
Automatic Pool Allocation for Disjoint Data Structures �

Chris Lattner Vikram Adve
University of Illinois at Urbana-Champaign

flattner,vadve g@cs.uiuc.edu

Abstract — This paper presents an analysis technique and a novel
program transformation that can enable powerful optimizations for
entire linked data structures. The fully automatic transformation
converts ordinary programs to use pool (aka region) allocation for
heap-based data structures. The transformation relies on an ef-
ficient link-time interprocedural analysis to identify disjoint data
structures in the program, to check whether these data structures
are accessed in a type-safe manner, and to construct a Disjoint Data
Structure Graph that describes the connectivity pattern within such
structures. We present preliminary experimental results showing
that the data structure analysis and pool allocation are effective
for a set of pointer intensive programs in the Olden benchmark
suite. To illustrate the optimizations that can be enabled by these
techniques, we describe a novel pointer compression transforma-
tion and briefly discuss several other optimization possibilities for
linked data structures.

1. INTRODUCTION
Pointer-intensive programs are a difficult challenge for modern

processor architectures and memory hierarchies. Typical pointer-
based heap data structures produce access patterns with much
worse locality than dense arrays because they are not accessed in
a regular pattern within the linear system address space. Further-
more, the addresses of future accesses are difficult to predict, mak-
ing prefetching difficult to apply. Traditional optimizations have
generally focused on optimizing individual data objects and access
patterns [6, 27, 19, 4], but have generally neglected to take a more
macroscopic approach that analyzes and transforms entire logical
data structures. High level optimizations have generally been lim-
ited to runtime techniques such as clustering, profile-driven lay-
out optimization, and cache-conscious garbage collectors [9, 31, 7,
23, 6]. We have developed a macroscopic approach to optimizing
linked data structures that can enable sophisticated compile-time
transformations of entire data structures, even for unsafe languages
like C.
�This work is sponsored by an NSF CAREER award, grant number
EIA-0093426, and supported in part by the NSF Operating Systems
and Compilers program under grant number CCR-9988482 and by
an equipment donation from Hewlett Packard.

This paper describes a technique for introducingfully automatic
pool allocation of heap-allocated data structures in general C pro-
grams. Pool allocation1 is often used manually by programmers
to increase program performance because pool allocators are of-
ten more efficient than general purpose allocators, and the resulting
allocation patterns often have better memory locality. Fully auto-
matic pool allocation provides the same benefits, but also provides
the compiler a basis for performing new transformations that opti-
mize entire logical data structures, as discussed below.

Although pool allocation is a commonly applied manual opti-
mization, we are not aware of any previous compiler work that au-
tomatically introduces pool allocation into general programs (e.g.,
C programs using malloc and free). Existing techniques for au-
tomatic pool allocation are primarily runtime techniques that use
heuristics to segregate objects into pools by size, type, or predicted
lifetimes [15, 23]. The closest example to our work [2] uses pro-
filing to identify allocations with short lifetimes and then places
these in fixed size regions. These techniques generally do not
take into consideration the connectivity of allocated nodes, and do
not provide any basis for new compile-time transformations (Lan-
guage support for manual region-based allocation has also been
proposed [13] and could be used for macroscopic compile-time
transformations, but requires manually inserted annotations to di-
rect it).

The key to the automatic pool allocation transformation is iden-
tifying logically disconnected data structures and their interconnec-
tion properties, so that we can assign disjoint data structures to dif-
ferent memory pools. We use an analysis described in Section 2 to
identify logically disjoint data structures, and use it to compute a
representation we call the Disjoint Data Structure Graph. Our anal-
ysis to construct these graphs is similar to previous work on heap
connection analysis and shape analysis [18, 17, 14, 30, 22], but dif-
fers from that work in a few key ways (discussed in more detail in
Section 6). We perform the data structure analysis and subsequent
transformations entirelyat link-time, using a compilation frame-
work called LLVM, described briefly in subsection 1.1. Link-time
is an appropriate place for our data structure analysis, because it is
fundamentally interprocedural.

Once the Disjoint Data Structure Graphs have been computed,
the program is transformed to use pool allocation, as described in
Section 3. This transformation can only be applied to logical data
structures that are accessed in a type-safe manner. If the graph for
the data structure contains multiple different node types, a sepa-
rate pool is used for each node type so that each pool contains only
homogeneous objects (Although this is not necessary, it can signif-
icantly speed up allocation and deallocation of memory from each
pool). The runtime system uses pool descriptors to record rele-

1Sometimes called region-based allocation [13].

Optimizing Linker
.
.

Runtime Optimizer
Optimized

Code
Profile

& Trace
Info

Offline Reoptimizer
Profile

& Trace
Info

LLVM

LLVM
LLVM Native

Libraries

 Host Machine

Static Compiler 1

Static Compiler N
.o files

LLVM
.exe

(llvm +
native)

.exe

Figure 1: LLVM system architecture and compilation process

vant bookkeeping information, including the connectivity between
linked pools. The compiler inserts code to allocate and destroy the
pool descriptors for each logical data structure instance within the
“root” function that entirely contains the lifetime of the data struc-
ture. The compiler then rewrites all the allocation and deletion op-
erations for that data structure to allocate and free heap objects out
of the appropriate pools. The entire memory of a pool as well as
the pool descriptors are released back to the system at the point that
the data structure it contains is no longer accessible (i.e., at the exit
from the root function). Section 4 presents experimental results on
the effectiveness of the data structure analysis and pool allocation
transformations.

The disjoint data structure analysis combined with automatic
pool allocation can enable sophisticated optimizations for linked
data structures, because the compiler has much more information
about allocation patterns and locality properties of nodes allocated
from the pools. We briefly describe a few such optimizations in
Section 5, including a novelautomatic pointer compressiontrans-
formation, however evaluating these transformations is beyond the
scope of this paper. The pointer compression technique addresses a
key problem in 64-bit architectures — pointer-intensive data struc-
tures pay a significant penalty in terms of memory size (and there-
fore, cache efficiency and memory bandwidth) because of using
64-bit pointers. The transformation we proposetransparentlyand
safelyreplaces 64-bit pointers within each logical pool-allocated
structure with smaller (16 or 32-bit) offsets into the pool, and dy-
namically changes pointer sizes and rewrites the pool contents as
the data structure grows. One of the goals of our future work is
to implement and evaluate the pointer-size compression and other
optimizations enabled by automatic pool allocation.

1.1 The LLVM Compilation System
Our work has been implemented within the LLVM compilation

system. LLVM — Low Level Virtual Machine — is a compilation
system designed to support high level optimizations forlink-time,
runtime, andofflinecompilation. The key idea in LLVM is to use
a rich virtual instruction set (instead of raw machine code) as the
code representation manipulated by a link-time optimizer and code
generator. The LLVM instruction set uses low-level RISC-like op-
erations, but provides rich information about the operands, includ-
ing extensive language-independent type information and dataflow
information in Static Single Assignment form. The LLVM compi-
lation strategy is depicted in Figure 1, and an example C function
and it’s corresponding LLVM assembly code are shown in Figure 2.

The LLVM instruction set and types are low-level enough to
represent programs from any source language, enabling arbitrary
source-level compilers to generate LLVM object code instead of
machine code. Once linked, the LLVM code provides important
information about the program that is not present in machine code,

such as type and dataflow information. This is important because
interprocedural optimization is much more convenient at link-time
than during source-level compilation (since the latter can require
significant changes in the development process to make complete
or nearly complete application source code available). Traditional
compilation strategies (which only manipulate low-level machine
code at link time) make it difficult to perform high-level analyses
and transformations due to lack of high-level information2 [3, 1].

We have written an LLVM backend for GCC, which currently
allows compilation of C to LLVM and will support C++ in the near
future. The LLVM infrastructure includes standard scalar optimiza-
tion passes and an optimizing linker. The optimizing linker links
the different LLVM object code files (along with any libraries that
have been compiled into LLVM object code), performs interproce-
dural optimizations on the resulting program, and then generates
native machine code for a SPARC v9 architecture. We are cur-
rently developing the runtime and offline optimizers shown in the
diagram. The analysis and transformations described in this paper
are implemented in the LLVM optimizing linker.

2. DATA STRUCTURE ANALYSIS
Automatic pool allocation requires a program analysis which ex-

poses the allocation pattern of the program, the connectivity graph
of allocated memory objects, and indicates whether or not the trans-
formation is provablysafeto perform. Additionally, such analysis
(which is fundamentally interprocedural) must be efficiently com-
putable if automatic pool allocation is to be feasible in practice.
The data structure analysis graph is our representation for solving
these problems.

Our implementation of the data structure analysis algorithm is
implemented in the context of the LLVM system, but should be
easily adaptable to other systems with similar analysis capabilities.
The data structure analysis should also be directly applicable to
static or link-time compilers for Java bytecode or the Microsoft
Common Language Runtime (CLR), which have rich, high-level
bytecode representations from which the necessary analysis infor-
mation can be extracted.

The key analysis information we use is as follows:

� SSA form – We assume a low-level code representation with
an infinite set of virtual registers, and a load-store architec-
ture (memory locations can be accessed only via load and
store operations). The virtual registers are assumed to be in
SSA form, but the memory locations are not. We assume that

2In fact, some commercial compilers export the static compiler’s
internal representation in order to enable more sophisticated link-
time optimizations [1, 8, 12]. In contrast, LLVM provides a sim-
pler, and more elegant solution that can work with arbitrary source-
level compilers, enabling sophisticated high-level optimizations.

/* C Source Code */
struct Patient { ... };
typedef struct List {

struct List *forward;
struct Patient *patient;
struct List *back;

} List;

void addList(List *list, struct Patient *pt) {
List *b = NULL;
while (list != NULL) {

b = list;
list = list->forward;

}
list = (List *)malloc(sizeof(List));
list->patient = pt;
list->forward = NULL;
list->back = b;
b->forward = list;

}

;; LLVM assembly code
%Patient = type { ... }
%List = type { %List*, %Patient*, %List* }

void %addList(%List* %list, %Patient* %pt) {
bb0:

%cond1 = seteq %List* %list, null
br bool %cond1, label %bb3, label %bb2

bb2:
%list1 = phi %List* [%list2,%bb2], [%list,%bb0]
%list2 = load %List* %list1, uint 0
%cond2 = setne %List* %list2, null
br bool %cond2, label %bb2, label %bb3

bb3:
%b = phi %List* [%list1,%bb2], [null,%bb0]
%list3 = malloc %List
store %Patient* %pt, %List* %list3, uint 1
store %List* null, %List* %list3, uint 0
store %List* %b, %List* %list3, uint 2
store %List* %list3, %List* %b, uint 0
ret void

}

Figure 2: A C function and the corresponding LLVM assembly code

it is impossible to take the address of an SSA virtual register.
Using SSA form is not essential, but it simplifies the analy-
sis because register values cannot be killed, and it allows for
efficient identification of uses of values.

� Identification of memory objects – We assume that the com-
piler can distinguish four types of memory objects, namely,
heap objects allocated bymalloc , stack objects allocated
by alloca , global variables, and functions; and can iden-
tify the declared types of each object.

� Type information – We assume that all SSA variables and
memory objects have an associated type. The type system
only needs to distinguish primitive types (e.g., integer and
floating point), pointers, structures (i.e., user-defined aggre-
gates), and arrays. Only memory objects can have structure
and array types, i.e., onlyload , store , malloc andal-
loca operations are possible on such types. All SSA vari-
ables must be of primitive or pointer type.

� Safety information – Our analysis requires that there is
some way to distinguish type-safe and type-unsafe usage of
data values. In LLVM, all operations (including memory
load/store operations) follow strict type rules, e.g., it is illegal
to add an integer and a floating point number, or to perform
arithmetic on a pointer type. LLVM includes acast instruc-
tion that can be used to convert between types (e.g., before
adding an integer and a float), but most such cast operations
do not actually violate type safety for the underlying data val-
ues. A specific form of this instruction (casting to a pointer
type) is thesingleway that type-unsafe operations can be per-
formed in LLVM. This mechanism is sufficient to implement
arbitrary unsafe code, and makes violations of type safety
trivial to detect.

2.1 The Disjoint Data Structure Graph
The Disjoint Data Structure Graph (or simply data structure

graph) is the primary representation of the access patterns of a func-
tion, library, or whole program. Each node in the graph represents a
typed SSA register or a memory object allocated by the program, or
multiple objects of the same type. A node is represented by a node
type (described below), the program type of the memory object,

and a set of fields. A node contains one field for every primitive
or pointer value contained in the object, including fields of nested
structures. An array, however, is represented as a node with a sin-
gle field, i.e., our analysis does not track individual array elements.
Note that an ordinary pointer variable is represented in the graph as
a node with a single field, for uniformity.

Each edge in the graph connects a pointer field of one node
(the source field) to a field of another node (the target field). The
souce or target of an edge is represented as a<node, field-index>
pair. A pointer field may have edges to multiple targets, i.e.,
edges represent “may-point-to” information. In practice, however,
a pointer field usually has a single outgoing edge because of the
node-merging technique described in Section2.2.3.

The finished analysis graph for theaddlist function (defined
in Figure 2) is shown in Figure 3. Its construction will be used as
the running example to explain the data structure graph.

new %List

shadow %Patient

 %Patient*
%pt

 %List*
%list

 %List*
%b

 %List*
%list3

 %List*
%list2

 %List*
%list1

Figure 3: Data structure graph for addList

This data structure graph shows the graphical notation we will
be using to illustrate the analysis results. In our graphs, the dark
rounded objects represent actual memory objects that exist in the
program, whereas the lighter objects represent scalar values in
the function (elliptical scalar values indicate incoming arguments).
The three pointer fields of the%List type are reflected directly
in the data structure graph as three fields in the%List memory
object.

We use eight distinct node types to distinguish different kinds of
objects:

1. new node – Represents memory allocated on the heap with
themalloc operation.

2. alloca node – Represents memory allocated on the stack
of the current function (either by thealloca instruction or
because the address of an automatic variable must be avail-
able).

3. global node – Represents the memory occupied by a
global variable.

4. function node – Represents a function in memory. These
nodes serve as the targets of function pointers.

5. call node – Represents a call to a function. Contains a
field holding one or more pointers to the calledfunction
node(s), plus fields holding pointers to the formal arguments.

6. shadow node – Represents memory that we know exists,
but don’t know how it is allocated.

7. cast node – Represents memory used in a non-typesafe
manner.

8. scalar node – Represent SSA registers of pointer type in
the current function. These nodes have a single field that
holds the set of memory objects a scalar pointer may point to.
Because we assume that it is impossible to take the address
of an SSA register, there may be no edges pointing to scalar
nodes.

For the purposes of analysis, thealloca andnew nodes are
treated identically, and referred to as “allocation” nodes. The
global andfunction nodes are also treated identically, since
all functions bodies are global objects (with no pointer fields).

Shadow nodes are special nodes that are used to represent cases
where memory is allocated outside of the scope of the analysis, but
referenced in the current function. Because we don’t know what
kind of memory it is (global variable or an allocation), we cannot
assign it a concrete node, so we make it a specialshadow node.

The data structure graph is computed directly from the LLVM
source. The key goal of the analysis is to construct a data structure
graph for each function in the program, identifying distinct logical
data structures that are visible to each function. For pool alloca-
tion and other transformations, it is important to separatedisjoint
data structures into distinct logical data structures instead of con-
servatively merging them. For this reason, our analysis is context-
sensitive.

The strengths of our analysis include identification of disjoint
data structures, small analysis time, concise summarization of im-
portant information, unified handling of both heap and stack al-
locations, and a clear splitting of the analysis between intra- and
inter-procedural analyses. Splitting the analysis into an two dif-
ferent stages allows the intraprocedural portion of the analysis to
be performed separately for each module, requiring only the inter-
procedural portion to be executed at link-time. Section 2.2 de-
scribes the intraprocedural analysis, used to build the initial ver-
sion of the data structure graph for each procedure. Section 2.3
describes the interprocedural analysis used to compute the inter-
procedural closure of the graph.

2.2 Intraprocedural Analysis Algorithm
The intraprocedural graph computation phase is aflow-insensi-

tiveanalysis that builds a data structure graph without requiring the
code for other functions to be available. The result of this algo-
rithm is the data structure graph, and the returned pointer set. The
returned pointer set is used to track which pointers values may be
returned from the function, and is used when computing the inter-
procedural closure of the graph.

The graph construction algorithm is composed of three distinct
phases: the node discovery phase, the worklist processing phase,
and the graph simplification phase. These analyses are performed
directly on the LLVM code representation, making extensive use
of the type information provided. Although our analysis is flow
insensitive, the use of SSA form inherently provides a degree of
flow sensitivity and reduces the occurrence of spurious edges in the
graph.

2.2.1 Node Discovery Phase
The node discovery phase performs a single pass over the func-

tion being processed, creating the nodes that make up the graph.
Specifically, it generates a node of the appropriate type for each
function call, allocation (stack or heap), and global variable refer-
enced. It createscast nodes to represent unsafe pointer conver-
sions and scalar nodes for SSA pointer registers. Shadow nodes are
created for values that point to unknown values (incoming pointer
values and the return value of function calls that return pointers).
The worklist processing phase can only add new shadow nodes and
edges to the graph, so all nodes of other types come from the node
discovery phase.

As nodes are generated, all SSA variables that point to the new
nodes (for example, the%list3 variable) have their outgoing
edges updated, and allusesof these SSA variables are put on the
worklist. The graph computed foraddList after the node discov-
ery phase is shown in Figure 4. Note that none of the fields of the
allocated nodes have outgoing edges yet, nor do the scalar values
%list1 , %list2 , and%b.

new %List

shadow %List

shadow %Patient

 %Patient*
%pt

 %List*
%list

 %List*
%b

 %List*
%list3

 %List*
%list2

 %List*
%list1

Figure 4: addList graph after node discovery

The worklist currently contains%cond1 and%list1 (which
use %list), and the four store instructions (which use%list3 and
%pt).

2.2.2 Worklist processing
On entry to the worklist processing phase of the algorithm, the

node discovery phase has created data structure nodes for all of the
non-shadow nodes (and some shadow nodes) in the function graph.
The worklist contains all of the instructions in the function that use
the SSA values corresponding to the nodes. Worklist processing
consists of popping an instruction off the worklist, adding edges
to the data structure graph, and putting instructions onto the work-
list if they refer to fields that have been updated (the operations
needed when updating a single scalar variable or structure field are
captured in the UpdateScalar and UpdateField functions described
below):

ProcessWorkList()
whileWL 6= ;

instructioninst = WL:head; WL.remove(inst)
process instruction(inst)

We describe the effects of each primitive that may be found on
the worklist, giving the C syntax for the operation, short pseudo-
code for the update, and a description. In addition to the instruc-
tions below, there may also befree calls and pointer comparison
operations on the worklist, but since they do not affect the data

structure graph they are ignored. The other instructions are pro-
cessed as follows:

� X = &(*Y).field <N>
UpdateScalar(X, Advance(PointingTo(Y), N))

Taking the address of a structure field is implemented by sim-
ply advancing the source pointers (Y) to point to the new
field. Since pointers are represented as<node, field-index>
pairs, theAdvance function simply increments thefield-
index portion of each pointer in the input set.

� X = &A[i]
UpdateScalar(X, PointingTo(A))

Our analysis ignores array subscripts, effectively treating en-
tire arrays as a single element. This is conservative, but al-
lows for a compact representation with few implementation
difficulties.

� *X = P
if IsPointerType(P) then

UpdateFields(PointingTo(X), PointingTo(P))

Storing a pointer into a memory object adds the edges ema-
nating from the node forP to the fields pointed to byX.

� X = *P
if IsPointerType(X) then

if ContentsOf(PointingTo(P)) = ; then
SN = new ShadowNode(Type(*X))
UpdateFields(PointingTo(P), SN)

UpdateScalar(X, ContentsOf(PointingTo(P)))

Loading a pointer from memory updates the scalar to also
include the contents of the field in memory. If there is no
outgoing edge from one of the fields we are loading from,
however, we mustsynthesizea shadow node and add an edge
from the field to the new shadow node. This ensures that
the load instruction will have a node to point to, but it is
also important to make sure that edges are not lost in the
graph. The ramifications of this technique are discussed in
the example, below.

� X = �(Y, Z)
UpdateScalar(X, PointingTo(Y)

S
PointingTo(Z))

The SSA� instruction merges together values due to control
flow. We simply union together the pointer sets.

� call func(P)
UpdateParam(callnode, argnum, PointingTo(P))

Processing a function call simply updates the call node to
keep track of the accurate pointer sets that are being passed
in as parameters. This is used for the interprocedural clo-
sure stage, described in Section 2.3. This does not cause any
worklist entries to be modified.

� return X
ReturnPtr = ReturnPtr

S
PointingTo(X)

This adds the nodes pointed to byX to the return set for the
function.

The “PointingTo” function returns the set of pointer values stored
in the scalar node for the specified variable. The “UpdateScalar”
function updates the scalar node corresponding to the specified
variable to include all of the pointers in the set specified as its sec-
ond argument. If this causes the scalar node to change, all of the
uses of the SSA scalar are added to the worklist for reprocessing,
and the graph simplification algorithm is run:

UpdateScalar(scalarS, pointersetPS)
if edges(S)

T
PS 6= PS then

WL.add(uses(S)) // Add all uses to worklist
edges(S).add(PS) // Add new edges to graph
GraphSimplify(S) // Merge nodes (Section2.2.3)

The “UpdateFields” function is identical, but updates the fields
of memory objects pointed to by the first argument. If the fields
change, all loads refering to the structures are added to the worklist,
and the graph simplification algorithm is run.

In our example, after processing the%cond1 instruction (which
is a no-op) and%list1 instructions, the%list2 instruction is
added to the worklist, and an edge from%list1 to the shadow
%List node is added. When processing the%list2 instruction
(a load), a shadow node must be synthesized, resulting in the graph
shown in Figure 5 (additionally, the%list1 instruction is rein-
serted into the worklist). Figure 5 shows the data structure graph
after processing these instructions and%list1 again.

new %List

shadow %List

shadow %List

shadow %Patient

 %Patient*
%pt

 %List*
%list

 %List*
%b

 %List*
%list3

 %List*
%list2

 %List*
%list1

Figure 5: addList graph after some worklist steps

At this point, the worklist contains%list2 and%b(which use
%list1), and the four store instructions (which use%list3 and
%pt).

Clearly, the uncontrolled creation of shadow nodes can lead to
infinite recursion: processing%list2 again would cause another
shadow node to be created (due to the load from the empty field on
the shadow node created in the last iteration), which would cause
future shadow nodes to be created – ad infinitum. To prevent this
infinite recursion, and to ensure the data structure graph remains
as compact as possible, the graph simplification algorithm is used
to merge nodes in the graph that are indistinguishable from each
other.

2.2.3 Graph Simplification Algorithm
In Figure 5, the two%List shadow nodes areindistinguishable

from each other, and should be merged. Two nodes are considered
indistinguishable if they are of the same LLVM type, if they have
the same node type (or if at least one is a shadow node), and if
there is a field in the data structure graph that points to both nodes.
When two nodes are merged, the resulting node contains the union
of the edges in the two original nodes, preventing edges from get-
ting dropped from the graph. Additionally, any pointers to either
original node get updated to point to the new merged node (this is
similar to approaches taken by other analyses[14, 22, 24]).

The intuition behind this heuristic is if a pointer contains edges
to two different nodes, all stores and loads that use the pointer will
cause their effects (either edges added to the graph, or scalars up-
dated with the field contents) to happen to both nodes at the same
time. Since each node will eventually contain the same contents as
the other, they might as well be merged.

In the case ofaddList , the %list1 scalar points to both
shadow nodes, and they are of compatible LLVM and node type.
Merging the two nodes together causes the edges connecting the
two nodes to become a self-loop, providing information about the

connectivity. Important to note is that this summarization of the
graph does lose information. For example, by merging the two
nodes, we lose the information that%list only points to the first
node. However, because we are dealing with potentially infinite
structures without infinite time and space resources, we must per-
form some form of summarization.

In practice, we have found this information loss to be of little im-
portance to our data structure analysis. This is suprising, because
results on pointer analysis have shown Steensgaard’s algorithm[24]
as being significantly less precise than other approaches, and it uses
a similar merging technique. The difference is that we are attempt-
ing to extract data structure connectivity information,not aliasing
information. Pool allocation actually benefits from graphs that are
merged as much as possible, as long as two disjoint structures are
not unneccesarily merged together.

Figure 6 shows the data structure graph after merging the two
nodes, processing%band the four store instructions (which add
outgoing edges to the “new” node as well as the remaining shadow
node).

shadow %Patient

 %Patient*
%pt

 %List*
%list

shadow %List

new %List

 %List*
%b

 %List*
%list3

 %List*
%list2

 %List*
%list1

Figure 6: addList graph after node merging

Processing the last store in the function causes the edge to the
“new” node to be added to the shadow node. Since there is now a
field that points to two indistinguishable nodes (the new node and
the shadow node), the two nodes are merged, yielding the finished
graph shown in Figure 3. This merging behavior is an important
part of our analysis — adding extra edges (for example, introduced
by conservative heuristics) to the graphs cause them toshrink in
size.

2.3 Interprocedural Closure Algorithm
The local analysis graph is of limited usefulness for program

transformation, because most interesting data structures are passed
to functions to construct or manipulate them (for example see
ProcessLists in Figure 8). Without interprocedural informa-
tion, it is impossible to transform these functions, because one of
the called functions may use the data structure in ways not reflected
in the local data structure graph. To indicate that function calls are
involved,call nodes are introduced into the local data structure
graph (shown in Figure 9). When the data structure graphs for the
called functions are available, the call nodes are eliminated, being
replaced with the analysis information in the called function graph
itself. Thus, the interprocedural closure algorithm is the process
of resolvingcall nodes to the graphs that they represent, pro-
pogating interprocedural information from the called functions to
the caller function’s graphs.

In general, eachcall node (and therefore, thecall instruc-
tion it represents) may be able to call multiple functions if it is an
indirect call. Our analysis handles this in a simple and uniform
way. Functions are considered to be global objects themselves (and
are therefore represented with a node in the data structure graph)

and allcall nodes have a field that indicates which functions are
called by thecall node. The common case is to call a single
function directly, but there may be a call to a shadow function (if a
function pointer is passed into the current function), or may contain
edges to multiple functions (if its an indirect call).

ComputeInterproceduralClosure(graphG)
InlinedFnsSet = ;
while 9 nodeCall 2 CallNodes(G)

scalarnodeCallV alue = ScalarFor(Call)
if Call 2 InlinedFnsSet then

ResolveNodeTo(CallV alue, InlinedFnsSet[Call])
else // Haven’t already resolved this function
ReturnPtr = ;
8 nodeFn 2 TargetFunctions(Call)
<retptr, argptrs> = Inline(Fn,G)
ReturnPtr = ReturnPtr

S
retptr

// Resolve argument shadow nodes to call parameters
8 ptrsetArg 2 argptrs

ResolveNodeTo(Arg, Param(Call, Arg))
InlinedFnsSet[Call] = ReturnPtr
// Resolve returned value to union of returned pointers
ResolveNodeTo(CallV alue, ReturnPtr)
RemoveFromGraph(Call)
RemoveUnreachableNodes(G)

// “unknown” nodeN is now points toPtrV al set
ResolveNodeTo(scalarnodeN , ptrsetPtrV al)

edges(N).add(PtrV al)
GraphSimplify(N)
RemoveFromGraph(N)

Figure 7: Interprocedural Closure Algorithm

The interprocedural closure algorithm (defined in Figure 7) op-
erates by looping over thecall nodes in the specified graph, in-
lining each called function’s graph in place of the call node. As
it does so, it uses theResolveNodeTo function to resolve any
argument shadow nodes to the actual parameters that are passed in.
This analysis handles indirect call nodes by repeatedly inlining the
called function graphs for each function called by a particular call
node. If the called function returns a pointer, the return value set
of the inlined function graph is used to eliminate the shadow node
generated for the call node.

The core of the interprocedural closure algorithm is the “Inline”
function. This graph inliner copies all of the nodes from the graph
of the specified function into another graph, preserving edges be-
tween nodes. Thescalar nandalloca nodes of the inlined
function are discarded and their incident edges are removed from
the graph (the values they represent are out of scope, so they cannot
be referenced). The return value set and the set of argument nodes
from the inlined graph are returned as a pair. The result of inlining
a function call is memoized in theInlinedFnsSetto avoid infinite
recursion when inlining recursive functions.

Although it is possible to simply inline the intraprocedural datas-
tructure graph for a function, the inliner prefers to inline the inter-
procedural graph for the specified function if it is available. The
only scenario where the graph is unavailable is when we are inlin-
ing a function call to a mutually recursive function, in this case, the
intraprocedural graph must be selected to avoid infinite recursion.
To get this effect, we calculate the interprocedural closure graphs
in a postorder traversal over the call graph.

The “ResolveNodeTo” function merges a node with a set of

nodes referenced by a pointer value, and is used to eliminate
shadow nodes. This function takes a node argument and a set of
pointer values to resolve. The node argument is either thescalar
node that captures the return value of a call, or is a pointer argument
in the inlined function that is now being resolved. The “ResolveN-
ode” function operates by using the “GraphSimplify” algorithm to
merge the node sets together, eliminating the shadow nodes inserted
during the node discovery phase.

As a example to show the interprocedural closure algorithm, con-
sider theProcessLists function:

void ProcessLists(unsigned N) {
List *L1 = malloc(sizeof(List));
List *L2 = malloc(sizeof(List));
unsigned i;
/* populate lists */
for (i = 0; i != N; ++i) {

addList(L1, malloc(sizeof(Patient)));
addList(L2, malloc(sizeof(Patient)));

}
useLists(L1, L2); /* Use lists */

}

Figure 8: Source forProcessLists function

In this example, there are three function calls. For purposes of
discussion, assume that we have the data structure graph forad-
dList before, but we do not have the graph foruseList yet.
In this case, the twoaddList call nodes in the intraprocedural
data structure graph (Figure 9) may be resolved to actual graphs
that they correspond to.

new %List

new %List

new %Patient

new %Patient

call

fn addList fn useLists

call

call

 %List*

%L1
 %List*

%L2
 %Patient*
%reg117

 %Patient*
%reg120

Figure 9: Intraprocedural ProcessLists graph

Inlining the function graph for the firstaddList call results in
one of the Patient and one of the List nodes being used to resolve
the incoming arguments of theaddList function. After the graph
is inlined, it is simplified (see Section2.2.3which merges the ex-
isting shadow Patient node with the Patient node allocated in this
function. The second call is inlined in an identical manner, produc-
ing the finished graph shown in Figure 10.

new %Patient

new %Patient

new %List

new %List

fn useLists

call

 %List*

%L1
 %List*

%L2
 %Patient*
%reg117

 %Patient*
%reg120

Figure 10: ProcessLists graph with resolved calls

This example shows three critical aspects of our algorithm that
differentiates it from existing work. First, it isincremental, allow-
ing programs to be analyzed as they are brought together. In the
case above, perhaps theaddList andProcessLists function
were in the same translation unit, allowing the graph to be partially
resolved during compilation. Presumably, theuseLists function
graph will later be resolved at link time.

The second important property is that the algorithm preserves
disjoint data structures. In the example above, the two disjoint
linked lists are not conservatively merged together just because they
are built with the same function (theaddList function allocates
all but one of the nodes in the list). This property is important for
pool allocation because it means that we can more accurately allo-
cate data structures into pools.

new %Patient

new %Patient

new %List

new %List

 %List*
%L1

 %List*
%L2

 %Patient*
%reg117

 %Patient*
%reg120

Figure 11: The finishedProcessLists graph

The third important property is that the data structure graph for
a function is small, only including nodes that are reachable in the
current function. For example, assume that theuseLists func-
tion is an empty function, which would resolve to the graph shown
in Figure 11. In this case, we know that the lifetime of the two
lists are bounded by the lifetime ofProcessLists function it-
self, because they do not escape from the function. If we consider
another function (saymain) that calls theProcessLists func-
tion, the two lists in Figure 10 will not be reachable in themain
graph when the call toProcessLists is resolved. For this rea-
son, the nodes are eliminated, reflecting the fact thatmain is not
exposed to the internal data structures used byProcessLists .

3. AUTOMATIC POOL ALLOCATION
Many other researchers have illustrated the value of pool allocat-

ing data structures [10, 13, 26], butfully automatictransformation
is a challenging problem. Here we describe a simple algorithm for
automatic pool allocation of C programs that uses the data structure
graph to ensure safety of transformation.

3.1 Runtime support
We designed a simple pool allocation runtime library with four

external functions (poolinit , pooldestroy , poolalloc ,
poolfree), and one data type (the pool descriptor). We trans-
form the program to pass the pool descriptors into functions that
must allocate or free nodes from or to the pool. In this way, the
pool descriptor is always available where it is needed.

Our pool allocator assumes that a memory pool consists of uni-
formly sized objects, but can allocate multiple consecutive objects
if needed (for arrays). When pool allocating a complex data struc-
ture (for example, the main data structure for thepower bench-
mark, shown in Figure 12(a)) each data structure node in the graph
is allocated from a different pool in memory. This simple heuris-
tic groups memory objects together of the same type, which works
well for tree nodes, linked lists, and other heavily recursive struc-
tures. In thepower benchmark example, there are four mem-
ory pools, each corresponding to a level of a heterogeneous “tree”
structure, where each level is a linked list of nodes.

In addition to bookkeeping information for the pool allocator
runtime, the pool descriptors can also be augmented to include
pointers to the other pool descriptors in the data structure, form-

new %root

new %lateral

new %branch

new %leaf

 %Root
%reg109

(a) Data structure graph

root pool

lateral pool

branch pool

leaf pool

(b) Pool descriptor graph

Figure 12: Main data structure for power benchmark

ing a graph isomorphic to the data structure graph (but accessable
at runtime, and including backedges as well as forward edges). For
thepower benchmark, this graph is shown in Figure 12(b). By us-
ing this graph, the runtime can locate all of the memory blocks al-
located to a data structure by traversing the pool descriptors for the
data structure, inspecting the “isAllocated ” bit for each cell
that is allocatable from the pool. This information is very useful
for a variety of transformations, for example the pointer compres-
sion algorithm described in Section 5.1.

3.2 Identifying candidate data structures
In order to pool allocate a data structure, we must detect the

bounds on the lifetime of the data structure (to allocate and delete
the pools themselves), and determine whether it issafe to pool-
allocate the data structure. We use the data structure analysis graph
for both purposes.

Using the data structure graph, we detect data structures whose
lifetimes are bound by a function lifetime, allowing us to allocate
the pool on entry to the function, and deallocate it on exit from the
function. We identify these candidates by scanning the functions
in the program (because each function’s graph only contains the
data structures that are acessable by that function), inspecting each
functions interprocedural data structure graph as we go.

The lifetime of a data structure is contained the current function
if the data structure’s subgraph would be unreachable without the
edges due to the scalar pointer map (i.e., no globals point to the
structure, and it is not returned from the current function). This
escape analysis (which is similar to the points-to escape analysis
of [29]) is a conservative, but effective, heuristic for the appoxi-
mation of data structure lifetime. We refer to the function whose
lifetime bounds the lifetime of the data structure as the “root” func-
tion, because it is the root of a subtree of the call graph that needs
to be modified to handle pool allocation.

PoolAllocateProgram(programProg)
8 functionFn 2 Prog
8 disjointdatastructureDS 2 DSGraph(Fn)

if CallNodes(DS)
S

CastNodes(DS) = ; then
if :escapes(DS) then

PoolAllocate(Fn,DS)

Figure 13: Candidate identification algorithm

It is safe to convert a data structure to use pool allocation when
we can prove that we know all of the allocation and deletion points
for nodes in the data structure, and that the program does not use
the data structure in a non-typesafe way. To ensure that we have
analyzed all of the relevant portions of the program, and that none
of the accesses to the data structure contain unsafe operations, we
do a simple traversal of the graph looking for eithercall or cast
nodes. If either is found, a portion of the program is outside the
scope of our analysis or an unsafe operation has been found, so
pool allocation cannot be performed. This algorithm is shown in
Figure 13.

3.3 Transforming function bodies
For a data structure identified to be pool allocated, the root func-

tion must be modified to allocate pool descriptors representing the
various nodes in the subgraph. We insert code to stack-allocate a
pool descriptor, code to initialize the pool descriptor on entry to
the function, and code to destroy the pool descriptor (and all book-
keeping information associated with the memory pool) at the exit
nodes of the function.

Once the pools are created, the body of the root function, and
functions it calls (that use the data structure), must be transformed
to usepoolalloc andpoolfree calls instead ofmalloc and
free instructions. To do this the pool descriptor must be passed
into called functions so that they are available for the eventual
poolalloc and poolfree calls. The algorithm is shown in
Figure 14.

PoolAllocate(functionRootFn, datastructureDS)
Worklist = fRootFng
8 functionFn 2Worklist
8 instructionI 2 Instructions(Fn)

if UsesDataStructure(I,DS) then
if IsMallocOrFree(I) then

ConvertToPoolFunction(I,DS)
elseif IsCall(I) then

AddPoolArguments(I,DS)
Worklist = Worklist

S
CalledFunction(I)

Figure 14: Function transformation algorithm

The transformation loops over a worklist of functions to process,
transforming each function until the worklist is empty. Initially the
worklist is seeded with the root function, and is expanded whenever
a call to an untransformed function is encountered. The body of a
function is transformed according to the following rules:

� malloc andfree operations referring to the pool allocated
data structure are changed into calls to thepoolalloc and
poolfree library functions.

� Function calls that take a pointer into the data structure as an
argument, or return a pointer that is part of the data structure
are modified to pass the pool descriptor of the data structure
into the called function. If the function has not already been
processed, it is put on the transformation worklist.

The transformedProcessLists function (Figure 15) allo-
cates four memory pools, one for each data structure node in the
two disjoint data structures in it. TheaddList function is trans-
formed similarly.

One problem with modifying functions in this way is that it is
possible for it to cause exponential code growth, because functions
must be cloned before they are transformed. For example, if there

Benchmark Name LOC Primary data structure Analysis Time
(millisec.)

Graph size
for main

Primary
DS size

bisort 348 binary tree 47.3 21 1
em3d 683 lists, arrays 221.4 59 5
perimeter 484 quad tree 177.0 16 1
power 615 hierarchy of lists 59.2 21 4
treeadd 245 binary tree 13.5 19 1
tsp 578 2-d tree 84.0 29 1
matrix 66 2-d matrices 12.2 15 6

Table 1: Preliminary Results for the Olden Benchmarks

void ProcessLists(unsigned N) {
PoolDescriptor L1PD, L2PD, P1PD, P2PD;
List *L1, *L2; unsigned i;
poolinit(&L1PD, sizeof(List));
poolinit(&L2PD, sizeof(List));
poolinit(&P1PD, sizeof(Patient));
poolinit(&P2PD, sizeof(Patient));

L1 = (List*)poolalloc(&L1PD, 1);
L2 = (List*)poolalloc(&L2PD, 1);

/* populate lists */
for (i = 0; i != N; ++i) {

addList_pa(L1, &L1PD, poolalloc(&P1PD, 1));
addList_pa(L2, &L2PD, poolalloc(&P2PD, 1));

}
useLists_pa(L1, &L1PD, L2, &L2PD);
pooldestroy(&L1PD); pooldestroy(&L2PD);
pooldestroy(&P1PD); pooldestroy(&P2PD);

}

Figure 15: Source for pool-allocatedProcessLists

is one client ofaddList that pool allocates the linked list, but an-
other client that cannot, two copies of the code would be required.
In practice, our implementation chooses to only pool-allocate a data
structure if all the functions that refer to the data structure are only
called with pool allocated data structures. Note that only functions
that allocate or free nodes (or call functions that do) in the data
structure need to be modified by this algorithm.

4. PRELIMINARY RESULTS
We have fully implemented both the disjoint logical data struc-

ture analysis and the automatic pool allocation transformation in
the LLVM system. It performs fully automatic pool allocation for
data structure graphs, including rewriting structure fields and scalar
variables, pool allocation, and deallocation. It also supports alloca-
tion of a structure with heterogeneous nodes (using multiple pools).

We tested these transformations on several programs from the
Olden benchmark suite, a collection of programs that have been
used for several pointer prefetching studies (e.g., [19]). We present
preliminary results for these programs here. Unfortunately, these
codes are relatively small and each of them only allocates a single
large, recursive data structure. Nevertheless, the benchmarks cover
the full spectrum of difficult issues including pointer-intensive
linked structures, dynamic stack allocation, pointers to functions,
global variable references, and heavy use of recursion. In the fu-
ture, we aim to test these techniques on other benchmarks, includ-
ing the SPEC2000 benchmarks.

Table 1 shows the results for six of the Olden programs, and a
simple matrix multiply routine function operating on three matri-
ces. The table shows the compilation time for each benchmark,
including the time for data structure analysis and pool allocation,

but these times are nearly negligible because the benchmarks are
quite small. For all the programs, the compiler is correctly able to
identify the logical data structure used at the top level of the pro-
gram. In all cases, however, lower-level functions in the tree allo-
cate and process disjoint subsets of these logical structures, and the
compiler correctly proves those subsets are disjoint (not reflected
in the table). The interprocedural graphs computed for the top-
level function (main) are relatively large but most of those nodes
are due to calls to the external functionprintf , and the global
format strings passed to those calls. The primary data structure in
each benchmark had 4 nodes forpower , 6 nodes formatrix and
only 1 node for each of the other benchmarks. The structure in
thepower benchmark has 4 heterogeneous node types (as shown
in Figure 4), and the compiler correctly identifies the linkages be-
tween these structures and allocates these to 4 separate pools, as
noted previously.

In order to further demonstrate the capabilities of the compiler,
we modified one of the benchmarks as follows. A potentially diffi-
cult usage pattern is that programs may allocate different structures
and then repeatedly extract nodes from one structure and insert it
into another. Nevertheless, such structures should still be reason-
able candidates for separate pool allocation. To test the compiler in
such a case, we wrote a simple code that creates two trees, initial-
izes values in the nodes of both trees in one loop, and then traverses
the two trees moving nodes from one to the other. The compiler
again was correctly able to prove that the two instances are disjoint,
and allocate the two trees to separate pools.

5. APPLICATIONS & FUTURE WORK
A primary benefit of automatic pool allocation is that it provides

the compiler a basis for performing aggressive data structure trans-
formations of entire linked data structures safely and transparently.
Such transformations can use the data structure graph and knowl-
edge about the pool allocation to analyze and optimize accesses to
the data structures in the program at compile time, and to control
the layout of data within pools at compile-time or runtime. We
briefly discuss a few such transformations here, describing one of
them (pointer compression) in some detail, but more work will be
needed to implement and evaluate all these optimizations.

5.1 Pointer Compression
Only a small fraction of data structures in modern applications

are likely to use232 or more addressable objects, and a significant
fraction are likely to use less than216 objects. Pointer-intensive
data structures on a 64-bit architecture therefore make very inef-
ficient use of memory, and consequently memory bandwidth and
cache capacity. For example, a tree structure with two child point-
ers and 8 bytes of data would require3 � 8 bytes of memory. Re-
placing 64-bit pointers with 32-bit ones would reduce the memory
consumption by1=3, and 16-bit pointers would reduce it by a factor
of 2.

The logical data structure analysis and automatic pool allocation
transformation make it possible to replace pointers with smaller in-
dex values into a pool. A simple transformation would be to use
fixed 32-bit indices, and generate a runtime error if a single logi-
cal structure uses more than232 � 1 separate objects at runtime.
Although rare, such potential errors may make the transformation
unacceptable to some large applications. A robust and more aggres-
sive strategy is to dynamically grow the index sizes as needed, by
relocating the pool and rewriting all indexes into it runtime. Such a
strategy would allow us to use even smaller (16-bit) offsets initially,
and grow these to 32-bit or 64-bit offsets if needed.

There are two major potential challenges to such a transforma-
tion. First, because the storage size of a pointer variable can change
at runtime, some field offsets for structures containing pointers are
no longer compile-time constants. This requires an additional level
of indirection in addressing those structure fields, which can po-
tentially cause high runtime overhead (this is the major challenge
to achieving net benefits from pointer compression). The second
challenge is that all object references must be dynamically rewrit-
ten when the offsets grow in size. Note, however, that this can hap-
pen at most 2 times for any single logical data structure (16 ! 32

and32 ! 64). We choose to limit ourselves to 16, 32, or 64-bit
pointers for this reason. Here, we describe the basic transformation
and discuss briefly how we can address these two challenges.

Pointer Size Transformation
Any logical data structure for which automatic pool allocation is le-
gal (as described previously) is a potential candidate for our pointer
compression transformation. An additional restriction we impose
is that pointers to objects of a typeT may be compressed only if
all objects of typeT are pool-allocated, though not necessarily in
the same pool. This ensures that the same code can be used to
dereference all such pointers.

We assume for now that all objects in a single pool are homo-
geneous, i.e., different node types in heterogeneous structures are
allocated in different pools. This may not be possible for object-
oriented languages with inheritance, however, and we will have to
make all pool entries be a multiple of the GCD of the static sizes of
all types in the pool.

For a homogeneous logical structure,S, let its node type beT
and it’s pool beP . The two previous analyses have already iden-
tified all static variables (scalar variables, structure fields, or array
elements) that can hold pointers either to the nodes of that struc-
ture, or to fields within a node. If there is a such a variable within
the typeT (i.e., typeT is recursive), or within any other pool that
has a pool pointer toP , we simply change the type of that variable
to hold an index into poolP . At compile-time, we use integers of
sizeOmin for the indices, whereOmin defaults to 16 bits.

If a pointer variable outside any pool is of typeT�, it must be
replaced with a pair of variables<ptr(Pdesc), index>, so that the
pointer can “carry with it” the information required to decode the
indices. The same transformation also applies to all formal param-
eters of typeT�, so that pool descriptor pointers are passed along
with indices on function calls (and returns).

If the index size is never changed at runtime, then the above sim-
ple transformations are sufficient. To enable dynamic size changes,
more complex runtime support and address arithmetic are needed.
The pool descriptor is augmented to include an array of offsets for
each field ofT . An access toX !
dn (0 � n < number of fields
of T) becomes:

*(Pdesc !poolbase + Xindex + Pdesc !offsets[n])

Clearly, the overheads of such an access sequence could over-
whelm any benefits of the transformation. The next section de-
scribes some optimizations that are crucial to make this strategy
practical. The section following it describes how references are
updated on a runtime pointer size change.

Optimizing Pointer Dereferences
We propose two optimizations that can be performed at compile-
time to achieve efficient structure field addressing in the presence
of dynamically changing field sizes.

First, since accesses to typeT are type-safe, we can safely re-
order the fields ofT . We can move all non-pointer fields ofT
to come before pointer fields. This guarantees that the offsets for
non-pointer fields and for the first pointer field are compile-time
constants, and involve no additional overhead beyond that of or-
dinary pool accesses, i.e., they only require the first two terms in
the address expression above. The result is that many common-
case accesses (e.g., non-pointer fields in flat structures, and the first
pointer in any structure) have zero overhead for dynamic pointer
compression.

The second key optimization is to move field access calculations
out of loops or regions of the call graph that do not allocate or deal-
locate structure nodes. The pool allocation transformation already
identifies the program points where these occur.

Dynamic Pointer Size Changes
When a poolP detects that it must be expanded and it’s index range
grows beyond that addressable by the current index size, we must
rewrite all locations that contain indices into poolP . References
within objects inP can be found simply by traversing all the objects
in P , all of which are of known types. The same operation suffices
on every pool that contains references intoP ; such pools are easy to
find becauseP has pointers to all other pools containing references
into it. Finally, the pool descriptors must be updated to record the
new offsets for fields of types that contain pointers into this pool.

5.2 Improved Prefetching Strategies
One of the major challenges in optimizing accesses to linked data

structures is to effectively hide memory latencies via prefetching.
One key difficulty is to predict which objects will be referenced
in the future without explicitly loading a chain of pointer values;
this has been called the “pointer-chasing problem” [19]. A vari-
ety of solutions have been proposed, most of which add a “history
pointer” to each structure node to record either the allocation order
or some expected traversal order for linked data structures. These
history pointers are then used to schedule prefetches for objects
expected to be accessed later in the execution [19, 4, 21]. The au-
tomatic pool allocation and pointer compression transformations
each enable a potentially valuable improvement for such prefetch-
ing strategies.

Creation-order prefetching without history pointers : One of
the key history-pointer prefetching schemes previously proposed
is creation-order prefetching, in which history pointers are used to
record the order in which nodes in a linked structure are created
at runtime and to prefetch nodes in that order. Luk and Mowry
suggested a variant of this scheme they call Data-Linearization
Prefetching, which would not require history pointers, and in-
stead relies on placing consecutively created objects within the data
structure in consecutively memory focations (or remapping them
after allocation), but they do not describe how to do so in a com-
piler [19].

In fact, the automatic pool transformation is exactly what is
needed to implement such a scheme, i.e., to perform creation order

prefetchingwithout adding any history pointers to the data struc-
tures. In particular, if memory for successively allocated objects in
a pool is allocated in consecutive memory locations, later traversals
of the linked data structure can prefetch valuesk accesses ahead for
arbitraryk, without needing any history pointers. This would not
work for structures whose linkages are modified after the initial al-
location (which the compiler could easily detect from the previous
analyses), but could work well for structures that are created and
then repeatedly traversed in order.

History pointer prefetching with near-zero memory over-
head: When the traversal order for a structure may not match the
creation order, history pointers of some kind must be used in or-
der to capture information about the expected traversal order. The
pointer size transformation makes it possible to use history-pointer
prefetchingwith nearly zero memory overheadrelative to the orig-
inal application: we simply use the space saved in a data structure
for recording history pointers.

The software-based history pointer schemes require the compiler
to add extra pointer fields within a pointer-based data structure, and
these fields hold pointers to other elements of thesamedata struc-
ture. Therefore, these extra pointers can also be stored in current
compressed format at any point in time. Furthermore, all schemes
we know of require at most one extra pointer for each pointer in the
original structure. Our pointer compression schemes guarantee at
least a factor of two reduction in memory usage per pointer. The
previous two facts imply that we can add history pointers to a com-
pressed structure completely free of any memory overhead (except
the negligible space used by the pool descriptors). We are not aware
of any existing software schemesthat can perform history pointer
prefetching without signficant memory overhead.

5.3 Automatic Small-scale Parallelization
Small-scale parallelism is increasingly important because of sev-

eral key architectural trends, including widespread use of multipro-
cessor servers with 2 to 32 processors, the emergence of processors
based on simultaneous multithreading [28] or on-chip multipro-
cessing, and the fine-grain explicitly parallel architecture (EPIC)
used in the Itanium Processor Family. The techniques proposed in
this paper potentially enable us to extract small degrees of relatively
coarse-grain parallelism for ordinary programs. In particular, if the
compiler proves that two logical data structures are disjoint and
have no cross references, it follows that updates of those two struc-
tures can be performed in parallel (if computations on one structure
do not use values from the other). This is a different style of paral-
lelism than that extracted by other parallelization strategies for non-
array-based programs [20] and for tree-like data structures [17].
Those strategies focus on data parallelism within computations on
the same data structure or set of structures, whereas we would ob-
tain parallelism between computations on different structures. This
might only yield small degrees of parallelism, but such parallelism
may in fact be well-suited to the emerging systems described above.

6. RELATED WORK
There is a rich literature on pointer analysis techniques and on

shape analysis of data structures in programs. Our disjoint data
structure analysis is most similar to previous work on computing
heap approximations such as path matrices [17] and static shape
graphs for heap storage (e.g., [14, 18, 22]). One key difference
between all these previous analyses and ours is that the previous
approaches are flow-sensitive — they compute a heap approxima-
tion (e.g., one or more shape graphs) for each program point. In
contrast, we only compute a single summary graph for an entire
procedure. This also means that our analysis does not have to be it-

erative. We also use a significantly simpler interprocedural strategy
than previous papers, which generally either perform dataflow anal-
ysis on a full interprocedural control flow graph (e.g., [18]) or an
iterative analysis on the call graph (e.g., [17, 14]). In contrast, we
never build either a call graph or an interprocedural control flow
graph. Instead, we handle both direct and indirect function calls
simply as additional memory objects in our summary graphs, and
inline the summary graph for a callee at each call site to achieve a
simple but powerful context-sensitive analysis that is linear in the
number of call sites and call edges in the program.3

Many context-sensitive pointer analysis techniques also compute
a path-based or graph-based approximation to the pointer reacha-
bility properties of pointer variables and heap objects (e.g., [11, 5,
29]). These techniques generally do not identify logically disjoint
data structures, even though they can probably be extended to do
so. For example, some techniques use a single name to represent all
heap objects at a particular allocation point [11, 29]. Others only
compute alias relationships between different pointer variables us-
ing a “store-less” approach, and do not attempt to derive a model
of heap storage [5]. In both cases, the algorithms could probably
be extended in a fairly straightforward manner to identify disjoint
heap-based data structures.

We believe that the automatic pool allocation transformation pro-
posed here is the first such algorithm for programs containing ex-
plicit uses of malloc and free to manage heap memory. As noted,
pool-based allocation is a widely applied manual technique. Lan-
guage support has been developed for simplifying the use of pool-
based allocation via program annotations, and for checking the
correctness of pool usage through enriched type systems [10, 13].
There has been previous work on automatically identifying regions
of memory for ML, i.e., for a type-safe functional language with-
out side-effects. Their analysis is used as either the sole [26, 25] or
the primary [16] means of releasing dynamically allocated memory
back to the system. They also simplify the problem by using execu-
tion scopes to identify regions as collections of objects that become
unreachable at the same scope, and do not consider arbitrary region
lifetimes.

In contrast, our primary goal is to use automatic pool allocation
as a means of enabling further compiler optimizations for linked
data structures. Consequently, a key difference in our work is that
we automatically introduce pool-based allocation for a wider range
of (but not necessarily for all) heap-based data structures, includ-
ing long-lived structures with arbitrary lifetimes (but with type-safe
usage). Furthermore, we correctly handle programs that rely on ex-
plicit malloc and free operations. Although we could use our analy-
sis information to eliminate explicit deallocations of data structure
nodes, we choose not to do so for now. Instead, we allow the pro-
gram to free objects in the pool, but also release all memory for a
pool back to the system when when the data structure is unreach-
able.

There is a broad class of conservative program transformations
that attempt to give better locality to programs by changing the
placement of allocations in memory [9, 15, 2, 7, 23]. In contrast
to these techniques, our approach uses anexactassignment of allo-
cated objects to pools. While approximate assignment algorithms
do provide the locality properties we are seeking, the lack of exact
assignment makes them unsuitable to host more aggressive trans-
formations, such as pointer compression.

Finally, to our knowledge, there is no previously published work
on safe, automatic compression of pointer variables. This is a novel

3In fact, we believe that our analysis is linear in the size of the
program under reasonable assumptions about structure fields and
nested structure types, but proving that requires further work.

optimization enabled by automatic pool-based allocation. The most
similar system is described in [32], which uses programmer anno-
tations to identify integers that are usually small and pointers that
usually contain a small offset from the current object. Unlike our
work, that paper requires the program to provide the safety anal-
ysis, and hardware support to efficiently access and detect cases
where the underlying values exceed their allocated ranges.

7. CONCLUSIONS & FUTURE WORK
This paper presented a novel transformation that converts ordi-

nary programs to use pool-based memory allocation. The trans-
formation relies on a link-time interprocedural analysis to iden-
tify disjoint logical data structures in the program, and to check
whether these data structures are accessed in a type-safe manner.
Even though this is a context-sensitive interprocedural analysis, it
is simple and quite efficient because only small summary graphs
are propagated between procedures, interprocedural information is
only propagated from callees to callers, function pointers are han-
dled uniformly with other memory pointers during the analysis, and
the analysis is flow-insensitive.

The disjoint data structure analysis combined with automatic
pool allocation can enable some sophisticated macroscopic opti-
mizations for linked data structures. We described a novel au-
tomatic pointer compression transformation and briefly discussed
several other optimization possibilities enabled by this work. A
key goal of our ongoing work is to implement and evaluate these
optimizations.

8. REFERENCES
[1] A. Ayers, S. de Jong, J. Peyton, and R. Schooler. Scalable

cross-module optimization.ACM SIGPLAN Notices, 33(5):301–312,
1998.

[2] D. A. Barret and B. G. Zorn. Using lifetime predictors to improve
memory allocation performance. InProc. SIGPLAN ’93 Conf. on
Programming Language Design and Implementation, pages
187–196, Albuquerque, New Mexixo, June 1993.

[3] M. Burke and L. Torczon. Interprocedural optimization: eliminating
unnecessary recompilation.ACM Transactions on Programming
Languages and Systems (TOPLAS), 15(3):367–399, 1993.

[4] B. Cahoon and K. McKinley. Data flow analysis for software
prefetching linked data structures in java. InInternational
Conference on Parallel Architectures and Compilation Techniques,
Barcelona, Spain, Sept. 2001.

[5] B.-C. Cheng and W. mei Hwu. Modular interprocedural pointer
analysis using access paths: Design, implementation, and
evalutation. InSIGPLAN Conference on Programming Language
Design and Implementation, pages 57–69, Vancouver, British
Columbia, Canada, June 2000.

[6] T. M. Chilimbi, B. Davidson, and J. R. Larus. Cache-conscious
structure definition. InSIGPLAN Conference on Programming
Language Design and Implementation, pages 13–24, 1999.

[7] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement.ACM
SIGPLAN Notices, 34(3):37–48, 1999.

[8] I. Corporation. Xl fortran: Eight ways to boost performance. White
Paper, 2000.

[9] R. Courts. Improving locality of reference in a garbage-collecting
memory management system.Communications of the ACM,
31(9):1128–1138, 1988.

[10] K. Crary, D. Walker, and G. Morrisett. Typed memory management
in a calculus of capabilities. InConference Record of POPL 99: The
26th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Antonio, Texas, pages 262–275, New
York, NY, 1999.

[11] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. InSIGPLAN Conference on Programming Language
Design and Implementation, pages 242–256, Orlando, FL, June 1994.

[12] M. F. Ferńandez. Simple and effective link-time optimization of
Modula-3 programs.ACM SIGPLAN Notices, 30(6):103–115, 1995.

[13] D. Gay and A. Aiken. Language support for regions. InProc.
SIGPLAN ’01 Conf. on Programming Language Design and
Implementation, pages 70–80, Snowbird, UT, June 2001.

[14] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic graph? a
shape analysis for heap-directed pointers in c. InSymposium on
Principles of Programming Languages, pages 1–15, 1996.

[15] D. Grunwald and B. G. Zorn. Customalloc: Efficient synthesized
memory allocators.Software - Practice and Experience,
23(8):851–869, 1993.

[16] N. Hallenberg, M. Elsman, and M. Tofte. Combining region
inference and garbage collection. InSIGPLAN Conference on
Programming Language Design and Implementation, Berlin,
Germany, June 2002.

[17] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive
data structures.IEEE Transactions on Parallel and Distributed
System, pages 35–47, 1990.

[18] J. R. Larus and P. N. Hilfinger. Detecting conflicts between structure
accesses. InSIGPLAN Conference on Programming Language
Design and Implementation, pages 21–34, July 1988.

[19] C. Luk and T. Mowry. Compiler-based Prefetching for Recursive
Data Structures. InProceedings of the Eighth International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), Boston, USA, Oct. 1996.

[20] M. C. Rinard and P. C. Diniz. Commutativity analysis: a new
analysis technique for parallelizing compilers.ACM Transactions on
Programming Languages and Systems (TOPLAS), 19(6):942–991,
1997.

[21] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked
data structures. InProceedings of the 26th Annual International
Symposium on Computer Architecture, pages 111–121, May 1999.

[22] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating.ACM Transactions on
Programming Languages and Systems, 20(1), Jan. 1998.

[23] M. L. Seidl and B. G. Zorn. Segregating heap objects by reference
behavior and lifetime. InProceedings of the eighth international
conference on Architectural support for programming languages and
operating systems, pages 12–23. ACM Press, 1998.

[24] B. Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages, pages 32–41,
January 1996.

[25] M. Tofte and L. Birkedal. A region inference algorithm.ACM
Transactions on Programming Languages and Systems, 20(1), 1998.

[26] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, pages 132(2):109–176, Feb. 1997.

[27] D. N. Truong, F. Bodin, and A. Seznec. Improving cache behavior of
dynamically allocated data structures. InProceedings of the
International Conference on Parallel Architectures and Compilation
Techniques (PACT’98), pages 322–329, Oct. 1998.

[28] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm. Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor. In
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 191–202, May 1996.

[29] F. Vivien and M. Rinard. Incrementalized pointer and escape
analysis. InSIGPLAN Conference on Programming Language
Design and Implementation, pages 35–46, Snowbird, UT, June 2001.

[30] R. Wilhelm, M. Sagiv, and T. Reps. Shape analysis. InProceedings
of CC 2000: 9th Int. Conf. on Compiler Construction, Berlin, Ger.,
Mar-Apr 2000.

[31] P. R. Wilson, M. S. Lam, and T. G. Moher. Effective ”static-graph”
reorganization to improve locality in garbage-collected systems. In
Proceedings of the conference on Programming language design and
implementation, pages 177–191. ACM Press, 1991.

[32] Y. Zhang and R. Gupta. Data compression transformations for
dynamically allocated data structures. InInternational Conference on
Compiler Construction (CC), Apr 2002.

