
JITLINK
NATIVE WINDOWS JITING IN LLVM

b y S u n h o K i m

OUTLINE

OUTLINE
How does JIT work in LLVM

OUTLINE
How does JIT work in LLVM
Motivation

OUTLINE
How does JIT work in LLVM
Motivation
clang-repl demo

OUTLINE
How does JIT work in LLVM
Motivation

Windows COFF JITLink example
clang-repl demo

OUTLINE
How does JIT work in LLVM
Motivation

Windows COFF JITLink example
Windows COFF JITLink plugin example

clang-repl demo

OUTLINE
How does JIT work in LLVM
Motivation

Windows COFF JITLink example
Windows COFF JITLink plugin example
Tips on using JITLink in COFF

clang-repl demo

F r o n t e n d

HOW DOES JIT WORK IN LLVM
Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d

HOW DOES JIT WORK IN LLVM
Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d

HOW DOES JIT WORK IN LLVM

Object files

Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d L i n k e r

HOW DOES JIT WORK IN LLVM

Object files

Usual executable generation pipeline in LLVM

F r o n t e n d B a c k e n d J I T L i n k e r

HOW DOES JIT WORK IN LLVM

Object files
(in memory)

JIT execution pipeline in LLVM

F r o n t e n d B a c k e n d J I T L i n k e r

HOW DOES JIT WORK IN LLVM

Object files
(in memory)

Share a huge portion of pipeline with AOT

Fewer breakage by LLVM internal code changes

JIT execution pipeline in LLVM

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

People used ELF on
Windows

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

People used ELF on
Windows

New JIT linker: JITLink

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

People used ELF on
Windows

New JIT linker: JITLink
Small code model aware
memory allocator

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

People used ELF on
Windows

New JIT linker: JITLink
Small code model aware
memory allocator
Runtime features fully
supported including static
initializers and thread local
storage

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

People used ELF on
Windows

New JIT linker: JITLink
Small code model aware
memory allocator
Runtime features fully
supported including static
initializers and thread local
storage
Generic linker object
abstraction LinkGraph

MOTIVATION FOR JITLINK
Old JIT linker: RuntimeDyld

Small code model
unsupported
Static initializers or thread
local storage (TLS)
supported in limited ways
Developed in ad-hoc fashion
COFF support existed but
very unstable

People used ELF on
Windows

New JIT linker: JITLink
Small code model aware
memory allocator
Runtime features fully
supported including static
initializers and thread local
storage
Generic linker object
abstraction LinkGraph
Easy to fully implement
 native object file features

COFF SUPPORT IN JITLINK

COFF SUPPORT IN JITLINK

Capable of linking object files generated by MSVC

COFF SUPPORT IN JITLINK

Capable of linking object files generated by MSVC
COMDATs, WeakExternal, linker directive, dllimport stub, or CRT initializer
properly implemented

COFF SUPPORT IN JITLINK

Capable of linking object files generated by MSVC
COMDATs, WeakExternal, linker directive, dllimport stub, or CRT initializer
properly implemented
Able to jit-link the VC runtime library/Microsoft STL library out of shelf

COFF SUPPORT IN JITLINK

Capable of linking object files generated by MSVC
COMDATs, WeakExternal, linker directive, dllimport stub, or CRT initializer
properly implemented
Able to jit-link the VC runtime library/Microsoft STL library out of shelf
c++ exception handling support

COFF SUPPORT IN JITLINK

Capable of linking object files generated by MSVC
COMDATs, WeakExternal, linker directive, dllimport stub, or CRT initializer
properly implemented
Able to jit-link the VC runtime library/Microsoft STL library out of shelf
c++ exception handling support
Structured Exception Handling (SEH) support

COFF SUPPORT IN JITLINK

Capable of linking object files generated by MSVC
COMDATs, WeakExternal, linker directive, dllimport stub, or CRT initializer
properly implemented
Able to jit-link the VC runtime library/Microsoft STL library out of shelf
c++ exception handling support
Structured Exception Handling (SEH) support
Incremental linking works by default

CLANG-REPL DEMO

CLANG-REPL DEMO
clang-repl is c++ JIT interpreter devloped inside LLVM in-tree

CLANG-REPL DEMO
clang-repl is c++ JIT interpreter devloped inside LLVM in-tree
Since it's targetting Windows COFF right now, it's MSVC compliant
interactive c++ REPL

WINDOWS COFF JITLINK EXAMPLE

We're going to build a simple JIT application

LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE

Executes the LLVM IRs written inside main.ll using JIT
We're going to build a simple JIT application

LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE

Executes the LLVM IRs written inside main.ll using JIT
main.ll will be generated from clang

We're going to build a simple JIT application

LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE

Executes the LLVM IRs written inside main.ll using JIT
main.ll will be generated from clang
We're reading IRs from file for simplicity

We're going to build a simple JIT application

LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE

Executes the LLVM IRs written inside main.ll using JIT
main.ll will be generated from clang
We're reading IRs from file for simplicity

IRs can be generated just in time entirely within memory

We're going to build a simple JIT application

LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

LLJIT::loadOrcRuntime function can be used to load orc runtime into JIT
session.

orc_rt-x86_64.lib file is inside compiler-rt build

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.lib and SDL2main.lib are static libraries needed for SDL.

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.lib and SDL2main.lib are static libraries needed for SDL.

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.lib and SDL2main.lib are static libraries needed for SDL.

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.lib and SDL2main.lib are static libraries needed for SDL.

JITDylib = emulated dylib inside JIT session

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.dll is dynamic library needed for SDL

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.dll is dynamic library needed for SDL
User32.dll and Shell32.dll is for Windows API

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.dll is dynamic library needed for SDL
User32.dll and Shell32.dll is for Windows API

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.dll is dynamic library needed for SDL
User32.dll and Shell32.dll is for Windows API

WINDOWS COFF JITLINK EXAMPLE
LLVM IR executor

Loading SDL library built by MSVC into JIT session

SDL2.dll is dynamic library needed for SDL
User32.dll and Shell32.dll is for Windows API

Overview of JITLink

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Background

Overview of JITLink

Different formats of object files: ELF, MachO, COFF

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Background

Overview of JITLink

Different formats of object files: ELF, MachO, COFF
Different architecture of binary code: x86_64, aarch64, risc-v, ppc

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Background

Overview of JITLink

Different formats of object files: ELF, MachO, COFF
Different architecture of binary code: x86_64, aarch64, risc-v, ppc
JITLink converts object file into generic linker object representation LinkGraph

ELFLinkGraphBuilder, COFFLinkGraphBuilder, MachOLinkGraphBuilder

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Background

Overview of JITLink

Different formats of object files: ELF, MachO, COFF
Different architecture of binary code: x86_64, aarch64, risc-v, ppc
JITLink converts object file into generic linker object representation LinkGraph

ELFLinkGraphBuilder, COFFLinkGraphBuilder, MachOLinkGraphBuilder
Then, it performs generic memory allocation, symbol resolution as described in
LinkGraph and perform architecture-specific relocations as needed

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Background

 m o v r d i , 1
 m o v r s i , m e s s a g e
 j m p p r i n t f

 " H e l l o , w o r l d "

Block (Code)

Block (Data)

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Overview of LinkGraph

 m o v r d i , 1
 m o v r s i , m e s s a g e
 j m p p r i n t f

 " H e l l o , w o r l d " M e s s a g e

Block (Code)

Block (Data) Symbol

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Overview of LinkGraph

 m o v r d i , 1
 m o v r s i , m e s s a g e
 j m p p r i n t f

 " H e l l o , w o r l d " M e s s a g e

I M A G E _ R E L _ A M D 6 4 _ R E L 3 2

Block (Code)

Block (Data) Symbol

Edge (Relocation)

Patch location

Target symbol

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Overview of LinkGraph

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Basic plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Basic plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Basic plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Basic plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Basic plugin

P r e P r u n e P o s t P r u n e P o s t A l l o c a t i o n P r e F i x u p P o s t F i x u p

a p p l y
r e l o c a t i o n

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Basic plugin

r e s o l v e
s y m b o l s

a l l o c a t e
b l o c k m e m

d e a d
s t r i p

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

Exception instrumentation plugin

Print the name of the function that just raised exception

F u n c
c a l l < _ C x x T h r o w E x c e p t i o n >

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

_ C x x T h r o w E x c e p t i o n

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

T r a m p o l i n eF u n c
c a l l < _ C x x T h r o w E x c e p t i o n >

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

T r a m p o l i n e

S a v e r e g i s t e r
c a l l < T h r o w I n t e r c e p t >

R e s t o r e r e g i s t e r
c a l l < _ C x x T h r o w E x c e p t i o n >

F u n c
c a l l < _ C x x T h r o w E x c e p t i o n >

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

T r a m p o l i n e

T h r o w I n t e r c e p t
S a v e r e g i s t e r

c a l l < T h r o w I n t e r c e p t >
R e s t o r e r e g i s t e r

c a l l < _ C x x T h r o w E x c e p t i o n >

F u n c
c a l l < _ C x x T h r o w E x c e p t i o n >

C o d e t h a t p r i n t s
d i s a s s e m b l y o f F u n c

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

CodeBuf (content bytes of block)

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

CodeBuf (content bytes of block)

j i t l i n k : : x 8 6 _ 6 4 : : P C R e l 3 2
T h r o w I n t e r c e p t

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

CodeBuf (content bytes of block)

Edge
Symbol

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

WINDOWS COFF JITLINK PLUGIN EXAMPLE
Exception instrumentation plugin

m s v c r t . l i b

u c r t . l i b

v c r u n t i m e . l i b

r e g i s t e r I n i t i a l i z e r s ()

r u n I n i t i a l i z e r s ()

TIPS ON USING JITLINK IN COFF
ORC Runtime at startup

MainJD

orc-rt.lib
New object file

COFFPlatform loads up vcruntime lib files and
ORC runtime lib file.
Uses JIT-linked orc runtime function to register
and run static initializers
ORC runtime itself uses JIT-linked STL library

 C R T $ X C B

 C R T $ X C C

TIPS ON USING JITLINK IN COFF
ORC Runtime at startup

Tips

Care is needed to make sure ORC and vc runtime library files are available
by default, vc runtime libraries automatically detected from VC toolchain
directories (can fail)

Customizing vc runtime loading can be done by COFFVCRuntimeBootstrapper
class
It is still possible to use in-process vc runtime symbols, but need to export required
symbols manually by using linker directive

#pragma comment(linker, "/export:??_7type_info@@6B@")

TIPS ON USING JITLINK IN COFF
JITDYLIB: Emulated DYLIB inside JIT session

Challenges with COFF small code model

Compilers assume that all symbols within the same executable or dylib are
allocated close together
It is not possible to "patch" instructions to use GOT pointer on demand when the
required displacement exceeds 2Gb
COFF x86 relocation points to the middle of instruction bytes

x86 encoding is not possible to be read backwards to know the start of
instruction (for instructions of interest because of presence of RAX prefix)
-> can't patch this part

 " S o m e b y t e s "

 m o v r d i , 1
 m o v r s i , m e s s a g e
 j m p p r i n t f

 m o v r d i , 1
 m o v r s i , m e s s a g e
 j m p p r i n t f

TIPS ON USING JITLINK IN COFF
JITDYLIB: Emulated DYLIB inside JIT session

JITDYLib

ImageBase

HelloWorld

HelloWorld2

0x1000

0x1001

0x1053
code linked by
JITLink added

Emulated dylib inside JIT session
dlopen and dlclose JITDYLib inside
JITted code

JITLink memory
manager enforces the

distance from
ImageBase to not

exceed larger amount

 " S o m e b y t e s "

c a l l L o c a l F u n c

 " S o m e b y t e s "

 m o v r d i , 1
 m o v r s i , m e s s a g e
 j m p p r i n t f

" S o m e b y t e s "

c a l l * _ _ i m p _ L o c a l F u n c

m o v r a x ,
 * _ _ i m p _ L o c a l V a r

0xFFFFFFFF1001

0xFFFFFFFF1053

TIPS ON USING JITLINK IN COFF
JITDYLIB: Emulated DYLIB inside JIT session

JITDYLib A

ImageBase

CallFunc

0x1000

0x1001

0x1053

JITDYLib B

ImageBase

LocalFunc

LocalVar

0xFFFFFFFF1000

CallFunc2

0x1068
LoadVar

through jump stub

through import stub pointer

through import stub pointer

TIPS ON USING JITLINK IN COFF
JITDYLIB: Emulated DYLIB inside JIT session

Tips

Call function of another JITDYLib through usual call or dllimport attribute (__imp_)
Access data of another JITDYLib only through dllimport attirbute (__imp_)
Same practices are required in AOT world too but less clear in JIT world

THANKS
Code discussed today is available at:
https://github.com/sunho/LLVM-JITLink-COFF-Example

https://github.com/sunho/LLVM-JITLink-COFF-Example

