arm

Does LLVM implement

security hardenmgs

correctly?

A BOLT-based static ahalyz_'e“r to the réscue? -"\;} &

»Snen

A

-
.

—
-

Kristof Beyls
April 10, 2024

© 2024 Arm

Al-generated image

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing
Fortran
compiler

4 © 2024 Arm a r m

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Principles of Compiler Design

Optimizing
Fortran
compiler

5 © 2024 Arm a rm

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970

1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

| Principles of Compiler Design
|

Optimizing
Fortran
compiler

Turing award
winner Ken
Thompson
demonstrates
malicious

compiler patch
supply chain

6 ©2024Arm attack a rm

Compilers & the 3 pillars over time

1950 1955 1960

Optimizing
Fortran
compiler

7 © 2024 Arm

1965 1970 1975

Turing award
winner Ken
Thompson
demonstrates
malicious
compiler patch
supply chain
attack

1990 1995 2000

Smashing the
stack for fun and

profit

2020

arm

2024

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing
Fortran
compiler

Turing award fstack-protector
winner Ken ingcc4.l

Thompson
demonstrates
malicious
compiler patch
supply chain

8 ©2024Arm attack profit a r m

Smashing the
stack for fun and

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Optimizing
Fortran
compiler

Turing award fstack-protector
winner Ken ingcc4.l

Thompson
demonstrates
malicious
compiler patch
supply chain

9 ©2024Arm attack profit a r m

Smashing the Rust, llvm, gcc PSIRT
stack for fun and

Compilers & the 3 pillars over time

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2024

Principles of Compiler Design

2
5
.. Q
Optimizing e
Fortran
compiler

Turing award fstack-protector bec
winner Ken ingcc4.1 thir
Thompson

demonstrates

malicious
J Rus
compiler patch Smashing the

supply chain staclfforfun and
attack profit

Compilers & the 3 pillars over time

950 > 960 96 9/0 O 980 98 990 96 010[0 00 010 U 020 024

Correct translation ... and
and optimization security

Maturity gauges

950 > 960 96 9/0 O 980 98 990 96 010[0 00 010 U 020 024

Correct translation ... and
and optimization security

What kinds c
aspects in toolc

Looking at data from llvm security group

Toolchain security aspects

OSS software

run-time libraries, most widely used OSS supply chain
libraries in the world security

Compromised
github
account

outdated
dependencies

memory adeets other
vulnerabilities gads vulnerabilities

14 © 2024 Arm

codegen-specific

supply

features helping security of built chain

SW-only or
HW-specific
hardening
features

binaries

Sanitizers and
other
debugging
tools

(malicious
codegen)

backdoor in
generated
code?

SBOM
generation?

Toolchain security aspects

supply
features helping security of built chain
JIENES (malicious

codegen)

SW-only or Sanitizers and
HW-specific other SBOM
hardening debugging generation?
features tools

backdoor in
generated
code?

15 © 2024 Arm a r m

Toolchain security aspects

Amongst the most frequent
and highest complexity
security issues in toolchains.

arm

Data from 3 years of LLVM Security Gr

* 4x gaps in existing
mitigations (e.g. CHOP,
CFI, BTI)

 3xrequest for new
mitigation for vulnerability ;.o
outside of LLVM (e.g. s
Retbleed, Ultimate SLH,

Trojan Source)

More details on LLVM
Security Group stats in other
presentation later today

17 © 2024 Arm

arm

e.g. see

https://best.openssf.org/Compiler-

Hardening-Guides/Compiler-Options-

More details on
Security Group stats in
presentation later today

18 © 2024 Arm

Hardening-Guide-for-C-and-C++
—-fcf-protection=full
-mbranch-protection=standard
—-ftrivial-auto-var—-init=zero
—fstack-protector-strong
-D FORTIFY SOURCE=3
—fstack-clash-protection

arm

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++

What are possible root causes of issues related to security
hardening?

-- Documentation often somewhat under-specifies what a hardening does exactly

- Results in a few security issue reports by users seeing hardening not applied when they thought it

should.
Implementers of hardening claim it’s a “known”, deliberate gap.

-- Sometimes though simply a bug in the implementation and indeed there is an non-
deliberate gap

-- Potential causes for non-deliberate gaps:
- Do compiler engineers creating, adapting or touching hardening implementations know enough about
attacks and software security?
- How can we test correct implementation of hardening?

19 © 2024 Arm a r m

Help compile
to learn about se
Ilstuff”

QO 8 https://lisoftsec.github.io/llsoftsecbook/

[=elloll71l<- e

https://lIsoftsec.github.io

1.1 Why an open source book?

2 Memory vulnerability based attacks
2.1 A bit of background on memory
vulnerabilities
2.2 Exploitation primitives
2.3 Stack buffer overflows
2.4 Code reuse attacks
2.5 Mitigations against code reuse attacks
2.6 Non-control data attacks
2.7 Preventing and detecting memory errors
2.8 JIT compiler vulnerabilities
3 Covert channels and side-channels
3.1 Timing side-channels
3.2 Cache side-channels
3.3 Branch-predictor based side-channels
3.4 Resource contention channels
3.5 Channels making use of aliasing in other
predictors
3.6 Transient execution attacks
3.7 Physical access side-channel attacks
4 Supply chain attacks
4.1 History of supply chain attacks
5 Compiler introduced security vulnerabilities
6 Physical attacks
6.1 Overview
6.2 Physical access side-channel attacks
6.3 Fault injection attacks
7 Other security topics relevant for compiler
21 © 2024 Arm developers
Appendix: contribution guidelines
References

Low-Level Software Security for
Compiler Developers
This work is licensed under a Creative Commons Attribution 4.0

International License.

Copyright 2021-2024 Arm Limited open-source-office @arm.com
Copyright 2023 Bill Wendling morbo@google.com
Copyright 2023 Lucian Popescu lucian.popescui87 @gmail.com

Version: 0-176-g9dbdb74

1 Introduction ¢

Compilers, assemblers and similar tools generate all the binary code that
processors execute. It is no surprise then that these tools play a major role in
security analysis and hardening of relevant binary code.

Often the only practical way to protect all binaries with a particular security
hardening method is to have the compiler do it. And, with software security
becoming more and more important in recent years, it is no surprise to see an
ever increasing variety of security hardening features and mitigations against
vulnerabilities implemented in compilers. Indeed, compared to a few decades
ago, today’s compiler developer is much more likely to implement security
features than not.

Furthermore, with the ever-expanding range of techniques implemented, it’s very
hard to gain a basic understanding of all security features implemented in typical
compilers.

This poses a practical problem: compiler developers must be able to work on
security hardening features, yet it’s hard to gain a good, basic understanding of
such compiler features.

arm

https://llsoftsec.github.io/

Learn to think like an attacker, hands-on

https://learn.arm.com/learning-paths/servers-and-cloud-computing/exploiting-stack-buffer-overflow-aarch64/

-~ Helps to identify Learn about the impact of stack buffer overflows
weakest spotsin a

ha rdening featu re Learn about the impact of stack
buffer overflows . .
About this Learning Path

-— Start with “smashing I

th e Sta C k fo r fu Nn an d Skill level: @ Advanced Author: Kristof Beyls, Arm
Introduction: *Smashing the Reading time: © 2 hrs Arm IP: AArch64&
w4 "
p I"Oflt 199 6 stack Last updated: 06 Oct 2023 Tags: @ Performance and Architecture @ Linu

Docker Setup

-- Arm Learning Path(s)

Frame Layout . .
-~ Very hands-on: create Who is this for?

Stack Buffer Overflow
a Sta C k b uffe r This is an advanced topic for software developers interested in understanding how memory vulnerabilit

Redirect control flow to defend against them.

overflow attack in
Iess than 2 hours Answerstoexeroses What WI” you |earn7

Review
Upon completion of this learning path, you will be able to:

Next Steps
e Analyze the stack frame layout to derive which field in user input overwrites the return address store

¢ Build a basic end-to-end exploit by changing the return address to an attacker-controlled value.

22 © 2024 Arm 0 r m

https://learn.arm.com/learning-paths/servers-and-cloud-computing/exploiting-stack-buffer-overflow-aarch64/

Testing sec
hardening

implementations

Standard testing practices don’t test hardening well...

1. Regression and unit tests, check if generated assembly is exactly as expected...
... but only for a very small number of test cases

2. Test-suites cover more code...
... but only test if program generates expected output
... does not test if program became more resistant to attack

3. Sometimes ad-hoc binary analyzer gets created
e.g. x86 stack clash. https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/
... not widely available, not integrated in Cl loops => no protection against regressions

-- Could we create an open source binary analyzer to check for the properties at binary

level that should be there?
- Make category 2 (test-suite) useful for testing effectiveness of hardening features.

24 © 2024 Arm a r m

https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/

What would a production-quality static binary analyzer enable?

1. Check correctness of hardening features during implementation.
Add the scanner to compiler Cl loops, to detect regressions.

3. Integrate in a fuzzing setup to verify hardening remains correct with non-default compiler
options.

=

Compiler development

1. Hardening feature correctly applied across an entire distribution, no matter how binary code
was produced.

2. Integrate into a distribution build process to verify that there are no regressions.

3. For some mitigations, there are few specific contexts where they cannot be applied. Often this
is only known to a hand-full of implementers working in this area.

Use analyzer to enumerate and document those intended gaps.
i gap Packaging/distro building

1. Could also use analyzer to check for other binary properties that do not affect output of
generated program, e.g. are frame pointer chains created correctly?

25 © 2024 Arm a r m

Could we create such a binary analysis tool?

-- "How hard could it be?”
- Let’s build a few prototype binary scanners for AArch64 binaries.

-- Start with one relatively easy one: pac-ret hardening
- pointer authentication on return addresses; mitigating ROP attacks
- Enabled by default on a number of linux distributions

-- Then a harder one: stack-clash
- Requires reverse engineering how stack grows, shrinks, gets accessed -> in theory

intractable?
- But maybe in practice, doable?
- Could give an indication of how hard other stack-related hardening features such as

stack canaries might be to scan for?

26 © 2024 Arm a r m

Pac-ret harc

a.k.a. “pointer authentication”

© 2024 Arm

Assumed Threat model

-- Attacker uses one or more memory vulnerabilities to overwrite data
memory.

- Assumption is code can not (easily) be overwritten, cannot write “new code” to
running process.

-- Typical attacks then are so-called code-reuse attacks:
- Attacker overwrites a “code pointer” in the data memory, e.g. return addresses
stored on the stack.

When code follows such a code pointer, the attacker controls where execution
continues.
By stitching together snippets of code ending in an indirect control flow, attacker can

sometimes achieve “turing-complete”/arbitrary code execution.
+E.g. opening a network port for the attacker to connect to the running process; ...

- ROP (return-oriented programming), JOP (jump-oriented programming) attacks

28 © 2024 Arm a r m

Armv8.3: PAuth signed pointers

Detect unintended overwrites of pointer values in memory

-- Pointer Authentication aims to make such attacks harder by trying to detect pointer

overwrites.

-- Use otherwise-unused upper bits in the pointer to store a cryptographic hash (PAC).

- Between loading the pointer in a register and using it, authenticate the signed pointer

raw pointer:
sign
signed pointer:

29 © 2024 Arm

(

63

56

55

54

VA SIZE

VA SIZE - 1

RESERVED

RESERVED

Address

63

56

55

54

VA SIZE

VA SIZE - 1

PAC

PAC

Address

authenticat>

arm

Armv8.3: PAuth signed pointers

Detect unintended overwrites of pointer values in memory

-- What input should go into the PAC, so that attackers cannot produce valid signed

pointers in memory?

- The address

- The attacker should not be able to compute the PAC offline

- The attacker should not be able to substitute a valid signed
code pointer

30 © 2024 Arm

Address

Key

Modifier

PAC

arm

Typical use of Pauth instructions in pac-ret hardening

bl f // sets x30 to point to next_instruction
next_instruction

31 © 2024 Arm a rm

Typical use of Pauth instructions in pac-ret hardening

bl T/ sets x30 to point to next_instruction
next 1iNstruction

f:
stp x29, x30, [sp, #-16]! // return address stored to memory
bl function_processing_attacker_controlled_data
ldp x29, x30, [spl, #16 // attacker-controlled return address

ret x30 // Instead of returning to next_instruction, attacker
// takes over control

32 © 2024 Arm a r' m

Typical use of Pauth instructions in pac-ret hardening

bl T/ sets x30 to point to next_instruction
next 1iNstruction

f:
paciasp // PAC IA SP (x30)

stp x29, x30, [sp, #-16]! // return address stored to memory

bl function_processing_attacker_controlled_data

ldp x29, x30, [spl, #16 // attacker-controlled return address
autiasp // AUT IA SP (x30). Detects if x30 was tampered with.

ret x30 // Instead of returning to next_instruction, attacker
// takes over control

33 © 2024 Arm q r m

What is the “binary property” to check for pac-ret hardening?

-- Goal: avoid checking specific compiler implementation
So: what is the bare minimum invariant to check?

-~ | came up with:
- When you have a return instruction (e.g. RET x30)
- The register with the address to return to (e.g. x30)

- Should either:

1. not be written to in the function
2. Or last be written to be an authenticating instruction.

34 © 2024 Arm

arm

LIvm-bolt-
scanner

Why build a binary scanner in BOLT?

: Reconstruct read profile rewrite
do binary
analysis

Works at the MClInst layer, i.e. exactly mirror what is in the binary, no loss of accuracy.

2. Familiarity for LLVM developers: can implement both a mitigation and the associated
analyzer in the same framework.

3. Actively used by large organizations to achieve great benefits; framework most likely
will be maintained for a long time.

4. Development cost for lifting binary to CFG can be shared between optimization and
analysis use cases.

36 © 2024 Arm a r m

Implementation and evaluation strategy for a prototype

-+ /usr/1ib64 Fedora 39: 1981 libraries; 261M instructions.
-- lteratively:
« Fix issues with BOLT unable to read binaries

- Investigate root cause for reported pac-ret issues; fix implementation if false positive
-- Making use of BOLT’s built-in dataflow analysis

-- What kind of issues with BOLT unable to read binaries?
« Avoid crashing on unrecognized jump table sequence.
- DWARF OpNegateRAState not supported (issue #74833)
- Not being able to reconstruct CFG for many functions (23%)
- Therefore, also implemented scanner for when CFG isn’t reconstructed

37 © 2024 Arm a r m

https://github.com/llvm/llvm-project/issues/74833

Results from experiment

-- Total analysis time is 667s on a single core => 391K instr/s.
More than fast enough.

-- Number of lines of code to implement/complexity?
- Pac-ret-specific gadget scanning: O(700 lines)
- Kloc for general “new tool based on BOLT”: O(400 lines)

38 © 2024 Arm a r m

Pac-ret “gadgets” found

-- Total 2.5M returns.
Pacret gadgets: 46K.
About 1.8% of returns not protected.

-- Why are there non-protected returns when pac-ret is enabled Fedora-wide?

 True positives:
1. Some libraries written in languages for which compilers do not yet support pac-ret hardening, e.g. Rust,
Haskell, Go, ...
2. One or a few C/C++ libraries have quirks in their build system, meaning distro-wide default does not
propagate through.
3. A few in assembly-written code doing “special stuff” and "known gap” by implementers.
- False positives:
1. analysis not yet aware that BRK instructions end execution flow doesnotreturn:

brk 1

f call _noreturn:
bl doesnotreturn
ret

39 © 2024 Arm a r m

Conclusion on experiment building scanner for pac-ret

-- Implementation and tool running cost very reasonable.

-- Results from diagnostics are actionable and useful:
1. Prioritize which toolchains for which language to implement pac-ret support in based on data.

2. Fix build system for packages not respecting distro-wide default.
3. Document accepted gaps in hardening, so knowledge becomes accessible.

-- Some general remaining work left on:
- enabling BOLT to reverse engineer CFG on more functions
- recognizing more “no-return” functions
- recognizing more jump table binary patterns

40 © 2024 Arm a r m

Stack-cla

Stack-clash attack: sketch of how it works

long f(int N) {
long AI[NI;
g(A, N);
return A[N-1];
I3

arm

Stack-clash attack: sketch of how it works

long f(int N) {
long AI[NI;
g(A, N);
return A[N-1];

}
ldr x0, [sp, x1]

43 © 2024 Ar m arm

Stack-clash attack: sketch of how it works

long f(int N) {
long AI[NI;
g(A, N);
return A[N-1];

¥
ldr x0, [sp, x1]

HEAP

arm

Stack-clash attack: sketch of how it works
long f(int N) {

long A[N];
g(A, N);
return A[N-1]: SP->

¥
ldr x0, [sp, x1]

HEAP

arm

What does stack clash protection aim to achieve?

1. Only grow stack at most one page at a time,

2. and do at least one memory access on every new page as it grows.
... to ensure when the stack grows, there’s always an access to the guard page

-~ See https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/ for more
information.

» A gadget scanner will need to keep track of stack pointer changes and stack accesses.
Is that even tracktable?

46 © 2024 Arm a r m

https://blog.llvm.org/posts/2021-01-05-stack-clash-protection/

Stack pointer evolution tracking: gcc stack protector loop

sub x2, sp, x2
cmp sp, X2
beq .L3

.L7/:
sub sp, sp, #65536
str xzr, [sp, 1024]

cmp sp, X2
bne .L7
L3:
and x1, x1, 65535 1. Need to track known maximum
sub sp, sp, x1 values of registers

str xzr, [spl
47 © 2024 Arm a r m

Stack pointer evolution tracking: spilled stack pointer value

f_spoffset_spilled:
stp x29, x30, [sp, #-16]!
mov Xx29, sp
sub sp, sp, #16
mov X0, sp
str x0, [x29, #8]
prfm pstllkeep, [x29, #0x0]

2. Need to track which registers have the

ldr x1, [x29, #8] same value as the stack pointer+offset
mov sp, X1

mov sp, x29 3. Need to track spill/fill of such registers
ldp x29, x30, I[spl, #16

ret

48 © 2024 Arm a r' m

Stack pointer evolution tracking: constant values in registers

mov x12, #40000 4. Need to track which registers contain a
sub sp, sp, x12 constant value

49 © 2024 Arm a r m

Stack pointer evolution tracking: dead binary code

f_recognize_fp_deadcode:
mov Xx29, sp
b .Lfp3_1

. Ldeadcode:
nop

5. Need to recognize dead basic blocks and

s[LEjes ot no flow is possible from them
mov sp, x29
ret 6. Need to recognize no-return functions

50 © 2024 Arm a r m

Stack pointer evolution tracking: aligning stack pointer

sub x9, sp, #0x1d0O
and sp, x9, #Oxffffffffffffff80

7. Need to recognize masking on sp-offset
values

51 © 2024 Arm q rm

Prototype implementation experience

-- Also implemented using dataflow framework.

-- Like for the pac-ret scanner, iteratively:
- Investigate root cause for reported stack-clash gadget
- if false positive: improve pattern recognizer
- That’s how the stack change patterns in previous slides were recognized and implemented

-- Ongoing work, current state: still stack clash gadgets reported in 39 out of 1920 libs.
- Presumably most remaining ones are still false positives and a few more stack manipulation patterns
need recognizing?

-- Avg analysis speed 391K instr/s. More than fast enough.

-- Core dataflow implementation O(1000) lines
- 0(1000) lines for improving tablegen to enable querying offset and size of memory access for all LD/ST
instructions.

52 © 2024 Arm a r m

Stack-clash “gadgets” found

-- Total 1920 libs, about 2M functions.
-- Still stack clash gadgets identified in 39 out of 1920 libs.

-- Smaller experiment on LLVM test-suite rather than /usr/lib64:
- Build it with gcc, both with and without —-fstack-clash-protection

- LLVM test-suite built with gcc: 101 stack-clash gadgets reported.
- LLVM test-suite built with gcc: 1 stack-clash gadget reported (not yet clear if true or false positive).

-- Conclusion:
- Bringing false positive rate down far enough seems feasible,
requires some more iterating on analyzing false positives and improving pattern recognizer.

53 © 2024 Arm a r m

Summary

Security

-- Security is becoming the third pillar of compiler design and implementation,
next to correctness and optimization.

-- Security hardening features are regularly added to compilers.
- Ability to test their implementation is limited
- A significant number of reported security issues relate to security hardening features. ‘\

-- Is a binary analysis tool that checks correct hardening across a \

binary feasible?
- Reusing BOLT, as that already has binary analysis capabilities.

Win-win with optimization use case.
- Prototype implementation shows its absolutely doable for pac-ret, most likely doable for stack-clash.

-- Conclusion: yes, it seems worthwhile to implement such a binary scanner in BOLT.

55 © 2024 Arm a r m

Summary (2): llvm-bolt-gadget-scanner

-- Llvm-bolt-gadget-scanner would be useful to:

- Better test correct implementation of security hardening in compiler
- During development; integrated in Cl; integrated in fuzz testing
- Better check proper application across a whole distribution
« Could be useful for checking other binary properties too (e.g. correct frame chain creation, ...)

-- Prototype implementation available at https://github.com/kbeyls/llvm-
project/tree/bolt-gadget-scanner-prototype
-- Cannot turn prototype into a quality upstream implementation fully on my own.

- Please reach out if you think this is interesting. Even more so if you could provide help ©

- Round table later this conference.
« RFC: https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-

hardening/78148

56 © 2024 Arm a r m

https://github.com/kbeyls/llvm-project/tree/bolt-gadget-scanner-prototype
https://github.com/kbeyls/llvm-project/tree/bolt-gadget-scanner-prototype
https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-hardening/78148
https://discourse.llvm.org/t/rfc-bolt-based-binary-analysis-tool-to-verify-correctness-of-security-hardening/78148

arm

© 2024 Arm

Thank You
DERLG
Gracias
Grazie

157 157
HYHES
Asante
Merci
LA LT}
Tddlq
Kiitos

B
SRIBIN]

nNTin
c,ﬁé5o:>°cﬁa>.>w

© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

