
Generating Instruction Set Simulators from
Hardware Description with CIRCT MLIR

Instruction set simulation (ISS) is critical for fast SW validation and compiler design.

Typically, an ISS is written before the register-transfer level (RTL) HW

implementation. As the HW evolves, extensive development and verification must be

conducted to ensure equivalence between RTL and ISS. Writing bespoke simulators

for existing hardware designs is time consuming and requires in-depth knowledge of

the micro-architecture. This motivates a way of automatically deriving an ISS from its

corresponding RTL implementation.

We propose a WIP method that leverages CIRCT MLIR to generate ISS functions (i.e

“state transition functions”) in the form of LLVM IR, from a hardware design. The

generated functions can then form the basis of a simulated assembly program. Using

this tool, the RTL and ISS may evolve in parallel, and are consistent by construction.

The method works well on toy accelerators and sub modules of larger designs (e.g.

RocketCore’s ALU), but has yet to be tested on full architectures.

Nicholas Fry1, 2 Fatma Jebali2 Caaliph Andriamisaina2

Imperial College London1, CEA-List2

Overview Advantages & Limitations

Algorithm

Example

● Generated ISS is consistent with hardware by construction.

● Inherits parallelism and flexibility from MLIR code analysis.

● Can be used with different hardware languages (if the

frontend is present in the CIRCT project - e.g. Chisel,

SystemVerilog, Python).

● Requires knowledge of hardware registers containing the

opcode of the ISA instruction being generated.

● Requires an estimate of the upper bound hardware latency.

● Can’t handle memories yet, however the tool is easily

extensible.

Hardware
Description

(Chisel)

Opcode,
Registers,

Latency

CIRCT MLIR Dialects

State
Transition
Function
(LLVM IR)

2. Constant
assignment & folding

3. State capture &
propagation

4. Lower to LLVM

The hardware design is

converted to MLIR using one of

the CIRCT frontends

1. Convert to MLIR

Registers are set to capture the

state of an instruction in cycle N of

execution

The state of the design is

captured and fed to the

registers in the next cycle

The unrolled design is lowered

to LLVM IR and optimised using

standard passes -O3

Replace with constants

Fold the design

Save the def-use chain

for each register
firtool,
slang …

Reinsert the register state from cycle

n-1 back into the original design

After LATENCY cycles

Input languages

Core Dialects

