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Phase Ordering Problem

* Modern compilers are equipped with many phase
(optimizations) for intermediate representations

* Phase sequences could quickly grow exponentially
so compiler must ensure there are no conflicts and
are optimally sequenced

* Compiler-Gym is an accessible framework that
provides an LLVM compiler, environments
(programs), reward, and transition functions
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Challenges

* Optimizations could be interdependent

* Large search space

* Sequential tasks disproportionately represent data
(non-l1D)

* Apply DQN and Double-DQN to the phase ordering
problem on BLAS and Cbench dataset
environments by leveraging Compiler-Gym

* Demonstrate differences between using
observation spaces (hamely Autophase and
InstrCount)

* Generalize Double-DQN to a larger action and

observation space
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Reinforcement Learning Algorithms

* DQN: combines Q-learning with deep neural
networks.
Double-DQN: addresses overestimation bias from
DQN, resulting in a more stable performance -
especially in high-action spaces
PPO: policy-gradient, on-policy method that uses a
clipped-surrogate objective function to limit policy

updates
1. https://compilergym.com/llvm/index.html#action-space

Solving Phase Ordering with Off-Policy Deep
Reinforcement Learning Algorithms
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* 124-dimension action space

* Observations are Autophase (56-dimension) feature vector for

static IR states or LLVM-IR (70-dimension) feature vector
 3-layer MLP; each layer contains 512 neurons

Benchmark = Cbench Benchmark = BLAS
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Take-aways

* |n certain programs, Double-DQN performs on-par with PPO and
DQN with a large action and observation space (the plot above has

Double DQN trained on 124-dim action space vs 14-dim)
* An alternative approach to phase-ordering problem

Future Work

* Apply Soft-Actor Critic (SAC)

 Experiment with difference reward
functions and state representations

* Try hierarchical or multi-task RL to
Increase phase sequence lengths
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