
Build 'Em all with
CMake
By Alexy Pellegrini

About me

⬣ Kitware Europe for 2+ years
⬣ Kitware CMake trainer
⬣ C++ dev
⬣ Graphics programming
⬣ Windows user
⬣ Working on an LLVM backend for a VLIW processor

designed by a friend

Kitware

Delivering Innovation

Kitware / Leader in AI & scientific open source solutions

230 employees Worldwide
6 offices across USA/Europe

20+ years of expertise
Kitware USA, 1998

Kitware Europe, 2010

Sustained Growth
Since creation of the company
100% employee-owned

65% staff with PhD or Master
High Level customer expertise

Revenue 2020
$39M consolidated

Software development
Based on open source tools

300+ active projects worldwide

Customers / Various fields of application

50+ government agencies and
national laboratories

Government agencies

70+ academic institutions
worldwide

Academics

Over 500 commercial customers
Commercial companies

HPC, in-situ simulation, scientific
visualisation, particle flow, fluid

mechanics, ground exploration…

Energy

Image processing, multimodal
visualization, image registration

& segmentation, assisted
surgery, custom software…

Medical

Scene analysis, big data analysis, scientific
visualization, flow analysis…

Intelligence

Applications / Universal Platforms

Platforms

Web Desktop Mobile Cloud /HPC

Areas of expertise / Built on open source

Computer
Vision

Data and
Analytics

Scientific
Computing

Medical
Computing

Software
Solutions

Open Source Benefits / Shifting Power

Cost effectiveness
• No license fee
• No vendor lock-in
• Shared maintenance

costs

Source code ownership
• Source code ownership
• Integration with commercial

software solutions

 Security
• Robust software and libraries

• Transparency
• Community effort

• Open Innovation mitigates risk

 Flexibility and Agility
• Continuous development

• Up to date with new technologies
• Ability to customize and fix

Kitware / Services

TRAINING SUPPORT DEVELOPMENT
GRANT

COLLABORATION

Kitware USA
kitware@kitware.com
+1 (518) 371-3971

Kitware Europe
kitware@kitware.eu
+33 437-450-415

Why CMake

What is CMake?

⬣ CMake is the cross-platform, open-source build system generator that
lets you use the native development tools you love the most.

⬣ It’s a build system generator

⬣ It takes plain text files as input that describe your project and
produces project files or make files for use with a wide variety of native
development tools.

⬣ Family of Software Development Tools
● Build = CMake Test = CTest/CDash Package = CPack

CMake is the most popular
C++ build tool at 55%

⬣ Job openings requiring CMake
experience, June, 2022:

● Indeed.com: 900 jobs at Tesla
Motors, DCS Corp, Mindsource,
Quanergy, …

● LinkedIn.com: >600 jobs at
Samsung, Johnson Controls,
Apple, Uber, Toyota, Microsoft ...

Jetbrains study in 2018

Jetbrains study 2017-2021

⬣ Bryce Adelstein Lelbach, the chair of Standard C++ Library
Evolution group, in his talk “What Belongs In The C++ Standard
Library?” at C++Now in 2022, stated that we actually have a
standard build system! It’s CMake.

C++ modules

include vs import

Headers and sources

⬣ The classic approach:
● Header files: declarations, template/inline code
● Source files: definitions

Example: foo.hpp and foo.cpp

// foo.hpp

#ifndef FOO_HPP

#define FOO_HPP

int foo(int i);

#endif

// foo.cpp

int foo(int i) {

 return i * 42;

}

// main.cpp

#include "foo.hpp"

int main() {

 return foo(4);

}

Example: foo usage
// main.cpp

int foo(int i);

int main() {

 return foo(4);

}

Preproc

File types of classic approach

File Example Artifact Notes

Headers (.hpp) #ifndef X

#define X

…
#endif

(None) Never built, only
copied into
translation units
using #include

Source (.cpp) #include "x.hpp"

…
Object file
(.obj)

Translation Units

⬣ Increase compile-time (headers parsed multiple times)
● Reduce as much as possible headers content

⬣ No encapsulation, preprocessor leaks…
● PIMPL pattern, avoid defines in headers, impl namespace

⬣ #includes order matters
● May break randomly

Issues with headers: Textual inclusion

⬣ Textual inclusion is replaced with semantic import
⬣ Only exported symbols are visible!

● No macro leak, no need for “impl” namespace…
⬣ Header-Source replaced by:

● 1: “Module Interface Unit”
● N >= 0: “Module Implementation Unit”

C++ modules (since C++20): include vs import

Example: foo.cppm (.ixx, .mpp, .mxx, .cmi)

// foo.cppm

export module foo;

export int foo(int i) {

 return i * 42;

}

Example: foo usage

// main.cpp

import foo;

int main() {

 return foo(4);

}

File types of modules
File Example Artifact Notes

Module
interface unit
(.cppm)

export module x;

…
Built Module
Interface (.pcm)
Object file (.obj)

One per module

Module
implementation
unit (.cppm)

module x;

…
Object file (.obj) Optional,

contains
definitions

Non-module
unit (.cpp)

import x; Object file (.obj) “Classic”
Translation Units

The artifact created by a compiler to represent a module
unit or header unit. The format [...] is implementation
specific and holds C++ entities, which can be represented
in the form of compiler specific data structures (e.g. ASTs),
machine code or any intermediate representation chosen
by the implementer.

File extension: .pcm (Clang) | .gcm (GCC) | .ifc (MSVC)

Built Module Interface

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1838r0.pdf

In short:

⬣ import foo looks for foo’s BMI (e.g. foo.pcm)
⬣ This file contains the module definition

Built Module Interface

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1838r0.pdf

⬣ Increase compile-time (headers parsed multiple times)
● Prebuilt representation used directly!

⬣ No encapsulation, preprocessor leaks…
● Explicit export, preprocessor is local to module units!

⬣ #includes order matters
● Imports order does not matter!

Issues with headers solved by modules

New issues created by modules

⬣ Build order of modules units matters
● Need the “BMI” build artifact to import a module

⬣ Build parallelism is lower
● Dependencies are stronger (per-file)
● Mitigated by the fact that each translation unit is faster

Other features

⬣ Partition units
● Enable splitting modules in multiple files

⬣ Header units (not supported by CMake, yet)
● Translation units synthesized from headers
● import <header> don’t have access to macros defined

before import declaration
⬣ Global module fragment

● Fragment where we can use classic includes in modules

Other features (example)

module; // global module fragment

#define NOMINMAX

#include <Windows.h> // have access to NOMINMAX

export module foo:math; // partition

import <algorithm>; // private header unit

export int min(int a, int b) {

 return std::min(a, b); // OK

}

Building modules

LLVM support
Of C++ modules

Clang Module Support

Main module proposal

Fixes and clarifications about
parsing, linkage, semantics,
interactions with preprocessor…

https://clang.llvm.org/cxx_status.html

Clang Scan Deps

⬣ Command line tool to scan module dependencies
without full tokenizer for faster scan

⬣ Added in LLVM 16
⬣ JSON format defined by P1689R5

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1689r5.html

CMake concepts
Small reminders

36

Usage requirements (Modern CMake)
Root

Directory

Executable Library B

Directory

Library A

Root

Executable Library A Library B

Executable
Library B Library A

Library A

Usage requirements (Modern CMake)

PRIVATE: Only this target will use it
INTERFACE: Only consuming targets use it
PUBLIC: PRIVATE + INTERFACE
$<BUILD_INTERFACE>: When this target is being built
$<INSTALL_INTERFACE>: After this target has been installed
Consuming target: target_link_libraries

File sets (target_sources)

add_library(foo STATIC)

target_sources(foo PUBLIC

FILE_SET name

TYPE CXX_MODULES

FILES files...

)

Compile features

set(CMAKE_CXX_STANDARD 20)

add_library(foo STATIC)

add_library(foo STATIC)

target_compile_features(foo PUBLIC cxx_std_20)

CMake support
Using the Ninja build system

Building modules with CMake (wrong way)

x.cppm imports y.cppm

add_library(foo STATIC y.cppm x.cppm)

target_compile_features(foo PUBLIC cxx_std_20)

Building modules with CMake

Build may fail due to missing dependency!

You can start the build multiple times until it works :)

Building modules with CMake (good way)

add_library(foo STATIC)

target_compile_features(foo PUBLIC cxx_std_20)

target_sources(foo PUBLIC

 FILE_SET modules TYPE CXX_MODULES FILES

 y.cppm x.cppm

)

Building modules with CMake

For each target, scan module units dependencies.

Then collate them into a single, per-target, file.

Building modules with CMake

Build system use this file to know the right build order

import

Build output example

[1/6] Scanning y.cppm for CXX dependencies

[2/6] Scanning x.cppm for CXX dependencies

[3/6] Generating CXX dyndep file CXX.dd

[4/6] Building CXX object y.cppm.obj

[5/6] Building CXX object x.cppm.obj

[6/6] Linking CXX static library foo.lib

Scan

Collate

Build

Link

Build output example (verbose)

[1/6] clang-scan-deps -format=p1689 -- clang -O0 -std=c++20 y.cppm -c -o
CMakeFiles\foo.dir\y.cppm.obj -MT CMakeFiles\foo.dir\y.cppm.obj.ddi -MD -MF
CMakeFiles\foo.dir\y.cppm.obj.ddi.d > CMakeFiles\foo.dir\y.cppm.obj.ddi
[2/6] clang-scan-deps -format=p1689 -- clang -O0 -std=c++20 x.cppm -c -o
CMakeFiles\foo.dir\x.cppm.obj -MT CMakeFiles\foo.dir\x.cppm.obj.ddi -MD -MF
CMakeFiles\foo.dir\x.cppm.obj.ddi.d > CMakeFiles\foo.dir\x.cppm.obj.ddi
[3/6] cmake -E cmake_ninja_dyndep --tdi=CMakeFiles\foo.dir\CXXDependInfo.json --lang=CXX
--modmapfmt=clang --dd=CMakeFiles/foo.dir/CXX.dd @CMakeFiles/foo.dir/CXX.dd.rsp
[4/6] clang -O0 -std=c++20 -MD -MT CMakeFiles/foo.dir/y.cppm.obj -MF
CMakeFiles\foo.dir\y.cppm.obj.d @CMakeFiles\foo.dir\y.cppm.obj.modmap -o
CMakeFiles/foo.dir/y.cppm.obj -c C:/dev/eurollvm/y.cppm
[5/6] clang -O0 -std=c++20 -MD -MT CMakeFiles/foo.dir/x.cppm.obj -MF
CMakeFiles\foo.dir\x.cppm.obj.d @CMakeFiles\foo.dir\x.cppm.obj.modmap -o
CMakeFiles/foo.dir/x.cppm.obj -c C:/dev/eurollvm/x.cppm
[6/6] llvm-ar qc foo.lib CMakeFiles/foo.dir/y.cppm.obj CMakeFiles/foo.dir/x.cppm.obj

Scan

Collate

Build

Link

http://foo.dir/CXX.dd.rsp

Importing modules ?

Exporting modules

install(TARGETS foo

 EXPORT footargets

 FILE_SET modules DESTINATION include

)

Build output (importing foo in another project)

[1/6] Scanning foo.cppm for CXX dependencies

[2/6] Generating CXX dyndep file foo.dir/CXX.dd

[3/6] Scanning main.cpp for CXX dependencies

[4/6] Generating CXX dyndep file test.dir/CXX.dd

[5/7] Building CXX object foo.dir/foo.bmi

[6/7] Building CXX object test.dir/main.cpp.obj

[7/7] Linking CXX executable test.exe

Scan

Collate

Build
BMI

Link

Scan

Collate

Build

Build output (importing foo in another project)

The module interface unit is precompiled once to
generate the BMI

[5/7] clang++ -O0 -std=gnu++20 --precompile

[…] -o foo.dir/foo.bmi -c …/include/foo.cppm

import foo -> foo.bmi

Link against prebuilt foo.lib/a

Questions ?

⬣ Kitware blog on CMake support of modules
⬣ P2473R: Distributing C++ Module Libraries
⬣ CMake Header Units support
⬣ CMake 3.28 Release Notes

https://www.kitware.com/import-cmake-the-experiment-is-over/
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2473r1.pdf
https://gitlab.kitware.com/cmake/cmake/-/issues/25293
https://cmake.org/cmake/help/latest/release/3.28.html

