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Does LLVM implement 
security hardenings 
correctly?

A BOLT-based static analyzer to the rescue?



2 © 2024 Arm

Compilers/Codegen/Toolchain

Co
rr

ec
tn

es
s

O
pt

im
iza

tio
n



3 © 2024 Arm

Compilers/Codegen/Toolchain

Co
rr

ec
tn

es
s

O
pt

im
iza

tio
n

Se
cu

rit
y



4 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler



5 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler



6 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack



7 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack

Smashing the 
stack for fun and 
profit



8 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack

Smashing the 
stack for fun and 
profit

-fstack-protector
in gcc 4.1



9 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack

Smashing the 
stack for fun and 
profit

-fstack-protector
in gcc 4.1

Rust, llvm, gcc PSIRT



10 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Security 
becoming a 
third pillar

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack

Smashing the 
stack for fun and 
profit

-fstack-protector
in gcc 4.1

Rust, llvm, gcc PSIRT

Se
cu
rit
y



11 © 2024 Arm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Gcc emerges 
(open source
compiler)

Compilers 
are mostly 
open source

Security 
becoming a 
third pillar

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack

Smashing the 
stack for fun and 
profit

-fstack-protector
in gcc 4.1

Rust, llvm, gcc PSIRT

Se
cu
rit
y

Correct translation
and optimization

… and 
security



12 © 2024 Arm

Maturity gauges

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing 
Fortran 
compiler

Gcc emerges 
(open source
compiler)

Compilers 
are mostly 
open source

Security 
becoming a 
third pillar

Turing award 
winner Ken 
Thompson
demonstrates 
malicious 
compiler patch
supply chain 
attack

Smashing the 
stack for fun and 
profit

-fstack-protector
in gcc 4.1

Rust, llvm, gcc PSIRT

Se
cu
rit
y

Correct translation
and optimization

… and 
security



© 2024 Arm

What kinds of security 
aspects in toolchains?

Looking at data from llvm security group
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Data from 3 years of LLVM Security Group
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presentation later today
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e.g. see 
https://best.openssf.org/Compiler-

Hardening-Guides/Compiler-Options-
Hardening-Guide-for-C-and-C++

-fcf-protection=full
-mbranch-protection=standard
-ftrivial-auto-var-init=zero
-fstack-protector-strong

-D_FORTIFY_SOURCE=3
-fstack-clash-protection

…

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
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What are possible root causes of issues related to security 
hardening?

Documentation often somewhat under-specifies what a hardening does exactly
• Results in a few security issue reports by users seeing hardening not applied when they thought it 

should.
Implementers of hardening claim it’s a “known”, deliberate gap.

Sometimes though simply a bug in the implementation and indeed there is an non-
deliberate gap

Potential causes for non-deliberate gaps:
• Do compiler engineers creating, adapting or touching hardening implementations know enough about 

attacks and software security?
• How can we test correct implementation of hardening?
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Help compiler engineers 
to learn about security 
“stuff”
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https://llsoftsec.github.io

https://llsoftsec.github.io/
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Learn to think like an attacker, hands-on
https://learn.arm.com/learning-paths/servers-and-cloud-computing/exploiting-stack-buffer-overflow-aarch64/

Helps to identify 
weakest spots in a 
hardening feature
Start with “smashing 
the stack for fun and 
profit” 1996
Arm Learning Path(s)
Very hands-on: create 
a stack buffer 
overflow attack in 
less than 2 hours

https://learn.arm.com/learning-paths/servers-and-cloud-computing/exploiting-stack-buffer-overflow-aarch64/
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Testing security 
hardening 
implementations
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Standard testing practices don’t test hardening well…
1. Regression and unit tests, check if generated assembly is exactly as expected…

… but only for a very small number of test cases
2. Test-suites cover more code…

… but only test if program generates expected output
… does not test if program became more resistant to attack

3. Sometimes ad-hoc binary analyzer gets created
e.g. x86 stack clash. https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/
… not widely available, not integrated in CI loops => no protection against regressions

Could we create an open source binary analyzer to check for the properties at binary 
level that should be there?
• Make category 2 (test-suite) useful for testing effectiveness of hardening features.

https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/
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Packaging/distro building

Compiler development

What would a production-quality static binary analyzer enable?

1. Check correctness of hardening features during implementation.
2. Add the scanner to compiler CI loops, to detect regressions.
3. Integrate in a fuzzing setup to verify hardening remains correct with non-default compiler 

options.

1. Hardening feature correctly applied across an entire distribution, no matter how binary code 
was produced.

2. Integrate into a distribution build process to verify that there are no regressions.
3. For some mitigations, there are few specific contexts where they cannot be applied. Often this 

is only known to a hand-full of implementers working in this area.
Use analyzer to enumerate and document those intended gaps.

1. Could also use analyzer to check for other binary properties that do not affect output of 
generated program, e.g. are frame pointer chains created correctly?
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Could we create such a binary analysis tool?

”How hard could it be?”
• Let’s build a few prototype binary scanners for AArch64 binaries.

Start with one relatively easy one: pac-ret hardening
• pointer authentication on return addresses; mitigating ROP attacks
• Enabled by default on a number of linux distributions

Then a harder one: stack-clash
• Requires reverse engineering how stack grows, shrinks, gets accessed -> in theory 

intractable?
• But maybe in practice, doable?
• Could give an indication of how hard other stack-related hardening features such as 

stack canaries might be to scan for?
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Pac-ret hardening

a.k.a. “pointer authentication”
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Assumed Threat model
Attacker uses one or more memory vulnerabilities to overwrite data 
memory.
• Assumption is code can not (easily) be overwritten, cannot write “new code” to 

running process.
Typical attacks then are so-called code-reuse attacks:
• Attacker overwrites a “code pointer” in the data memory, e.g. return addresses 

stored on the stack.
When code follows such a code pointer, the attacker controls where execution 
continues.
By stitching together snippets of code ending in an indirect control flow, attacker can 
sometimes achieve “turing-complete”/arbitrary code execution.

E.g. opening a network port for the attacker to connect to the running process; …
• ROP (return-oriented programming), JOP (jump-oriented programming) attacks
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Armv8.3: PAuth signed pointers
Detect unintended overwrites of pointer values in memory

Pointer Authentication aims to make such attacks harder by trying to detect pointer 
overwrites.

Use otherwise-unused upper bits in the pointer to store a cryptographic hash (PAC).
Between loading the pointer in a register and using it, authenticate the signed pointer

raw pointer:

signed pointer:

RESERVED AddressRESERVED

VA_SIZE - 1VA_SIZE55 545663

PAC AddressPAC

VA_SIZE - 1VA_SIZE55 545663sign authenticate
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Armv8.3: PAuth signed pointers
Detect unintended overwrites of pointer values in memory

Use otherwise-unused upper bits in the pointer to store a cryptographic hash (PAC).
Between loading the pointer in a register and using it, authenticate the signed pointer

raw pointer:

signed pointer:

What input should go into the PAC, so that attackers cannot produce valid signed 
pointers in memory?
• The address
• The attacker should not be able to compute the PAC offline
• The attacker should not be able to substitute a valid signed

code pointer

Address

Key

Modifier

PACP

RESERVED AddressRESERVED

VA_SIZE - 1VA_SIZE55 545663

PAC AddressPAC

VA_SIZE - 1VA_SIZE55 545663sign authenticate
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Typical use of Pauth instructions in pac-ret hardening
bl f // sets x30 to point to next_instruction

    next_instruction
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Typical use of Pauth instructions in pac-ret hardening

f:

stp x29, x30, [sp, #-16]! // return address stored to memory

bl function_processing_attacker_controlled_data

ldp x29, x30, [sp], #16 // attacker-controlled return address

ret x30 // Instead of returning to next_instruction, attacker
// takes over control

bl f // sets x30 to point to next_instruction
    next_instruction



33 © 2024 Arm

Typical use of Pauth instructions in pac-ret hardening

f:
paciasp // PAC IA SP (x30)
stp x29, x30, [sp, #-16]! // return address stored to memory

bl function_processing_attacker_controlled_data

ldp x29, x30, [sp], #16 // attacker-controlled return address
autiasp // AUT IA SP (x30). Detects if x30 was tampered with.
ret x30 // Instead of returning to next_instruction, attacker

// takes over control

bl f // sets x30 to point to next_instruction
    next_instruction
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What is the “binary property” to check for pac-ret hardening?
Goal: avoid checking specific compiler implementation
So: what is the bare minimum invariant to check?
I came up with:
• When you have a return instruction (e.g. RET x30)
• The register with the address to return to (e.g. x30)
• Should either:

1. not be written to in the function
2. Or last be written to be an authenticating instruction.
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Llvm-bolt-gadget-
scanner
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Why build a binary scanner in BOLT?

1. Works at the MCInst layer, i.e. exactly mirror what is in the binary, no loss of accuracy.
2. Familiarity for LLVM developers: can implement both a mitigation and the associated 

analyzer in the same framework.
3. Actively used by large organizations to achieve great benefits; framework most likely 

will be maintained for a long time.
4. Development cost for lifting binary to CFG can be shared between optimization and 

analysis use cases.

Read binary Reconstruct 
CFG

read profile 
info

rewrite 
binary

do binary 
analysis
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Implementation and evaluation strategy for a prototype
/usr/lib64 Fedora 39: 1981 libraries; 261M instructions.
Iteratively:
• Fix issues with BOLT unable to read binaries
• Investigate root cause for reported pac-ret issues; fix implementation if false positive

Making use of BOLT’s built-in dataflow analysis
What kind of issues with BOLT unable to read binaries?
• Avoid crashing on unrecognized jump table sequence.
• DWARF OpNegateRAState not supported (issue #74833)
• Not being able to reconstruct CFG for many functions (23%)
• Therefore, also implemented scanner for when CFG isn’t reconstructed

https://github.com/llvm/llvm-project/issues/74833
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Results from experiment
Total analysis time is 667s on a single core => 391K instr/s.
More than fast enough.
Number of lines of code to implement/complexity?
• Pac-ret-specific gadget scanning: O(700 lines)
• Kloc for general “new tool based on BOLT”: O(400 lines) 
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Pac-ret “gadgets” found
Total 2.5M returns.
Pacret gadgets: 46K.
About 1.8% of returns not protected.
Why are there non-protected returns when pac-ret is enabled Fedora-wide?
• True positives:

1. Some libraries written in languages for which compilers do not yet support pac-ret hardening, e.g. Rust, 
Haskell, Go, …

2. One or a few C/C++ libraries have quirks in their build system, meaning distro-wide default does not 
propagate through.

3. A few in assembly-written code doing “special stuff” and ”known gap” by implementers.
• False positives:

1. analysis not yet aware that BRK instructions end execution flow doesnotreturn:
 brk 1

f_call_noreturn:
 bl doesnotreturn
 ret
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Conclusion on experiment building scanner for pac-ret
Implementation and tool running cost very reasonable.
Results from diagnostics are actionable and useful:

1. Prioritize which toolchains for which language to implement pac-ret support in based on data.
2. Fix build system for packages not respecting distro-wide default.
3. Document accepted gaps in hardening, so knowledge becomes accessible.

Some general remaining work left on:
• enabling BOLT to reverse engineer CFG on more functions
• recognizing more “no-return” functions
• recognizing more jump table binary patterns
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Stack-clash
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Stack-clash attack: sketch of how it works
long f(int N) {

long A[N];
g(A, N);
return A[N-1];

}
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Stack-clash attack: sketch of how it works
long f(int N) {

long A[N];
g(A, N);
return A[N-1];

}
ldr x0, [sp, x1]
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Stack-clash attack: sketch of how it works
long f(int N) {

long A[N];
g(A, N);
return A[N-1];

}

STACK

Guard page(s)

HEAP

SP->

ldr x0, [sp, x1]
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Stack-clash attack: sketch of how it works
long f(int N) {

long A[N];
g(A, N);
return A[N-1];

}

STACK

Guard page(s)

HEAP

SP->

ldr x0, [sp, x1]
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What does stack clash protection aim to achieve?
1. Only grow stack at most one page at a time, 
2. and do at least one memory access on every new page as it grows.

… to ensure when the stack grows, there’s always an access to the guard page

See https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/ for more 
information.

Ø A gadget scanner will need to keep track of stack pointer changes and stack accesses.
Is that even tracktable?

https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/
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Stack pointer evolution tracking: gcc stack protector loop
sub x2, sp, x2

 cmp sp, x2
 beq .L3

.L7:
  sub sp, sp, #65536
  str xzr, [sp, 1024]
  cmp sp, x2
  bne .L7

.L3:
  and x1, x1, 65535
  sub sp, sp, x1
  str xzr, [sp]

1. Need to track known maximum
values of registers
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Stack pointer evolution tracking: spilled stack pointer value

f_spoffset_spilled:
  stp x29, x30, [sp, #-16]!
  mov x29, sp
  sub sp, sp, #16
  mov x0, sp
  str x0, [x29, #8]
  prfm pstl1keep, [x29, #0x0]
  ldr x1, [x29, #8]
  mov sp, x1
  mov sp, x29
  ldp x29, x30, [sp], #16
  ret

2. Need to track which registers have the
same value as the stack pointer+offset

3. Need to track spill/fill of such registers
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Stack pointer evolution tracking: constant values in registers

mov x12, #40000
  sub sp, sp, x12

4. Need to track which registers contain a
constant value
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Stack pointer evolution tracking: dead binary code
f_recognize_fp_deadcode:

mov x29, sp
b .Lfp3_1

.Ldeadcode:
  nop

.Lfp3_1:
  mov sp, x29
  ret

5. Need to recognize dead basic blocks and
no flow is possible from them

6. Need to recognize no-return functions
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Stack pointer evolution tracking: aligning stack pointer

sub x9, sp, #0x1d0
  and sp, x9, #0xffffffffffffff80

7. Need to recognize masking on sp-offset
values
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Prototype implementation experience
Also implemented using dataflow framework.
Like for the pac-ret scanner, iteratively:
• Investigate root cause for reported stack-clash gadget
• if false positive: improve pattern recognizer
• That’s how the stack change patterns in previous slides were recognized and implemented

Ongoing work, current state: still stack clash gadgets reported in 39 out of 1920 libs.
• Presumably most remaining ones are still false positives and a few more stack manipulation patterns 

need recognizing?

Avg analysis speed 391K instr/s. More than fast enough.
Core dataflow implementation O(1000) lines
• O(1000) lines for improving tablegen to enable querying offset and size of memory access for all LD/ST 

instructions.
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Stack-clash “gadgets” found
Total 1920 libs, about 2M functions.
Still stack clash gadgets identified in 39 out of 1920 libs.
Smaller experiment on LLVM test-suite rather than /usr/lib64:
• Build it with gcc, both with and without -fstack-clash-protection
• LLVM test-suite built with gcc: 101 stack-clash gadgets reported.
• LLVM test-suite built with gcc: 1 stack-clash gadget reported (not yet clear if true or false positive).

Conclusion:
• Bringing false positive rate down far enough seems feasible,

requires some more iterating on analyzing false positives and improving pattern recognizer.
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Summary
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Summary
Security is becoming the third pillar of compiler design and implementation,
next to correctness and optimization.

Security hardening features are regularly added to compilers.
• Ability to test their implementation is limited
• A significant number of reported security issues relate to security hardening features.

Is a binary analysis tool that checks correct hardening across a
binary feasible?
• Reusing BOLT, as that already has binary analysis capabilities.

Win-win with optimization use case.
• Prototype implementation shows its absolutely doable for pac-ret, most likely doable for stack-clash. 

Conclusion: yes, it seems worthwhile to implement such a binary scanner in BOLT.

Se
cu
rit
y
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Summary (2): llvm-bolt-gadget-scanner
Llvm-bolt-gadget-scanner would be useful to:
• Better test correct implementation of security hardening in compiler

During development; integrated in CI; integrated in fuzz testing
• Better check proper application across a whole distribution
• Could be useful for checking other binary properties too (e.g. correct frame chain creation, …)

Prototype implementation available at https://github.com/kbeyls/llvm-
project/tree/bolt-gadget-scanner-prototype
Cannot turn prototype into a quality upstream implementation fully on my own.
• Please reach out if you think this is interesting. Even more so if you could provide help J
• Round table later this conference.
• RFC: https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-

hardening/78148

https://github.com/kbeyls/llvm-project/tree/bolt-gadget-scanner-prototype
https://github.com/kbeyls/llvm-project/tree/bolt-gadget-scanner-prototype
https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-hardening/78148
https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-hardening/78148
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