LIFE WITH OPAQUE POINTERS FROM A
FRONTEND PERSPECTIVE

Sebastian Neubauer
April 10t", 2024

AMDZ1

together we advance_



OVERVIEW 7~ N

o 4

ELF

You are here

Frontend

SPIR-V/DXIL

AMDA1

together we advance



PROBLEM { i32, float } *

getPointerElementType

AMDA1

together we advance_

3




AA
PROBLEM Al "

Memory is untyped
Attack of Opaque Pointers

AN
i

— 777

AMDA1

together we advance_




CHANGES (GENERAL)



getPointerElementType RISA'EINIEIRALE
getAllocatedType

getResultElementType




Value @ AllocalInst *allocVal();
Value O std::pair<Value *, Type *> createVal();
([ X 1* )l define void @func([10 x i32] %arg)

N L A RN AR SR RYAe Il DenseMap<Value *, Type *> ElementTypes




CHANGES (SPIR-V)



Type [10 x 132] has no semantic

Problem:
meaning

Goal:
Want to know stride in later pass

Solution:
Use custom “intrinsic” to preserve array stride

call ptr @array.gep(ptr %arr,
/* stride */ 132 4,
/* index */ 132 5)



https://github.com/GPUOpen-Drivers/llvm-dialects

CHANGES (DXIL)




CHANGES
(DXIL)

DirectX

ULTIMATE

What is DXIL?
e Bitcode from ~LLVM 3.7

Example

type %struct.Payload = { 132, float }
vold @shader(%sstruct.Payload* %payload) {}

AMDA1

together we advance_

10



CHANGES
(DXIL)

DirectX

ULTIMATE

What is DXIL?
e Bitcode from ~LLVM 3.7

Example

type %struct.Payload = { 132, float }
vold @shader(%sstruct.Payload* %payload) {}

Attack of Opaque Pointers (+ Bitcode auto-
upgrader)

void @shader(ptr %payload) {}

AMDA1

together we advance_

10



Mol B Solution:
\EEL R R (ol (Y (s Ja Rl B I -I BitcodeReader hook saves types in metadata

(ptr JBRB type %struct.Payload = { i32, float }
void @shader(ptr %spayload) !types !0 {}
10 = I {%struct.Payload poison}




Mol B Solution:
\EEL R R (ol (Y (s Ja Rl B I -I BitcodeReader hook saves types in metadata

(ptr JBRB type %struct.Payload = { i32, float }
void @shader(ptr %spayload) !types !0 {}
10 = I {%struct.Payload poison}

In C++;
shader-> (() cast<ConstantAsMetadata>(
-> () shader->getMetadata("types")
-> () ->getOperand(0))

. (\‘\“
->getType() e“‘a“ocoael

e oax
\ﬂ‘" es—‘q_s I(‘ es,(_ . (,\39



https://github.com/llvm/llvm-project/blob/193b3d6733b7bf606c70749b1b65b6a0daae97d5/llvm/unittests/Bitcode/BitReaderTest.cpp#L301
https://github.com/llvm/llvm-project/blob/193b3d6733b7bf606c70749b1b65b6a0daae97d5/llvm/unittests/Bitcode/BitReaderTest.cpp#L301

SUMMARY

Change function signatures and pass arguments
by value

Use intrinsics to preserve information
BitcodeReader hook to save argument types in
metadata

Tip: Support opaque and typed pointers at the
same time to easily switch back on regressions

AMDA1

together we advance_

12



DISCLAIMER
&
ATTRIBUTION

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions
and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited
to product and roadmap changes, component and motherboard version changes, new model and/or product releases, product
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no
obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and
to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or
changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO
RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of
Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. DirectX is either a registered trademark or trademark
of Microsoft Corporation in the US and/or other countries. LLVM is a trademark of LLVM Foundation. Vulkan and the Vulkan logo
are registered trademarks of the Khronos Group Inc. Other names are for informational purposes only and may be trademarks of
their respective owners.

AMDA1

together we advance_

13



QUESTIONS?






	Overview
	Problem
	Changes (general)
	Changes (SPIR-V)
	Changes (DXIL)
	Changes (DXIL)
	What is DXIL?
	Example

	Summary
	Disclaimer & Attribution
	Questions?
	

