a3ew| paresauss-|y

ical fuzzing for

C/C++ compilers

arm
Pract

Oliver Stannard
2024-04-10

© 2024 Arm

2

Overview

-- Random code generators
- csmith, yarpgen
» Ccctest

-- Running fuzzers

- Compiler option selection
- Reducing & reporting bugs
- Dealing with expected failures

© 2024 Arm

arm

What do | mean by "practical”?

-- Aiming to find high-priority bugs
o Miscompilation > crash
o C/C++ > IR/MIR

-- Targeting bug-prone parts of compiler
o Calling convention
o Stack layout
o New architectures/features

-- Differential testing
o Avoid re-implementing expected compiler behaviour

3 ©2024Arm a r’m

arm

Random code generators

Csmith, yarpgen

-- Open source tools to generate random C programs

-- Generated programs:
- Guaranteed free of UB

- Not guaranteed to terminate (but most seeds will)
- Prints CRC of global variables at end
- Value of CRC not known by generators

-- Csmith: more complex code

-- Yarpgen: more structured loops

5 © 2024 Arm

arm

Csmith/yarpgen test flow

extract
checksum B

csmith/ BN compare
yarpgen checksums

L J 4 v vy
compiler non- runtime
crash termination error

6 2024 Arm a rm

clang execute

cctest (calling convention test)

-- Written by me, 2017-present

-- Random C/C++ program generator to test calling convention

-~ Generates 2 source files and a header

- Function calls between files, with random argument/return types
-~ Assertions to test argument values

-~ Features:

- Integer, float, pointer, complex types

- Enums, structs, unions

- Bitfields, including zero-size and over-size
« Neon, MVE and SVE vectors

- Packed/aligned attributes
 Variadicfunctions

- C++ exceptions, longjmp

 Variable-size and over-aligned stack objects
- CMSE security state transitions

- Tail calls, indirect calls

7 ©2024Arm a rm

cctest test flow

check SUCCess
output

cctest execute

linker

. crash .
compiler non- runtime

crash termination error
symbol

Errors

8 2024 Arm a rm

arm

Running compiler fuzzers

Picking options to test

-= Compiler

-= Architecture

-- FPU

-- Endianness

- ISA

- ABI

- LTO

-~ Optimisation level

Unaligned access

PAC

BTI

MTE

UBSan

CFI

Stack protector

Auto var initialisation
Used register zeroing

Fast-math

Position-independent code
Debug info

Frame pointer
Execute-only

Straight-line speculation
Speculative load hardening
Shadow call stack

Code model

-- Want to test as many combinations as possible

-- Some combinations are invalid

-- Different levels of compatibility:
- Same implementation-defined behaviour

- Can be linked together

10 © 2024 Arm

arm

Reducing and reporting failures

-- Compiler/linker crashes:
- Easy case, reduce with creduce, raise ticket

-- Csmith miscompilations

« Creduce will reduce to UB is not careful

- Script checks with sanitisers, valgrind, static analysis
- Works ~90% of the time

- Otherwise, must reduce manually
- Decide which compiler is buggy

-~ Cctest miscompilations

- Architecture-specific code (e.g. vector intrinsics) makes using creduce hard
- Assertions give line number

- Manually reduce by deleting calls

- Decide which compiler is buggy

11 ©2024Arm a r m

Expected failures

-- Different xfail strategy needed to normal test suites

-- Compiler/linker crashes:
- Match strings in stderr

-- Miscompilations:
- Do not run affected compiler options (or combination)
- Do not generate affected code
- Match runtime error message
- Match pattern in generated code

12 © 2024 Arm a r m

arm

© 2024 Arm

Thank You
Danke
Gracias
Grazie
G
HYHED
Asante
Merci
AL T}
Togdlq
Kiitos

84
SRIBN

nTin
cﬁégavcsmw

	Slide 1: Practical fuzzing for C/C++ compilers
	Slide 2: Overview
	Slide 3: What do I mean by "practical"?
	Slide 4: Random code generators
	Slide 5: Csmith, yarpgen
	Slide 6: Csmith/yarpgen test flow
	Slide 7: cctest (calling convention test)
	Slide 8: cctest test flow
	Slide 9: Running compiler fuzzers
	Slide 10: Picking options to test
	Slide 11: Reducing and reporting failures
	Slide 12: Expected failures
	Slide 13

