
4/10/2024 @ European LLVM Developers' Meeting

Enabling HW-based PGO
for both Windows and Linux

Wei Xiao (wei3.xiao@intel.com)

Contributors: Timothy Creech, Haohai Wen, Rakesh Krishnaiyer
Mike Chynoweth, Ahmad Yasin, Tianqing Wang

mailto:wei3.xiao@intel.com

2SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Agenda

1. Motivation

2. New Feedback Capabilities

3. Windows Support

4. Demo

5. Challenges & Solutions

6. Upstreaming

7. Summary

8. Q&A

3SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Motivation

Intel x86_64 AMD x86_64 ARM RISC-V HW Profiling Capabilities

PEBS IBS SPE Event-based Sampling

LBR LbrExtV2 BRBE CTR Short trace of branches

PT CoreSight Full trace of executed instructions

• Sampled profiling periodically interrupts program execution to grab a HW
event count or machine state. Most CPUs can do this purely in HW or can
emulate it in SW (by using a timer).

• Modern CPUs support more advanced forms of HW profiling:

These allow gathering samples in HW, possibly multiple at a time, with lower
overhead and provide other benefits, such as reduced-skid, precise distribution
and Data Address.

4SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Intel PEBS Overview

• Low-overhead sampling (an order of magnitude reduction)

• Reduced-skid or Precise-Distribution

Processor Event-Based Sampling (PEBS)

5SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Intel LBR Overview

• CPU collects data for taken branches
➢ Source Address

➢ Target Address

➢ INFO

• Low overhead

• Recent CPUs offer Architectural LBRs
• Consistent across processor generations and in

virtualized environments

Last Branch Record (LBR)

6SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

HWPGO Overview

• HWPGO is a kind of Sampling-based PGO for efficient profiling on
optimized binaries in production environments.

• HWPGO enables new types of feedback capabilities provided by HW for
new compiler optimizations. HW counters can track a wide range of events,
including:
• Instructions retired
• Branch mispredictions
• Cache misses
• Memory accesses and Data Address
• Floating-point operations
• Architectural LBR Inserts (in next-gen CPUs)
• ...

HW-based PGO is an extension of existing Sampling-based PGO

7SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New Feedback Capabilities

• $ perf record -b -e
BR_INST_RETIRED.NEAR_TAKEN:uppp,BR_MISP_RETIRED.ALL_BRANCHES:upp

Hardware can provide accurate frequency and profiles of
other events:

Capture LBR
frequency with precise-

distribution
Additional event for all

Mispredictions

8SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New Feedback Capabilities

Branch Mispredict Feedback Example

Poorly predicted according to HW events:
• BR_INST_RETIRED.NEAR_TAKEN
• BR_MISP_RETIRED.ALL_BRANCHES

HWPGO

Attach ‘unpredictable’
Metadata to BR instruction

9SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New Feedback Capabilities

Opt. mispredicted conditional
branch to conditional move

HWPGO

Before HWPGO:

After HWPGO:

10SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New Feedback Capabilities

Branch Mispredict Feedback Example

Before HWPGO: After HWPGO:

Visit: https://github.com/tcreech-intel/hwpgo-mispredict-example for full source code

1.8X improvement in overall performance

-35% (retired branches)

+10% retired instructions
2X IPC

Call community collaboration on HWPGO to:
• Add infrastructure support for more feedback/profile types

besides frequency (i.e., “-fprofile-sample-use=code.freq.prof”)
• Add optimizations for new profile types

https://github.com/tcreech-intel/hwpgo-mispredict-example

11SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

SPGO/HWPGO Compiler Support on Windows
• Windows (and Linux) HWPGO feature supported since

Intel® oneAPI DPC++/C++ Compiler 2024.0 release
• LLVM-based Intel proprietary compiler released in Nov 2023

• https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-
reference/current/hardware-profile-guided-optimization.html

• https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.html

• Basic Windows (and Linux) SPGO/HWPGO features now
available in LLVM trunk – as of Mar 2024
• https://clang.llvm.org/docs/UsersManual.html#id50

• Features mostly contributed by Intel - ported from the Intel proprietary codebase above

• Requires use of Intel VTune SEP from oneAPI 2024.0

• These are the first Windows compilers to support SPGO/HWPGO

https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/current/hardware-profile-guided-optimization.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/current/hardware-profile-guided-optimization.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.html
https://clang.llvm.org/docs/UsersManual.html#id50

12SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Windows Support: Profiling Tool

• $ sep -perf-script event,ip,brstack –ec BR_INST_RETIRED.NEAR_TAKEN …

Intel® VTune SEP supports Linux perf script output format since oneAPI 2024.0

PID base addr mmapped size page offset bin path

Event name

IP

13SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Windows Support: How Symbolization is Handled

Use DWARF Instead of PDB

DWARF：?print@MyNameSpace2@@YAXPEAGH@Z

DWARF： ??$init@HG@MyNameSpace2@@YAXHPEAG@Z

• PDB encode de-mangled (display) names
• DWARF encode mangled (linkage) names

14SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Windows Support: Changes made to llvm-profgen

Understand COFF/PE with DWARF by enhancing:

ProfiledBinary
void ProfiledBinary::load()
void ProfiledBinary::setPreferredTextSegmentAddresses(const ELFObjectFileBase *Obj)
void ProfiledBinary::setUpDisassembler(const ELFObjectFileBase *Obj)
void ProfiledBinary::disassemble(const ELFObjectFileBase *Obj)

PerfReader
void PerfScriptReader::updateBinaryAddress(const MMapEvent &Event)
bool PerfScriptReader::extractMMap2EventForBinary(
 ProfiledBinary *Binary, StringRef Line, MMapEvent &MMap)

ProfileGenerator

15SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

https://github.com/tcreech-intel/hwpgo-mispredict-example

https://github.com/tcreech-intel/hwpgo-mispredict-example

16SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Challenges & Solutions

• Many flags (-fdebug-info-for-profiling, -funique-internal-linkage-
names, -gdwarf, /debug:dwarf, …) needed to produce good
debug info. Need to consolidate/simplify.
➢OneAPI compilers have “-fprofile-sample-generate”

• Multiple profile types (frequency, branch mispredicts, etc.) will
become difficult to produce, manage, and pass to the compiler.
➢Considering profile “bundles” and higher-level tools to drive creation of

PMU profiles.

Usability

17SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Challenges & Solutions (2)

• HWPGO uses debug information (such as DWARF) to associate profile
data from the optimized binary to source code and compiler IR.
➢Pro: neither prevent any optimizations nor add run-time overhead to the profiling binary.

➢Con: suffer from inaccurate correlation with aggressive optimizations.

• Solutions:
➢Enhance Debug Info.

➢Turn off aggressive optimizations.

➢PSEUDO-INSTRUMENTATION.

Debug Info Accuracy

https://github.com/llvm/llvm-project/pull/71021

https://github.com/llvm/llvm-project/pull/71021

18SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Challenges & Solutions (3)

• After each optimization, profile (probability) needs to be
adjusted to reflect control flow graph changes if any.

• Example below shows one of the bug-fixes made recently:

Profile Maintenance

InstCombine

https://github.com/llvm/llvm-project/pull/86470

https://github.com/llvm/llvm-project/pull/86470

19SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Challenges & Solutions (4)

• If both PEBS and LBR records are captured, we can sample both
function call counts and function limited arguments

Value Profiling

$ perf record --user-regs -b -e xxx

20SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

List of PRs checked into LLVM Trunk so far
• Refer to: https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers

• [llvm-profgen] Support COFF binary: 83972

• [LLD] [COFF] Port -lto-sample-profile to COFF version of LLD: 85701

• Update documentation and release notes for llvm-profgen COFF support: 84864

• Profile Maintenance:
➢ LoopRotate: 86496

• DebugInfo Fix:
➢ JumpTable: 71018, 72075 , 72082, 72118, 71021
➢ CodeGen: 72192

• Support –gsplit-dwarf for COFF (RFC: 71276):
➢ MC: D151793, D152119, D152229, D152340
➢ Clang & MC: D152785, 82dff24bde112984314568e7d581379fd0ea48e6
➢ [LLD][COFF]: D154070 (to support /dwodir for LTO)
➢ Clang: D154176, D154295

• Emit symbol-table for COFF:
➢ [LLD][COFF]: D149235

• Fix HW-based PGO/Sampling-based PGO gap with Instrumentation-based PGO:
➢ InlineCost: 66457
➢ InstCombine: 68474, 68502

https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers
https://github.com/llvm/llvm-project/pull/83972
https://github.com/llvm/llvm-project/pull/85701
https://github.com/llvm/llvm-project/pull/84864
https://github.com/llvm/llvm-project/pull/86496
https://github.com/llvm/llvm-project/pull/71018
https://github.com/llvm/llvm-project/pull/72075
https://github.com/llvm/llvm-project/pull/72082
https://github.com/llvm/llvm-project/pull/72118
https://github.com/llvm/llvm-project/pull/71021
https://github.com/llvm/llvm-project/pull/72192
https://discourse.llvm.org/t/rfc-support-split-dwarf-for-windows-coff/71276
https://reviews.llvm.org/D151793
https://reviews.llvm.org/D152119
https://reviews.llvm.org/D152229
https://reviews.llvm.org/D152340
https://reviews.llvm.org/D152785
https://reviews.llvm.org/D154070
https://reviews.llvm.org/D154176
https://reviews.llvm.org/D154295
https://reviews.llvm.org/D149235
https://github.com/llvm/llvm-project/pull/66457
https://github.com/llvm/llvm-project/pull/68474
https://github.com/llvm/llvm-project/pull/68502

21SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Summary
• HW-based PGO is an extension of existing Sampling-based

PGO for:
➢Lower overhead
➢Higher accuracy
➢New feedback capabilities for higher performance gains

• Call community collaboration on HW-based PGO to:
➢Add infrastructure to support more feedback/profile types besides

frequency
➢Add optimizations for new feedback/profile types
➢Enhance Debug Info Accuracy
➢Enhance Profile Maintenance
➢Support Value Profiling

22SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

23SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Legal Disclaimer & Optimization Notice
• INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,
RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

• Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products.

• Copyright © 2024, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

41

25SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Collection Overhead Reduced by Extended PEBS

26SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New Feedback Capabilities
Branch Mispredict Feedback CoreMark®-PRO Example:
coremark-pro/benchmarks/consumer_v2/cjpeg/jcdctmgr.c

HWPGO

Poorly predicted according to HW events:
• BR_INST_RETIRED.NEAR_TAKEN
• BR_MISP_RETIRED.ALL_BRANCHES

27SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

New Feedback Capabilities
Branch Mispredict Feedback CoreMark®-PRO Example:

Before HWPGO: After HWPGO:

-33%

+17%

Call community collaboration on HWPGO to:
• Add infrastructure support for more feedback/profile types

besides frequency (i.e., “-fprofile-sample-use=code.freq.prof”)
• Add optimizations for new profile types

28SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

Windows Support: llvm-profgen

Canonicalize WINDOWS Virtual Address for COFF/PE

Event.OffsetBinary->getTextSegmentOffset()

29SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

HWPGO Documentation/Links
Intel® oneAPI DPC++/C++ Compiler:
• https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-

compiler/developer-guide-reference/current/hardware-profile-guided-
optimization.html

• https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.h
tml

• https://github.com/tcreech-intel/hwpgo-mispredict-example

LLVM:
• https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers

• Unmerged branch mispredict feedback features:
• https://github.com/tcreech-intel/llvm-project/tree/ip_profiles
• https://github.com/tcreech-intel/llvm-project/tree/unpredictable_loader
• https://github.com/tcreech-intel/llvm-project/tree/aggressive_speculation

https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/current/hardware-profile-guided-optimization.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/current/hardware-profile-guided-optimization.html
https://www.intel.com/content/www/us/en/docs/dpcpp-cpp-compiler/developer-guide-reference/current/hardware-profile-guided-optimization.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.html
https://www.intel.com/content/www/us/en/developer/articles/technical/hwpgo.html
https://github.com/tcreech-intel/hwpgo-mispredict-example
https://clang.llvm.org/docs/UsersManual.html#using-sampling-profilers
https://github.com/tcreech-intel/llvm-project/tree/ip_profiles
https://github.com/tcreech-intel/llvm-project/tree/unpredictable_loader
https://github.com/tcreech-intel/llvm-project/tree/aggressive_speculation

30SATG | SOFTWARE AND ADVANCED TECHNOLOGY GROUP

SPEC CPU2017 Performance on IceLake Windows Server

llvm-trunk 20240408 Default (Normalized Performance) HW-based PGO Instrumentation-based PGO

500.perlbench_r 100% 110.19% 113.63%

502.gcc_r 100% 103.13% 105.28%

511.povray_r 100% 106.37% 110.41%

HW-based PGO
• 1st build: /clang:-fdebug-info-for-profiling /clang:-funique-internal-linkage-names -gdwarf -gline-tables-only -fuse-ld=lld
• 2nd build: /clang:-fprofile-sample-use=default.profdata -gline-tables-only -fuse-ld=lld

	Slide 1: Enabling HW-based PGO
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: Intel PEBS Overview
	Slide 5: Intel LBR Overview
	Slide 6: HWPGO Overview
	Slide 7: New Feedback Capabilities
	Slide 8: New Feedback Capabilities
	Slide 9: New Feedback Capabilities
	Slide 10: New Feedback Capabilities
	Slide 11: SPGO/HWPGO Compiler Support on Windows
	Slide 12: Windows Support: Profiling Tool
	Slide 13: Windows Support: How Symbolization is Handled
	Slide 14: Windows Support: Changes made to llvm-profgen
	Slide 15
	Slide 16: Challenges & Solutions
	Slide 17: Challenges & Solutions (2)
	Slide 18: Challenges & Solutions (3)
	Slide 19: Challenges & Solutions (4)
	Slide 20: List of PRs checked into LLVM Trunk so far
	Slide 21: Summary
	Slide 22
	Slide 23: Legal Disclaimer & Optimization Notice
	Slide 24
	Slide 25: Collection Overhead Reduced by Extended PEBS
	Slide 26: New Feedback Capabilities
	Slide 27: New Feedback Capabilities
	Slide 28: Windows Support: llvm-profgen
	Slide 29: HWPGO Documentation/Links
	Slide 30: SPEC CPU2017 Performance on IceLake Windows Server

