
— IR Around the –
Statistical Analysis of a Massive Multi-Language Corpus of IR

Andrew Kallai 1 Khoi Nguyen 2,5 Ludger Paehler 3,5 Aiden Grossman 4,5 Johannes Doerfert 5 Sunita Chandrasekaran 1

1University of Delaware 2University of California, Berkeley 3Technical University of Munich 4University of California, Davis 5Lawrence Livermore National Laboratory

Abstract

Statistical analysis demonstrates various

relationships between different features of the

LLVM’s optimization pipeline.

Outlier extraction toolset provides insights into

functions causing runtime abnormalities, giving

opportunities for further analysis and optimization.

The ComPile Dataset (n†
modules = 402751)

A large IR-level dataset from production sources.

Programming Language
Bitcode

(GB)

Deduplicated

Bitcode

(GB)

Licensed

Bitcode

(GB)

Licensed

Text

(GB)

C 16 8 2 10

C++ 109 74 29 103

Julia 200 184 164 1088

Rust 656 580 400 1524

Swift 8 7 7 36

Total 990 853 602 2761

Distribution of Compile Times (nmodules = 1025)

100 101

Compile Time (seconds)

100

101

102

No
. o

f I
R 

Fi
le

s

73.44

IR files were optimized and timed via clang -O3.

Scatter Plot of Compile Times (nmodules = 1025)

Text Segment Size (bytes)

C
om

pi
le

 T
im

e 
(s

ec
on

ds
)

0.01

0.1

1

10

100

1000

10000

100 1000 10000 100000 1000000

compile_time 0.287 + 3.71E-05x + -1.17E-11x^2

Compile Time vs. Text Segment Size (C++)

End-2-end compile times vs. text segment sizes.

Growth trend appears to be polynomial as a function
of text segment size.

†Number of LLVM IR modules.

Preliminary Outlier Analysis (nmodules = 1025)

The largest transformation pass (wall) times are listed
here, taken from the result of -ftime-report, for the
longest compile times.

Table 1. Total Execution Time: 16.04 wall clock

Pass Name Wall Time (seconds) Percentage

InstCombine 3.38 21.1
Inliner 1.82 11.4
GVN 1.20 7.5

Table 2. Total Execution Time: 26.10 wall clock

Pass Name Wall Time (seconds) Percentage

InstCombine 4.68 17.9
Inliner 4.59 17.6
SimplifyCFG 1.49 5.7

Table 3. Total Execution Time: 45.24 wall clock

Name Wall Time (seconds) Percentage

Inliner 7.75 17.1
InstCombine 7.01 15.5
LoopVectorize 4.39 9.7

RelativeWall Time Distribution (nmodules = 56998)

0.0 0.2 0.4 0.6 0.8
Fraction of Total Run Time

100

101

102

103

104

105

F
re

qu
en

cy
(l

og
sc

al
e)

Inliner

SimplifyCFG

InstCombine

LoopVectorize

GVN

Inliner (95th percentile=0.2)

InstCombine (95th percentile=0.23)

SimplifyCFG (95th percentile=0.16)

LoopVectorize (95th percentile=0.02)

GVN (95th percentile=0.08)

Relative pass time in -O3 for C++ modules.

Absolute Time vs. Relative Time (nmodules = 56998)

10−5 10−3 10−1 101
10−5

10−3

10−1

101 GVN

10−5 10−3 10−1 101
10−5

10−3

10−1

101 Inliner

10−5 10−3 10−1 101
10−5

10−3

10−1

101 InstCombine

10−5 10−3 10−1 101
10−5

10−3

10−1

101 SimplifyCFG

Absolute Wall Time (s)

F
ra

ct
io

n
of

T
ot

al
T

im
e

Pass times in -O3 for C++ modules.
We hypothesize these trends are due to the following:

Instructions per BB going up with text size
Modules with little/no work cause horizontal
banding.

Outlier Function Extraction (nmodules = 1841)

An outlier function is defined to be a function

contributing to its module being an outlier for a

specific pass.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Outlier Functions in a Module

0

10

20

30

40

C
ou

nt

Outlier Functions for GVN Pass

25th percentile=0.02

Median=0.08

75th percentile=0.26

Threshold for outlier extraction is 95th percentile for

relative wall time with at least 0.005 seconds for

absolute wall time to minimize noise.

Conclusion

Compilation times appear to be non-normally

distributed for all optimization levels when

compiling C/C++.

As compile time appears to grow polynomially in

relation to the text segment size, outlier detection

should be able to detect passes that do not conform

to this trend.

An initial outlier analysis seems to suggest specific

passes encapsulate the majority of compilation time

in some modules.

What do youwant to see?

Interested in specific analyses? Please contact us!

Acknowledgements
Thisworkwas in parts prepared by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-POST-862479).

This material is based upon work supported by the U.S. Department of Energy un-
der Contract DE-FOA-0003177, S4PST: Next Generation Science Software Tech-
nologies Project.

blubl blubl blul blb


