
Integration

LLVM IR dialect

VAST IRs

C/C++ Source

VAST Toolchain

Dialect with
Points-to Metadata

MLIR Dialect
with

Pointers

Source

Generic Toolchain

Analysis. The points-to analysis procedure is implemented using the MLIR dataflow
framework, enabling the flow-sensitive analyses. When integrating the analysis into the
framework runner, users can select their preferred lattice representation, or provide their
own implementation, which determines the analysis algorithm applied.

Transform. The transformation step, provided by the user of the analysis tool, abstracts away point-to-irrelevant information by
representing the program in the PoTATo dialect. Here, the user can opt for including field-sensitive operations and types in the
resulting IR, toggling this aspect of the analysis. The tool does not mandate the user to lower the control flow operations and
 function calls, as long as the source dialect implements relevant MLIR interfaces. Users only need
 to provide abstractions for pointer manipulation, or they can use the conversion from the LLVM.

Simplification. Leveraging the dialects's simplicity, we can apply canonicalization to
reduce the size of the problem, thus accelerating the points-to analysis. A key step is
constant folding, which eliminates irrelevant operations in the analyzed IR.

Result. Utilizing location metadata or VAST Tower, the domain-specific IR remains linked to
its original representation, enabling querying of the analysis result via the MLIR data flow
interface. Each IR location is associated with a lattice value representing the analysis result.

Leveraging the power of VAST Tower of
IRs, we can precisely link the PoTATo IR
to the original representation. Using
this information in hand, we can proxy
the aliasing queries about the program
in the original IR and extract the
information from the computed
analysis. The proxy, after getting the
mapping of the IRs, extracts the
analysis results using the MLIR
dataflow analysis framework and
answers the users queries.

PoTATo is a tool for points-to analysis.
Using a novel approach, we try to
reduce the problem size to provide
faster analysis without losing
information. We have designed a
simple MLIR dialect that models
memory effects in the program. To
simplify the problem, we apply
compiler-style optimizations to the
obtained IR. In cooperation with other
tools, we then extract the analysis
result back to the source IR.

Points-to
Analysis Result

Source IR

PoTATo IR

Points-to Analysis
Algorithm

Transform

Analysis Procedure

Goals of Points-to Analysis MLIR Dialect
Problem Simplification Flexibility
PoTATo streamlines the points-to analysis by
reducing it to a conversion task into its specialized
dialect. The dialect's simplicity facilitates the
straightforward conversion of any MLIR program
representation into it for subsequent analysis.

Encoding the points-to problem in a dialect
enables the application of compiler optimizations
to reduce the problem size. Furthermore, by
keeping solely on essential information the
complexity of the analyzer is also reduced.

Efficiency
PoTATo is built with adaptability in mind,
enabling users to conduct a range of points-to
analyses. By choosing the points-to lattice
representation and adjusting the conversion
process, users can customize the analysis.

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions,

and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies

of the Department of Defense or the U.S. Government.

Robert Konicar, and Henrich Lauko

Points-to Analysis via
Domain-Specific MLIR DialectPoTATo:

Fork m
e on GitHub

github.com/Jezurko/potato

PoTATo Dialect
Field-Insensitive Dialect

Memory allocation abstracts all location creations for points-
to analysis, including both local stack or heap allocations.

%var = pt.alloc : <type>
Memory dereference represents all operations that access
memory content, such as the load operation in LLVM.

%val = pt.deref %var : <var-type> �� <val-type>
Memory assignment denotes writing to memory content,
copying its points-to information into the content. It has similar
semantics to the LLVM store operation.

pt.assign %dst = %src : <dst-type>, <src-type>
Copy abstracts all operations that do not alter points-to
information. It transfers it from the source to the destination.
Such operations are pointer casts and pointer arithmetic in the
case of field-insensitive analysis.

%dst = pt.copy %srcs* : <src-types> �� <dst-type>
Address operation is used to abstract operations that create
references, suiting it to model more high-level manipulations
with addresses like &val in C.

%addr = pt.address %var : <var-type> �� <addr-type>
Constant operations models all non-pointer values. The value-
less constant enables the efficient elimination of all points-to
irrelevant computations. Whereas, a valued constant can be
used to obtain values for more sensitive analyses.

%const = pt.const : <type>
%const = pt.valued_const <val> : <type>

Dataflow Reduction
Default Potato IR corresponds directly to the standard interpretation-based points-to
analysis. Each source IR operation has a corresponding PoTATo IR operation, which
transforms points-to sets. However, it includes numerous irrelevant operations for points-
to analysis, which have no impact on the analysis result. In particular, copies do not
modify points-to information in this example.

We can streamline the points-to analysis by simplifying the IR using the common MLIR
canonicalization mechanism. For instance, we can fuse (constant-fold) the points-to
analysis metadata of all copies into a single state before dereferencing.

The analysis result can be obtained by following the chain of meta-locations. For example,
if we have %o in LLVM, it corresponds to %o in the PT dialect. From there, we can trace to
the fused location in simplified IR and retrieve the corresponding points-to set from %a.

1: %one = llvm.mlir.constant(1 : index) : i64
2: %a1 = llvm.alloca %one x i32 : (i64) �� !llvm.ptr<i32>
3: %i = llvm.ptrtoint %a1 : !llvm.ptr<i32> to i64
4: %o = llvm.add %i, %one : i64
5: %a2 = llvm.inttoptr %o : i64 to !llvm.ptr<i32>
6: %x = llvm.load %a2 : !llvm.ptr<i32>

1: %one = pt.constant : i64
2: %a = pt.alloc : !llvm.ptr<i32>
3: %i = pt.copy %a : !llvm.ptr<i32> �� i64
4: %o = pt.copy %i, %one : i64, i64 �� i64
5: %a2 = pt.copy %o : i64 �� !llvm.ptr<i32>
6: %x = pt.deref %a2 : !llvm.ptr<i32> �� i32

State in: loc("potato.mlir":1)
 var0: %one = pt.constant : i64 �� {}
 ���
State in: loc("potato.mlir":3)
 var0: %one = pt.constant : i64 �� {}
 var1: %a = pt.alloc : !llvm.ptr<i32> �� {mem_loc1}
 var2: %i = pt.copy %a : !llvm.ptr<i32> �� i64 �� {mem_loc1}
 ���
State in: loc("potato.mlir":6)
 ���
 var4: %o = pt.copy %i, %one : i64, i64 �� i64 �� {mem_loc1}
 var5: %a2 = pt.copy %o : i64 �� !llvm.ptr<i32> �� {mem_loc1}
 var6: %x = pt.deref %a2 : !llvm.ptr<i32> �� i32 �� {}

State in: loc("simple.mlir":2)
 var0: %a = pt.alloc : !llvm.ptr<i32> �� {mem_loc1}
 var1: %x = pt.deref %a : !llvm.ptr<i32> �� i32 �� {}

1: %a= pt.alloc : !llvm.ptr<i32>
2: %x = pt.deref %a : !llvm.ptr<i32> �� i32

Compile

Simplify
Reduce PoTATo IR using constant folding

Transform to PoTATo IR
Describe Source IR memory interactions

