
Generating Instruction Set Simulators from 
Hardware Description with CIRCT MLIR

Instruction set simulation (ISS) is critical for fast SW validation and compiler design. 

Typically, an ISS is written before the register-transfer level (RTL) HW 

implementation. As the HW evolves, extensive development and  verification must be 

conducted to ensure equivalence between RTL and ISS. Writing bespoke simulators 

for existing hardware designs is time consuming and requires in-depth knowledge of 

the micro-architecture. This motivates a way of automatically deriving an ISS from its 

corresponding RTL implementation.

We propose a WIP method that leverages CIRCT MLIR to generate ISS functions (i.e 

“state transition functions”) in the form of LLVM IR, from a hardware design. The 

generated functions can then form the basis of a simulated assembly program. Using 

this tool, the RTL and ISS may evolve in parallel, and are consistent by construction.

The method works well on toy accelerators and sub modules of larger designs (e.g. 

RocketCore’s ALU), but has yet to be tested on full architectures. 
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Overview Advantages & Limitations

Algorithm

Example

● Generated ISS is consistent with hardware by construction.

●  Inherits parallelism and flexibility from MLIR code analysis.

● Can be used with different hardware languages (if the 

frontend is present in the CIRCT project - e.g. Chisel, 

SystemVerilog, Python).

● Requires knowledge of hardware registers containing the 

opcode of the ISA instruction being generated. 

● Requires an estimate of the upper bound hardware latency.

● Can’t handle memories yet, however the tool is easily 

extensible.
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