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Abstract

Modern software development practices lack portable, precise and powerful mechanisms for describ-

ing performance properties of application code. Traditional approaches rely almost solely on perfor-

mance instrumentation libraries, which have significant drawbacks in certain types (e.g., adaptive)

of applications, present the end user with integration challenges and complex APIs, and often pose

portability problems of their own. This thesis proposes a small set of C-like language extensions

that facilitate the treatment of performance properties as intrinsic properties of application code.

The proposed language extensions allow the application developer to encode performance expecta-

tions, gather and aggregate various types of performance information, and more, all at the language

level. Furthermore, this thesis demonstrates many novel compiler implementation techniques that

make the the presented approach possible with an arbitrary (third-party) compiler, and that mini-

mize performance perturbation by enabling compiler optimizations that are commonly inhibited by

traditional approaches. This thesis describes the fundamental contribution of language-level perfor-

mance properties, the language extensions themselves, the implementation of the compilation and

runtime system, together with a standard library of widely-used metrics, and demonstrates the role

that the extensions and compilation system can play in describing the performance-oriented aspects

of both a production-quality raytracing application and a long-running adaptive server code.
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Chapter 1

Introduction

Performance instrumentation is the act of gathering data about a program’s performance during

execution without altering the goals of the underlying computation. These performance data are

gathered at runtime, usually by evaluating performance metrics, which are functions that vary with

respect to time and describe some feature of a program during execution. Because high performance

is an important goal for many classes of software applications, the quality of these data, the specific

ways in which they are gathered, and their efficacy in locating performance bottlenecks are of utmost

concern.

Numerous performance instrumentation methodologies (e.g., [32, 26, 20, 21, 19, 18]) have been

proposed, and many techniques (e.g., [33, 3, 36, 7]) for instrumenting programs have been sug-

gested. Despite this, however, modern software development techniques fail to provide a way for

applications to express their own performance requirements, expectations, or metrics as features of

the application code (these are collectively referred to as the performance properties of the code).

Instead, performance goals for high performance applications are typically met by an iterative

process of repeated data gathering, manual application tuning, and (usually) offline data analysis

performed by programmers or external tools. This entire process is necessarily ad hoc because it

cannot be described in the application code, and is closely tied to the capabilities and interfaces of

tools on each platform.

The broad goal of this thesis is to address problems with typical performance instrumentation

methodologies by developing and demonstrating relatively simple language extensions that allow

arbitrary performance properties to be expressed as basic features of a program. In particular, the

extensions must permit a program to refer explicitly to its own performance properties within the
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code, obtain runtime values for certain properties during program execution, and use these values

either for performance diagnosis or runtime adaptation. Most importantly, the sequence of per-

formance observations (though of course not the observed values) should be precisely reproducible

(i.e., executed in the same order in any execution of the program on any machine, just as the ob-

servable read and write operations in a program are precisely reproducible). Also, the performance

properties must be able to remain in the program code while incurring negligible runtime overhead

for production environments (i.e., it should not be necessary to resort to preprocessor mechanisms

in order to enable or disable performance instrumentation).

A second and related goal of this thesis is to develop compiler implementation strategies that

are practical to incorporate into real-world development environments, which must work with ar-

bitrary (third-party) compilers, development environments, and performance monitoring tools and

mechanisms. The question of how to achieve such a practical solution has remained unaddressed

in the literature.

The next section addresses some problems with the traditional approaches. Section 1.2 goes

on to discuss potential benefits offered by a language-based approach like the one proposed in this

thesis. Section 1.3 provides a high-level overview of the thesis and summarizes its contributions.

Finally, an outline of the thesis is provided in Section 1.4.

1.1 Drawbacks of Traditional Performance Instrumentation

Methodologies

Traditional performance instrumentation methodologies have a number of significant drawbacks

that are worth illuminating. This section presents a brief discussion of the traditional approaches

and their drawbacks, touching on by-hand instrumentation techniques, common tool-based ap-

proaches, and mature performance instrumentation systems.

As noted in the previous section, current instrumentation techniques are often ad hoc. A typical

simple instrumentation scenario involves manual instrumentation (e.g., counter variables, debugging

output statements, manually-placed timers, and so on) of application code. This approach has

the obvious disadvantage that it is tedious, usually requires preprocessor mechanisms to enable or
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disable instrumentation, and can easily fail to elucidate any issues that could be exposed via a more

macroscopic evaluation of the program’s performance. Although sophisticated instrumentation

libraries (e.g., [11]) may help, we believe that this thesis offers numerous advantages over a library

approach (see Section 1.2).

More gratifying instrumentation approaches include profiling or tracing. Although these are of-

ten successful in identifying portions of code that should be optimized, they are very general-purpose

and can usually only provide coarse-grained factual information (e.g., that the most execution time

was spent in a particular routine), and not much information that is relevant to a particular appli-

cation domain (e.g., that the most execution time was spent in a particular routine because “too

many” server requests occurred during execution). Usually, only a few complex metrics (if any)

are exposed to application developers by these approaches. Although notable modern profiling sys-

tems (e.g., [35]) continue to get better, this thesis proposes an alternate instrumentation strategy

altogether.

A number of very sophisticated performance instrumentation tools, such as Pablo [32] and

Paradyn [26], are much better. They provide rich sets of metrics within the context of scalable

analysis frameworks, which allow both high- and low-level performance instrumentation to occur.

Paradyn, e.g., adopts a complex search model [18] that can used for automatically detecting perfor-

mance bottlenecks in parallel codes, while Pablo provides a diverse set of statistical analyses that

can be applied to gathered metric data. Both systems have significant drawbacks, however. For

example, Pablo performs most of its data analyses (e.g., correlating performance data with their

potential causes) offline, which means that the application cannot respond (i.e., perform runtime

adaptations) based on the computed analysis results. As another example, Paradyn employs a

technique called dynamic instrumentation which allows for on-the-fly insertion of instrumentation

code. Unfortunately, the granularity of potentially instrumentable points is very coarse (i.e., only

procedure entry, exit, and call sites are supported), which limits the kinds of instrumentation that

can occur.

Neither of these exemplary systems permit the specification of performance properties in the

source code of the application itself, nor do they allow the collected performance data to be ex-

amined by the instrumented program at runtime. We believe these to be significant limitations of
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these systems, and that these systems are representative of the current approaches to performance

instrumentation. Ergo, this thesis presents an alternative, language-based methodology in order to

address these issues.

1.2 Potential Benefits of a Language-Based Methodology

Language extensions for performance properties provide several useful capabilities (some are novel,

but all are unified) which are powerful but rarely used in current software practices:

1. Performance self-monitoring with dynamic control: Language extensions would make it natu-

ral and straightforward to write performance diagnosis code within an application itself, and

in particular to compute and report application-specific performance metrics during program

execution. Furthermore, dynamic control allows the application to specify the addition or

removal of instrumentation at runtime. To date, self-monitoring of performance is used only

in very limited ways by most high performance applications (e.g., to report simple cumulative

metrics such as execution time or MFlops).

2. Runtime adaptation: Many classes of applications (especially, distributed applications such as

parallel Grid codes or distributed multimedia codes) must use runtime adaptation to achieve

desired performance or meet Quality-of-Service requirements under changing runtime condi-

tions. Language extensions for performance feedback would allow such runtime adaptation

to observe and use program performance properties relatively easily via reproducible perfor-

mance monitoring operations.

3. Performance Assertions: Programs could easily include performance assertions that express

the expectations of the software designer and generate runtime events (e.g., exceptions or

callbacks) when an expectation is not met. Such assertions would become simple expressions

anywhere in the program. A few papers have proposed the idea of performance assertions

(e.g., expressed as significant comments in the code) [38, 29]. We achieve a similar goal but

through more general mechanisms, as discussed in Chapter 2. Performance assertions can also

create ideal locations in the code for an application designer to place dynamic instrumentation
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control directives (e.g., adding a new metric to compute at an instrumentation site whenever

a particular performance assertion is violated) .

4. Instrumentation-aware compilation systems: One key aspect of encoding performance prop-

erties at the language level is that the compilation system can be aware of all code that has

been instrumented by the user, as well as the precise nature of that instrumentation. This

opens the door to program analyses and optimizations that directly relate to the ways in

which instrumentation is deployed in the target application. For example, instrumentation-

aware compilation systems can provide the basic mechanisms necessary for semi-automatic

performance prediction (see next bullet). As an example closely related to semi-automatic

performance prediction, consider the problem commonly faced by application programmers

and performance tuners when attempting to analyze pipeline behavior. Such analysis is often

difficult because pipeline performance problems are typically hard to instrument externally.

However, compilers often optimistically model pipelines. With performance properties, a

compiler could intercept a pipeline metric (e.g., pipeline bubbles) and analyze the late-stage

generated code (e.g., code contained in a dynamic trace).

5. Semi-automatic Performance Prediction: A fundamental obstacle to the widespread use of

application performance modeling is that real-world application development teams often

lack the expertise to model low-level system features such as processor pipelines or memory

hierarchies, while compiler-based modeling techniques are unable to construct models for

application-specific properties and metrics.

An attractive long-term solution is a semi-automatic approach that integrates compiler-

generated models for complex system features with manually generated (i.e., programmed)

models for application-level behavior, thus “bridging the gap” between the application domain

and the low-level system features. Language extensions for performance properties provide

exactly the mechanisms required to make this possible: they can tell the compiler what models

to generate, and they provide primitives that application code could use to incorporate the

results of these models into application-specific expressions (implementing the application-

level model components). Developing and demonstrating such a semi-automatic prediction
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strategy requires extensive research and is not an explicit goal of this thesis.

6. Portable Performance Descriptions: Language extensions for performance properties would

make the description of such properties intrinsic to the application code itself. This means that

all properties would be “carried” with the application as it was built on different platforms,

and particular platform-dependent performance analysis tools need not be relied upon.

In principle, some of the above capabilities could be obtained using a performance monitoring

library instead of language extensions1. The fact, however, is that even the simplest of these (e.g.,

performance self-monitoring ) are used in only very restricted ways (e.g., to report simple cumulative

metrics). Runtime adaptation is the only behavior that is known to be regularly implemented in

application code via the use of performance monitoring libraries or ad hoc code.

We believe that this lack of performance diagnosis code in application software is due to fun-

damental limitations of performance monitoring via libraries, and that these limitations would be

removed by introducing language extensions for expressing performance properties. In particu-

lar, there are 4 technical advantages (and a subjective advantage) to having language support for

expressing performance properties, as opposed to the more traditional library-based approach:

• Library calls for performance monitoring within an application can inhibit compiler optimiza-

tions in some cases, hurting the performance of the application. Language extensions could

be recognized and dealt with in the compilation process to minimize or reduce the impact on

optimization, as described later.

• The library approach makes fine-grained dynamic control of instrumentation quite difficult, if

not impossible. This is due to the lack of knowledge inherent in the library approach v̀ıs-a-v̀ıs

the program’s structure and potential instrumentation sites.

• The notion of a flexible instrumentation-aware compilation system is difficult to imagine using

the traditional library approach.

• The semi-automatic performance prediction described above cannot be realized with libraries.

1Note that external performance tools do not provide these capabilities; these capabilities require explicit
code to be incorporated directly within the application, e.g., via a performance monitoring library.
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• Finally, only language support for performance properties allows programmers to make first-

class associations between performance properties and specific portions of the program code.

The library approach forces programmers to write ancillary code to express any such associ-

ations.

1.3 Overview and Contributions of This Thesis

This thesis proposes a small but flexible set of language mechanisms that can be used to express

performance properties of a program within the application source code. It also addresses two

key challenges that arise in implementing these language mechanisms: doing so without requiring

support from vendor compilers and minimizing interference with compiler optimizations. It is our

opinion that both of these could be important to facilitate adoption of the presented ideas in

practice. The specific technical contributions of the thesis are as follows:

1. A small set of language mechanisms that can be used to express and monitor arbitrary

performance metrics for an application, and that defines a few widely used metrics in terms

of these mechanisms. Any performance metric can be applied to an arbitrary point or an

arbitrary scope of a program. The language mechanisms are based on C but should be

straightforward to extend to other lexically scoped languages. Furthermore, we have designed

our language extensions to be extremely flexible while intruding as little as possible into the

target application code.

2. An “instrumentation binding” mechanism which allows for instrumentation to be dynamically

added or removed from a particular program region. The manner in which instrumentation is

added or removed is under the precise control of the application program itself. This binding

mechanism also permits the generation and use of a production executable (i.e., where the

presence of disabled instrumentation incurs negligible cost) of the application without the

recompilation required to achieve the same result using traditional preprocessor mechanisms.

3. An implementation of these mechanisms that does not require support from a vendor compiler.

In particular, the implementation is divided into multiple phases: (a) a simple source-to-source

preprocessing phase that gathers information about the required performance properties and
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leaves lightweight markers at instrumentation points, and (b) post-link binary editing and

runtime instrumentation phases that transform the code, insert the necessary performance

instrumentation, and manage metric queries.

4. A novel technique to minimize interference with compiler optimizations due to the presence

of instrumentation sites. In particular, the first compiler phase inserts simple operations on

volatile variables as markers to communicate all “location” information to the subsequent

compiler phases. Such operations inhibit fewer compiler optimizations than explicit function

calls to instrumentation routines. (Note that this interference would not be an issue if the

vendor compiler itself supported performance annotations directly, as discussed in Chapter 4.)

5. The implementation of these techniques using the LLVM link-time compiler infrastructure [24].

We developed some stand-alone tools as well. Experiments are presented showing how the

language mechanisms can be used to implement performance self-monitoring and performance

assertions in POV-Ray, a well-known raytracing code, and in a long-running distributed proxy

server application. Also presented are empirical results that show the runtime overhead in-

curred by our approach.

The broader impact of these contributions could be to change the way that programmers think

about the performance aspects of their code. In current software development practices, perfor-

mance analysis is of vital concern to developers, but it is essentially divorced from the development

of the application itself. It is our hope that by providing robust and flexible performance instrumen-

tation mechanisms at the language level, the performance properties of programs can be encoded

in tandem with or as a fundamental component of the application logic itself.

1.4 Outline of This Thesis

The next chapter compares the approach presented in this thesis with related work in the literature.

Chapter 3 presents the language methodology and semantics, and some of the predefined perfor-

mance metrics. Chapter 4 describes the compiler implementation techniques, and describes the im-

plementation in detail. Chapter 5 presents our experience with using these language mechanisms

with POV-Ray, a production quality public-domain raytracing application, and in a distributed

8



proxy server code. Finally, Chapter 6 concludes with a summary of the contributions made by this

thesis.
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Chapter 2

Previous Work

The notion of describing performance properties in application code is not truly novel, but many dif-

ferent approaches have been taken, each usually focusing on a very specific feature of performance-

oriented programming, e.g. performance prediction, the collection of and reflection upon variable

value histories, compiled languages that can describe instrumentation, and so forth. The purpose

of this chapter is to delineate this previous work, and to distinguish it from the material presented

in this thesis.

2.1 Language-Level Performance-Specific Mechanisms

The work presented in thesis can most aptly be compared against a system by Hollingsworth et al.

called MDL [21] . MDL has many features in common with this thesis, summarized as follows:

• A language-driven approach that allows for the specification of metric computation code that

can be placed into the application program.

• The manner in which the code is inserted can be specified, e.g. specifying what points in the

application are to be instrumented.

• A method for dynamic instrumentation that permits some control over which metrics are

evaluated during runtime.

• The decoupling of metrics from program components such as modules and procedures.

However, this thesis significantly improves on MDL by:
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• Proposing language primitives that permit instrumentation points to be specified at the same

granularity as the application’s source language, e.g. at program statement and arbitrary

language scopes1. Currently, MDL can only instrument at procedure entry and exit points,

and individual call statements.

• Presenting more flexible dynamic control mechanisms. Our mechanisms for dynamic control

are better because the dynamic insertion and deletion of instrumentation is controlled by the

application logic itself.

• Proposing language extensions that can be used for performance self-monitoring. MDL pro-

vides no way for diagnosis code to be written in the application code, and thus no way for

the application to use the results of metric computations.

One language feature unique to MDL is its ability to apply a particular metric to “globbed”

code resources, such as “all procedures”. The design and implementation of similar mechanisms is

part of our future work. However, we believe that the above key features of this thesis sufficiently

distinguish our work from MDL.

The idea of “program histories”, proposed informally by Proebsting and Zorn [31], has several

goals in common with this thesis. In fact, one of their goals is even more general, namely, to

enable a program to record the history of arbitrary program values (including values of variables

or values of performance metrics), and perform queries on these histories. For performance values,

these ideas are very similar to the notion presented here regarding bounded and unbounded series

accumulator types. Their language mechanisms for performance are not extensible, however, i.e.,

they do not enable user-defined metrics to be easily defined for arbitrary code constructs. Finally,

they do not describe any implementation strategies and to our knowledge have not implemented

their language proposal.

The idea of describing performance assertions and checking them at runtime (as demonstrated

in both POV-Ray and the distributed proxy code) is not unique to this work. In particular, Vetter

and Worley [38] describe a method that allows performance assertion specification via library calls,

but the lexical constructs for assertion specification are parsed and evaluated dynamically, and

1The drawback to this is that we do require application source code, whereas MDL does not.
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no attempt is made to devise true language-level mechanisms. Although performance assertions

were not one of explicit goals of this thesis, the approach presented here is able to fully subsume

the method that they describe. Perl [29] has also done work on performance assertions, but the

performance assertions are evaluated offline and thus are different than approach we use (which

evaluates performance assertions online). However, Perl’s work approach does present a language

for describing performance assertions and requirements.

2.2 Runtime Techniques and Libraries

Buck and Hollingsworth [7] present a novel method of performing instrumentation non-intrusively,

at runtime, by inserting dynamically-generated code into active programs at predefined, fairly

coarse-grained instrumentation points. However, their approach is fundamentally different than

that of this thesis, because the code snippets to insert at instrumentation sites are specified exter-

nally by a client of DynInst. These snippets are created using a specialized API for constructing

the C++-like AST structures. This differs significantly from the approach presented here, which

seeks to provide ways to encode the performance properties into the base application. Also, the

DynInst approach requires the presence of debugging information in the target executable, which

likely implies that many important compiler optimizations must be disabled.

The PACE project and related work [13, 1] seeks to characterize performance aspects of parallel

applications in the predictive sense, but does not employ any language-level mechanisms to do so.

These works primarily seeks to unify predictive capability with the performance features of the

base application.

Significant work has been done on binary rewriting to achieve post-link instrumentation [7,

23, 37, 16], some specifically focusing on performance instrumentation. However, none of these

attempt to address performance instrumentation issues at the language-level. Also, most are geared

towards providing flexible APIs for describing post-link transformations in order to facilitate the

construction of tools which perform binary rewriting, a feature which is only tangentially related

to this work.

Anderson et al. [4] present an online performance instrumentation method called “continuous

profiling” which frequently samples performance data in a non-intrusive, low-overhead manner (1-
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3% slowdown on average). The goal of continuous profiling is to provide instantaneous access to

fine-grained profiling data even in production environments. Continuous profiling differs from the

work presented in this thesis in the same way as other profiling approaches (e.g., [5, 34, 17]), in

that the synthesis of application logic and empirical performance data is not one of its goals.

The PAPI project [6, 11] provides a portable interface for querying hardware counters, and

strives to facilitate overall application performance monitoring using a traditional, albeit highly

portable, performance instrumentation library approach. The major advantage of any library-

centered approach, including theirs, is that it is relatively easy for programmers to adopt since

it does not not require any compiler support. On the other hand, the approach also has some

significant limitations relative to the goals of this thesis. Perhaps most importantly, it does not

provide a straightforward mechanism to relate performance to application-level code constructs such

as loops, statements, or functions, which we consider to play a key role in enabling the application

developer to quickly identify performance bottlenecks. Second, their approach requires function

calls to be inserted for performance monitoring at the source level, thus inhibiting many compiler

optimizations that must cross the relevant instrumentation points. Finally, the approach can be

significantly more difficult to use because extensive application code must be inserted to initialize

the library and invoke the desired metrics. However, we successfully encapsulated aspects of PAPI

with the language features presented in this thesis, thus greatly simplifying the use of their metrics

and providing a useful, portable monitoring layer for processor performance metrics.
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Chapter 3

Performance-Oriented Language

Extensions

Fundamentally, the language extensions presented here provide mechanisms that the programmer

can use to describe values in the target code that need to be monitored or collected, as well

as what statistical results need to be obtained for the collected metric datasets. In addition to

providing built-in metrics, the language extensions permit the programmer to define arbitrary

metrics by providing their own. These user-defined metrics can then be employed in exactly the

same way as the built-in metrics. The language extensions also provide support for many kinds

of common statistical operations on data sets: standard deviation, variance, averages, moving

averages, etc. The programmer may also provide custom code that operates on the collected data

using standardized interfaces.

3.1 Overview of Language Extensions

Consider the example code shown in Figure 3.1. It is referred to throughout the following sections.

The example given in the figure demonstrates the use of some of the language constructs in high-

level code for a simple server application. The first 3 lines of the example specify which metrics

may be sampled in the application, how those samples are to be gathered into datasets, as well as

the names by which the program shall refer to the metrics. As an example, consider the metric

description for elapsedHist on line 2. The pp interval construct defines elapsedHist as a metric

that must be applied to intervals (explained below), while the bounded series component of the

statement denotes that the metric data will be aggregated into a fixed-width array. The size of
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(1) pp point<sumcount, getNumActive> activeAcc;

(2) pp interval<bounded series, elapsed time start,

elapsed time end, size=100> elapsedHist;

(3) pp interval<sumcount, l1cache miss start,l1cache miss end> cacheMissAcc;

void main server loop() {
for(;;) {

wait for client request();

/* Record number of active connections*/

(4) declarePoint p1(activeAcc);

/* Record elapsed time and L1 cache misses

in the following enclosed scope */

{
(5) declareInterval i1(elapsedHist, cacheMissAcc);

(6) handle client request();

}
}

}

/* Report the recorded metric values */

void func() {
printf("Avg # connections on client request:");

(7) printf("%d\n", pp avg(activeAcc));

(8) printf("Stddev of elapsed time: %f\n",pp stddev(elapsedHist));

(9) printf("Avg L1 cache misses for region: %f\n",pp avg(cacheMissAcc));

}

Figure 3.1: Example code showing language extensions

the fixed array (100 in this case) is specified as a parameter at the end of the directive. The

other two arguments, elapsed time start and elapsed time end, are the names of the metrics

functions that are to be invoked whenever the elapsedHist metric is used, at the start and end of

the interval, respectively.

Looking at the rest of the code in Figure 3.1, we see the definition of a valid instrumentation

point at line 4, and at line 5 the definition of a valid instrumentation interval (the interval is over

the lexical scope that encloses the declareInterval statement). The names of metrics given in

parenthesis after the declare statements in lines 4 and 5 specify the default metrics to associate

with those sites. Thus, the activeAcc metric will be sampled at line 4, and both the elapsedHist
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and cacheMissAcc metrics will be sampled over the interval defined by the enclosing scope of line 5.

The samples of the metrics are queried in lines 7-11, by simply using the metric name as a program

variable (usually passing it to a function to compute a particular statistic over the dataset).

(1) metric-decl ::= metric-point | metric-interval
(2) metric-point ::= pp point<accum-type [,func [,opts]]> mname
(3) metric-interval ::= pp interval<accum-type, func, func [,opts]> mname
(4) opts ::= property=value [,opts]
(5) accum-type ::= scalar | count | sumcount | bounded series |

unbounded series | ...

(6) sample-stmt ::= sample begin(mname, arg1, ...) |

sample end(mname, arg1, ...)

(7) decl-point-stmt ::= declarePoint ipname[(mname, ...)]

(8) decl-int-stmt ::= declareInterval ipname[(mname, ...)]

(9) bindmet-stmt ::= bindMetric mname to ipname
(10) unbindmet-stmt ::= unbindMetric mname from ipname
(11) property ::= size | maxSize | operator ...

(12) value ::= string | number | ...

(13) mname ::= [valid variable identifier]

(14) ipname ::= [valid variable identifier]

(15) func ::= [valid function identifier]

Figure 3.2: Grammar for proposed language extensions

As seen in the example, the proposed language extensions have syntax similar to existing lan-

guages such as C, and may be used to extend languages such as C, C++, and Fortran. The language

syntax is shown in Figure 3.2. There are four primary language components: metric declarations,

metric measurement sites, metric binding sites, and metric uses. For example, in Figure 3.1, lines

1–3 are metric declarations, lines 4 and 5 both double as metric measurement and metric binding

sites, and the statements at lines 7–9 demonstrate metric uses.

One of our most important language design goals is to decouple measurement sites from the

particular metric(s) evaluated there. This decoupling permits multiple metrics to be associated

with one specific measurement site, single metrics to be associated with multiple sites, and sites

that have no metrics associated with them at all. To achieve this goal, metrics are explicitly bound

(either statically or dynamically) to measurement sites, a process called metric binding.

There are two types of metrics distinguished by how metric values are bound and subsequently
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sampled: point metrics are bound to and sampled at a single point, while interval metrics are bound

to a specified interval and sampled at the beginning and end of it, and the two values are combined

(e.g., by subtraction). In Figure 3.1 again, activeAcc is a point metric that is statically bound and

sampled at line 4. Both elapsedHist and cacheMissAcc are interval metrics statically bound at

line 5, and sampled at entry and exit of the innermost scope enclosing line 5 (the innermost scope

implicitly defines the start and end points for sampling an interval metric). Note that only static

metric binding is shown in Figure 3.1. These design choices are motivated and explained in detail

below.

3.2 Sampling Points and Intervals

The declarePoint and declareInterval directives allow the user to denote sampling points and

sampling intervals in the code where instrumentation may be applied. Sampling points are single

locations (i.e., the exact location of the declarePoint directive) in the code, and metrics that are

associated with points are called point metrics. Sampling intervals are defined by a start point and

an end point, and metrics that are associated with intervals are called interval metrics. The start

and end points of an interval are implicitly defined by the enclosing scope where a declareInterval

directive occurs1. For example, in Figure 3.1, the interval declared on line 5 has its start point

immediately before line 5 and its end point immediately after line 6. By using the scoping features

of the language like this, we provide the user with language-level control of intervals without forcing

“start” and “end” constructs to appear throughout the code, nor do statement labels have to be

used, which can introduce extraneous names into the name-space of the program. This technique

works uniformly for both structured and unstructured control flow.

After points or intervals have been declared, the appropriate point or interval metrics may be

associated with them (i.e., metrics may be bound to the relevant instrumentation site(s)). A more

detailed description of point and interval metrics can be found in Section 3.5, and metric binding

semantics are described in Section 3.6.

1Except in the less common case where actual parameters must be provided to the metric functions. In
this case, the actuals are expressed by using the sample begin and sample end directives (see Figure 3.2) to
declare the endpoints of the intervals, with the caveat that metrics cannot be dynamically bound to intervals
declared in this manner.
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3.3 Metric Declarations and Variables

A metric declaration (as seen on lines 1-3 in the example) introduces a metric variable that can be

referred to by name in different parts of the program. Metric variables are always global in scope.

Separating the declaration of a metric from the location where its value is sampled allows the same

metric variable to be sampled (i.e., measured) in several parts of the code, e.g., to accumulate the

execution time for different pieces of a computation into a single metric.

A metric declaration specifies a metric name, a metric accumulator type which specifies how

samples are to be accumulated, a measurement function or functions, and any options specific to the

selected metric accumulator type. For example, the declaration on line 3 of the example provides

the option size=100, which is an option specific to the bounded series accumulator type, and

informs the compilation system to create a 100-element static array to hold metric samples.

The type of the data structure created for a particular metric variable is determined by the re-

turn type of its measurement function together with its accumulator type. For example, the metric

variable declared on line 2 of the example code would be of type long*, and it would point to the

base of the array statically allocated to hold the results of up to 100 elapsed time interval samples,

which are of type long. Uses of the metric variables occur just like normal language variables.

Thus, one significant advantage of this approach is that no cumbersome language or library mech-

anisms must be used to manipulate the gathered metric data. Rather, manipulation of the metric

datasets occurs as if the metric variables were in fact scalar or array variables in the source language.

3.4 Metric Accumulator Types

A metric declaration has two key parameters: metric accumulator types and metric functions.

Metric accumulator types describe how the collected sample data are to be stored (e.g., in a fixed-

length vector, in a scalar variable, etc.), and metric functions are invoked to sample values for a

metric. Small metric functions can be implemented as preprocessor macros for efficiency2.

2When the metric is statically bound to a point or interval. The preprocessing phase must be able to
expand the macro and place the code at the particular instrumentation site(s), after which point the metric
cannot be unbound.

18



There are only five fundamental accumulator types: scalar, count, sumcount, bounded series

and unbounded series. In the example, the metrics activeAcc (declared on line 1) and elapsedHist

(declared on line 2) have accumulator types sumcount and bounded series, respectively.

A scalar is just like a regular program value, and holds one sample value at any given time. A

count metric represents an increment of a counter at a particular point in the program. A sumcount

metric implicitly maintains a pair of double-precision variables that represent an instance count

(i.e., how many times the metric has been sampled) and a summed value (i.e., the sum of all sampled

values). Note that this provides a lightweight and efficient mechanism for computing the average

of a large series of sample values, as long as no other statistics are required. The bounded series

metric accumulator type is simply a finite vector of sample values that implements an ordinary

moving window of sample values. The unbounded series accumulator allows an unpredictable

number of samples to be accumulated, using a dynamically growing vector. The runtime system

raises an out-of-memory exception if the vector grows too large3.

Included as part of the standard metric library are a number of common statistical functions

(average, standard deviation, variance, etc.) that operate on metric variables. The functions can

be invoked in the user code as normal function calls, and the metric variable names are passed as

parameter(s), e.g., the call to pp stddev and pp avg on lines 8 and 9 of the example in Figure 3.1.

Of course, the user may define custom statistical functions and use them in place of those provided,

which allows them to express complex performance data analysis in the source language of the

application itself.

3.5 Point and Interval Metrics

As noted earlier, metrics can be sampled in two distinct ways with respect to the execution of

the target program: at a single point or at the beginning and end of an interval. A point metric

variable is declared using pp point, e.g., activeAcc on line 1 of Figure 3.1. It specifies a single

measurement function used to compute the metric value. Points in the program source that can be

instrumented are identified by the user, as described in Section 3.2. A metric value may be sampled

at any such instrumentation point by explicitly binding the metric to the point (see Section 3.6).

3The current implementation does not support unbounded series metric types.
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An interval metric variable is declared using the pp interval construct, and specifies two

measurement functions to be applied at the interval endpoints. For example, the elapsed time of

an interval can be measured using the functions elapsed time start and elapsed time end. As

with point metrics, interval metrics may be bound to an arbitrary number of intervals. An interval

metric is sampled as follows. When execution reaches an interval to which the metric has been

bound, the metric’s first measurement function is invoked, and its value is saved to a temporary.

This temporary is then passed as a parameter to the metric’s second measurement function, which

is invoked when execution reaches the end of the same interval (or any function exit points that

occur in the interval). This latter measurement function samples the second value, computes the

difference (or any other combination) of the two values, and returns the result. This result is the

metric sample value for the given interval.

As an example, consider the sample interval shown in Figure 3.3, where the metrics are defined

the same way as in Figure 3.1.

{
(1) declareInterval i2(elapsedHist, cacheMissAcc);

(2) if(...)

(3) goto someLabel;

(4) handle client request();

}

Figure 3.3: Multiple exit points from an instrumentation interval

Here the second measurement function for each bound interval metric (i.e., elapsed time end

and l1cache miss end, respectively) is invoked both before the goto and before the closing ’}’ for

the scope.

3.6 Metric Binding Semantics

As described in Section 3.5, a metric may be may be sampled at declared points or over declared

intervals by explicitly binding the metric to the point or interval. Point metrics can be bound to

sampling points (and, likewise, interval metrics to sampling intervals) either statically or dynami-

cally. For example, in Figure 3.1, the static binding of the point metric activeAcc to the sampling

20



point p1 is accomplished by naming the activeAcc metric in the list of initial bindings for p1 (see

line 4). This means that whenever execution reaches the instrumentation point p1, the activeAcc

metric is computed and any relevant data structures are updated. The same binding mechanism is

used to bind interval metrics to sampling intervals (e.g., in line 6 of Figure 3.1, the interval metrics

elapsedHist and cacheMissAcc are statically bound to interval i1).

Figure 3.1 demonstrates only static binding of metrics to points or intervals. The precompila-

tion phase recognizes these static bindings and generates the appropriate code to ensure that the

metric(s) will be computed the each time execution reaches the points or intervals.

Dynamic binding occurs when a new association is between a particular declared metric and a

particular sampling interval or point occurs at runtime instead of at compile-time. The bindMetric

directive is used to accomplish this (see Figure 3.4).

{
(1) declareInterval i3;

(2) if(...)

(3) handle client request();

}
(4) bindMetric cacheMissAcc to i3;

Figure 3.4: Dynamic binding to an instrumentation interval

In the figure, there is no static binding specified for interval i3, indicating that no metrics

are initially associated with the interval. Rather, when the bindMetric directive is executed

the first time, the cacheMissAcc metric is added to the set of metrics that are bound to the

interval. The next time that interval i3 is executed, the L1 cache misses of the region will be

computed and aggregated in the manner specified by cacheMissAcc’s accumulator type4. In a

similar manner, the unbindMetric directive can be used to remove the association between a

particular metric and instrumentation site5. The ability to dynamically bind and unbind metrics

to and from instrumentation sites is one of the key features of the system.

Our approach, then is to decouple metric specifications from the instrumentation sites where

4There is nothing to prevent the bindMetric directive from appearing inside the interval to which it
applies. However, any new metrics will not be computed until the next time the interval is executed.

5Metric unbinding has not implemented for this thesis, but the design for its implementation exists and
is straightforward.
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metrics are evaluated. Without decoupling, metric specification necessarily occurs at the instru-

mentation sites, which is only practical for the most simple instrumentation [21]. Thus, decoupling

has two primary advantages. First, the decoupling permits instrumentation to be specified in a

straightforward manner; metrics are described in the abstract and then applied to particular sites.

Secondly, decoupling makes dynamic binding possible. If metrics had to be specified at instrumen-

tation sites, any binding is a static property of the program, and new instrumentation could not be

added to or removed from the sites. Since dynamic control of instrumentation and straightfoward

metric specification are valuable tools, we use the decoupled approach in this work.

3.7 Metric Functions and Directives

Metric functions are the functions invoked by the runtime system when sampling a particular

metric. A metric function can be ”built-in”, in which case it comes from a standard library of metrics

provided as part of the compilation system, or it can be a custom function provided by the user. The

example (Figure 3.1) illustrates both built-in metric functions and a user-defined metric function.

The elapsedHist metric uses the elapsed time start and elapsed time end metric functions

(which are called at the start and end of interval i1, respectively), which come from the standard

metric library. Likewise, the cacheMissAcc metric uses the functions l1cache miss start and

l1cache miss end, also from the standard metric library. The metric activeAcc uses the user-

defined function getNumActive, effectively specifying that is to be called whenever a new sample

is required for the activeAcc metric. Functions of any type may be used, but they must return

a primitive scalar type if the built-in statistical operations are to be used on them (otherwise,

user-defined statistic functions must be provided).

For interval metrics, the user specifies both a “begin interval” function and an “end interval”

function, as described above. The former requires no special arguments, while the latter does: one

(implicit) formal parameter, which is a pointer to the return value of the corresponding start-site

metric function. This is to permit automated passing of data between the two functions. See

Section 3.5 for more information on interval semantics.

Using the proposed language extensions, the user has a great deal of flexibility when describing

the locations in the code where a metric is sampled, and what parameters are passed to the metric
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function(s). When a metric function for a certain metric takes no parameters, which is the most

common case, simple sampling directives (i.e., declarePoint or declareInterval) are sufficient.

However, if the user wishes to use metric functions with formal parameters, the language extensions

provide an alternate version of the directives (see Figure 3.2) that allows actual parameters to be

specified, with the caveat that dynamic binding of such metrics to sampling points or intervals

is not possible6. Otherwise, the semantics of the these alternate directives are identical to their

0-argument counterparts.

6The expressions computed and passed to the metric functions are context-dependent on the scope of
the sampling point or interval, and so the dynamic binding mechanism used for 0-argument metric binding
cannot be used.
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Chapter 4

Compiler and Runtime System

One of the primary goals of our compiler implementation strategy is to avoid requiring support

from vendor compilers. This goal could be important in facilitating the adoption of a performance

programming methodology such as the one proposed by this thesis. It is also important in order

to achieve portability (of the performance-oriented code) across compilers. For the implementation

solution presented here, no compiler support is required, because all of the proposed mechanisms

are realized using features of the source language itself, plus some runtime transmogrification of

binary code.

Unfortunately, this goal of vendor independence entails a major technical difficulty. Since

the vendor compiler performs arbitrary transformations on the input code, the locations of the

precompilation instrumentation sites are lost, and must be somehow rediscovered. Furthermore,

data must be maintained that tracks which metrics are statically bound to instrumentation sites.

There is no reliable technique to record particular locations in the code when the compiler is

treated as a black box. Näıve solutions to this problem (e.g., using opaque function calls to mark

instrumentation sites) are not acceptable because they can inhibit compiler optimizations, thus

increasing the performance perturbation due to the presence of performance instrumentation.

Performance perturbation due to instrumentation occurs in 2 broad ways: (i) inhibiting compiler

optimizations due to the presence of monitoring code (e.g., functions calls); and (ii) affecting runtime

performance itself, including increased runtime overhead, different cache behavior, different memory

usage patterns, and many more. The latter is unavoidable when code is added to the program and

can only be mitigated via the use of lightweight monitoring routines (which are orthogonal to this

work). The former, however, can be reduced or eliminated via our implementation strategy, in

24



some cases.

In order to solve these problems and sufficiently attain both competing goals of vendor inde-

pendence and minimization of perturbation, the compiler strategy is to split actions performed on

the application code into multiple phases: a precompilation phase, and multiple runtime phases.

Each phase of the compilation strategy is described in turn below.

4.1 The Precompilation Phase: Marking Instrumentation Sites

The precompilation phase of the compiler (referred to as phase 1) has the following responsibilities:

• Parsing all performance language extensions used in the target code.

• Inserting special markers in the code that denote instrumentation points or intervals.

• Storing sufficient information in a persistent manner so that the runtime phases can make

their transformation(s) to the code.

Thus, the overall strategy employed by phase 1 is to make minimal code changes and to gather

and save relevant data.

Each metric measurement corresponds to one or two calls to a metric function or functions.

Inserting these function calls directly in phase 1 (and keeping the metric function implementations

hidden from the vendor compiler to prevent their inlining) would ensure that the instrumentation

locations are preserved. This approach, however, could inhibit many code motion and code re-

ordering transformations that are fundamental to modern compiler optimizations, in particular,

any that need to move non-trivial computations across the instrumentation point (see below for an

example). What is needed are lightweight markers that interfere with fewer optimizations, and yet

are not themselves reordered or eliminated by any vendor compiler. We will replace our language

directives that denote instrumentation sites with these lightweight markers (e.g., markers would be

placed near lines 3 and 12 in Figure 4.1).

Note that this would not be a problem if access is provided to (and potentially significant

modifications made to) the optimizing compiler itself, in order to ensure correct handling of the

designated markers. For example, “performance annotations” could be implemented – tagging
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(1) int main(int argc, char** argv) {
(2) int i, j, val;

(3) {
(4) declareInterval i1;

(5) for(i = 0; i < 1000000; ++i) {
(6) /* val = opaqueFunction(); */

(7) for(j = 0; j < 5; ++j) {
(8) a = argc;

(9) b = a;

(10) }
(11) }
(12) }
(13) return a + b;

(14) }

Figure 4.1: Code before the precompilation phase

special variables and using reads of those variables as markers so that the compiler preserves the

locations of those reads. The drawback, of course, is that this does not achieve the primary goal of

compiler independence.

This thesis proposes a novel solution for languages like C, C++, and Fortran1 that inhibits some

compiler optimizations but not many others: using operations on volatile variables as markers. The

relevant property of volatile variables is that operations on them are considered to have side-effects.

In particular, they must be read (and written to) the same number of times and in the same order,

both before and after program optimization. For example, if a read of a volatile variable is in a loop

with a constant bound, and the optimizing compiler unrolls the loop a certain number of times, the

read of the volatile variable is placed appropriately within each unrolled loop instance. Similarly,

the compiler cannot hoist the global volatile read out of loops because it must execute as many

read operations as the original code. This is exactly what is meant by a marker being “carried” by

whatever optimizations are performed. Thus, a mechanism exists that can be used as the special

marker: a read of a designated global volatile variable is placed at each instrumentation site (see

Figure 4.2).

Note that it is acceptable for some code to be moved out of an interval being measured, assuming

that the same transformation also occurred in the original application. For example, if an interval

1Or any language that has a C-like semantics for volatile program variables.
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(1) volatile short gv1, gv2;

(2) char tmp1, tmp2;

(3) int main(int argc, char** argv) {
(4) int i, j;

(5) tmp1 = (char) gv1;

(6) for(i = 0; i < 1000000; ++i) {
(7) for(j = 0; j < 5; ++j) {
(8) a = argc;

(9) b = a;

(10) }
(11) }
(12) tmp2 = (char) gv2;

(13) return a + b;

(14) }

Figure 4.2: Code after the precompilation phase, with markers at instrumentation sites

directive is inserted that is used to time the body of a loop iteration and some code is hoisted out

of the loop (in both the original and the instrumented code), then the sampled values of the loop

body in the original and instrumented code will be comparable, because the presence of the global

volatile markers should never inhibit the code motion. To see this, refer to Figure 4.2; the reads of

gv1 and gv2 are the markers that delimit the sampling interval. In the original code (Figure 4.1),

if the vendor compiler hoists the assignments in the inner loop to outside both loops, then it is not

prevented from doing the same transformation when the markers are present.

No assumptions are made regarding the action of the optimizing compiler, other than the fact

that it handles volatile variables properly. Even if the compiler handles global volatile reads very

conservatively, the resulting optimized code is likely to be no worse than the version with opaque

function calls. However, the compiler will often be able to do much better than that. In particu-

lar, volatility semantics permit the compiler to move arbitrary computations on non-volatile data

across a reference to a volatile variable. For example, optimizations such as dead-code elimination,

constant propagation, value numbering, common subexpression elimination, loop-invariant code

motion, partial redundancy elimination (PRE), strength reduction, loop strip-mining, local instruc-

tion scheduling (in most cases), global register allocation, and peephole optimizations should not be

inhibited by references to volatile variables [28] (note that all of these could be inhibited, to some

extent, by opaque function calls). Optimizations that reorder loop iterations, e.g., loop interchange,
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loop distribution, loop fusion, loop tiling, unroll-and-jam, or software pipelining would be inhibited,

however, because they would alter the order of execution of the original references [28]. The only

way we know of to prevent interference with such optimizations is to avoid placing instrumentation

sites inside loops.

We tested the effectiveness of using volatile variables as markers with a simple example, using

the GNU C compiler for Sparc and the Sun Workshop C compiler (both with optimization turned

on). The code in Figure 4.1 is compiled in two ways: (i) with an opaque function call in the body

of the outer loop (i.e., uncommenting line 6 in the figure), and (ii) with a global volatile marker in

place of line 6 in the figure. The result is that the loop-invariant statements (lines 8-9) are indeed

moved to the outer loop preheader when using volatile variables, but not when the function call

occurs inside the loop. This illustrates how the approach presented here enables common scalar

optimizations such as LICM and GCSE that are prevented in the presence of an opaque function

call.

The final step is to record information that must be communicated from the precompilation

phase to the runtime phases. In particular, the later phases must have some way of determining

what the metric variables are, finding the reads of global volatile variables that correspond to

instrumentation sites, and knowing what code to put in place of the global volatile reads. To this

end, the first phase creates and initializes a static, global data structure called the global metric

information table (GMIT). The GMIT contains the following information:

• The accumulator types of all metric variables.

• Any optional metric parameters (e.g., the value of the optional parameter size for metrics

with accumulator type bounded series).

• Pointers to any measurement functions used in all metric specifications, and the mapping

between each metric variable and the appropriate measurement function(s).

• The type of all sampling points2. Valid types are “point”, “interval start”, or “interval end”.

• The addresses of all global volatile marker variables, and the mapping between sampling

2A sampling interval is described by two distinct sampling points.

28



points and these addresses. This mapping describes which markers correspond to what in-

strumentation sites.

• The lexical names of all points and intervals.

• Any static bindings between metrics and sampling points or intervals.

Note that there is no attempt made to track the locations of particular sites, which are free

to be moved about as a result of compiler transformations. The final locations of instrumentation

sites are discovered by the runtime phases, as described in Section 4.2.

4.1.1 Implementation Details

We implemented the precompilation phase using the LLVM compiler infrastructure [24], in the form

of an LLVM pass. The existing LLVM frontend for C is used, unmodified, for convenience; writing

a custom frontend for the language extensions is avoided. In order to the recognize the language

extensions using an unmodified C frontend, a “significant functions” approach is used. This is

a common implementation technique that allows existing frontends to be extended transparently.

For example, to realize the semantics of a directive such as declareInterval, special functions

pp declareIntervalStart and pp declareIntervalEnd are used to denote interval endpoints.

These special functions are searched for by the precompilation phase. All matching pairs3 of calls

to these significant functions determine the locations in the code that need to be transformed by

the precompilation phase.

A similar mechanism is used for all of the language primitives. All lexical parameters to these

primitives are given as string arguments to the representative significant functions, and these strings

are parsed during the pass. Note that this is merely another implementation convenience.

After all source-level instrumentation sites are gathered, each is replaced by the read of a

different global volatile variable. The implementation actually places one assignment statement

which describes two operations: a read of a global volatile variable of type short, and a write to a

temporary variable of type char (see Figure 4.2). These statements will be compiled into a “load

half-word, store byte” instruction sequence. This particular sequence is used to reduce the number

3A match is determined by finding the only two uses of a “connector” scalar operand. Dataflow analysis
is not needed because of the SSA intermediate representation employed by LLVM.
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of potential instrumentation sites discovered at runtime by phase 3 (see Section 4.2.3 for details).

Additionally, when a site is processed, its GMIT entry is constructed. The GMIT is implemented

as a static, global struct. The addresses of the volatile variable markers contained in the GMIT

are resolved by the linker. GMIT contents are discussed in the previous section.

The output of the precompilation phase is generated from the LLVM C backend, and can then

be compiled normally using a vendor C compiler.

Finally, please note that the our use of LLVM is orthogonal to the rest of the work; any C-to-C

compiler could have been used, or a custom frontend could have been written that performed the

described source-to-source transformations.

4.2 The Runtime Phases

The broad goal of the runtime phases is to locate the markers that denote instrumentation sites,

and to stitch in the appropriate metric function invocations at these sites using the mechanisms

described in Section 4.2.1. However, locating the the instrumentation sites (which are now denoted

by reads of volatile global variables) is difficult for a number of reasons. The most significant

difficulties are as follows:

• Finding a read of a volatile variable is hard, even though its address is already known4. Two

reasons for this difficulty are: (i) constant values can be obscured by the sequence of machine

instructions5 used to load the address into a register, and (ii) certain optimization techniques

(e.g., value numbering) can generate instruction sequences that load constant addresses into

registers in myriad ways and later reuse these values, making it impossible to search for fixed

instruction sequences.

• Common compiler optimizations such as function inlining can further obscure the locations

of marker sites, because it is not known which particular post-compilation functions are

instrumented – inlining may have effectively removed the instrumented functions.

4Via the GMIT constructed by phase 1.
5These sequences are particularly long on 64-bit RISC architectures, because so many instructions are

required to load a 64-bit constant value into a register. Extracting constant values from such sequences is
difficult, but not impossible.
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(1) func:

(2) inst1

(3) inst2

(4) ...

(5) lduh [%o0], %o1

(6) ...

(7) lduh [%o3], %o0

(8) ...

Figure 4.3: Candidate function with undiscovered instrumentation sites

Runtime Phase Responsibilities

Phase 2 Iterate over each user-code function, write a branch to
a phase 3 trampoline at each entry, and write contents

of those trampolines

Phase 3 In each invoked user-code function, locate its load
candidates, write a branch at each candidate site to

a phase 4 trampoline, and write contents of those trampolines

Phase 4 Finalize the set of valid instrumentation sites,
write a branch at each to an instrumentation trampoline, and

write contents of those trampolines

Execution Monitoring Invoke metric computation for all metrics bound
to a particular instrumentation site

Table 4.1: Runtime phases and their responsibilities

To solve these issues effectively and efficiently, our implementation uses a low-overhead, multi-

phase runtime approach that, via a kind of iterative refinement across phases, rediscovers the

precise locations of the instrumentation points in the code. Each runtime phase will “zero in” on

the actual instrumentation sites. The transformation phases only run “once” (they execute once

for each instrumentation function or instrumentation site), and only for functions and sites that

are reached during execution. Thus, their cost is amortized across the execution of the program.

The runtime phases begin by locating load instructions that are likely to be the instrumentation

markers; these are load candidates, and a function which may contain instrumentation sites is called

a candidate function. Figure 4.3 demonstrates such a function in Sparc assembly pseudocode.

There are three distinct runtime phases, phases 2-4, respectively. Table 4.1 describes each phase

and its responsibilities.
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Figure 4.4: Using trampolines to invoke arbitrary functions

4.2.1 Trampolines and Branching Mechanisms

At runtime, a mechanism is needed that permits insertion of code that invokes either later runtime

phases or the instrumentation itself. One way that this is commonly achieved (e.g., in [7] and [21]) is

via an implementation mechanism known as a trampoline. A trampoline is a special code region that

is reached during execution after having overwritten original program instructions with branches

(see Figure 4.4). As shown in the figure, this code region handles all saving and restoring of

execution state, sets up parameters for any function(s) that it calls, and invokes those function(s).

The overwritten instructions are executed after the execution state has been restored, and control

is returned to the original code. Instead of invoking function(s), the “invoke function” step in

Figure 4.4 can be replaced with other code that jumps to another region of code or trampoline.

This means that an arbitrary number of trampolines can be chained together if desired.

Trampolines are used in phases 2-4 to perform particular phase-specific transformations (in-

cluding the construction of trampolines for later phases), and during execution to control the invo-

cation of instrumentation function(s) at instrumentation sites. Throughout the following sections,

the phrase “phase n trampoline” is used to refer to a trampoline that is responsible for invoking

runtime phase n on the program.
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(1) func:

(2) branch to phase 3 trampoline
(3) inst2

(4) ...

(5) lduh [%o0], %o1

(6) ...

(7) lduh [%o3], %o0

(8) ...

Figure 4.5: Candidate function after phase 2

4.2.2 Phase 2: A Lightweight Program-Wide Transformation

Phase 2 executes exactly once at program startup. Its broad goal is to insert a branch to a phase

3 trampoline at the start of each user-code function6. Placement of these branches is restricted

to user-code functions so that instrumentation sites are not searched for where they cannot occur.

To find the user-code functions, symbol table information is read from the ELF executable, which

contains the start addresses and sizes of the functions. For more details regarding some issues with

finding specific functions in a compiled binary, see [23].

For each user-code function, phase 2 overwrites one or more instructions at the function entry.

Thus, there is a one-time cost at program startup for making program-wide transformations that

will later invoke other phases. The experimental results in Section 5.1 show that this cost is small;

even for large programs, phase 2 is not cost-prohibitive, because examining the ELF data is quite

fast. One of the major benefits to this approach is that only extremely light work is performed for

those functions that are never invoked, since the later runtime phases are never invoked for such

functions.

Figure 4.5 shows the code from Figure 4.3 after phase 2 has been applied to it.

4.2.2.1 Implementation Details

As previously noted, phase 2 applies its transformation only to user-code functions. Failing to do

this creates an interesting problem that warrants explanation. Consider what happens if phase

6User-code functions, in this context, are considered to be functions that do not come from the runtime system
or from system libraries. In our implementation, these are any functions not excluded by the exclusion utility (see
Section 4.2.2.1).
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2 does not discriminate in this manner, and is instead applied to every function discovered from

the ELF executable’s symbol table (in fact, an early implementation did precisely this). The

following scenario can occur: let us assume that the first candidate function that is invoked at

runtime is a user-code function. When it is invoked, the phase3 function (which effects the phase

3 transformation) is called from the phase 3 trampoline. Now, let us also assume that the phase3

function calls a standard library function, libFunc, which has also been transformed by phase

2. As described in Section 4.2.3, any branch instructions that transfer control from a candidate

function to a phase 3 trampoline are removed by phase 3. However, libFunc can be called from

phase3 before this actually occurs. When libFunc is called, it immediately branches to a phase 3

trampoline (because it has been transformed by phase 2), which will eventually call libFunc again.

However, the branch to at the entry to libFunc has not yet been removed and so these steps are

repeated indefinitely (see Figure 4.6). Similar problems may occur for any function processed by

phase 2 that is call-graph-reachable from the functions that implement the runtime phases.

To solve this problem, a command-line utility called mkexcl (“make exclusions”) was designed,

implemented, and integrated into the build process. Before the final executable is linked, mkexcl

is invoked on all libraries and object files whose symbols should be excluded from consideration

by phase 2: all libraries that compose the runtime system described in this thesis, and all relevant

system libraries. The output of mkexcl is C++ code that can be invoked at runtime to build an

STL set containing the excluded symbol names; this code is compiled and linked into the final

executable. When phase 2 executes, it first invokes the mkexcl-generated function to populate the

exclusion set and then checks each function symbol for membership in the set before processing it.

This solution is quite unobtrusive7 and provides an effective solution to the problem. Furthermore,

if large pieces of user code are known not to contain instrumentation sites, mkexcl provides the

user with a clean way to specify this information.

4.2.3 Phase 3: Finding Potential Instrumentation Sites

Phase 3 executes once for each function that is invoked at runtime. It is responsible for finding load

candidates in these candidate functions. That is, for a given user-code function, phase 3 constructs

7Because our implementation already requires a modified linking step, requiring the invocation of a small,
fast command line utility does not seem overly burdensome.
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User-code candidate function
→֒ Phase 3 trampoline → phase 3 function
→֒ Library function transformed by phase 2

→֒ Phase 3 trampoline → phase 3 function
→֒ Library function transformed by phase 2
→֒ ...(last 3 steps repeat forever)

→֒ Not reached: Remove branch at library function entry point

Figure 4.6: Infinite recursion in a näıve phase 2 implementation

a superset of the actual instrumentation sites contained within that function. Since phase 3 is only

executed once per invoked candidate function, its cost is amortized across the execution of the

program.

(1) func:

(2) inst1

(3) inst2

(4) ...

(5) branch to phase 4 trampoline
(6) ...

(7) branch to phase 4 trampoline
(8) ...

Figure 4.7: Candidate function after phase 3

The first task that phase 3 performs is the restoration of the original instruction(s) (overwritten

by phase 2) to their original locations in the candidate function. After this, phase 3 scans the in-

structions of the candidate function body and heuristically locates load candidates, i.e., instructions

that look like they may be a load of a global volatile variable that represents an instrumentation

site. However, it can not be determined if a particular load candidate is an actual instrumentation

site until execution has reached it, because the address being dereferenced is not known until then.

Thus, at each load candidate in the candidate function body, a branch is overwritten to a phase 4

trampoline, and when phase 4 is invoked for a particular candidate, it determines whether or not

the load candidate is in the set of actual instrumentation sites for that candidate function. After

this, phase 3 returns and the program continues execution.

Because the set of actual instrumentation sites is not finalized until phase 4, phase 3 can erro-

neously select load instructions as load candidates. These false positives incur processing overhead
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in phase 4. Our implementation significantly alleviates this problem by searching for very unusual

load sequences8 that operate on the same register with no intervening writes to that register. This

approach greatly reduces the number of discovered load candidates overall.

Figure 4.7 shows the code from Figure 4.5 after phase 3 has been applied to it. Note that both

lduh instructions have been selected as load candidates, and overwritten with branches to phase 4

trampolines, where their membership in the set of actual instrumentation sites will be resolved.

4.2.3.1 Implementation Details

IsSparcLoadCandidate(i, endAddr)

d← i’s destination register
s← first store instruction in range (Address(i), endAddr] with source operand d

if s has opcode stb ⊲ Detected schema 1
return true

if s has opcode sth and is FP-relative ⊲ Suspect schema 2
f ← FPOffset(s)
l ← first FP-relative load instruction in (Address(s), endAddr] with FP offset f

if l not found
return false

d′ ← l’s destination register
s′ ← first store instruction in range (Address(l), endAddr] with source operand d′

if s′ has opcode sth ⊲ Detected schema 2
return true

return false

Figure 4.8: Heuristic for finding load candidates on Sparc

The heuristic used by phase 3 for load candidate detection merits further discussion. Recall

from Section 4.1 that phase 1 marks instrumentation sites with an assignment statement. On

the Sparc architecture, this assignment statement is usually compiled (by the vendor compiler)

into two instructions: a load half-word followed by a store byte. However, because the high-level

assignment statement is not atomic, the compiler is free to schedule these two instructions in many

different ways as long as the relevant dependences are maintained; other instructions are likely to be

8On Sparc, for example, a load half-word followed by a store-byte is used, as explained in Section 4.1.1.
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scheduled between the load half-word and store byte instructions. Thus, the following instruction

sequence is likely to occur (this sequence is referred to as “schema 1”):

lduh [mem1], %r[d]

...

stb %r[d], [mem2]

Furthermore, if the vendor compiler does not have optimization enabled or is prevented from

promoting the char variable (the lvalue of the assignment) to a register, the generated instruction

sequence will copy the value to the stack before the final store byte (this sequence is referred to as

“schema 2”):

lduh [mem1], %r[d]

...

sth %r[d], [stack address]

...

lduh [stack address], %r[d’]

...

stb %r[d’], [mem2]

In order to find these instruction sequences, phase 3 applies a simple instruction-scanning heuris-

tic (see Figure 4.8) to the body of the candidate function that is successful in identifying both of

these sequences. This heuristic has never failed with the vendor compilers that have been tested.

4.2.4 Phase 4: Verifying Instrumentation Sites

As shown in Table 4.1, phase 4 is responsible for finalizing the set of instrumentation sites for

a given candidate function. It does this on a per-load-candidate basis. When a load candidate

location is reached at runtime, a phase 4 trampoline is unconditionally branched to. Since the

original load candidate instruction was in fact a register-indirect load, the source register can be

examined to determine the effective load address. The phase 4 trampoline passes this value to the

phase 4 function.

The first task performed by phase 4 is to look up this effective load address in the GMIT. If the

effective address is found, a marker has been encountered, and the address of the load instruction

corresponds directly to an instrumentation site. Whenever the address is found in the GMIT and

there is at least one metric bound to the site, phase 4 replaces the load candidate instruction with an

unconditional branch to an “instrumentation trampoline” that invokes all instrumentation bound
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to that site. If the effective address is not found in the GMIT, then the load candidate selected

by phase 3 is a false positive. In this case, the original instruction(s) that led to the selection of

the failed load candidate are replaced in the original program (which also removes the branch that

transferred control to the phase 4 trampoline).

In both cases, execution resumes at the address of the load candidate, which is where control

was initially transferred to the phase 4 trampoline. Thus, for real instrumentation sites, the next

instruction executed will be the branch to the trampoline that executes the instrumentation for

that site. It is worth nothing that phase 4 is applied exactly once to each load candidate site, so

its cost is also amortized across the execution of the program.

One important feature of our implementation is that the cost of executing instrumentation sites

with no metrics bound to them is negligible. This is because phase 4 never writes a branch to an

instrumentation trampoline unless there are metrics bound to the site in question. This reduces

the overhead incurred by the trampoline that invokes instrumentation for that site (see Section 5.1

for the results of the overhead experiments). If no metrics have been bound to a site when phase

4 is invoked, the load candidate instructions are overwritten with NOPs. Phase 4 then saves the

relevant data pertaining to the site’s location, and when a metric is dynamically bound to that site

for the first time, these data are used to write the branch to that site’s instrumentation trampoline.

Thus, the only overhead incurred by the presence of instrumentation sites without bindings is the

overhead of the NOP instructions, which is negligible. This feature of our implementation strategy

is useful in practice because it allows the liberal placement of instrumentation sites within programs.

Figure 4.9 shows the code from Figure 4.7 after phase 4 been applied to both load candidates.

In this particular example, the first load candidate turned out to be an instrumentation site, and so

has been overwritten with a branch to the instrumentation trampoline. The latter lduh instruction,

however, turned out to be a false positive and is restored to its original position.

4.2.4.1 Implementation Details

The method that our implementation uses to determine the effective load addresses is deserving of

elaboration. When phase 4 trampolines are built by phase 3, the register-indirect load candidates

instruction are known. On the Sparc V9 architecture, there are two kinds of register-indirect loads,
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(1) func:

(2) inst1

(3) inst2

(4) ...

(5) branch to instrumentation trampoline
(6) ...

(7) lduh [%o3], %o0

(8) ...

Figure 4.9: Candidate function after phase 4

each with a different way of computing the effective load address: (i) as the sum of a register value

and an immediate offset, or (ii) as the sum of two register values.

To compute the effective address in the phase 4 trampoline, an add instruction (which mimics

the corresponding register-indirect load candidate’s address calculation) must first be written there

by phase 3. When designing the structure of the phase 4 trampoline, we took great care not

to prematurely clobber the register(s) holding components of the effective address. A standard

trampoline will not work, because it issues a save before any other instructions. For phase 4

trampolines, the add must execute before the save. This is because the load candidate may

use a local register for one of its source operands, and the contents of local registers are made

inaccessible when a new register window is obtained by the save. Thus, the phase 4 trampoline

prologue allocates one word on the stack to store the contents of the register that will be clobbered

by the add, copies the value of the register to the stack, issues the add, and then issues the save.

Likewise, the epilogue first issues a restore to restore the old register window, copies the saved

value from the stack to the previously-clobbered register, and readjusts the stack pointer to the

value it had in the candidate function.

4.2.5 Executing Monitoring Code and Invoking Metric Computation

Whenever an instrumentation site is reached during execution, all metrics currently bound to

that site must be computed. This computation of metric values is invoked from instrumentation

trampolines. These trampolines are activated whenever execution reaches an instrumentation site

to which metrics are bound.

The computation of metrics bound to a particular site is straightforward. Each metric is asso-
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ciated with a metric function. Thus, each site maintains a list of metric functions to invoke, as well

as a list of addresses where the return values of each invoked metric are to be stored. The dynamic

binding mechanisms described in Section 3.6 directly manipulate this list of metric functions at

runtime in order to add or remove9 associations between metrics and the instrumentation sites to

which they are bound. After saving the necessary execution state10, a function is invoked by the

instrumentation trampoline that iterates over this list of metric functions and invokes each one in

turn. After all bound metric functions have been executed, the instrumentation trampoline restores

execution state and transfers control back to the instrumented function in the application program.

Since branching to and from the instrumentation trampoline occurs at all instrumentation sites

that have metrics bound to them, runtime overhead is incurred. There are two distinct kinds of

overhead. The first type of overhead, called trampoline overhead, is the combined cost of three

things: (i) transferring control to and from the trampoline, (ii) the execution of the trampoline itself,

and (iii) the execution of the function which iterates over the list of metric functions and invokes

them. Neither the cost of metric function invocation itself nor the cost of metric computation

are accounted for in trampoline overhead. Rather, these costs are included in the second type of

overhead, which is simply called the instrumentation overhead. Instrumentation overhead cannot

be avoided when performance instrumentation is desired, and so it is not an express goal of the

work presented here to minimize it. However, we measured the trampoline overhead incurred by

our current implementation and the experimental results can be found in Section 5.1.

4.2.5.1 Implementation Details

The last section described how, at runtime, the dynamic binding mechanisms manipulate a list

of bound metric functions that is associated with each site. This is an oversimplification of the

roles played by a few key classes in our implementation of phase 4, the execution monitoring step,

and the runtime library function (RTL) for the bindMetric language primitive. There are three

classes that are responsible for collectively maintaining the dynamic state of the instrumentation

sites: InstInfo, InstSiteInfo, and InstFunctionInfo, respectively. Phase 4, the execution monitoring

9Dynamic removal has not yet been implemented.
10This is vital because calls to arbitrary functions will be made, and since the vendor compiler did not

witness these calls, it could not have constructed a valid register schedule for caller-saved registers.
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step, and RTL function for bindMetric all act as clients of these classes. A discussion of these

classes, their responsibilties, and their collaborations with each other follows. A UML diagram

summarizing the three classes is found in Figure 4.10.

InstInfo is a singleton class (see [15]) that provides a convenient interface to data about the

metrics that are bound to particular instrumentation points and intervals at runtime. It is respon-

sible for mapping the unique identifier (i.e., the name) associated with an instrumentation point

(or interval) to a pair of InstSiteInfo instances. In the case of intervals, each element in the pair

represents the InstSiteInfo for one of the interval endpoints. For point sites, only the first element

of the pair contains data. The InstInfo class is used by its clients to look up site information,

provided to them in the form of InstSiteInfo instances.

An InstSiteInfo instance contains information about the dynamic state of a single instrumen-

tation site. More specifically, it holds information about the branch to the site’s instrumentation

trampoline, and a list of (pointers to) InstFunctionInfo instances that contain information about the

metric functions themselves. The InstSiteInfo class supports three key operations: (i) registration

of new metric functions at the site via the push back method, (ii) invocation of all registered metric

functions via the invokeFunctions method, and (iii) installation of a branch to an instrumenta-

tion trampoline via the installBranch method. The first operation is used by the RTL function

that implements the bindMetric directive, and forms a new association between a metric function

and the InstSiteInfo instance’s instrumentation site. The second operation, invokeFunctions,

is called from the instrumentation trampoline for an instrumentation site, and iterates over the

instFuncInfos list, calling the invoke member function on each element. Finally, the third oper-

ation, installBranch, is invoked by both phase 4 and by the push back method. At the time of

invocation from phase 4, the installBranch method decides not to install the branch if no metrics

have been bound to the instrumentation site (the reasons for this are described in Section 4.2.4).

The InstFunctionInfo class is used to represent information about a single metric function at a

particular site. This information consists of: the address where the function’s return value should

be stored, a pointer to the metric function, whether or not this function has been invoked at the

site, and a link to another InstFunctionInfo instance11. Calling the invoke member function on an

11This link is used by InstFunctionInfo instances that represent end sites of instrumentation intervals to
find the matching start site’s InstFunctionInfo instance.
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InstFunctionInfo
#retValAddr: void*
#instFunc: void*
#startLink: InstFunctionInfo*
#invoked: bool
+invoke(): void

InstSiteInfo
#branchInstalled: bool
#instrumented: bool
#brInstallAddr: memory address
#branchInst: Sparc instruction
#instFuncInfos: vector<InstFunctionInfo*>
+push_back(retVal:void*,func:void*,startInfo:InstFunctionInfo*=null): void
+invokeFunctions(): void
#installBranch(): void

 instFuncInfos
 *

InstInfo
#siteInfoMap: map<unsigned, pair<InstSiteInfo, InstSiteInfo> >
-uniqueInstance: InstInfo*
+instance(): InstInfo*
+findSiteInfo(siteID:unsigned,siteType:unsigned): InstSiteInfo*
+findSiteInfo(siteID:unsigned): pair<InstSiteInfo, InstSiteInfo>*

 siteInfoMap
 *

return uniqueInstance

Figure 4.10: UML class diagram depicting the site management classes

InstFunctionInfo instance calls the function pointed to by instFunc, and saves its return value at

the address given by retValAddr.

One important feature of the InstFunctionInfo class is the flag that denotes whether the metric

function has been invoked. This flag is used to ensure that the metric functions invoked at end-

interval sites are matched by prior calls to the corresponding metric functions at the start site for

the same interval (i.e., if the flag for a start-site metric function is not set, the corresponding end-site

function is not invoked). For a particular interval, the flag is set in the start site’s InstFunctionInfo

instance when invoke is called on it, and cleared when invoke is called on the InstFunctionInfo

instance for the end site. These flags are needed because the bindMetric primitive can bind

new metrics to same interval that it resides in — without these flags in place, instrumentation

interval semantics break because metric functions at end sites of intervals can be executed before

the corresponding functions at the start sites.
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Chapter 5

Experimental Results

In this chapter, experimental results are presented for the overhead of the implementation of the

runtime phases, followed by a description our experience with describing performance properties in

two application codes. A brief summary of findings is provided in Section 5.3.

In order to evaluate the design of the language extensions for performance properties and our

implementation, this section addresses the following questions experimentally:

1. Does the multi-phase runtime approach taken by this thesis (in order to attain vendor inde-

pendence) incur significant runtime overhead, i.e., is there a significant performance penalty

to using the presented approach over and above the cost of the instrumentation itself?

2. What are the benefits of using the proposed language extensions to describe the performance

properties of applications for which performance is a primary concern? This question is

only discussed subjectively and based on our experience with the language extensions in two

applications.

In addressing question 2 above, it should be emphasized that it is not the goal of the experiments

to evaluate the efficacy of a particular description of an application’s performance properties. How-

ever, the attempt is made to assume the role of the application developer and describe performance

properties that are cogent and as application-specific as possible.
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Benchmark orig mark p2 p2-3 p2-4 all

em3d 11.91s 1.26% 1.93% 2.44% 2.1% 3.69%

tsp 16.25s 0.55% 0.8% 1.85% 1.48% 1.72%

health 17.03s 0.59% 1.76% 1.88% 2.11% 3.52%

voronoi 26.07s 0.57% 1.11% 0.72% 1.83% 2.22%

power 255.44s 0.25% 0.25% 0.34% 0.25% 0.7%

Table 5.1: Overhead incurred by runtime phases

5.1 Overhead Experiments

In order to evaluate the runtime overhead incurred by the multi-phase approach, it is important

to recognize the sources of overhead (the runtime phases themselves) and what kind of overhead

to measure. The kind of overhead that needs to be measured is important because it should not

include the cost of performing metric computation; i.e., the cost of any measurement functions

that are invoked by the instrumented program should not be considered as overhead. In order to

realize this in the experiment setup, the monitoring step was modified so that while branches to

the instrumentation trampolines are still written by phase 4, the instrumentation trampolines do

not actually invoke the measurement functions themselves.

The rest of the experimental setup is as follows. Five Olden [10] benchmarks were profiled to

determine the functions in each where the most execution time was spent. An instrumentation

interval was placed over the body of this most-executed function, or in a loop nest that invoked

the function. The intention of this profile-guided placement of instrumentation intervals is to place

markers and register instrumentation that will be executed frequently, so as to better evaluate the

incurred overhead. After placing an interval in each benchmark code, a single metric is statically

bound to the interval (it does not matter which metric, since the cost of doing the sampling is not

taken into account). Each benchmark is timed for each runtime phase in succession1. That is, the

execution times were taken for the benchmark with: no modifications (“orig” in the Table 5.1), with

only the instrumentation markers in place (“mark”), with only phase 2 enabled (“p2”), with only

phases 2-3 enabled (“p2-3”), with only phases 2-4 enabled (“p2-4”), and with phases 2-4 enabled

together with the modified monitoring step (“all”). In Table 5.1, each execution time (other than

1In the current implementation, any runtime phase can be disabled by allowing each prior phase to perform
all of its responsibilities except for writing the branch instruction that will eventually invoke the trampoline
to latter phases.
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for the original) is given as a percentage increase over the execution time of the original benchmark.

To consider a worst-case scenario, instrumentation was placed in a small, inlinable routine in the

voronoi benchmark. The routine is executed millions of times from within the context of a larger

routine that constitutes nearly 92% of the overall execution time. Because of this, the presence

of the instructions for the markers incurs a larger overhead cost than in a typical instrumentation

scenario. Still, it was discovered that the overall overhead (i.e., the value of the “all” column for

this worse-case experiment) was around 15%. This cost reflects the presence of branches to and

from instrumentation trampolines from a function on the critical path. This cost is not altogether

unexpected, however, given the nature of the instrumented function – in general, the ability to

instrument very small, frequently-executed routines without incurring high runtime costs is not a

reasonable expectation.

As can be seen in Table 5.1, the runtime overhead for normally-instrumented benchmarks is

considerably small. What these numbers mean, in practice, is that application codes can be richly

instrumentable (i.e., contain many instrumentation sites), with only small overheads incurred before

the actual instrumentation functions are applied. For the instrumentation sites that have no metrics

bound to them, the monitoring step is never invoked, and so the “p2-4” column in Figure 5.1 reflects

the overhead that would be experienced.

5.2 Applications

Two applications are used for our experiments: POV-Ray and a distributed proxy server applica-

tion. Aspects of each each application have been identified that are considered to be relevant to its

performance, based on our knowledge of the application. These performance properties are then

encoded in the applications themselves using the proposed language extensions.

5.2.1 POV-Ray

POV-Ray is a widely used, publicly available raytracing application [30]. As such, it is a compute-

and memory-bound application. This means that aspects of memory performance such as TLB

misses, L1 and L2 cache access patterns, and load and store misses are of primary concern. With

this in mind, the goal is to assume the role of the application developer in an attempt to learn
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something about the performance characteristics exhibited by POV-Ray. Some of the features

supplied by the proposed language extensions will be used in order to accomplish this goal.

One common problem facing performance tuners is the act of correlating different types of

performance data when a degradation in performance is experienced. The typical approach requires

recording large volumes of data, and these are typically examined offline whenever a correlation

between a high-level performance degradation and potential lower-level causes is desired. However,

forming such correlations is not even possible in many cases.

In contrast to the typical approach, the performance properties and language mechanisms allow

the examination of detailed performance data only when performance actually degrades, and this

examination can be accomplished online. This goal is achieved by using two mechanisms exposed by

the language extensions, namely performance assertions [38, 29] and self-monitoring of performance

data.

The first step in making these kinds of performance correlations in POV-Ray is to identify where

potential correlation data are to be gathered in the application, and what these datasets should

contain. We profiled POV-Ray and determined that the routine trace pixel consumes more than

76% of its computation time (for a benchmark scene), so it is a natural choice for instrumentation2.

The key question we ask with this experiment is, “When trace pixel is slower than average, what

other metrics are high?”

To answer this question, we chose elapsed time as the high-level metric, and some aspects of

cache behavior as potential low-level causes. At the top of the code in Appendix A, three metrics

are declared: elapsedTimeSeries, L1ICacheMisses, L2TCacheMisses. These metrics represent a

moving average of elapsed time, an L1 instruction cache miss count, and an L2 total cache miss

count, respectively3. All are statically bound (see the declareInterval directive at the start of

the sample scope) to interval i1, which is defined over the body of the trace pixel routine. Thus,

data pertaining to memory characteristics are gathered on a per-invocation basis (i.e., each time

i1 is executed, samples from previous trace pixel/i1 invocations are discarded), and the elapsed

2Note that if our language primitives were a bit more mature (e.g., if they provided MDL-like “globbing”
mechanisms to specify binding to groups of intervals), using a profiling tool should not have been needed.
Rather, we should have extended the application logic and let it determine the best routine to analyze.

3Due to a lack of available low-level metrics at the time of implementation, we were unable to compute
other important metrics such as L1 data cache or TLB misses.
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time for i1 is computed and averaged over a moving window.

Now that it is known what kinds of data to collect, it must be decided what we mean by the term

“performance degradation” v̀ıs-a-v̀ıs our key question . For the code in Appendix A, performance

degradation is considered to have occurred anytime that the measured elapsed time for a particular

instance of interval i1 exceeds the moving average by some fixed “badness” factor. In order to

encode this property, the language primitives were used to add a performance assertion to the code.

In the example code, the performance assertion is found after the sample interval. The most recent

elapsed time sample is compared against the moving average (see the lines immediately following

the calls to functions pp series last and pp avg). If the most recent sample exceeds the average

by a factor of BADPERF THRESHOLD, the memory behavior samples for the current invocation of

the routine are reported. Thus, the application itself can provide an online correlation between

the experienced performance degradation and potential low-level causes. Since the detailed data

are only reported or recorded when a performance degradation is actually witnessed, the typical

scenario wherein exorbitant amounts of irrelevant data are collected ceases to be a problem.

The fact that the above performance properties could be expressed in the POV-Ray application

using only a modicum of new statements (see Appendix A) in the original application code testifies

that the proposed language primitives are usable in practice.

One of our experiments showed that POV-Ray exhibits interesting L2 cache behavior for a

benchmark scene (see Figure 5.1). We slightly modified the code found in Appendix A so that it

maintained a moving average of L2 total cache misses in addition to the moving average of elapsed

time. It also maintains an additional metric variable named al2 with accumulator type sumcount,

which is used to compute the average of the “miss-over-average-miss” ratio L2TotalMiss
L2TotalMissAvg

, where

L2TotalMiss is the most recent sample of L2 total cache misses and L2TotalMissAvg is the

moving average value.

Whenever the performance assertion is violated, al2 is sampled, meaning that the above ratio

is computed and accumulated into al2’s implicit accumulator, and al2’s implicit counter is incre-

mented. The average of the “miss-over-average-miss” ratio is finally queried when the entire scene

has finished rendering. These averaged ratios are shown (as percentage increases) on the y-axis of

Figure 5.1. The x-axis represents the value of BADPERF THRESHOLD when the performance assertions
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Figure 5.1: L2 Total Cache Miss Behavior in POV-Ray

were triggered. The graph indicates a potential correlation between the severity of the performance

degradation that occurred, and the increase in L2 total cache misses that were witnessed at the

same time — at least up until a certain point. After a BADPERF THRESHOLD value of about 1.8,

the queried value of al2 decreases rapidly. Although we are not certain of the reason(s) for this

drop-off, we do know that when the violation threshold is that high it is violated for roughly less

than 1.74% of the pixels in the entire image. Computational workloads in raytracing applications

are rarely homogeneous across pixels, and so this drop in the “miss-over-average-miss” ratio could

simply indicate real CPU cycles being spent.

The main point of this experiment is to illustrate the kinds of complex performance aspects

that can be encoded into applications using our proposed language extensions. All of the data

for Figure 5.1 were generated online, and furthermore the al2 sampling only takes place when

performance degradation is witnessed. The al2 queries are recorded after the image is complete.

Thus, no extraneous data are recorded.

Of course, other performance properties or performance monitoring actions could be chosen.

For example, the application programmer might decide to record queried metric values in a table,
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indexed by pixel or image quadrant, to determine if particular parts of the image were causing

aberrant memory behavior. Or, the programmer could choose to have certain rendering modes

adaptively disabled if too many performance degradations were witnessed within a certain period

of time (this may actually occur in an interactive raytracing program). We believe that some of

these possibilities are among the most impressive aspects of the system proposed in this thesis.

In summary, our experiments with POV-Ray showed that the language primitives can be used

to engage in performance-oriented programming. Also, when coupled with the regular control

structures of the source language, these primitives allow the expression of considerably complex

performance properties. Finally, the language mechanisms address some common problems (e.g.,

the correlation problem described above) with the analysis of data gathered by typical performance

instrumentation methods.

5.2.2 Distributed Proxy Server

For this experiment, a lightweight proxy server is used which performs on-the-fly image distillation

for its clients, and decides the extent to which the images from the web should be degraded based

on the available bandwidth. The code was developed in our group, and is representative of many

long-running server type applications that could benefit greatly from being able to monitor their

own performance and especially to identify anomalous performance conditions at runtime.

In our experimental scenario, the proxy server application is executed under normal operating

circumstances (i.e., moderate client load), and the elapsed time for performing a generic distillation

operation is measured and averaged across the interval i1. If any performance degradations occur

(i.e., the performance assertion which checks the value of the elapsed time average is triggered),

the language primitives for dynamic binding are used to add a new metric (total L2 cache misses)

to sampling intervals i2 and i3, both of which are subintervals of i1. The idea is that when image

distillation is “taking too long”, new metrics are bound and computed at a finer grain. The relevant

code for this application, which shows the placement of performance-oriented constructs, can be

found in Appendix B.

To describe the performance assertion and the logic that dynamically binds new interval metrics

when the assertion is violated, only a few lines of code are added to the server application. At the top
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of the code, an interval metric called elapsedTimeSeries is declared, which maintains a bounded

series of elapsed times for the interval of code which performs the actual image manipulation. The

average value of such a series is the kind of performance property that a programmer may wish to

make an assertion about. Next, braces are added in order define the scopes containing the intervals

to be measured, and declareInterval statements are placed inside those scopes to specify them

as instrumentable intervals. The elapsedTimeSeries metric is the only statically-bound metric,

and it is bound to interval i1. Finally, a performance assertion is used to specify that the average

of the series should be below a specified threshold.

When the performance assertion is violated, the bindMetric directives (in the if statement

body that corresponds to the performance assertion) are used to bind the L2CacheAccesses metric

to two other intervals (i2 and i3) that previously had no metrics associated with them; upon

subsequent executions of those intervals, the number of L2 cache misses that occur will be sam-

pled and aggregated. The performance assertion and its associated code appear at the bottom

of the function, where the moving average is queried using the pp avg function. Because, after

transformation, the metric variables are simply language variables, and the statistical functions are

function calls, describing complex performance assertions becomes a straightforward and natural

process.

In conclusion, it is worth nothing that that there are a host of other performance properties

which may merit monitoring in a server code such as this. In particular, the programmer may wish

to monitor bandwidth fluctuations, server throughput, server CPU load, transactions completed

per second, number of active client connections over a period of time, or a custom metric such

as “standard deviation over a fixed window size of active client connections divided by average

server throughput, using data aggregated from three selected execution intervals”. All of these

metrics can be described in a straightforward manner. With little extra implementation effort,

the scalability properties of the application could be assessed by correlating current (dynamic)

performance data with saved data about how the application had performed under smaller loads

or on fewer processors.
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5.3 Summary

In Section 5.1, it was shown that the runtime overhead incurred by our approach in the Olden

benchmarks was acceptable. This means that the language extensions proposed in this thesis can

be used in practice. In Section 5.2, furthermore, the suitability of these language extensions for

describing complex performance properties in serious applications was clearly demonstrated.

For POV-Ray, a solution to a common problem was presented — the correlation between high-

level performance degradation and its potential causes. This problem is difficult to solve online

without the ability to describe performance assertions, and impossible to solve online without

language mechanisms that permit self-monitoring of performance data. The proposed language

extensions permit both of these to occur in a straightforward manner.

The distributed proxy server was used to demonstrate the power of having the associations

between metrics and instrumentation sites be first-class semantic properties of the language. In

particular, dynamic control over instrumentation becomes possible and is useful in practice.

In both applications, all metrics and performance assertions are encoded as intrinsic properties

of the program, and thus are “carried” with it as it is built and used on different platforms.

Provided that the runtime system exists on a particular target platform, this approach effectively

provides portable performance monitoring without additional effort on the part of the application

programmer.

Finally, the code in both appendices demonstrates the ease with which the language exten-

sions are able to realize relatively complex performance monitoring concepts such as performance

assertions and self-monitoring of performance data.
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Chapter 6

Conclusion

This thesis presented a small set of language extensions for describing, in a flexible and succinct

manner, performance properties of application codes at the language level. It has also presented

a novel implementation scheme that focuses on reducing perturbation due to inhibited compiler

optimizations, and that is usable in practice because it is vendor-compiler independent.

The primary strengths of the work presented in this thesis are as follows: first, we have de-

scribed how the performance features of applications can be thought of as intrinsic properties of

the code. Second, we have delineated the flexibility of our language extensions by describing their

potential high-level uses in performance-critical applications (e.g., self-monitoring of performance

and performance assertions). Third, we have described how our implementation strategy permits a

plethora of performance-related actions (e.g., data aggregation schemas, user-defined metrics and

sampling intervals, and dynamic control of instrumentation) to be specified at statement- and scope-

level granularity. Finally, we have presented concrete examples wherein performance properties are

encoded into real applications to good effect.

The work adduced in this thesis has the following weaknesses: first, the lack of a rich library of

metric functions on the Sparc platform1 prevented us from fully demonstrating (what we consider

to be) the power of our language-based approach to performance instrumentation. Second, the

language extensions themselves are immature; e.g., the primitives currently provide no clean way

to build composite metrics, nor can instrumentation intervals and sites be classified or grouped

in any way. Finally, although we have presented a system that is intended to be practical, we

1Although PAPI provided a number of useful metrics, key metrics such as TLB misses or L1 data cache
misses seemed not to be supported. Also, we lacked a mechanism to disambiguate total cycle counts into
CPU and memory cycles.
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lack an objective evaluation criteria for determining whether or not our approach could actually

be integrated into modern software development practices — although we certainly believe that it

could.

Besides modifying the existing system in order to address the weaknesses described above,

interesting future work falls into two broad categories: (i) extending the system to realize more

complicated performance-oriented goals, such as semi-automatic performance prediction or auto-

mated bottleneck detection, and (ii) attempting to find more useful language primitives that can

facilitate the widespread adoption of our approach and “bridge the gap” betwixt high-level appli-

cation concerns and low-level architectural and system constraints.

In conclusion, this thesis has presented a new way of looking at the performance instrumentation

of modern software applications, and provided a solid basis for so-called “performance-oriented

programming”, which has the potential to unify aspects of traditional software development phases

(e.g., application development and its currently-disjoint successor, performance debugging) and

drastically change the way that the applications of tomorrow are developed.
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Appendix A: Code Segment of the POV-Ray Application

/* The metric declarations for the elapsed time series and the two cache metrics. */

pp_interval<bounded_series, elapsed_time_start, elapsed_time_end, size=1000> elapsedTimeSeries;

pp_interval<scalar, l1_icache_misses_start, l1_icache_misses_end> L1ICacheMisses;

pp_interval<scalar, l2_total_misses_start, l2_total_misses_end> L2TCacheMisses;

/* "Bad" performance threshold, as a fractional increase over the averaged elapsed time.

If the last sample in the elapsed time series exceeds the average by more than a

factor of BADPERF_THRESHOLD, it is considered bad performance */

#define BADPERF_THRESHOLD 1.25

static void trace_pixel(int x, int y, COLOUR Colour)

{

{ /*---- BEGIN SAMPLE SCOPE ----*/

/* All three of our metrics are statically bound to this interval, i1 */

declareInterval i1(elapsedTimeSeries, L1ICacheMisses, L2TCacheMisses);

Increase_Counter(stats[Number_Of_Pixels]);

Trace_Level = 1;

POV_PRE_PIXEL (x, y, Colour);

COOPERATE_0;

/* Do histogram stuff */

if (opts.histogram_on)

accumulate_histogram(x, y, TRUE);

if (Focal_Blur_Is_Used) {

/* Use focal blur tracing. */

focal_blur(&Camera_Ray, Colour, (DBL)x, (DBL)y);

}

else {

/* Create and trace ray. */

if (create_ray(&Camera_Ray, (DBL)x, (DBL)y, 0)) {

Increase_Counter(stats[Number_Of_Samples]);

if (opts.Options & USE_VISTA_BUFFER)

Trace_Primary_Ray(&Camera_Ray, Colour, 1.0, x);

else

Trace(&Camera_Ray, Colour, 1.0);

}
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else

Make_ColourA(Colour, 0.0, 0.0, 0.0, 0.0, 1.0);

}

if (opts.histogram_on)

accumulate_histogram(x, y, FALSE);

Clip_Colour(Colour, Colour);

gamma_correct(Colour);

} /*---- END SAMPLE SCOPE ----*/

/* The performance assertion */

{

double lastSample = pp_series_last(elapsedTimeSeries);

double seriesAvg = pp_avg(elapsedTimeSeries);

if(lastSample > seriesAvg * BADPERF_THRESHOLD) {

/* Bad performance has been noted, so report the other metrics that

were sampled for this particular invocation of trace_pixel */

reportCacheMetrics(L1ICacheMisses, L2TCacheMisses);

}

}

}

59



Appendix B: Code Segment of a Distributed Proxy Server

pp_interval<bounded_series, elapsed_time_start, elapsed_time_end, size=20> elapsedTimeSeries;

pp_interval<bounded_series, l2cache_accesses_start, l2cache_accesses_end, size=5> L2CacheAccesses;

/* PA threshold is 1.5 seconds */

#define WARNING_THRESHOLD 1.5

#include <pp.h>

#include "fileManipulator.h"

#include "filesEditor.h"

#define JPEG 0

#define GIF 1

#define PS 2

#define PDF 3

#define FAILED -1

#define OKAY 1

extern char* contentLength[2];

extern char* contentTypes[2];

extern char* types[4];

int editFile(char** buffer, int bufSize, tableEntry* entry)

{

int error;

int size = bufSize;

int type;

int lengthKind = 0;

int typeKind = 0;

int flag = OKAY;

char* contentType = NULL;

char* contentSize = NULL;

char* origFileName = NULL;

char* split;

origFileName = (char *)malloc(L_tmpnam);

typeKind = getContentType(*buffer, &contentType);

if(typeKind < 0) {

flag = FAILED;
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printf("Error(editFile): Cannot find content type.\n");

}

if (flag == OKAY) {

type = contentToInt(contentType);

if (type < 4) {

lengthKind = getContentSize(*buffer, &size, &contentSize);

if (lengthKind >= 0) {

/* write the buffer into a file so that it can be edited using

the system() call */

error = writeToFile(*buffer, size, type, &origFileName);

if(error < 0) {

flag = FAILED;

size = bufSize;

}

}

{ /*---- BEGIN SAMPLE SCOPE ----*/

declareInterval i1(elapsedTimeSeries);

if (flag == OKAY) {

switch(type) {

case JPEG:

{

{ /* ---- BEGIN SAMPLE SCOPE ---- */

declareInterval i2;

error = compressJPEG(calcLevel(entry->bandwidth, size), origFileName);

} /* ---- END SAMPLE SCOPE ---- */

if (error < 0) {

flag = FAILED;

size = bufSize;

}

break;

}

case GIF:

break;

case PS:

case PDF:

{

{ /* ---- BEGIN SAMPLE SCOPE --- */
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declareInterval i3;

psdfToText(origFileName);

error = changeHeader(buffer, contentTypes[typeKind], "text/plain", bufSize);

} /* ---- END SAMPLE SCOPE ---- */

if (error < 0) {

flag = FAILED;

size = bufSize;

}

break;

}

default:

size = bufSize;

flag = FAILED;

break;

}

}

} /*---- END SAMPLE SCOPE ----*/

if(flag == OKAY) {

/* read the file into the buffer after it has been modified. returns the number

of bytes after the header in the buffer */

error = readFileToBuffer(buffer, origFileName, &size);

if (error < 0) {

flag = FAILED;

size = bufSize;

}

}

if(flag == OKAY) {

/* change the header line Content-Length: to reflect the change of file size */

sprintf(contentSize, "%d", error);

error = changeHeader(buffer, contentLength[lengthKind], contentSize, size);

if (error < 0) {

flag = FAILED;

size = bufSize;

}

}

}

}
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/* remove the file since we don’t need it */

remove(origFileName);

free(contentType);

free(contentSize);

free(origFileName);

if(pp_avg(elapsedTimeSeries) > WARNING_THRESHOLD) {

/* Performance assertion has been violated, so

bind the L2CacheAccesses metric to intervals i2 & i3 */

bindMetric L2CacheAccesses to i2;

bindMetric L2CacheAccesses to i3;

}

return size;

}
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