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Abstract

Statistical analysis demonstrates various

relationships between different features of the

LLVM’s optimization pipeline.

Outlier extraction toolset provides insights into

functions causing runtime abnormalities, giving

opportunities for further analysis and optimization.

The ComPile Dataset (n†
modules = 402751)

A large IR-level dataset from production sources.

Programming Language
Bitcode

(GB)

Deduplicated

Bitcode

(GB)

Licensed

Bitcode

(GB)

Licensed

Text

(GB)

C 16 8 2 10

C++ 109 74 29 103

Julia 200 184 164 1088

Rust 656 580 400 1524

Swift 8 7 7 36

Total 990 853 602 2761

Distribution of Compile Times (nmodules = 1025)
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IR files were optimized and timed via clang -O3.

Scatter Plot of Compile Times (nmodules = 1025)

Text Segment Size (bytes)
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compile_time 0.287 + 3.71E-05x + -1.17E-11x^2

Compile Time vs. Text Segment Size (C++)

End-2-end compile times vs. text segment sizes.

Growth trend appears to be polynomial as a function
of text segment size.

†Number of LLVM IR modules.

Preliminary Outlier Analysis (nmodules = 1025)

The largest transformation pass (wall) times are listed
here, taken from the result of -ftime-report, for the
longest compile times.

Table 1. Total Execution Time: 16.04 wall clock

Pass Name Wall Time (seconds) Percentage

InstCombine 3.38 21.1
Inliner 1.82 11.4
GVN 1.20 7.5

Table 2. Total Execution Time: 26.10 wall clock

Pass Name Wall Time (seconds) Percentage

InstCombine 4.68 17.9
Inliner 4.59 17.6
SimplifyCFG 1.49 5.7

Table 3. Total Execution Time: 45.24 wall clock

Name Wall Time (seconds) Percentage

Inliner 7.75 17.1
InstCombine 7.01 15.5
LoopVectorize 4.39 9.7

RelativeWall Time Distribution (nmodules = 56998)
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Relative pass time in -O3 for C++ modules.

Absolute Time vs. Relative Time (nmodules = 56998)
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Pass times in -O3 for C++ modules.
We hypothesize these trends are due to the following:

Instructions per BB going up with text size
Modules with little/no work cause horizontal
banding.

Outlier Function Extraction (nmodules = 1841)

An outlier function is defined to be a function

contributing to its module being an outlier for a

specific pass.
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Threshold for outlier extraction is 95th percentile for

relative wall time with at least 0.005 seconds for

absolute wall time to minimize noise.

Conclusion

Compilation times appear to be non-normally

distributed for all optimization levels when

compiling C/C++.

As compile time appears to grow polynomially in

relation to the text segment size, outlier detection

should be able to detect passes that do not conform

to this trend.

An initial outlier analysis seems to suggest specific

passes encapsulate the majority of compilation time

in some modules.

What do youwant to see?

Interested in specific analyses? Please contact us!
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