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Abstract. This paper considers the problem of providing safe pro-
gramming support and enabling secure online software upgrades
for control software in real-time control systems. In such systems,
offline techniques for ensuring code safety are greatly preferable to
online techniques. We propose a language called Control-C that is
essentially a subset of C, but with key restrictions designed to en-
sure that memory safety of code can be verified entirely by static
checking, under certain system assumptions. The language permits
pointer-based data structures, restricted dynamic memory alloca-
tion, and restricted array operations, without requiring any runtime
checks on memory operations and without garbage collection. The
language restrictions have been chosen based on an understand-
ing of both compiler technology and the needs of real-time control
systems. The paper describes the language design and a compiler
implementation for Control-C. We use control codes from three
different experimental control systems to evaluate the suitability
of the language for these codes, the effort required to port them to
Control-C, and the effectiveness of the compiler in detecting a wide
range of potential security violations for one of the systems.
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1. INTRODUCTION
This paper considers the problem of providing safe programming

support and enabling secure online software upgrades for control
software in real-time control systems. The main goal of this work
is to design a language based on C but with key restrictions that en-
sure that the safety of code written in the language can be verified
entirely by static (i.e., compile-time) checking, without requiring
any checks during program execution, and without garbage col-
lection. This goal of 100% static checking distinguishes our work
from a wide range of existing safe languages for general-purpose
or real-time systems. The language restrictions have been carefully
chosen with an understanding of both compiler technology and the
needs of real-time control systems, in order to achieve a language
design that is not too restrictive for the class of target applications,
yet not too powerful to allow static checking of memory safety.
Below, we first motivate the need for program safety in real-time
control systems, discuss why existing approaches are insufficient,
and then summarize the results of this work.

Many physical systems in manufacturing, automotive transport,
air transport, and others are increasingly being put under the con-
trol of sophisticated computerized control systems. An increas-
ingly important need in embedded control systems is the ability
to perform online upgrades, because embedded systems have long
life cycles and because the downtime of a large distributed control
system is often very expensive and sometimes impractical. This
requires the ability to replace one or more components of the con-
trol software of a large real-time control system without shutting
down the system. Furthermore, because of the critical nature of
such systems, and because of the complexity of control software,
it is important that the systems must remain stable and operational
even if the software “upgrades” contain inadvertent bugs or delib-
erate attacks. In other words, new software components introduced
online must be treated as untrusted.

Other research projects are working on the control-theoretic and
real-time scheduling challenges in dynamically upgrading a control
system in the field. The Simplex architecture [21, 22] is a real-time
fault-tolerant system designed to support dependable system up-
grade. It allows for online replacement of control software without
shutting down system operations and it tolerates arbitrary errors in
application-level timing and control logic. Nevertheless, this ar-
chitecture is vulnerable to software bugs or attacks such as due to
address space violations or illegal system calls hidden in the code.
(We refer to these collectively as memory errors.) As explained in
detail in Section 2.1, in order to ensure system safety without ma-
jor performance loss, the system must protect against such errors
within individual control threads that could potentially compromise
the operation of the other modules within the same address space.

When ensuring against memory errors in real-time control sys-



tems, offline techniques are greatly preferable to online techniques
for two important reasons. First, it is important not to introduce
significant or unpredictable runtime overhead in control codes since
sophisticated control systems often have to operate under extremely
tight real-time scheduling constraints. Second, and perhaps even
more important, it is usually far more cost-effective (and perhaps
essential) to detect software errors during development than during
actual operation.

There has been extensive research on language, compiler, and
operating system techniques for ensuring program safety under
different types of constraints. Unfortunately, it appears that cur-
rent language or system designs require significant overheads in
terms of runtime checks and garbage collection for ensuring code
safety. Safe languages like Java [8], Modula-3, ML, Safe-C [2] and
CCured [19]. use various runtime checks such as for array bounds
checking, null pointer references, and type coercions, and also rely
on runtime garbage collection to help ensure the safety of pointer
dereferences. RT-Java [4] provides a safe real-time language using
incremental garbage collection algorithms under real-time sched-
ulers but these do not reduce the runtime overheads of garbage col-
lection. In fact, RT Java includes three additional flavors of dy-
namic memory that are not garbage collected, but which require
extensive runtime checks for object references between different
memory flavors. As discussed in Section 6, several research lan-
guages have been proposed that use new annotation mechanisms or
language restrictions to reduce the need for runtime checking, but
none appear to come near our goal of entirely eliminating runtime
checks on memory operations [12, 9, 6, 17, 18]. It is important
to note that the overheads of runtime safety checking are indeed
significant: languages like SafeC, CCured, Cyclone and Vault have
reported slowdowns ranging from 20% up to 2x or 3x for different
applications [2, 19, 9, 6].

The aim of this work is to design a programming language based
on C that is restrictive enough to allow complete static checking of
the memory safety of a program, while still being flexible enough
to support sophisticated real-time control applications and poten-
tially other similar embedded software. (We rely on some system
support to trap accesses to a range of reserved addresses, in or-
der to eliminate all runtime checks; otherwise, some NULL pointer
runtime checks are required at runtime.) In addition to some ba-
sic restrictions for type safety, we introduce two novel restrictions
to ensure safety properties that are otherwise very difficult to ver-
ify statically: dynamic memory allocation, and array accesses. We
restrict dynamic memory allocation to use a region-based alloca-
tion method [23, 7], but restrict it to a single dynamic region at a
time in order to allow static checking without requiring significant
new annotation mechanisms in the language, such as those used in
some recent systems [6, 9]. We restrict array usage in a program so
that array index expressions, the loop bounds of relevant enclosing
loops, and corresponding array extents are restricted functions of
each other. The restrictions are a compromise between expressive-
ness and the capabilities of current integer programming techniques
used in static analysis [20, 13].

A key feature we chose to omit is annotations on pointers, func-
tion interfaces and function calls, such as the annotations used in
other recent work [6, 9]. Our motivation is to minimize the need for
new language mechanisms that can require significant changes to
existing application level code. In fact, except for three new intrin-
sics for region-based memory allocation (replacing malloc and
free), Control-C is a strict subset of C. Instead of annotations, the
language design relies on aggressive compiler technology to per-
form the necessary static safety checks. This paper gives a brief
overview of the compiler techniques we have used to implement

the language, and discusses tradeoffs in the language design mo-
tivated by these techniques. The compiler includes two new in-
terprocedural algorithms for checking safety of array accesses and
of pointer references (including accesses to dynamically allocated
region memory). The details and evaluation of these algorithms
are beyond the scope of this paper. Together, the language restric-
tions described here enable complete static safety checking for C
programs without requiring new annotation mechanisms, runtime
checks, or garbage collection, and assuming only the system sup-
port noted above.

Although the language proposed here is based on C, our compiler
implementation operates on a low-level typed virtual instruction set
(LLVM) to enforce the restrictions above [15]. This means that
type-safe code in other languages (e.g., C++ or Fortran) meeting
the restrictions described above on type safety, pointers, arrays, and
dynamic allocation could also be used directly.

The next section provides some background on the Simplex real
time system architecture, and on the LLVM compilation frame-
work. The following two sections describe the language design
(Section 3) and the compiler implementation (Section 4). Section 5
evaluates the the expressiveness of the language supporting legal
control codes, and the effectiveness of the language and compiler
in detecting a variety of different safety violations. Section 6 com-
pares our work with previous approaches, and Section 7 concludes
with a summary and directions for further work.

2. BACKGROUND

2.1 The Simplex Real-Time System Architec-
ture

The work described in this paper is a collaboration between the
compiler group and the real-time systems group that developed the
Simplex architecture. The Simplex architecture [21, 22] is a dy-
namic real-time fault-tolerant middleware system. It supports on-
line replacement of control software without shutting down system
operations, and tolerates arbitrary timing errors and application-
level logical errors in the upgraded control software. Also, us-
ing limited address protection, it tolerates run-time software faults
trapped by the operating system such as segmentation faults and
divide-by-zero errors.

A testbed known as Telelab demonstrates the Simplex architec-
ture (see http://www-rtsl.cs.uiuc.edu/drii). Telelab
uses a computer-controlled inverted pendulum (IP) as a model of
a control system, and allows users anywhere on the Internet to ex-
periment with dynamic upgrades of the control code. Telelab’s em-
bedded Simplex environment can safely run untrusted new control
software sent to the system, irrespective of where it comes from
and what algorithm it uses. Readers may download the interface at
http://www-rtsl.cs.uiuc.edu/drii/download. The
language and compiler described in this paper are being incorpo-
rated into the online Telelab testbed to make them available for
public experimentation and use.

Although Simplex tolerates some memory errors, recovering
from any error (timing, logical, or memory) incurs a severe perfor-
mance penalty. Furthermore, because the process-level protection
is limited, Simplex is still vulnerable to memory errors or attacks
such as illegal writes to the address space of the backup controller
or a kill system call that brings down user-level processes. Also,
many embedded platforms offer no address space protection.

Our goal for a dynamically upgradable real-time platform like
Simplex is to use a light-weight thread-based run-time architec-
ture with separate threads for each control module and thread-level
component replacement. A compiler should enforce thread-level



fault-isolation, and in particular must ensure that illegal memory
operations or system calls in one thread do not compromise the
correct functioning of other threads in the system.

2.2 The LLVM Virtual Instruction Set and
Compilation Framework

Our work has been implemented within the LLVM compilation
system. LLVM — Low Level Virtual Machine — is a typed instruc-
tion set and compilation framework designed to enable high-level
optimizations at link-time, runtime, and offline [15]. The key idea
in LLVM is to use a rich virtual instruction set (instead of raw ma-
chine code) as the object code representation manipulated by link-
time and post-link optimizers and code generators. The instruction
set uses low-level RISC-like operations, but provides rich type and
dataflow information about the operands. Together, these enable
high-level (but language-independent) program analyses and trans-
formations on object code from arbitrary high-level languages.

The LLVM instruction set uses an infinite set of typed virtual reg-
isters that are in Static Single Assignment (SSA) form [5]. Load
and store operations via typed pointers are used to transfer val-
ues between memory locations and registers. The types in LLVM
include primitive integer and floating point types and basic derived
types (pointers, arrays, and user-defined structures). All register
and memory operations are strictly typed, and the only mechanism
to violate type constraints (e.g., in order to add an integer and a
floating point value) is by using a special cast instruction.

The LLVM compiler infrastructure includes a GCC-based front-
end that compiles C programs to LLVM object code (C++ will
be supported in the near future), an interprocedural link-time op-
timizer, and two back-ends: one for the SPARC v9 architecture,
and one that generates portable C code. The Control-C compiler
described in this paper is implemented within the LLVM link-time
compilation system.

3. THE CONTROL-C LANGUAGE
The design choices in the Control-C language are essentially

trade-offs between three different concerns;(a) the ability to guar-
antee memory safety through static analysis, (b) maximizing the
expressiveness of the language (for real-time control applications
in particular) and (c) the ease of porting existing applications.

The choices we make are motivated by the general code struc-
ture of embedded real-time (especially, control) applications. Such
codes generally consist of one of more tasks that have to execute
within a given time bound prescribed by a real-time scheduler, and
continuing ad infinitum. The tasks are typically computationally
intensive. The data structures used in the task are usually dense
arrays, which may be allocated statically or dynamically. Dynam-
ically allocated data would usually be allocated before the timed
loop is entered, or would allocate memory in the beginning of each
loop iteration and free it at the end of the iteration. Some tasks may
use pointer-based data structures, but these are usually relatively
simple. Most of the existing embedded codes are written in C.

Based on these observations, we designed Control-C essentially
as a subset of the C language (except for three new intrinsic func-
tions, replacing malloc and free). Control-C imposes several
language restrictions in order to ensure that static checking of pro-
gram safety is possible. In particular, static safety checking at com-
pile time must accomplish three goals (In the following, the terms
“program” or “application” refer to the collection of source code
provided to the compiler. Typically this will represent all the source
code for a single controller or a single control module in a hybrid
controller):

� Ensuring that there are no memory references beyond the lo-
cations explicitly allocated (statically or dynamically) by the
program.

� Ensuring that all control flow in the code is legal and safe,
e.g., there are no attempts to branch to addresses in data ar-
eas.

� Disallowing the program from invoking any untrusted func-
tions not included in the target source code.

Any violation of these principles can allow malicious code to com-
promise a system and gain illegitimate access. Illustrations of such
malicious code can be found in section 5.2.

In designing the language, we made a few key assumptions about
the underlying embedded system:

(S1) Certain errors (listed below) are acceptable at runtime. If a
runtime error in the control application is correctly detected,
the underlying system has the ability to recover from the er-
ror and restore control to a backup controller. We refer to this
as a safe runtime error.

(S2) Stack overflow (e.g., due to infinite recursion) and heap over-
flow due to dynamic allocation generate safe runtime errors.

(S3) The system reserves a range of addresses for which any ac-
cess causes a safe runtime error. (If this is not available, some
null pointer checks must be inserted in the code, as described
in Section 4.1.)

(S4) A set of trusted functions is known to the compiler and these
are assumed to be safe to invoke. We require the source code
to be provided for any untrusted function invoked by the tar-
get code.

Checking for the safe runtime errors above should typically require
negligible overhead. Simplex is already designed to tolerate de-
tected errors – when a runtime error (of any kind) is detected by the
runtime system, Simplex kills the offending controller and restores
control to a trusted backup controller. With these assumptions we
are able to focus on static checking of memory accesses that are
usually much more expensive to check at runtime.

The restrictions in Control-C fall in three categories: basic re-
strictions for type safety, array operations, and dynamic memory
allocation. These are described in the next three subsections.

3.1 Basic Issues
The first set of restrictions in Control-C (relative to C) focus on

type safety, accesses to uninitialized pointers and some other basic
issues.

(T1) The Control-C language requires strong typing of all func-
tions, variables, assignments, and expressions, using the
same types as in C.

(T2) The language disallows casts to or from any pointer type.
Casts between other types (e.g., integers, floating point num-
bers, and characters) are allowed.

(T3) A union can only contain types that can be cast to each other;
consequently a union cannot contain a pointer type.

(T4) The language requires that there are no uses of uninitialized
local pointer variables within a procedure. In particular, a
pointer variable must be assigned a value before it is used or
its address is taken.



(T5) If the application chooses to exploit assumption (S3) above
to avoid runtime NULL pointer checks, then any individual
data object (scalar, structure, or array, allocated statically or
dynamically) should be no larger than the size of the reserved
address range.

(T6) Pointer arithmetic is disallowed in Control-C.

Explicit array declarations are just as in C, i.e., they need to spec-
ify the size of each dimension, except for the first dimension of an
array formal parameter.

To motivate T4 above, consider the following code snippet,
which is disallowed in our language:

int a, *p, **pp; pp = &p; print(**pp); p = &a;

Here, the address of uninitialized pointer p is assigned to pp.
Now dereferencing p via **pp is potentially unsafe and this viola-
tion would be difficult to detect. The language therefore disallows
taking the address of an uninitialized pointer.

Rule T5 is needed to avoid the need for checking uninitialized
pointer values within global or dynamically allocated aggregate ob-
jects, as explained in Section 4.1. If the programmer does not want
to restrict the size of the objects used in the program, this restriction
can be ignored. However, this would mean that runtime checks for
NULL pointers cannot be avoided. This choice offered to the pro-
grammer (specified through a compiler option) is further discussed
in Section 4.1.

Language rule T6 above disallows pointer arithmetic. The C lan-
guage allows pointer arithmetic only for array traversal, and any
other form of pointer arithmetic is undefined. Array traversals must
be done using explicit array indexing in Control-C. We make this
choice because interprocedural analysis for array bounds checks
may become significantly more difficult if explicit pointer arith-
metic is allowed. Note that traversing a string now requires using
strlen followed by explicit array index operations. We do not
currently permit other string library operations and we aim to pro-
vide a safe string library in the future.

3.2 Restrictions on Array Operations
In general, array operations are one of the most expensive to

check for memory safety at runtime. Our approach is to impose
some restrictions on the language (as few as possible, given the
state of the art of static program analysis), that can allow us to
verify statically the safety of all array accesses in a program.

From the viewpoint of language design for static safety checking,
one of the fundamental limits in static program analysis lies in the
analysis of constraints on symbolic integer expressions. For ensur-
ing safety, the compiler must prove (symbolically) that the index
expressions in an array reference lie within the corresponding ar-
ray bounds on all possible execution paths. For each index expres-
sion, this can be formulated as an integer constraint system with
equalities, inequalities, and logical operators used to represent the
computation and control-flow statements of the program. Unfortu-
nately, integer constraints with multiplication of symbolic variables
is undecidable. A broad, decidable class of symbolic integer con-
straints is Presburger arithmetic, which allows addition, subtrac-
tion, multiplication by constants, and the logical connectives

�
, � ,� , � and � . (For example, the Omega library [13] provides an ef-

ficient implementation that has been widely used for solving such
integer programming problems in compiler research.) Exploiting
static analysis based on Presburger arithmetic requires that our lan-
guage only allows linear expressions with constant (known) coeffi-
cients for all computations that determine the set of values accessed
by an array index expression.

With this intuition, we derive a set of language rules for array
usage. First, recall the definition of an affine transformation. Let���	��

���

, Then a transformation,
�

, is said to be affine if������������ ���� �� , where � is any linear transformation, and
�� con-

tains only constants or known symbolic variables independent of�� . In the following, we assume affine transformations with known
constant integer coefficients ( � ).

Array operations in Control-C must obey the following rules. On
all control flow paths,

(A1) The index expression used in an array access must evaluate
to a value within the bounds of the array.

(A2) For all dynamically allocated arrays, the size of the array has
to be a positive expression.

(A3) If an array, A, is accessed inside a loop, then

(a) the bounds of the loop have be to be provably affine
transformations of the size of A an outer loop index
variables or vice versa;

(b) the index expression in the array reference, has to be
provably an affine transformation of the vector of loop
index variables, or an affine transformation of the size
of A; and

(c) if the index expression in the array reference depends
on a symbolic variable s which is independent of the
loop index variable (i.e., appears in the constant term

��
in the affine representation), then the memory locations
accessed by that reference have to be provably indepen-
dent of the value of s.

(A4) If an array is accessed outside of a loop then

(a) the index expression of the array has to be provably an
affine expression of the length of the array.

A1 by itself guarantees safe array accesses, but the compiler can
check that a program satisfies A1 only if the additional language
rules A2—A4 are obeyed.

Note that the length of an array can be any non-negative expres-
sion Arrays can also be passed as formal parameters and be re-
turned as return values (using pointers, just as in C), relying on
interprocedural analyses during compilation to propagate the array
sizes.

Rule A3(c) requires some explanation. A simpler alternative
would be to restrict the affine expressions to use only known con-
stants even in the second term (

�� ), but this is unnecessarily restric-
tive. For example, a loop could run ��� � ! � �#"%$ and an index
expression within the loop could be of the form &(' )*"+�-, , where
� is some (unknown) loop-invariant value. This array access is
easy to prove safe, but would be disallowed under the simpler rule.
Instead, A3(c) allows a variable such as � to appear as long as the
specific value of � does not affect which array locations are ac-
cessed. Thus, in the example, the array locations accessed in the
loop are &(' ./� � !0"1$2, , regardless of the value of � .

To illustrate the rules further, consider the piece of code shown
in fig. 1:

This code fragment is a valid Control-C code because

1. n=20 can be proven to be an affine function of the size of B
(A4);

2. m*4 is clearly an affine function of m (A3(b)); and



... /*** caller function ***/
if (( k > 0) && (k < 5)) {

B = (int *)RMalloc(k * 30);
C = initialize(B, 20);

}

int * initialize(int *B, int n) {
int *A,m;
if (B[n] > 0) {
A = (int *) RMalloc(5 * B[n] + 10);
for (m=0; m < B[n]; ++m) A[m*4] = m ;
return A;

} else return null;
}

Figure 1: Array Usage Example

3. the bounds of the loop (0 and B[n]) can be proven to be
affine functions of the size of A (A3(a)).

Once the above three conditions are satisfied, the compiler proves
A1 (i.e., the code is safe) for all array accesses. Note that for prov-
ing safety of B[n], the compiler has to correctly include the con-
straint on k (k � 5) and only then it can verify that n (= 20) is less
than the size of B.

3.3 Regions and Dynamic Memory Allocation
Control-C supports region-based memory allocation [23] where

only a single region may be active in the program at any given time.
An arbitrary amount of memory may be allocated out of a region
(with some system-dependent limit), using a malloc-like inter-
face. There is no free operation for individual memory objects;
the entire region must be freed at once.

The language provides three intrinsic functions (replacing mal-
loc and free) for region-based memory management: RInit,
RFree, and RMalloc. The region is made active by calling
RInit() and freed (made inactive) using RFree(). RMalloc
has the same signature as malloc, and allocates memory within
the active region.

The constraints imposed by Control-C to allow safe dynamic
memory allocation are summarized below.

(R1) Only one region is active at any point in the program. Thus
calls to RInit and RFree must alternate on every potential
path in the program, starting with an RInit.

(R2) The region should be active at any call to RMalloc.

(R3) Because region memory must not be accessed after a region
is freed, any pointer value that contains a region address must
be provably dead (unused or unreachable) at a call to RFree.
To verify this statically we have the following constraints

(a) Any local and global scalar pointer variable must be ex-
plicitly reinitialized following a call to RFree, before
any potential uses of the variable. Note in particular
that this includes variables that never point to the heap
(see the discussion below).

(b) Structures or arrays containing pointers must be allo-
cated dynamically, either via RMalloc (on the heap)
or via alloca (on the stack). In particular, aggre-
gate objects containing pointers cannot live in global
or local variables (with the exception of initialized con-
stants).

Rule R3(a) above ensures that the compiler can statically prove
that all scalar pointer variables are dead at a call to RFree. Rule

R3(b) is necessary because tracking the contents of aggregate ob-
jects (e.g., an array of structures containing pointer fields) is gen-
erally difficult. Note that all dynamically allocated memory (either
from RMalloc or alloca) can be accessed only via other pointer
variables, and therefore such accesses must originate from some
scalar pointer variable. R3(b) with R3(a) ensures that any pointer
values within aggregate objects become unusable at an RFree.

The language guarantees that programs following the above rules
will be considered safe by any conforming Control-C compiler. In
practice, however, these rules could introduce significant overhead
into the program. For instance, global pointers normally initialized
at the beginning of the program would need to be reinitialized if an
RFree occurred in the control loop, even if these pointers never
point into the heap region.

In practice, a reasonably powerful compiler can prove that many
pointer values are never used either to point to region objects, or to
store region pointers into other pointer locations. A Control-C com-
piler may allow such values to remain live at a call to RFree, i.e.,
to be used without reinitialization. Although such programs are not
completely portable (i.e., may be rejected by a different Control-C
compiler with weaker analysis capabilities), the performance bene-
fits may justify the potential extra porting cost. We therefore define
two weaker versions of the above rules:

(R3
�
(a)) Any local and global scalar pointer variable that may hold an

address within a heap region must be explicitly reinitialized
following a call to RFree, before any potential uses of the
variable.

(R3
�
(b)) Pointer fields are permissible within global or local aggregate

objects only if they provably never hold an address within
a heap region, and their address is never taken. All other
aggregate objects containing pointer fields must be allocated
dynamically, either via RMalloc) or via alloca.

A program observing these rules may be considered safe by some
compilers, and can avoid the additional runtime overheads of reini-
tializing such pointer values at every RFree.

Our approach eliminates the need for any explicit “region” anno-
tations on pointers by the programmer. Other approaches like Cy-
clone [9] and Vault [6] need functional annotations which describe
the areas of memory a pointer may point to, since regions com-
monly are live across procedures and dynamically allocated data
structures are passed between functions. Using compiler analysis
over annotations is enabled because we have only a single active
region at any time. This has the advantage however, that it is rela-
tively simpler to port C control application code to Control-C. We
illustrate the language features with some examples below:

...
if (cond) {

t = 0;
RInit();

} else {
t = 1;
RInit();

}
p = RMalloc(4);
RFree();

if (cond) {
RInit()
...

} else ...

if (cond) ...
else {
RInit()
...

}
RFree();

int *p,*q,*t;
int **r;
int a=2;
RInit();
t=&a;
p = RMalloc(
4*sizeof(int));

q = p;
r = &p;
RFree();
...

Example 1 Example 2 Example 3

The first example shown above is valid, since at any point in
the program only a single region is active. The second example
is invalid according to our language restrictions since there exists a
potential path with consecutive RInit calls. In the third code snip-
pet, after the RFree call, if the pointer variables, p, q, r and t are



necessarily re-initialized before they are used again, the program is
guaranteed to be safe. However, if the compiler can prove that t
necessarily does not point to the heap, then the language allows t
to be used again without needing any re-initialization.

4. COMPILER ANALYSIS
In this section, we discuss our implementation of the Control-C

compiler, with brief overviews of the new algorithms involved. As
discussed in section 2.2, we have implemented our compiler within
the LLVM compiler infrastructure. The type system in LLVM, the
SSA representation, and the fact that this is a link-time compiler,
all help to simplify the compiler analyses. Since LLVM is source-
language-independent, our analyses can have broader applicability
beyond C programs, though the Control-C language has been pre-
sented as restrictions relative to C. In each of the subsections below,
we describe our algorithms to implement our language checks.

4.1 Uninitialized Variables and Type Safety
Because LLVM operations are strictly typed and the cast in-

struction is the only way of violating type constraints, checking the
basic type safety rules of Control-C is straightforward. Our com-
piler simply checks all explicit cast instructions to ensure that
there are no illegal casts (in particular, any casts involving a pointer
type). We also check all arithmetic operations to ensure that no
arithmetic is performed on pointer types.

Our uninitialized pointer analysis is a relatively simple intrapro-
cedural dataflow problem that considers only local scalar pointer
variables within a procedure. (Note that interprocedural analysis is
not required for identifying uninitialized variables.) The analysis
checks if such a variable has been stored to on every path to an
instruction that dereferences the pointer or takes its address. The
language requires that such stores be explicit (i.e., not via an alias).

Non-scalar pointers (i.e., pointer fields within aggregate objects)
are very difficult to analyze and need an alternative approach. All
such memory locations are initialized specially, as follows. As-
sume the range of addresses ' & � & � ! " $2, is reserved (by
assumption S3 in Section 3), and a reference by user-level code to
any address in this range is trapped by the operating system. (For
example, the high end of the user address space is reserved for the
kernel in standard Linux implementations, typically 1 GB out of
4 GB, i.e., & � 0xc0000000 and ! ������� .) Then by rule T5,
all global and dynamic memory locations are initialized to & , and
every individual data object is restricted to be at most ! bytes in
size. (This assumption should be reasonable for embedded codes
and large ! .). This ensures that any typed reference through an
uninitialized pointer (e.g., p->fld or p[i], where � � � & ) will
be illegal and trapped by the operating system.

Many current embedded systems have no address protection and
may also have small (4, 8, or 16-bit) address spaces, so the above
strategy cannot be used. Instead, the programmer can choose to ig-
nore the size restriction in language rule T5. In that case, all global
and dynamic memory locations will be initialized to NULL and
runtime NULL-pointer checks will be required for such pointer ac-
cesses. We expect, however, that dynamic upgrading of code will
only occur in high-end embedded platforms with more capable pro-
cessors and operating environments, where the previous assump-
tions would apply and no runtime checks would be needed.

4.2 Checking for safe array usage
Compiler checking for safe array usage requires 3 steps:

� Generating constraints from each procedure,

� interprocedural propagation of constraints, and

� verifying whether each array access is safe.

We discuss each of these in turn.

4.2.1 Generating the constraints
We generate a set of constraints for each array access in a pro-

gram, including only those constraints which affect the array ac-
cess. We use a flow-insensitive algorithm that exploits the SSA
representation in LLVM. For an array access, A[i][j], we traverse
def-use chains backwards to get constraints from the definitions of
A, i and j respectively. These constraints are simply inequalities
that can be inferred from the program statements. For most pro-
gram statements, generating the constraints is straightforward. For
e.g., from a simple statement like i = (x + z) * 5, we would
generate an affine constraint ) ���	� �
��� . No constraints are gener-
ated for any non-affine expression. Note that not generating a con-
straint for an SSA-variable makes the variable unconstrained and
the safety checker will treat the array access as unsafe (unless the
variable is irrelevant). We recursively traverse the def-use chains
for � and � , stopping only if we encounter a non-affine expression,
a formal argument, a return value from a call, or a statement whose
constraints have already been computed and cached. We cache the
final constraints on each statement so that they can reused.

Control-flow statements pose a problem. Consider the SSA code
snippet on the left below: Clearly the first array access A[x] is

SSA e-SSA [3]
A = (int *) RMalloc(20);
if (x 
 20) �

A[x] = 100;�
else �

A[x+1] = 200;�

A = (int *) RMalloc(20);
if (x 
 20) �

x � = � (x);
A[x � ] = 100;�

else �
x � = � (x);
A[x � +1] = 200;�

Figure 2: Constructuing e-SSA from SSA

safe, and the second access &(' �-� $2, is unsafe. These facts re-
sult from the branch condition x � 20 and the size of array A. We
need to encode the “control dependence” information that x � 20
in the then branch and x � � 20 in the else branch in our flow
insensitive constraint system. We cannot union both constraints
together as it would make the system inconsistent. We use a tech-
nique developed in the ABCD algorithm [3], in which they encode
the control dependence by inserting new nodes denoted � nodes.
As shown on the right in figure 2, � nodes essentially provide dif-
ferent names within each branch for each variable appearing in the
conditional expression. This representation, called extended-SSA
(e-SSA) form in the ABCD paper, allows us to generate two si-
multaneous constraints x � � 20 and x ��� � 20. Thus, for the
above code snippet, the first array reference generates the con-
straints

� & length
��� . � � � ��� � � � � � . � and the second

reference generates:
� & length

��� . � � � ��� � � ��� � . � .
For a � node, x � = � (x � ,x � ) in the SSA form, we first check if it

is an induction variable, using standard induction variable analysis.
If the � node is not an induction variable, then we simply add the
OR constraint (x � = x � ) �

(x � = x � ). With an induction variable of
a loop, simply adding this OR constraint would result in an incon-
sistent system, since the � merges values from a back edge and a
forward edge. Instead, we check the step function of the induction
variable. If the step function is positive then we add the constraint
((x � � � x � ) �

(x � � � x � )), where x � comes from a forward edge
and x � comes from a backward edge. If the step function is nega-
tive, then we add the constraint (x � � � x � ) �

(x � � � x � ). (Note
that an induction variable for a loop with an unknown step function



cannot represent an affine constraint, and will simply be ignored.)

4.2.2 Interprocedural Propagation
Since arrays are often declared in one procedure and passed as

parameters to other procedures, it is essential to propagate con-
straints for arrays from call-sites to the callees. Also, constraints
for an array access could depend on the return values of some pro-
cedures that are invoked earlier in some execution path. Therefore,
constraints on the return values in terms of the incoming arguments
must be propagated from the callee to the call statement.

We have developed an efficient algorithm for interprocedural
propagation, which we describe very briefly here. A brute force
propagation of constraints along each path in the call graph would
produce an exponential algorithm since there could be an expo-
nential number of paths in the call graph. Instead, by merging the
constraints on incoming arguments from all call sites for for each
procedure, we are able to achieve an algorithm with worst-case
complexity of O( � � ), where � is the number of variables in the
program. This worst case appears very unlikely to occur in realistic
codes. In practice, we have found that a simple heuristic like col-
lecting all the constraints for each of the possible different arrays
passed to the procedure, then merging and simplifying them, re-
moves many redundant constraints and greatly increases efficiency.

The interprocedural algorithm consists of two passes on the call-
graph. First, a bottom-up pass gets the constraints on return values
in terms of procedure arguments. A top down pass then merges
constraints on arguments coming in to that procedure from different
call-sites and then tries to prove safety for all array accesses in that
procedure.

4.2.3 Checking for array bound violations
Once we generate the constraints for the array accesses, we

use the Omega integer set library to test each array index expres-
sion, &(' � � � , , for safety. This just translates to checking whether
satisfiability of the constraint system along with the added con-
straint � � � � � & length. If the system is unsatisfiable, then

� � � �1& length and hence the array access is safe.

4.3 Region Checks
Compiler checking for region-based dynamic memory allocation

requires checking that:

1. at most one region is active at a given time, and that a region
is active at a call to RFree;

2. the region is active at every call to RMalloc; and

3. pointers that directly or indirectly point to a region are dead
at the RFree call for that region (this corresponds to the
relaxed rule R3

�
(a,b)).

All these problems are fundamentally interprocedural.
The first test above ensures that every call to RInit except the

first is preceded by RFree on every path. At any point in the pro-
gram, we define RegionStatus as being 0 or 1 depending on whether
a region is inactive or active respectively. The language rules im-
ply that RegionStatus is statically determinable at any point in the
program. Functions that do not have any calls to RInit or RFree
either directly or via a series of function calls are exceptions to this
rule and are regarded as being RegionStatus neutral. Trusted func-
tions are also neutral.

Our first goal is to compute, for each non-neutral function F,
the RegionStatus at the entry (RegionStatusIn[F]) and the exit (Re-
gionStatusOut[F]) of the function. RegionStatusIn for the topmost

function in the call graph is set to be 0. For each function, we
implement an intraprocedural algorithm that is essentially a data
flow problem which establishes equivalence relationships between
RegionStatusIn and RegionStatusOut values for the functions. For
instance, the presence of a call to RInit or RFree between calls
to non-neutral functions F1 and F2 on some path in the program
fixes the values of RegionStatusOut[F1] and RegionStatusIn[F2].
Similarly if there is an RInit or RFree before any other call in
a function, RegionStatusIn for that function is fixed. Consecutive
calls to F1 and F2 (both non-neutral) on some path makes Re-
gionStatusOut[F1] and RegionStatusIn[F2] equivalent. The equiv-
alences generated are used to find the RegionStatus values. Any
contradiction is signaled as an error by the compiler. In practice,
the union-find algorithm using path compression is an efficient way
to represent the equivalences. The above algorithm ensures that a
single region is active at any time.

The second test above simply requires checking that all RMal-
loc call sites have a RegionStatus of 1. This ensures that a region
is active at the call site.

The remainder of our analysis ensures that local or global pointer
variables that potentially point to the heap or contain pointers that
point to the heap need to be re-initialized before they are used again
after an RFree or a call site that changes RegionStatus from 1 to
0. Checking pointer re-initialization is essentially an interproce-
dural live variable analysis since LLVM is in SSA form. We also
check that global or local variables of aggregate types do not con-
tain pointers, unless it can be statically proved that these pointers
never point to the heap using the data structure graph. The LLVM
link-time compiler provides alias information through a represen-
tation called the data structure graph [14], which provides points-
to information connecting all disjoint memory objects (including
heap, stack, globals and functions) as well as SSA pointer variables.
It is computed using a fast, flow-insensitive, context-sensitive anal-
ysis. This representation directly helps identify pointer variables
that could point to the heap or could contain pointers to the heap.

5. RESULTS
In this section, we first evaluate the expressiveness of the

Control-C language by porting three different classes of experimen-
tal controllers (originally written in C) to the language. We believe
that our example codes for each of these classes are representative
of typical constructs used in such control codes. We then demon-
strate that the language and the compiler are effective at detecting a
number of different bugs and attacks that capture a comprehensive
range of potential safety threats for the Simplex environment.

5.1 Evaluating Language Expressiveness
We ported three different classes of control applications from C

to Control-C. Details of the applications are summarized in Table 1.
These applications include:

1. PID (proportional integral derivative) controllers for the in-
verted pendulum experiment running on Simplex.

2. LQR state space controllers for the Pendubot experiment of
the controls laboratory at Illinois.

3. Real-time sensor applications used in sensor networks run-
ning the TinyOS operating system [1].

The controllers for the inverted pendulum (IP) and for the Pen-
dubot experiment are single-loop real-time control applications that
control mechanical devices, but use different control algorithms.
The IP controller has a single task consisting of an infinite loop



Application Platform Size (lines) Dynamic memory Array accesses Pointers Lines changed
Inverted Pendulum Linux 300 No Yes No 0
Pendubot Windows 1300 Yes Yes Yes 33
TinyOS apps Linux 300 No Yes Yes 0

Table 1: Control Applications Tested

that reads the status of the device, does some computation, and
sends out a control output in each iteration. The task uses simple
data structures, primarily arrays, and is computationally intensive.

The Pendubot controllers are logic-based switching controllers,
which are a special case of hierarchical hybrid controllers. There
are essentially two or three different controllers which the supervi-
sor switches between, depending on the state of the device. Each
of the controllers is a single task similar to the IP controller task in
control structure, but using different data structures. The Pendubot
controllers use dynamic memory allocation to allocate some arrays
before the control loop, which are freed at the end of the program.

TinyOS [1] is a component-based operating system for net-
worked sensors. Its applications have a simple code structure that
allocate most of their memory statically prior to running the appli-
cation and do not use dynamic memory. The code in TinyOS ap-
plications tends to be simpler in general than typical control code
applications, allowing our compiler to easily check its safety.

Each of the applications described above needed zero or minimal
changes in the code in order to be ported to Control-C as shown in
the last column of Table 1. We had to make the following changes
to the Pendubot controller:

� Pointer arithmetic used to traverse an array had to be replaced
by array index variables.

� Dynamic memory allocation needs to be region-based. This
required the addition of an RInit and RFree around
the boundaries of the region, converting all malloc calls
to RMalloc. Also occasionally, pointers need to be re-
initialized after a region free instruction if they are used sub-
sequently.

� Unions that contain pointers are disallowed and need to be
split into different variables in order to pass safety checks.

Note that the lack of annotations and enhanced types in our lan-
guage greatly decreases the required changes to the source code.

We did not discover any potential security holes in any of the
tested codes. This, however, is not unexpected since the codes are
not malicious, and use simple data structures without complicated
use of arrays and pointers. They demonstrate that the simplicity of
embedded control applications with respect to the data structures
enables us to guarantee safety statically. Overall, these results indi-
cate that Control-C can be used to program a wide range of control
and embedded applications.

5.2 Detecting Potential Errors and Attacks
In order to evaluate the effectiveness of the language and com-

piler in preventing attacks on control codes, we tested the compiler
against a wide range of potential attacks that can be hidden within
control code for the inverted pendulum in Simplex. Without the
Control-C compiler, each of these attacks brings down the pendu-
lum. We evaluate attacks using the following mechanisms: (1) Ille-
gal casts, (2) Uninitialized pointers, (3) Array overflow and pointer
arithmetic, and (4) Use of a pointer to access freed heap memory.

The attacks described below were constructed over time to iden-
tify a range of security threats for the Simplex environment and

for use in previous demonstrations. The experiments show that all
these kinds of attacks are rendered infeasible because of the normal
safety mechanisms in Control-C, without requiring any special lan-
guage features or compiler analysis. Furthermore, these are a fairly
comprehensive set of examples in terms of the fundamental coding
mechanisms that can be used to subvert safety from within an exe-
cuting program. Thus, the experiments serve as a useful evaluation
of the safety mechanisms designed into the language.

The code snippets shown below illustrate the mechanisms that
can be used as attacks. The code snippets are from applications that
run on an embedded platform with Linux 2.2.18 and control the
inverted pendulum. In each of the attacks, the killcode array
shown in Fig. 3 represents binary code for the StrongARM that
executes the kill(-1, 9) system call, so that the code is hidden
in the data area. Each attack uses a different mechanism to jump to
the array address in order to execute this code. Since the Simplex
environment has limited process protection, invoking this system
call kills all running control tasks and brings down the pendulum.

char killcode[] =
"\x55\x89\xe5\x89\xe5\xb9\x09\x00\x00
\x00\xbb\xff\xff\xff\xff\xb8\x25\x00
\x00\x00\xcd\x80\x89\xd3\xc3\x90";

Figure 3: Source for the killcode array

void controlFunction(float a, float b) {
void (*func)();
func = (void (*)) &killcode[0];
func(); // jump to &killcode[0]
...

}

Figure 4: Illegal cast

void controlFunction(float a, float b) {
int *ret;
ret = (int*)&ret + 2;
*ret = killcode; // force return to &killcode[0]
...

}

Figure 5: Illegal Use of Pointer Arithmetic

In Fig 4, a cast from a character string to a function pointer is
used to jump to the code in the killcode array. This cast is illegal
in Control-C and the compiler rejected it during the type-checking
phase. In Fig. 5, pointer arithmetic is used to overwrite the return
address of the function controlFunction on the stack, replac-
ing it with the address of the array killcode, which is executed
upon return from the function. Arithmetic on pointers is illegal in
Control-C and was again rejected by the type-checking phase.

Fig. 6 demonstrates the use of uninitialized pointers to compro-
mise the system. Invocation of the function init initializes the
stack with values such that when func is invoked, the local pointer
variable p in func contains the address of the return address of
func on the stack. Dereferencing p modifies the return address.
This in turn, results in the the skipping of the instruction decrement-
ing ’i’ after the return, leading to the overflow of mainbuf. This



void func() {
int *p; /* contains address of return

address stack slot */
(*p) += 22; /* modifies return address */

}
void init() {
long i;
i = &i - 2; /* Store address of return

} * address stack slot */
void controlFunction(float a, float b) {

int mainbuf[3], i = 4;
init(); /* Stack initialized */
func(); /* returns 3 lines down */
if ((int)a % 2) {
i -= 3; /* never executed */
mainbuf[i] = killcode; /* force return to

&killcode[0] */
}

}

Figure 6: Illegal return via an uninitialized variable

in turn overwrites the return address of controlFunctionwith
the address of killcode. This use of the uninitialized pointer
(*p) was detected and rejected by the compiler. The function
init was rejected by the compiler because of the illegal cast from
a pointer to a long integer. An uninitialized pointer however, could
acquire convenient values in malicious code in many other ways
and hence need to be detected.

The use of a pointer that points to a region that has been freed
can be exploited in a very similar manner. The dynamically allo-
cated memory is first initialized with convenient values which can
be gotten by dereferencing a pointer to the region after the region
is freed. This can, as before, be used to overflow arrays and cause
the execution to jump to data areas.

The array overflow attack illustrated in Fig 7 also uses a simi-
lar technique. The function, func allocates an array of size 161,
but overwrites two locations over the declared size, which is the re-
turn address for func. As before, this causes the return address of
controlFunction to be overwritten by the address of kill-
code. The compiler detects that the out-of-bounds array reference
and rejects the code.

void func(int z) {
int A[161];
for (i = 0; i <= 2*z + 1; ++i) A[i*2] += 20 ;

}
void controlFunction(float a, float b) {

int mainbuf[3], i = 4;
func(40); /* returns 3 lines down */
if ((int)a % 2) {
i -= 3; /* never executed */
mainbuf[i] = killcode; /* force return to

&killcode[0] */
}

}

Figure 7: Array Overflow attack

6. RELATED WORK
There have been several languages (for example Ada [11] and the

Embedded Machine [10]) that specifically support real-time pro-
gramming via language mechanisms that control the timing and
scheduling of real-time tasks. These languages do not provide spe-
cific features for memory safety, except for a few features such as
the bounded array indexing in Ada [11].

As noted in the Introduction, safe languages like Java [8],

Modula-3, ML, Safe-C [2] and CCured [19] use extensive run-
time checks to provide memory safety. Such checks are needed
for many different properties such as array bounds checking, null
pointer references, and type coercions. Some of them also rely on
runtime garbage collection in ensuring the safety of pointer derefer-
ences. These languages provide safety but are not directly suitable
for real-time systems.

RT Java aims to provide a language for real-time applications
while retaining the safety guarantees of Java [4]. RT Java in-
corporates incremental garbage collection algorithms under real-
time schedulers in order to avoid the timing challenges of standard
garbage collection, but these do not reduce the runtime overhead of
garbage collection. In fact, RT Java has three additional flavors of
dynamic memory that are not garbage collected, but which require
extensive runtime checks for ensuring safety of references between
the different flavors. RT Java also inherits the other runtime check-
ing needs of standard Java such as for arrays and type coercions.
RT-Java is likely to be an important technology for many real-time
domains such as multimedia processing, but the runtime overheads
remain a significant drawback for embedded control systems.

Fundamentally, starting with a safe language like Java and mak-
ing it suitable for real-time programming presents major technical
difficulties. In contrast, our approach is to take a “low-level” lan-
guage (C) that has been widely used for real-time systems, and add
some restrictions to provide static safety guarantees. There have
been a number of other systems that provide some static safety
guarantees for C-like languages, and we compare them here.

Cyclone [12, 9] uses a novel and powerful type mechanism to
perform static safety checking for dynamically allocated memory.
They use a more powerful region mechanism than ours, allowing
arbitrary nested regions for the heap and separate regions for global
variables and the local variables of each function. Within a func-
tion body, they restrict a pointer to not point to locations in two
different regions. Unlike us, they require a number of new region
annotations to expose the region accessed by a pointer, to permit
more than a fixed number of regions, and to ensure that memory
safety can be checked without interprocedural analysis. In con-
trast, we restrict an application to use a single dynamic region,
restrict the usage of pointers within statically allocated aggregate
structures, We rely on link-time interprocedural analysis to avoid
annotations. Finally, Cyclone has to fall back on runtime checks
for array bounds checks They report negligible runtime overheads
for networking applications but overheads ranging from 25% to 3x
for compute-intensive applications.

The Vault [6] language also uses type annotations to check the
safety of memory allocation and memory accesses for memory re-
gions statically. In fact, they use a more powerful type system that
can allow many correctness requirements for dynamic resources to
be encoded within the static type system and checked at compile-
time; memory regions are just one application. Like Cyclone,
they cannot check array accesses statically because their language
mechanisms do not capture properties of arithmetic computations.
Their mechanisms can be valuable for guaranteeing safety proper-
ties of system calls (which manipulate different kinds of runtime
resources). In our future work, we aim to extend the Control-C lan-
guage with Vault-like mechanisms to ensure the safety of system
calls within networks of embedded devices.

A valuable strategy for compiler-based secure and reliable sys-
tems is Proof-Carrying Code (PCC) [17]. The benefit of PCC is
that the safety checking compiler (usually a complex, unreliable
system) can be untrusted, and only a simple proof checker (which
can be made much more reliable) is required within the trusted
code base. Fundamentally, PCC does not change what aspects of a



program require static analysis and what require runtime checking
– that still depends on the language design and compiler analy-
sis capabilities. Thus, PCC is orthogonal to our work, and could
be a valuable addition to a Simplex-like environment. We envis-
age using PCC within Simplex, allowing our LLVM-based safety-
checking compiler to be “untrusted.”

Much of the previous work on array bounds checking has been
on optimizing the runtime bound checks, rather than completely
eliminating them. The focus has been on moving the runtime
checks out of computation intensive loops. Recently there has been
some work [3, 24] on static elimination of bound checks. Our
work builds on the work of ABCD [3] in that we use their con-
straint generation techniques within each procedure. We go beyond
ABCD, however, by developing an efficient interprocedural con-
straint propagation algorithm. Wagner et al. have developed a tool
for detection of buffer overrun vulnerabilities in C, based on similar
techniques for generating and solving constraints. They deal with
general C codes (particularly including pointer arithmetic), how-
ever, and hence decided to forego precision for scalability. Their
analysis is imprecise, both in terms of generating constraints (flow-
insensitive) and solving them, potentially resulting in many false-
positives. In contrast, we use a more precise context-sensitive anal-
ysis and use a more rigorous constraint solver.

Finally, in a precursor project within the Simplex group, Lim
et al. described how static compiler analysis (based on symbolic
execution) could be used to perform static safety checking for the
Simplex environment [16]. Their analysis primarily focused on ar-
ray operations and did not consider pointer accesses, so that most
pointer usage and any dynamic memory allocation would be re-
jected by their compiler. Our research aims to provide a well-
defined safe language for Simplex, including support for a much
wider range of control codes.

7. CONCLUSIONS AND FUTURE WORK
We have described Control-C, a programming language for se-

cure programming of real-time control systems as well as some
other embedded systems. The language is based on C but imposes
key restrictions on the usage of pointers, arrays, and dynamic mem-
ory management in order to ensure that memory safety of applica-
tion code can be checked at compile time, without runtime checks
on memory operations, and without garbage collection. The lan-
guage restrictions have been chosen to balance the needs of real-
time control applications with the capabilities of static analysis.
We have implemented a compiler for Control-C in a language-
independent link-time system, LLVM, which permits high-level
inter-procedural analyses and transformations at link-time.

We have tested our compiler on control code and embedded ap-
plications for three different experimental systems, and demon-
strated that the language is expressive enough to write these ap-
plications, yet at the same time capable of detecting a fairly com-
prehensive set of attacks.

This work is the first step towards building a comprehensive, se-
cure environment for dynamic upgrade of control systems and other
embedded systems. Currently, our language does not detect attacks
due to illegal uses of system calls, which will be particularly im-
portant for networks of embedded devices. We believe that many
such errors can be detected using a combination of static techniques
plus minimal run-time support. Finally, another direction would be
to relax some of our current restrictions in order to support broader
classes of embedded systems. While some runtime checks will then
be inevitable, we can try to minimize these using sophisticated but
potentially expensive compiler techniques since compilation time
is typically not an important issue for embedded code.
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