scudo in the libc
-DCOMPILER RT BUILD SCUDO_STANDALONE WITH LLVM LIBC=ON \ # Build Scudo against libc headers
-DCOMPILER RT BUILD GWP ASAN=OFF \ # Do not include GWP-ASAN with Scudo
-DCOMPILER RT SCUDO_STANDALONE BUILD SHARED=OFF # Do not build the Scudo shared object

e Install:

$> ninja install-clang install-builtins install-compiler-rt \
install-core-resource-headers install-libc install-1l1d

e Linux Headers:
o libc headers include few safe linux headers
o Install linux headers into the sysroot

Using the libc - Full Build Mode in Action

e Trythe examples available in the libc directory

https://github.com/llvm/llvm-project/tree/main/libc/examples
e Compile options:

O —-sysroot=<>
e Linker options:
O —sysroot=<>
0 -rtlib=compiler-rt

0 —-fuse-1d=11d

> See the CMake logic for the examples:

<...>/libc/examples/examples.cmake

https://github.com/llvm/llvm-project/tree/main/libc/examples
https://github.com/llvm/llvm-project/blob/main/libc/examples/examples.cmake

Bringing up LLVM's libc on a new Platform/Architecture

e Platform and architecture configs are specified in the
libc/config directory

e Add a new platform by creating coel
0 <Target 0S>/<Target Architecture>/entrypoints.txt ﬁxm
e Architecture and platform independent entrypoints such as el
strcpy, strlen can be brought in straightforward manner
e Some functions will need specialization for new platforms fii{iﬁomts.txt
o EG.src/ support/0sUtil/has subdirectories for different target = headers.txt

architectures = api.td

e For fullbuild you will need a few more things:
0 <Target 0S>/api.td
0 <Target 0S>/<Target Architecture>/headers.txt

> See https:/libc.llvm.org/porting.html! for more information

https://libc.llvm.org/porting.html

Near-Term Focus Areas

e Math library

o Implement double and higher precision flavors of the transcendental math function

e Stdio and Pthread

o Improve coverage

m Not all functions are available
o Improve configurability

m Add options for shrinking code size for embedded use cases
o Improve standards conformance

m A few corners of POSIX are not fully implemented

Near-Term Focus Areas (2)

e Startup Subsystem

@)

Add support for static-PIE (position independent executable) linking

e Platform and Architecture Coverage

@)

o
o
o

Continue integration in to Fuchsia’s libc
Maybe bring up for RISC-V?

Improve arm32 coverage

Cl for darwin (both -intel and -armé64)?

e Miscellaneous

@)
@)

Move away from table-gen
Mechanical code style clean up

Contributing

e Want to contribute a port for a new target or platform?

o Coding aspect: See: https:/libc.llvm.ora/porting.html for setting up the various configs for the
new port.

o Engineering aspect: Along with the code, we also want to see a plan for standing up Cl
builders

https://libc.llvm.org/porting.html

Contributing (2)

e Want to help with other open areas?
o Cleaning up coding style
Adding CMake options to link overlay libc with other LLVM binaries

o Put plumbing in place to start shipping the overlay libc binaries with LLVM binary
releases

Implement Linux syscall wrappers
o Better random number generator
Double and higher precision math functions
m Tue Ly will be talking about our math functions in depth tomorrow

See: https://libc.llvm.org/contributing.html

https://libc.llvm.org/contributing.html

Communication
e Discord Channel:

https://discord.com/channels/636084430946959380/636732994891284500

e Discourse:

https://discourse.llvm.org/c/runtimes/libc

e Bug reports:

https://qgithub.com/llvm/llvm-project/labels/libc

> The above links are available under “External
Links” on libc.llvm.orqg

https://discord.com/channels/636084430946959380/636732994891284500
https://discourse.llvm.org/c/runtimes/libc
https://github.com/llvm/llvm-project/labels/libc
https://libc.llvm.org

Thank You

BN

