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Overview

-- Random code generators
- csmith, yarpgen
» Ccctest

-- Running fuzzers

- Compiler option selection
- Reducing & reporting bugs
- Dealing with expected failures
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What do | mean by "practical”?

-- Aiming to find high-priority bugs
o Miscompilation > crash
o C/C++ > IR/MIR

-- Targeting bug-prone parts of compiler
o Calling convention
o Stack layout
o New architectures/features

-- Differential testing
o Avoid re-implementing expected compiler behaviour
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Random code generators



Csmith, yarpgen

-- Open source tools to generate random C programs

-- Generated programs:
- Guaranteed free of UB

- Not guaranteed to terminate (but most seeds will)
- Prints CRC of global variables at end
- Value of CRC not known by generators

-- Csmith: more complex code

-- Yarpgen: more structured loops
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Csmith/yarpgen test flow
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cctest (calling convention test)

-- Written by me, 2017-present

-- Random C/C++ program generator to test calling convention

-~ Generates 2 source files and a header

- Function calls between files, with random argument/return types
-~ Assertions to test argument values

-~ Features:

- Integer, float, pointer, complex types

- Enums, structs, unions

- Bitfields, including zero-size and over-size
« Neon, MVE and SVE vectors

- Packed/aligned attributes
 Variadicfunctions

- C++ exceptions, longjmp

 Variable-size and over-aligned stack objects
- CMSE security state transitions

- Tail calls, indirect calls
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cctest test flow
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Running compiler fuzzers



Picking options to test

-=  Compiler

-= Architecture

-- FPU

-- Endianness

- ISA

- ABI

- LTO

-~ Optimisation level

Unaligned access

PAC

BTI

MTE

UBSan

CFI

Stack protector

Auto var initialisation
Used register zeroing

Fast-math

Position-independent code
Debug info

Frame pointer
Execute-only

Straight-line speculation
Speculative load hardening
Shadow call stack

Code model

-- Want to test as many combinations as possible

-- Some combinations are invalid

-- Different levels of compatibility:
- Same implementation-defined behaviour

- Can be linked together
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Reducing and reporting failures

-- Compiler/linker crashes:
- Easy case, reduce with creduce, raise ticket

-- Csmith miscompilations

« Creduce will reduce to UB is not careful

- Script checks with sanitisers, valgrind, static analysis
- Works ~90% of the time

- Otherwise, must reduce manually
- Decide which compiler is buggy

-~ Cctest miscompilations

- Architecture-specific code (e.g. vector intrinsics) makes using creduce hard
- Assertions give line number

- Manually reduce by deleting calls

- Decide which compiler is buggy
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Expected failures

-- Different xfail strategy needed to normal test suites

-- Compiler/linker crashes:
- Match strings in stderr

-- Miscompilations:
- Do not run affected compiler options (or combination)
- Do not generate affected code
- Match runtime error message
- Match pattern in generated code
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