Niodular

Efficient Data-Flow Analysis
olp
Region-Based Control Flow in MLIR

Weiwei Chen
weiwel.chen@modular.com
EuroLLVM 2024

Agenda

O1

02

03

04

05

Data-flow Analysis

Region-based Control Flow
Representation in MLIR

An Efficient SCCP

Conclusions

Questions?

Data-flow Analysis

Gathers information that is propagated along the control-
flow graph (CFG) of a program.

Static analysis that covers all the edges of how data is
flowed in the program.

Analysis states can be use for optimizations like Sparse
Conditional Constant Propagation (SCCP), Value Range
Analysis, Bit-Vector Analysis, etc.

Classic Data-flow Analysis

Sparse Dense

UL
s
?

S(vivz) = fop(S(Vi), S(Vin1)) Sis1 = fop(Si)

https://youtu.be/5BijBv2TDnU?si=oEKcWOvYri-m59OF

Classic Data-flow Analysis States

S(arg(BBi, n)) =

S(begin(BBi)) =

vy

BBi+1

Sparse
S(out(BBi, n)) V S(out(BBi1, n))

Dense

S(end(BB)) V S(end(BBix))

[1]

Analysis State Lattice

1 uninitialized (bottom)
T: over-defined (top)

V: join (union)
/\: meet (intersect)

X: lattice element

TvX=T

1vX=X Xiv X = unigue UB(Xi, Xj)

TAX=X Xi A Xj = unique LB(Xi, X))
IAX=1

Boolean Constraints"

by Viktor Cseh, 2023 EuroLLVM.

https://www.youtube.com/watch?v=TPEQ3vg16iA

Data-flow Analysis in LLVM and MLIR

LLVM: %/ + MLIR:®
e SCCP,IPSCCP, etc. e Dead Code Analysis, IntegerRangeAnalysis,
« SCCPSolver, Clang _ivenessAnalysis, etc.

Dataflow framework® Extensible and composable DataFlowFrameWork™

Analysis follows the general control flow graph (CFG):
* ¢ nodes add complexity =

» CFG can be irreducible %+ TN
® P ... —P

Logically difficult to debug ©¢ v
u]] . v
lterates an analysis state solver to fix point: |- Airary updete order
Si+1(Pn+1) = Si(Pn+1) \'/ fOp(Si(Pn)) ¢ N O

Si+1(Pn+1) - Si(Pn+1)

[1] Data flow analysis: an informal introduction Clang Documentation.

[2] MLIR Dataflow Analysis by Jeff Niu, Tom Eccles, 2023 EuroLLVM.

https://clang.llvm.org/docs/DataFlowAnalysisIntro.html
https://youtu.be/5BijBv2TDnU?si=oEKcWOvYri-m59OF

Region-based Control Flow Representation in VILIR &

Structured Control Flow Representation (like mlir.scf)
Support early exits:

* Dbreak, continue.

* exitsin the middle of basic blocks.

* pure region-based representation.

No arbitrary control flow, only branch back to parent
region(s).

High-level control flow representation matches well
with program logic.

Easy for frontends to emit directly, i.e.Mojo#

afoobar() {

{
arand_bool() : () - i1
%0 {

ado_something() : () — ()

Region-based Control Flow Representation in MILIR @

Region operations: s REAE

public:
. /// Given potential constant values of the operands of this operation, return

rCflOOp, rCfIf, rCffOr, /// the indices of the entry region of the operation, which is the region to

/// the beginning of which control-flow branches upon visiting the start of
. . /// this operation, and the operands with which to branch to that region.

Reg|0n term|nators /// Return “None to indicate that control-flow branches directly to after the
/// operation.
void getEntryTargets(ArrayRef<Attribute> operands,

rny|e|d, rCfbrea k, rCfcon‘“nue SmallVectorImpl<RCFTarget> & targets);

/// Verifier.
static mlir::LogicalResult verify(mlir::Operation xop);

: public mlir::OpInterface<ControlFlowNode, ..> {

Control flow interfaces for passes use
i

class RCFTerminator : public mlir::OpInterface<ControlFlowTerminator, ..> {

public:

C . . h CFG d | .I: /// This method is invoked on the proper ancestors of a control-flow
O_eXISt Wlt an I “ IrSC . /// terminator to determine the nearest valid parent operation. The method

/// should return true if the provided operation is a valid parent operation

/// to the terminator, and false to keep searching.
bool isParentNode(Operation * op);

abstraction.

/// Return the branch target of the terminator relative to its control-flow
/// parent and the operands with which to branch to that region. For instance,
/// to branch to the beginning of the first region, the method should return
/// "0 . To branch to the after the parent operation, the method should return
/// “None .
void getBranchTargets(ArrayRef<Attribute> operands,

SmallVectorImpl<RCFTarget> & targets);

/// Verifier.
static mlir::LogicalResult verify(mlir::Operation xop);

Sparse Conditional Constant Propagation

T over-defined X=1 L(x, v, a, b)
¢ (1, 1, 1, 1)
¢ ¢ .. Ck ¢n I 2L
\\ // if x >foo(x)
I unintialized 2= x4+ FGT
Tvany=T 0228
1 vany = any
CivCk=Ciiff Ci==Ck
Civ Ck= [iff Cil= Ck :
a= fc?o(a)
(1' 2' 2' J_) _>l
b=a%a] (4,2, 2,4)

Sparse Conditional Constant Propagation <

v (1.1)

while a < 3

++a

Sparse Conditional Constant Propagation <

a =1

v (1. 1)

while a < 3 (T, 1)

#
if foo(a)

/ \‘(1)
a =3
(T, 1) ++ 3
(2. 1)

continue
|

ifa>

1
/ \

(T.2) (T, 4)
(T.T) c is over-defined

Sparse Conditional Constant Propagation <

v (1.1)

while a < 3 (T, 1)

#
if foo(a)

(T, 1) (L)l ++ 3

(T.2) (T, 4)
(T.T) c is over-defined

Sparse Conditional Constant Propagation <

v

while a < 3

#
if foo(a)

N\
l +a

continue
> |

ifa>1
T
m ‘ c=4

Y cmustbe2?

—h

Sparse Conditional Constant Propagation <

a =1

Interpret Loop based on control flow ¢
while a< 3

iter =1

Sparse Conditional Constant Propagation <

a =1

Interpret Loop based on control flow ¢
while a< 3

iter = 2

Sparse Conditional Constant Propagation <

a =1
1, L
Interpret Loop based on control flow ¢ (1. 1)
while a <3
irerereererenerererenenens :
iter = 3 v (3. 1)
if foo(a) :
AT ()
a=23 4
(L) ++ a
v
break (2. 1)
B | e continue
P Teeeeernnnees
: (2 1)
\ 4
ifa>1
A7 A
c=2 ‘C=4

Sparse Conditional Constant Propagation <

a =1
| 1,1
Interpret Loop based on control flow ¢ (1. 1)
while a < 3
_ 5> R :
iter = 3 v (3.1)
if foo(a) :
‘. °® 0.. (1)
(5. 1) ++a
h 4
break (2 1)
............... continue
}l (3' J_)
ifa>1
N A

3.2)
(3.2) c must be 2!

Sparse Conditional Constant Propagation <

a =1
1, L
Interpret Loop based on control flow _ ¢ (1. 1)
. More accurate result. ['4 Wh”e:j <3
.+ Can explode compilation time /1 v (3, L)
- Large loop iterations. It foo(a) '
. Nested loops. A . (1)
- Use heuristics. a=3 4
(3, 1) ++ 3
h 4
break (5.1)
............... continue
}l (3' J_)
ifa>1

3.2) o
(3.2) c must be 2!

SCCP on Region-based CF

Fix-point solver:
- Arbitrary update order
- O(M*N)

Reducible control flow [4

- Converge SCC first

- Then update tail
- O(M+N)

Irreducible control flow 32

_oops are SCCs
—orward linear analysis outside of SCCs
~or SCCs:

* Localize analysis within SCC

e Join SCC output and input states

* Up to 2x linear analysis within SCC
Complexity: O(2x #operations).

Theoretical SCCP complexity: ™

O(# SSA edges) + O(# control flow edges)

Heuristics based loop interpretation for better
analysis.

[1] Constant propagation with conditional branches by M. Wegman, F. K. Zadeck

ACM-SIGACT Symposium on Principles of Programming Languages, January 1985.

https://dl.acm.org/doi/10.1145/103135.103136

EXperiments

Model name QPS wo/sccp QPS w/sccp Compilation Time (s) Compilation Time (s)
Wo/sccp w/sccp
dirm-rm2-multihot 39.66 39.87 201163 s+ 04/5s 200.471s+ 0481s
(1.006x)
resnetb0-v1.5 110.29 111.59 38.092 s +11.945 s 38.316 s + 12.509 s
(1.012x)
gpt2 124.71 125.34 30.873 s+ 0432s 29.189 s+ 0139 s
(1.005x)

Benchmark environment:

cbn.metal

Disable hyper-threading and turbo-boost.
CPU freq: 2.9G Hz.

Bechmark Methodology:
Run each model multiple time for a

set period of time.
Statistical results.

Conclusions

Structured region-based control flow representation:
* Allows early exits.

e Can co-exist with mlir.scf and CFG.
* Reducible control flow that guarantees best case complexity for data-flow analysis.
* Logically easy to debug due to close match to the high-level programing language.

* Applicable to other efficient analyses: range value, bit-vector, memory scoping, ...
We are planning to upstream:

* Region-based control flow representation — RFC.
* First-class support for successors and predecessors.

o Data-flow analyses based on the [RFC] Region-based control-flow with early exits in MLIR

B MLIR

Mogball
27

Region-based control-flow with early exits

control flow representation.

This RFC proposes the additional of a new region-based control-flow paradigm to MLIR, but one that
enables early exits via operations like break or continue in contrast with SCF.

https://discourse.llvm.org/t/rfc-region-based-control-flow-with-early-exits-in-mlir/76998

Questions?

