Data Structure Analysis:
A Fast and Scalable Context-Sensitive Heap Analysis

Chris Lattner

Vikram Adve

University of lllinois at Urbana-Champaign

{lattner,vadve}@cs.uiuc.edu

ABSTRACT

This paper describes a scalable heap analysis algorithm,
Data Structure Analysis, designed to enable analyses and
transformations of programs at the level of entire logical data
structures. Data Structure Analysis attempts to identify dis-
joint instances of logical program data structures and their
internal and external connectivity properties (without trying
to categorize their “shape”). To achieve this, Data Struc-
ture Analysis is fully context-sensitive (in the sense that it
names memory objects by entire acyclic call paths), is field-
sensitive, builds an explicit model of the heap, and is robust
enough to handle the full generality of C.

Despite these aggressive features, the algorithm is both
extremely fast (requiring 2-7 seconds for C programs in the
range of 100K lines of code) and is scalable in practice. It
has three features we believe are novel: (a) it incrementally
builds a precise program call graph during the analysis; (b) it
distinguishes complete and incomplete information in a man-
ner that simplifies analysis of libraries or other portions of
programs; and (c) it uses speculative field-senstivity in type-
unsafe programs in order to preserve efficiency and scalabil-
ity. Finally, it shows that the key to achieving scalability in a
fully context-sensitive algorithm is the use of a unification-
based approach, a combination that has been used before
but whose importance has not been clearly articulated.

1. INTRODUCTION

Alias analysis for programs with complex pointer-based
data structures has been most successful at guiding tradi-
tional low-level memory optimizations. These transforma-
tions rely on disambiguating pairs of memory references and
on identifying local and interprocedural side-effects of state-
ments. In contrast, there has been much less success with
transformations that apply to entire instances of data struc-
tures such as a lists, heaps, or graphs. Many reasons exist
for this disparity, including the possibility of non-type-safe
memory accesses in common programming languages (e.g.,
C and C++), and the potentially high cost of an analy-
sis that can distinguish different instances of a logical data
structure.

Enabling such analyses and transformations requires some
powerful analysis capabilities:

(1) Full Context-Sensitivity: Identifying disjoint in-
stances of data structures requires the analysis algorithm to
distinguish between heap objects created via different call
paths in a program (i.e., naming objects by entire acyclic call
paths). Even many partially context-sensitive algorithms do
not attempt to distinguish heap objects by call paths [6, 22,
7, 21, 3], which makes them unable to detect this key prop-
erty. On the other hand, naive cloning can easily lead to an
explosion in the size of the heap representation (because the
number of call paths may be exponential in the size of the
program), and can make recursion difficult to handle.

(2) Field-Sensitivity: Identifying the internal connec-
tivity pattern of a data structure requires distinguishing
the points-to properties of different structure fields. Such
“field-sensitivity” is often supported by analyses targeting
languages which are type-safe, but is difficult to support ef-
ficiently (if at all) in non-type-safe languages (e.g., see [19,
15]).

(3) Explicit Heap Model: Analyzing heap data struc-
tures requires constructing an explicit heap model, including
objects not directly necessary for identifying aliases. Some
common alias analysis algorithms (e.g., Steensgaard’s [20]
and Andersen’s [1] algorithms) build an explicit heap repre-
sentation, but do not provide any context-sensitivity. Other,
more powerful analyses only record alias pairs to determine
pointer aliasing properties [6, 2, 10]. Retaining both capa-
bilities is challenging.

Practical alias and pointer analysis algorithms have not at-
tempted to provide the combination of properties described
above, because of the potential cost. In contrast, “shape
analysis” algorithms are powerful enough to provide this in-
formation and more (e.g., enough to identify a particular
structure as a “linked-list” or “binary tree” [9, 17]). Shape
analysis, however, has so far not proven practical for use in
commercial optimizing compilers.

In this work, we present an analysis algorithm called Data
Structure Analysis, which has been the key foundation for
our work on transformations that apply to disjoint instances
of logical data structures. The algorithm aims to lie some-
where between traditional pointer analyses and more power-
ful shape analysis algorithms. It provides the three required
capabilities listed above, it supports the full generality of
C programs, including type-unsafe code, incomplete pro-
grams, function pointers, recursion, and setjmp/longjmp.
We believe it is efficient and scalable enough for use in com-
mercial compilers. We have built on this algorithm to de-
velop other novel compiler techniques, including an auto-
matic transformation to segregate disjoint data structures

in the heap [12] and a program safety analysis that ensures
pointer and heap safety for type-safe C programs without
garbage collection [5].

There are three key novel aspects to our algorithm, plus a
key property that has been used but not articulated before:

(i) The algorithm incrementally discovers an accurate call-
graph for the program on-the-fly, using the call graph
for parts of the analysis itself. The algorithm is com-
pletely non-iterative, visiting each instruction and each
call edge only once during the analysis.

(ii) The algorithm explicitly distinguishes between com-
plete and incomplete information, enabling it to be
conservative even at intermediate stages of analysis,
and allowing it to analyze portions of programs safely.

(iii) The algorithm provides speculative field sensitivity, by
assuming that memory objects in the program are
type-safe until shown otherwise. This allows the al-
gorithm to be completely field-sensitivity for objects
accessed in a type-safe manner (the common case).

(iv) Finally, the property that we believe is fundamental to
achieving a scalable “fully context-sensitive” algorithm
is the use of a unification-based approach. With this
combination, it is extremely unlikely for the analysis
representation to grow large, despite using a context-
sensitive, field-sensitive representation.! This is dis-
cussed in Section 3.7.

We show that the worst case time and memory complexity
are O(na(n) + ka(k)e), and O(fk), where n, k, e, and f
denote the number of instructions, the maximum size of a
data structure graph for a single procedure, the number of
edges in the call graph, and the total number of functions. In
practice, k is very small, typically on the order of a hundred
nodes or less, even in large programs.

We evaluate the algorithm on 35 C programs, showing
that the algorithm is extremely efficient in practice (in both
performance and memory consumption). This includes pro-
grams that contain complex heap structures, recursion, and
function pointers. For example, it requires less than 8 sec-
onds of analysis time and about 16MB of memory to an-
alyze povray31, a program consisting of over 130,000 lines
of code. Overall, we believe the broader implication of our
work may be to show that a fully context sensitive analy-
sis as described here can be practical for significant, large,
real-world programs.

The three closest previous algorithms to ours are those by
Fahndrich et al. [7], Liang and Harrold [15], and Ruf [16].
All three are context-sensitive, flow-insensitive, and appear
roughly comparable to ours in terms of analysis time. As dis-
cussed in Section 5, however, none these three provide some
of the key features of our work — the incremental call graph
construction (while handling both function pointers and re-
cursion), support for incomplete programs, and support for
type-unsafe programs with partial field sensitivity.

2. THE DATA STRUCTURE GRAPH

Data Structure Analysis computes a graph we call the
Data Structure Graph (DS graph) for each function in a
program, summarizing the memory objects accessible within
the function along with their connectivity patterns. Each DS
graph node represents a (potentially infinite) set of memory

1Wc describe a graph-size-limiting heuristic to detect and avoid this
rare case, but this has never been required in practice.

typedef struct list { struct list *Next;
int Data; } list;
int Global = 10;
void do_all(list *L, void (*FP)(int=x)) {
do { FP(&L—>Data);
L = L—>Next;
} while(L);

void addG(int *X) { (*X) += Global; }
void addGToList(list *L) { do-all(L, addG); }
list *makeList(int Num) {
list *New = malloc(sizeof(list));
New—>Next = Num ? makeList (Num—1) : 0;
New—>Data = Num; return New;

int main () { /* X €Y lists are disjoint x/
list *X = makeList (10);
list *Y = makeList (100);
addGToList (X);
Global = 20;
addGToList (Y);

Figure 1: C code for running example

objects and distinct nodes represent disjoint sets of objects,
i.e., the graph is a finite, static partitioning of the memory
objects. All dynamic objects which may be pointed to by
a single pointer variable or field are represented as a single
node in the graph.

Some assumptions about the input program representa-
tion are necessary for describing our graph representation;
other details are described in Section 3.2 [13]. We assume
that input programs have a simple type system with struc-
tural equivalence, having primitive integer and floating point
types of predefined sizes, plus four derived types: pointers,
structures (i.e., record types), arrays, and functions. We as-
sume (as in the C language) that only explicit pointer types
and integer types of the same size or larger can directly en-
code a pointer value, and call these pointer-compatible types
(other values are handled very conservatively in the analy-
sis). For any type 7, fields(7) returns a set of field names
for the fields of 7, which is a single degenerate field name
if 7 is a scalar type (field names are assumed to be unique
to a type). An array type of known size k may be repre-
sented either as a structure with & fields or by a single field;
an unknown-size array is always represented as the latter.
Other assumptions about the input program representation
are described in Section 3.2.

We also assume a load/store program representation in
which virtual registers and memory locations are distinct,
it is not possible to take the address of a virtual register,
and virtual registers can only represent scalar variables (i.e.,
integer, floating point, or pointer). Structures, arrays, and
functions are strictly memory objects and are accessed only
through load, store, and call instructions. All arithmetic op-
erations operate on virtual registers. Memory is partitioned
into heap objects (allocated via a malloc instruction), stack
objects (allocated via an explicit stack allocation instruction
named alloca, similar to malloc), and global objects (global
variables and functions).

The DS graph for a function is a finite directed graph
represented as a tuple DSG(F) = (N, E, Ev,C), where:

e N is a set of nodes, called “DS nodes”. DS nodes have
several attributes described in Section 2.1 below.

e I is a set of edges in the graph. Formally, F is a
function of type (ns, fs) — (na, fa), where ng,nq € N,
fs € fields(T'(ns)) and fq € fields(T(nq)), and T'(n)
denotes type information computed for the objects of
n as explained below. F is a function because a source

field can have only a single outgoing edge. Note that
the source and target of an edge are both fields of a
DS node.

e Ey is a function of type wars(f) — (n,f), where
vars(f) is the set of virtual registers in function f.
Conceptually, Ev(v) is an edge from register v to the
target field (n, f) pointed to by v, if v is of pointer-
compatible type.

e (is a set of “call nodes” in the graph, which rep-
resent unresolved call sites in the context of the cur-
rent function. Each call node ¢ € C'is a k + 2 tuple:
(r, f,a1,...,ar), where every element of the tuple is a
node-field pair (n, f). 7 and f respectively denote the
value returned by the call (if it is pointer-compatible)
and the function(s) being called. a1 ...ax denote the
pointer-compatible values passed as arguments to the
call (other arguments are not represented). Concep-
tually, each tuple element can also be regarded as a
points-to edge in the graph.

3 Bann

<fied1>
Return Called First Second
Value Function Argument Argument

Call Node

DS node Variable

Figure 2: Graph Notation

To illustrate the DS graphs and the analysis algorithm, we
use the code in Figure 1 as a running example. This example
creates and traverses two disjoint linked lists, using iteration,
recursion, function pointers, a pointer to a subobject, and
a global variable reference. Despite the complexity of the
example, Data Structure Analysis is able to prove that the
two lists X and Y are disjoint (the final DS graph computed
for main is shown in Figure 10).

To illustrate the DS graphs computed by various stages of
our algorithm, we render DS graphs using the graphical no-
tation shown in Figure 2. Figure 3 shows an example graph
computed for the do_all and addG functions, before any in-
terprocedural information is applied. The figure includes an
example of a call node, which (in this case) calls the function
pointed to by FP, passing the memory object pointed to by
L as an argument, and ignores the return value of the call.

2.1 Graph Nodes and Fields

The DS nodes in a DS graph are responsible for represent-
ing information about a set of memory objects corresponding
to that node. Each node n has three pieces of information
associated with it:

e T'(n) identifies a language-specific type for the mem-
ory objects represented by n. Section 2.1.4 describes
how this is computed for nodes representing multiple
incompatible memory objects.

e (GG(n) represents a (possibly empty) set of global ob-
jects, namely, all those represented by node n.

e flags(n) is a set of flags associated with node n. There
are eight possible flags (H,S,G,U, M,R, C and 0), defined
below.

The type information T'(n) determines the number of fields
and outgoing edges in a node. A node can have one outgoing
edge for each pointer-compatible field in 7'(n). An incom-
ing edge can point to an arbitrary field of the node (e.g.,
the “gL->Data” temporary in Figure 3 points to the inte-
ger field), but not to any other byte offset. Section 2.1.4

describes how type-unsafe code using pointers to arbitrary
byte offests are handled.

The globals G(n) represented by each node can be used
to find the targets of function pointers, both by clients of
Data Structure Analysis and to incrementally construct the
call-graph during the analysis.

O B
L
list: R

Figure 3: Local DSGraphs for do_all and addG

int: R
Global

int

2.1.1 Memory Allocation Classes

The *H’, ’S’, °G’ and U’ flags in flags(n) are used to
distinguish four classes of memory objects: Heap-allocated,
Stack-allocated, Globals (which includes functions), and
Unknown objects. Multiple flags may be present in a single
DS node, if, for example, analysis finds a pointer which may
point to either a heap object or a stack object. Memory ob-
jects are marked as Unknown when the instruction creating
it is not identifiable, e.g., when a constant value is cast to
a pointer value (for example, to access a memory-mapped
hardware device), or when unanalyzable address arithmetic
is found (these cases occur infrequently in portable pro-
grams). Nodes representing objects created in an external,
unanalyzed function are not marked *U’, but are treated as
“missing information” as described below.

2.1.2 Mod/Ref information

Our analysis keeps track of whether a particular mem-
ory object has been Modified or Read within the current
scope of analysis, and this is represented via the M’ and
'R’ flags. For example, in the do_all function, the state-
ment “L = L->Next;” reads a pointer element from the node
pointed to by L, which causes the R’ flag to be set in
flags(node(Ev (L)) as shown in Figure 3. Mod/Ref infor-
mation is useful to a variety of client analyses.

2.1.3 Aggressive analysis with missing information

Practical algorithms must correctly handle incomplete
programs: those where code for some functions are unavail-
able, or where the “program” is actually a library of code
without information about the clients. In order to allow an
aggressive analysis even under such situations, each DS node
tracks whether there may be information missing from it.

For example, in Figure 3, Data Structure Analysis does
not yet know anything about the incoming L and FP argu-
ments because it hasn’t performed interprocedural analysis.
Inside this function, it can determine that L is treated as a
list object (the construction algorithm looks at how point-
ers are used, not what their declared types are), that it is
read from, and what nodes each variable points to. How-
ever, it can not know whether the information it has for this
memory object is correct in a larger scope. For example, the
FP and L arguments are speculatively represented as differ-
ent objects, even though they might actually be aliased to
each other when called from a particular call site.

To handle such situations, Data Structure Analysis com-
putes which nodes in the graph are “complete,” and marks
each one with the Complete flag?. If a node is not marked

2This is somewhat similar to the “inside nodes” of [21].

complete, the information calculated for the DS node repre-
sents partial information and must be treated conservatively.
In particular, the node may later be assigned extra edges,
extra flags, a different type, or may even end up merged
with another incomplete node in the graph. For example,
from the graph in Figure 3 an alias analysis algorithm must
assume that L and FP may alias. Nevertheless, other nodes
in such a graph may be complete and such nodes will never
be merged with any other node, allowing clients to obtain
useful information from graphs with partial information.

This capability is the key to the incremental nature of our
algorithm: Because nodes keep track of which information
is final, and which is still being created, the graphs con-
structed by our algorithm are always conservatively correct,
even during intermediate steps of the analysis.

2.1.4 Field-sensitivity with and without type-safety

A particularly important benefit of the “Complete” flag is
that it allows DS Analysis to efficiently provide field-sensitive
information for the type-safe subsets of programs. This is
important because field-sensitivity for type-unsafe structure
types can be very expensive [19], but in fact we observe that
most portable C code is completely (or mostly) type-safe.
The complete flag allows DS analysis to assume speculatively
that all access to a node are type-safe, until an access to
the node is found which conflicts with the other accesses.
Because a node is not marked complete as long as there are
potentially unprocessed accesses, this is safe.

DS Analysis provides field-sensitive information by asso-
ciating a language-specific type, T'(n), with each DS node
n, and keeping track of a distinct outgoing edge for each
pointer element of the type. If all accesses to all objects at
the node use a consistent type 7, then T'(n) = 7.%

If operations using incompatible types (as defined in Sec-
tion 3) are found, a type-safety violation is possible with
one of the objects at the node. If this occurs, the type for
the node is assumed to be an unsized array of bytes (T'(n) =
void#), and the fields and edges of the node are “cOllapsed”
into a single field with at most one outgoing edge, using the
following algorithm:

collapse(dsnode n)
cell e = (null, 0)
Vf € fields(T'(n))

e = mergeCells(e, E((n, f)))// merge old target with e
remove field f / remove old edge
T(n) = void# // reset type information

E((n,0)) =e¢ // new edge from field 0
flags(n) = flags(n) U 'O’ // mark node Collapsed

// null target

In the pseudo-code, a “cell” is a (node,field) pair, used
as “sources” of edges in the DS graphs. The function
“mergeCells(c1,c2)” (described in the next section) merges
the cells ¢; and c2 and therefore the nodes pointed to by
those cells. This ensures that the targets of the two cells
are now exactly equal. Because the above algorithm merges
all outgoing edges from the node, the end result is the same
as if field-sensitivity were never speculated for node n. If
a node has been collapsed (ie, O € flags(n)), it is always
treated in this safe, but field-insensitive, manner.

3. CONSTRUCTION ALGORITHM

In an early attempt at Data Structure Analysis [12], we
presented a preliminary algorithm that was exponential in

3As Section 3 describes, type information is inferred only at actual
accesses rather than from the declared types for variables, so that
common idioms such as casting a pointer to void* and back do not
cause a loss of precision.

relatively common cases, very expensive for even moderate-
sized programs containing large numbers of globals, and did
not correctly handle function pointers, with recursion, type-
unsafe programs, or incomplete programs. The algorithm
described here is greatly improved in all these areas, based
on extensive experience with larger and more complex pro-
grams.

DS graphs are created and refined in a three step pro-
cess. The first phase constructs a DS graph for each func-
tion in the program, using only intraprocedural information
(a “local” graph). Second, a “Bottom-Up” analysis phase is
used to eliminate incomplete information due to callees in
a function, by incorporating information from callee graphs
into the caller’s graph (creating a “BU” graph). The final
“Top-Down” phase eliminates incomplete information due
to incoming arguments by merging caller graphs into callees
(creating a “TD” graph). The BU and TD phases operate
on the “known” Strongly Connected Components (SCCs) in
the call graph.

Two properties are important for understanding how the
analysis works in the presence of incomplete programs, and
how it can incrementally construct the call graph even
though it operates on the SCCs of the graph. First, the
DS graph for a function is correct even if only a subset of
its potential callers and potential callees have been incorpo-
rated into the graph (i.e., the information in the graph can
be used safely so long as the limitations on nodes without
‘C’ flags are respected, as described in Section 2.1.3). Intu-
itively, the key to this property simply is that a node must
not be marked complete until it is known that all callers
and callees potentially affecting that node have been incor-
porated into the graph. Second, the result of two graph
inlining operations at one or two call sites is independent of
the order of those operations. This follows from a more basic
property that the order in which a set of nodes is merged
does not affect the final result.

3.1 Primitive Graph Operations

Data Structure Analysis is a flow-insensitive algorithm
which uses a unification-based memory model, similar to
Steensgaard’s algorithm [20]. The algorithm uses several
primitive operations on DS graphs, shown in Figure 4. These
operations are used in the algorithm to merge two cells,
merge two nodes while aligning fields in a specified manner,
to inline a callee’s graph into a caller’s graph at a particu-
lar call site, and vice versa. The latter two operations are
described later in this section.

The fundamental operation in the algorithm is mergeCells,
which merges the two target nodes specified. This requires
merging the type information, flags, globals, outgoing edges
of the two nodes, and moving the incoming edges to the
resulting node. If the two fields have incompatible types
(e.g., T(n1) = int, f1 = 0, T'(n2) = {int, short}, fo = 1),
or if the two node types are compatible but the fields are
misaligned (e.g., T(n1) = T(n2) = {int,short}, fi = 0,
f2 = 1), the resulting node is first collapsed as described in
Section 2.1.4, before the rest of the information is merged.
Merging the outgoing edges causes the target node of the
edges to be merged as well (if the node is collapsed, the re-
sulting node for no will have only one outgoing edge which
is merged with all the out-edges of n1). To perform this re-
cursive merging of nodes efficiently, the merging operations
are implemented using Tarjan’s Union-Find algorithm.

3.2 Local Analysis Phase

(Merge two cells of same or different nodes; update ns, discard ny)

Cell mergeCells(Cell (n1, f1), Cell (na, f2),)

if (IncompatibleForMerge(T' (n1), T (n2), f1, f2))
collapse ny (i.e., merge fields and out-edges)

union flags of ny into flags of na

union globals of ni into globals of na

merge target of each out-edge of (ni, f;) with

target of corresponding field of no

move in-edges of n; to corresponding fields of no

destroy ni

return (n2, 0) (if collapsed) or (na, f2) (otherwise)

(Clone Gy into Ga2; merge corresponding nodes for each global)
cloneGraphlInto(G1, G2)
G1. = make a copy of graph G
Add nodes and edges of G1. to Ga
for (each node N € Gi.)
for (each global g € G(N))
merge N with the node containing g in G2

(Clone callee graph into caller and merge arguments and return)
resolveCallee(Graph Gcgiiee, Graph Geaiier,
Function Feqijee, CallSite C'S)
cloneGraphInto(Geartee s Geatier)
clear ’S’ flags on cloned nodes
resolveArguments(Gealiers Feallee, CS)

(Clone caller graph into callee and merge arguments and return)
resolveCaller(Graph G giier, Graph Gegiice,
Function Figiee, CallSite CS)
cloneGraphlnto(Geatier, Gealtee)
resolveArguments(Geaiiee, Featice, CS)

(Merge arguments and return value for resolving a call site)
resolveArguments(Graph G,,erged, Function Fe, CallSite CS)
mergeCells(target of C'S[1], target of return value of F¢)
for (1 < ¢ < min(Numformals(F¢), NumActualArgs(CS))
mergeCells(target of arg ¢ at CS, target of formal ¢ of F¢)

Figure 4: Primitive operations used in the algorithm

The goal of the local analysis phase is to compute a Local
DS graph for each function, without any information about
callers and callees. This is the only phase that inspects the
actual program representation: the other two phases operate
solely on DS graphs.

The local DS graph for a function F' is computed as shown
in Figure 5. We present this analysis in terms of a minimal
language which is still as powerful as C. The assumptions
about the type system and memory model in this language
were described in Section 2%.

The “LocalAnalysis” first creates an empty node as a tar-
get for every pointer-compatible virtual register (entering
them in the map Ev), and creates a separate node for every
global variable. The analysis then does a linear scan over the
instructions of the function, creating new nodes at malloc
and alloca operations, merging edges of variables at assign-
ments and the return instruction, and updating type infor-
mation at selected operations. The type of a cell, Ev(Y),
is updated only when Y is actually used in a manner that
interprets its type, viz., at a dereference operation on Y
(for a load or store) and when indexing into a structure or
array pointed to by Y. malloc, alloca, and cast opera-
tions simply create an node of void type. Structure field
accesses adjust the incoming edge to point to the addressed
field (which is a noop if the node is collapsed). Indexing into
array objects is ignored, i.e., arrays are treated as having a
single element. return instructions are handled by creat-
ing a special 7w virtual register which is used to capture the

4We assume that the functions E(X) and Ey (X) return a new, empty
node with the type of X (by invoking makeNode(typeof(X))) when
no previous edge from the cell or variable X existed. For example, in
Figure 7(a), the incoming argument L points to such a node. We also
abuse the notation by using E(X) = ... or By (X) = ... to change
what X points to.

(Compute the local DS Graph for function F)
LocalAnalysis(function F)
Create an empty graph
V virtual registers R, Eyv (R) = makeNode(T(R))
V globals X (variables and functions) used in F'
N = makeNode(T(X))); G(N) U= X; flags(N) u="G’

V instruction I € F' : case I in:

X = malloc ...:
Ev (X) = makeNode(void)
flags(node(Ev (X))) U ="H’

X = alloca ...:
Ev (X) = makeNode(void)
flags(node(Ev (X))) U ="S’

X = xY:
mergeCells(Ev (X), E(Ev(Y)))
flags(node(Ev (X)) U="R’

*Y = X:
mergeCells(Ey (X), E(Ev(Y)))
flags(node(Ey (X)) U ="M’

= &Y->Z: (address of struct field)
(n, f) = updateType(Ev (Y), typeof(+Y))

f' =0, if n is collapsed; field(field(n, f), Z) otherwise
mergeCells(Ev (X), (n, f'))

X = &Y[idx]: (address of array element)

(n, f) = updateType(Ev (Y), typeof(*xY))
mergeCells(Ev (X), (n, f))

(heap allocation)

(stack allocation)

X

return X: (return pointer-compatible value)
mergeCells(Ey (), Ev (X))

X=(Y: (value-preserving cast)
mergeCells(Ev (X), Ev (Y))

X =Y(2Z1, Z2, .. Zp): (function call)
callnode ¢ = new callnode
Cu=c

mergeCells(Eyv (X), c[1])
mergeCells(Ev (Y), c[2])
Vi € {1...n}: mergeCells(Ev (Z;), c[i + 2])

(Otherwise) X = Y op Z:

mergeCells(Ey (X), Ev (Y))
mergeCells(Ey (X), Ev (Z))
flags(node(Ev (X))) U ="U’
collapse(node(Ey (X)))

MarkCompleteNodes()

(all other instructions)

Figure 5: The LocalAnalysis function

return value.

Function calls result in a new call node being added to the
DS graph, with entries for the value returned, the function
pointer (for both direct and indirect calls). For example,
the local graph for addGTList in Figure 7(a) shows the call
node created for the call to function do_all. Note that an
empty node is created and then merged using mergeCells
for each entry in order to correctly merge type information,
since the argument type may not match the declared type
for the formal argument or return value.

Finally, if any other instruction is applied to a pointer-
compatible value, (e.g., a cast from a pointer to an integer
smaller than the pointer, or integer arithmetic), any nodes
pointed to by operands and the result are collapsed and the
Unknown flag is set on the node®.

The final step in the Local graph construction is to cal-
culate which DS nodes are Complete. For a Local graph,
nodes reachable from a formal argument, a global, passed
as an argument to a call site, or returned by a function call
may not be marked complete. This reflects the fact that the
local analysis phase does not have any interprocedural infor-
mation. For example, in Figure 7(a), neither of the nodes
for for the arguments to do_all are marked ‘C’.

3.3 Bottom-Up Analysis Phase

5
°In our compiler [13], type-safe pointer arithmetic is represented with
the &Y->Z or &Y[idx] operations.

(Create a new, empty node of type T)
makeNode(type 7)
n = new Node(type = 7, flags = ¢, globals = ¢)
vV f € fields(t), E(n, f) =< null,0 >
return n

(Merge type of field (n, f) with type 7. This may
collapse fields and update in/out edges via mergeCells())
updateType(cell (n, f), type 7)
if (1 # void A T # typeof({n, f)))
m = makeNode(T)
return mergeCells((m, 0), (n, f)))
else return (n, f)

Figure 6: makeNode and updateType operations

The Bottom-Up (BU) analysis phase refines the local
graph for each function by incorporating interprocedural in-
formation from the callees of each function. The result of the
BU analysis is a graph for each function which summarizes
the total effect of calling that function (imposed aliases and
mod/ref information) without any calling context informa-
tion. It computes this graph by cloning the BU graphs of all
known callees into the caller’s Local graph, merging nodes
pointed to by corresponding formal and actual arguments.
We first describe a single graph inlining operation, and then
explain how the call graph is discovered and traversed.

Consider a call to a function F' with formal arguments
fi,. .., fn, where the actual arguments passed are ai,...,an.
The function resolveCallee in Figure 4 shows how such a call
is processed in the BU phase. We first copy the BU graph
for F, clearing all Stack node markers since stack objects
of a callee are not legally accessible in a caller. We then
merge the node pointed to by each actual argument a; of
pointer-compatible type with the copy of the node pointed
to by fi. If applicable, we also merge the return value in
the call node with the copy of the return value node from
the callee. Note that any unresolved call nodes in F’s BU
graph are copied into the caller’s graph, and all the objects
representing arguments of the unresolved call in the callee’s
graph are now represented in the caller as well.

3.3.1 Basic Analysis Without Recursion

The complete Bottom-Up algorithm for traversing calls
is shown in Figure 8. but we explain it for four different
cases. In the simplest case of a program with only direct
calls to non-external functions, no recursion, and no function
pointers, the call nodes in each DS graph implicitly define
the entire call graph. The BU phase simply has to traverse
this acyclic call graph in post-order (visiting callees before
callers), cloning and inlining graphs as described above.

To support programs that have function pointers and ex-
ternal functions (but no recursion), we simply restrict our
post-order traversal to only process a call-site if its function
pointer targets a Complete node (i.e, its targets are are fully
resolved, as explained in §2.1.3), and all potential callees are
non-external functions (line 1 in the Figure).

Such a call site may become resolved if the function passed
to a function pointer argument becomes known. For exam-
ple, the call to FP cannot be resolved within the function
do_all, but will be resolved in the BU graph for the function
addGToList, where we conclude that it is a call to addG. We
clone and merge the indirect callee’s BU graph into the graph
of the function where the call site became resolved, merging
actual and formal arguments as well as return values, using
resolveCallee just as before (line 2 in the figure). This tech-
nique of resolving call nodes as their function pointer targets
are completed effectively discovers the call-graph on the fly,
and we record the call graph as it is discovered.

Note that the BU graph of the function containing the

©
rf

id (list*, void (int*)*): GC id (int*): G -
[VOI (i ;glal(lln)*) j [vol agdG) j

(a) Local addGToList graph
© ©
list R [void (iney: ch
list* | int addG Uit [int)

(b) After inlining do_all (c) Final BU graph
Figure 7: Construction of the BU DS graph for addGToList

original call still has the unresolved call node. We do not re-
visit previously visited functions in each phase, but that call
node will eventually be resolved in the top-down phase. The
BU graph for the function where the call was resolved now
fully incorporates the effect of the call. For example, inlin-
ing the BU graph of addG into that of addGToList yields the
finished graph shown in Figure 7(c). The Modified flag in
the node pointed to by L is obtained from the node Eyv (X)
from addG (Figure 3), which is merged with the second argu-
ment node inlined from do_all. This graph for addGToList
is identical to that which would have been obtained if addG
was first inlined into do_all (eliminating the call node) and
the resulting graph was then inlined into addGToList.

After the cloning and merging is complete for a function in
the SCC, we identify new complete nodes (Section 3.2) (line
5) and remove unreachable nodes from the graph (line 6).
The latter are created because copying and inlining callee
graphs can bring in excess nodes not accessible within the
current function (and therefore not accessible in any of its
callers as well). This includes non-global nodes not reachable
from any virtual register, global node, or call node.

3.3.2 Recursion without Function Pointers

Our strategy for handling recursion is essentially to ap-
ply the bottom-up process described above but on Strongly
Connected Components (SCCs) of the call graph, handling
each multi-node SCC separately. The key difficulty is that
call edges are not known beforehand, and instead are discov-
ered incrementally by the algorithm. The overall Bottom-Up
analysis algorithm is shown in Figure 8. It uses an adap-
tation of Tarjan’s linear-time algorithm to find and visit
Strongly Connected Components (SCCs) in the call graph
in postorder [18].

Assume first that there are only direct calls, i.e., the call
graph is known. For each SCC, all calls to functions outside
the SCC are first cloned and resolved as before (these func-
tions will already have been visited because of the postorder
traversal over SCCs). Once this step is complete, all of the
functions in the SCC have empty lists of call sites, except for
intra-SCC calls and calls to external functions (the latter are
simply ignored throughout). In an SCC, each function will
eventually need to inline the graphs of all other functions in
the SCC at least once (either directly or through the graph
of a callee). A naive algorithm can produce an exponential
number of inlining operations, and even a careful enumera-
tion can require O(n?) inlining operations in complex SCCs
(which we have encountered in some benchmarks). Instead,
because there are an infinite number of call paths through
the SCC, we choose to completely ignore intra-SCC context-
sensitivity. We simply merge the partial BU graphs of all
functions in the SCC, resolving all intra-SCC calls in the

context of this single merged graph.

BottomUpAnalysis(Program P)
V Function F' € P
BUGraph{F} = LocalGraph{F}
Val[F| = 0; NextID = 0
while (3 unvisited functions F' € P)
TarjanVisitNode(F, new Stack)

TarjanVisitNode(Function F, Stack Stk)
NextID++; Val[F] = NextID; MinVisit = NextID; Stk.push(F)
V call sites C € BUGraph{F}
V known non-external callees Fo at C
if (Val[F¢] == 0) (Fc unwvisited)
TarjanVisitNode(F¢, S)
else MinVisit = min(MinVisit, Val[F¢])
if (MinVisit == Val[F]) (new SCC at top of Stack)
SCCS={N: N=F V N appears above F on stack }
V F € S: Val[F] = MAXINT; Stk.pop(F)
ProcessSCC(S, Stk)

ProcessSCC(SCC S, Stack Stk)
V Function F' € S

(1) V resolvable call sites C € BUGraph{F} (see text)
V known callees Fo at C
if (Fc ¢ S) (Process funcs not in SCC)

(2) ResolveCallee(BUGraph{ Fc }, BUGraph{F}, Fc, CS)

(3) SCCGraph = BUGraph{F,}, for some Fy € S
V Function F € S, F # Fy (Merge all BUGraphs of SCC)
cloneGraphInto(BUGraph{F}, SCCGraph)
BUGraph{F} = SCCGraph
(4) V resolvable call sites C € SCCGraph (see text)
V known callees Fc at C (Note: Fo € S)
ResolveArguments(SCCGraph, F¢, CS)

(5) MarkCompleteNodes() - Section 3.2
(6) remove unreachable nodes

(7) if (SCCGraph contains new resolvable call sites)
VFeS: Val[F]=0 (mark unvisited)

TarjanVisitNode(Fy, Stk), for some Fy € S (Re-visit SCC)

Figure 8: Bottom-Up Closure Algorithm
3.3.3 Recursion with Function Pointers

The final case to consider is a recursive program with in-
direct calls. The difficulty is that some indirect calls may
induce cycles in the SCC, but these call edges will not be
discovered until the indirect call is resolved. We make a key
observation, based on the properties described earlier, that
yields a simple strategy to handle such situations: some call
edges of an SCC can be resolved before discovering that they
form part of an SCC. When the call site “closing the cycle”
is discovered (say in the context of a function Fp), the effect
of the complete SCC will be incorporated into the BU graph
for Fy though not the graphs for functions handled earlier.

Based on this observation, we have slightly adapted Tar-
jan’s algorithm to revisit partial SCCs as they are discovered
(but visiting only unresolved call sites). After the current
SCC is fully processed (i.e., after step (5) in Figure 8), we
check whether the SCC graph contains any newly inlined call
nodes that are now resolvable. If so, we reset the Val entries
for all functions in the SCC, which are used in TarjanVis-
itNode to check if a node has been visited. This causes all
the nodes in the current SCC to be revisited, but only the
new call sites are processed (since other resolvable call sites
have already been resolved, and will not be included in steps
(1) and (4)).

For example, consider the recursive call graph shown in
Figure 9(a), where the call from E to C is an indirect call.
Assume this call is resolved in function D, e.g., because D
passes C' explicitly to E as a function pointer argument.
Since the edge £ — C'is unknown when visiting F/, Tarjan’s
algorithm will first discover the SCCs { F }, { E }, and then
{ D } (Figure 9(c)). Now, it will find a new call node in the

(visit main first if available)

graph for D, find it is resolvable as a call to C, and mark D
as unvisited (Figure 9(b)). This causes Tarjan’s algorithm to
visit the “phantom” edge D — C, and therefore to discover
the partial SCC { B, D, C }. After processing this SCC, no
new call nodes are discovered. At this point, the BU graphs
for B, D and C will all correctly reflect the effect of the call
from E to C, but the graph for E will not®. The top-down
pass will resolve the call from E to C' (within E) by inlining
the graph for D into E.

Note that even in this case, the algorithm only resolves
each callee at each call site once: no iteration is required,
even for SCCs induced by indirect calls.

The graph of Figure 10 shows the BU graph calculated for
the main function of our example. This graph has disjoint
subgraphs for the lists pointed to by X and Y. These were
proved disjoint because we cloned and then inlined the BU
graph for each call to addGToList(). This shows how the
combination of context sensitivity with cloning can identify
disjoint data structures, even when complex pointer manip-
ulation is involved.

int: GMRC
Global

list: HMRC list: HMRC
list* int list* int

Figure 10: Finished BU graph for main

3.4 Top-Down Analysis Phase

The Top-Down construction phase is very similar to the
Bottom-Up construction phase. The BU phase has already
identified the call graph, so the TD phase can traverse the
SCCs of the call graph directly using Tarjan’s algorithm; it
does not need to “re-visit” SCCs as the BU phase does. Note
that some SCCs may have been visited only partially in the
BU phase, so the TD phase is responsible for merging their
graphs.

Overall, the TD phase differs from the BU phase in only
4 ways: First, the TD phase never marks an SCC as un-
visited as explained above: it uses the call edges discovered
and recorded by the BU phase. Second, the TD phase visits
SCCs of the call graph computed by the Bottom-Up traver-
sal in reverse postorder instead of postorder. Third, the
Top-Down pass inlines each function’s graph into each of
its callees (rather than the reverse), and it inlines a caller’s
graph into all it’s potential callees directly (it never needs
to “defer” this inlining operation since the potential callees
at each call site are known). The final difference is that for-
mal argument nodes are marked complete if all callers of a
function have been identified by the analysis, i.e., the func-
tion is not accessible to any external functions. Similarly,
global variables may be marked complete, unless they are
accessible to external functions.

3.5 The Globals Graph

In the algorithm so far, global variables accessed any-
where in the program would propagate bottom-up to main,
then top-down to all functions in the program, ballooning
graph size by a O(N?) factor. A key optimization we add to
the Data Structure Analysis algorithm is to use a separate
“Globals Graph” to hold information about global nodes

SNor should it. A different caller of E may cause the edge to be
resolved to a different function, thus the BU graph for E does not
include information about a call edge which is not necessarily present
in all calling contexts.

a) Recursive Call Graph
indirect call is dotted)

®
(&)

O

(b) Call Node Edges,
After inlining F & E

}

}

}: mark unvisited
,D, C

}

(c) SCC visitation order

O W N =
o Ve Yare Yar Yare)
>mogd

Figure 9: Handling recursion due to an indirect call in the Bottom-Up phase

and all nodes reachable from global nodes. This allows us to
remove global variables from a function’s graph if they are
not used in the current function (even though they may be
used in callers or callees of that function). For example, this
eliminates the two G nodes in the example graphs. (Liang
and Harrold [15] use a very similar technique.)

We only briefly describe this optimization here, and will
describe it in more detail in the full version of the paper
(if accepted). In the BU phase, after step 4, we copy and
merge in the nodes from the Globals Graph for for every
global G that has a node in the current graph, plus any
nodes reachable from such nodes. After step 5, we copy all
such nodes back into the globals graph, and after step 6 we
eliminate any global nodes in the BU graph that are both
not reachable from and cannot reach any locally live nodes.
Very similar steps are used in the TD phase, except that
information from the TD graphs do not have to propagated
into the globals graph (since information from all functions
has been merged in). In practice, we have found the Globals
graph to make a remarkable difference in running time for
global-intensive programs.

3.6 Bounding Graph Size

In the common case, the merging behavior of the unifica-
tion algorithm we use keeps individual data structure graphs
very compact, which occurs whenever a data structure is
processed by a loop or recursion. Nevertheless, the combi-
nation of field sensitivity and cloning makes it theoretically
possible for a program to build data structure graphs that
are exponential in the size of the input program. Such cases
can only occur if the program builds and processes a large
complex data structure using only non-loop, non-recursive
code, and are thus extremely unlikely to occur in practice.

Using a technique like k-limiting [10] to guard against such
unlikely cases is unattractive because it could reduce preci-
sion for reasonable data structures with paths more than k
nodes long. Instead, we propose that implementations sim-
ply impose a hard limit on graph size (10,000 nodes, for ex-
ample, which is much larger than any real program is likely
to need). If this limit is exceeded, node merging can be used
to reduce the size of the graph. Our results in Section 4 show
that the maximum function graph size we have observed in
practice across a wide range of programs is only 167 nodes,
which is quite small (we exclude virtual registers since those
are not propagated between functions).

3.7 Complexity Analysis

The local phase adds at most one new node, ScalarMap
entry, and/or edge for each instruction in a procedure (be-
fore node merging). Furthermore, node merging or col-
lapsing only reduces the number of nodes and edges in the
graphs. We have implemented node merging using a Union-
Find data structure, which ensures that this phase requires
O(na(n)) time and O(n) space for a program containing n
instructions in all [20].

The BU and TD phases operate on DS graphs directly, so

their performance depends on the size of the graphs being
cloned and the time to clone and merge each graph. We
denote these by K and [respectively, where [is O(Ka(K))
in the worst case. They also depend on the average number
of callee functions per caller (not call site), denoted c.

For the BU phase, each function must inline the graphs for
c callee functions, on average. Because each inlining opera-
tion requires [time, this requires fcl time if there are f func-
tions in the program. The call sites within an SCC do not
introduce additional complexity, since every potential callee
is again inlined only once into its caller within or outside the
SCC (in fact, these are slightly faster because only a single
graph is built, causing common nodes to be merged). Thus,
the time to compute the BU graph is ©(fcl). The space
required to represent the Bottom-Up graphs is ©(fK). The
TD phase is identical in complexity to the BU phase.

4. EXPERIMENTAL RESULTS

We have implemented the complete Data Structure Anal-
ysis algorithm in the LLVM Compiler Infrastructure, using
a C front-end based on GCC [13]. The analysis is performed
entirely at link-time, using stubs for standard C library func-
tions to reflect their behavior (as in other work [2]).

We evaluated Data Structure Analysis on several bench-
mark suites: the Olden benchmarks, the “ptrdist” 1.1 bench-
marks, and SPEC 2000 integer and floating point (C) bench-
marks” and a set of other, unbundled, programs. Note that
povray31 includes sources for the z1ib and libpng libraries.

Table 1 describes relevant properties of the benchmarks.
“LOC” is the raw number of lines of C code for each bench-
mark, “MInsts” is the number of memory instructions® for
each program in the LLVM representation, and “SCC” is the
size of the largest SCC in the call-graph for the program.

We evaluated the time and space usage of our analysis on a
Linux workstation with a 3.06GHz Xeon processor. We com-
piled LLVM with GCC 3.2 at the -03 level of optimization.
Table 1 shows the running times and memory usage of DS
Analysis. The columns labelled “Local”, “BU”, and “TD”
show the time spent in the three phases of the analysis.

The three largest programs in our study, 255.vortex,
254 . gap and povray31 are both fairly large and contain non-
trivial SCCs in the call graph. Nevertheless, it takes only
between 2.3 and 7.9 seconds to perform all three steps of the
algorithm on these programs. To put this in perspective, we
compared them to the total time to compile and link the
benchmarks with GCC 3.2 at the -03 level of optimization,
on the same system. Data Structure Analysis required 10%,
23%, and 31% of the GCC compile times for 255.vortex,
gap and povray31 respectively. Note that GCC 3.2 includes
no aggressive interprocedural optimization, indicating that
this is a very reasonable cost for an aggressive interprocedu-

7We omit gcc and perlbmk, which do not currently work because of
incidental bugs in our C front-end.

8Mcmory instructions are load, store, malloc, alloca, call, and ad-
dressing instructions.

ral analysis which has many potential applications.

The table shows that memory consumption of DS Analysis
is also quite small. The “Mem” column shows the amount of
memory used by results of the BU and TD the analysis algo-
rithm. The total memory consumed for the largest code (for
both BU and TD) is less than 24MB, which seem very rea-
sonable for a modern optimizing compiler. These numbers
are noteworthy considering that the algorithm is performing
a context-sensitive whole-program analysis with cloning, and
memory consumption (not running time) can often be the
bottleneck in scaling such analyses to large programs®.

The “# of Nodes” columns show statistics for the con-
struction process. “Total” is the aggregate number of nodes
contained in the TD graphs for all functions, “Max” is the
maximum size of any particular function’s graph, and “Col-
lapsed” is the total number of TD graph nodes collapsed
due to apparent type violations. In large programs, we have
found that consistently about 10% of the nodes are collapsed.
The most common reason appears to be merging of Global
nodes (e.g., all the format strings passed to printf in the
program are usually merged!), and in some cases this in turn
causes other nodes to be merged. Perhaps most importantly,
the table shows that the aggregate number of nodes in the
graphs as well as the maximum per graph both grow quite
slowly with total program size.

We have also examined the scaling behavior of the analysis
(omitted here due to lack of space). Our experience shows

9Even in the closest comparable analysis [15], for example, field-
sensitivity had to be disabled for the povray3 program for the analysis
to fit into 640M of physical memory. Judging by LOC, it also appears
that the z1lib and libpng libraries were not linked into the program
for analysis.

Code Size Analysis Time (sec) Mem (KB) # of Nodes Coll

max oll-

Benchmark LOC | Mlnsts ‘ |[SCC]| || Local BU TD Total BU ‘ TD Total | Max | apsed
Olden-treeadd 220 38 1 || 0.0003 | 0.0004 | 0.0003 | 0.001 29 25 22 8 0
Olden-bisort 316 126 1 || 0.0005 | 0.0007 | 0.0006 | 0.0018 48 42 34 9 0
Olden-mst 389 182 1 || 0.0008 | 0.0014 | 0.0011 | 0.0033 62 54 108 14 0
Olden-perimeter 430 151 1 || 0.0006 | 0.0008 | 0.0006 | 0.002 51 44 24 7 0
Olden-health 408 293 1 || 0.0008 | 0.0012 | 0.0016 | 0.0036 71 56 57 14 2
Olden-tsp 520 262 1 || 0.0007 | 0.0009 | 0.0008 | 0.0024 57 50 37 10 0
Olden-power 524 354 1 || 0.0008 | 0.0010 | 0.0008 | 0.0026 65 55 57 13 0
Olden-em3d 587 324 1 || 0.0012 | 0.0022 | 0.0024 | 0.0058 93 100 273 29 1
Olden-voronoi 982 730 1 || 0.0020 | 0.0037 | 0.0031 | 0.0088 166 150 249 44 0
Olden-bh 1391 824 1 || 0.0019 | 0.0026 | 0.0022 | 0.0067 141 119 113 11 25
ptrdist-anagram 647 271 1 || 0.0012 | 0.0028 | 0.0019 | 0.0059 111 89 163 18 11
ptrdist-ks 684 546 1 || 0.0017 | 0.0025 | 0.0022 | 0.0064 97 68 207 24 0
ptrdist-ft 1301 433 1 || 0.0013 | 0.0024 | 0.0021 | 0.0058 112 86 150 14 0
ptrdist-yacr2 3212 1621 1 || 0.0051 | 0.0078 | 0.0063 | 0.0192 222 212 369 17 0
ptrdist-bc 6627 3729 1 || 0.0099 | 0.0241 | 0.0174 | 0.0514 591 408 738 29 16
179.art 1283 919 1 || 0.0025 | 0.0032 | 0.0029 | 0.0086 117 94 235 39 0
183.equake 1513 1582 1 || 0.0031 | 0.0041 | 0.0043 | 0.0115 167 108 314 60 7
181.mcf 2412 1104 1 || 0.0022 | 0.0033 | 0.0034 | 0.0089 157 115 216 18 3
256.bzip2 4647 1723 1 || 0.0048 | 0.0077 | 0.0066 | 0.0191 269 212 425 29 16
164.gzip 8616 2634 1 || 0.0065 | 0.0101 | 0.0081 | 0.0247 333 266 610 29 9
197.parser 11391 7799 3 || 0.0254 | 0.0668 | 0.0683 | 0.1605 1039 1063 1506 60 275
188.ammp 13483 9645 2 || 0.0232 | 0.0369 | 0.0289 | 0.089 653 563 1054 64 140
175.vpr 17729 8586 1 || 0.0258 | 0.0483 | 0.0487 | 0.1228 951 894 2461 56 238
300.twolf 20459 23340 1 || 0.0388 | 0.0483 | 0.0417 | 0.1288 750 617 1262 45 166
186.crafty 20650 15866 2 || 0.0390 | 0.0981 | 0.1137 | 0.2508 916 961 1996 107 7
255.vortex 67223 39326 38 || 0.0950 | 0.9569 | 1.2428 | 2.2947 4661 6143 8597 85 606
254.gap 71363 40808 20 || 0.1252 | 2.4300 | 1.3767 | 3.9319 || 12.5MB | 12.2MB 7038 59 803
sgefa 1176 429 1 || 0.0016 | 0.0030 | 0.0027 | 0.0073 126 109 116 23 11
sim 1569 1247 1 || 0.0028 | 0.0035 | 0.0028 | 0.0091 118 80 215 28 0
burg 6438 5224 2 || 0.0165 | 0.0405 | 0.0406 | 0.0976 886 717 1614 29 162
gnuchess 10595 8058 1 || 0.0276 | 0.0689 | 0.0436 | 0.1401 889 814 2132 56 79
larn 15179 13134 1 || 0.0336 | 0.0939 | 0.0857 | 0.2132 1138 1053 2740 49 293
flex 20534 7113 3 || 0.0204 | 0.0409 | 0.0412 | 0.1025 638 608 1597 57 85
moria 36010 38299 4 1| 0.0726 | 0.2928 | 0.5492 | 0.9146 2604 4713 2433 76 386
povray31 136951 57562 102 || 0.1471 | 1.2116 | 6.5859 | 7.9446 7901 | 16.0MB || 26687 167 2573

Table 1: Program information, analysis time, memory consumption, and graph statistics

that running time appears to scale roughly as ©(nlogn) with
number of memory instructions in the program, across a
range of over three orders-of-magnitude of code size.

5. RELATED WORK

There is a vast literature on pointer analyses (e.g., see
the survey by Hind [10]), but the majority of that work fo-
cuses on context-insensitive alias information and does not
attempt to extract properties that are fundamental to our
goals (e.g., identifying disjoint data structure instances).
Due to limited space, we focus on techniques whose goals
are similar to ours.

The most powerful class of related algorithms are those
referred to as “shape analysis” [11, 9, 17]. These algo-
rithms are strictly more powerful than ours, allowing ad-
ditional queries such as “is a given data structure instance
a singly-linked list?” However, this extra power comes at
very significant cost in speed and scalability, particularly
due to the need for flow-sensitivity and iteration [17]. Sig-
nificant research is necessary before such algorithms are scal-
able enough to be used for moderate or large programs.

The prior work most closely related to our goals is the re-
cent algorithm by Liang and Harrold [15], named MoPPA.
The structure of MoPPA is similar to our algorithm, includ-
ing Local, Bottom-Up, and Top-Down phases, and using a
separate Globals Graph. The analysis power and precision
of MoPPA both seem very similar to Data Structure Analy-
sis. Nevertheless, their algorithm has several limitations for
practical programs. MoPPA can only retain field-sensitivity
for completely type-safe programs, and otherwise must turn
it off entirely. It requires a precomputed call-graph in order
to analyze indirect calls through function pointers. It also

requires a complete program, which can be a significant limi-
tation in practice. Finally, MoPPA’s handling of global vari-
ables is much more complex than Data Structure Analysis,
which handles them as just another memory class. Both al-
gorithms have similar compilation times, but MoPPA seems
to require much higher memory than our algorithm for larger
programs: MoPPA runs out of memory analyzing povray3
with field-sensitivity on a machine with 640M of memory.

Ruf’s synchronization removal algorithm for Java [16]
also shares several important properties with ours and with
MoPPA, including combining context-sensitivity with unifi-
cation, a non-iterative analysis with local, bottom-up and
top-down phases, and node flags to mark global nodes. Un-
like our algorithm, his work requires a call graph to be speci-
fied, it is limited to type-safe programs, and does not appear
to handle incomplete programs.

Fahndrich et al. [7] describe an algorithm that is context-
sensitive in a fairly limited form, flow-insensitive, and dis-
covers the call graph incrementally during the analysis. It
appears comparable to ours in terms of analysis time. How-
ever, it is implemented by naming heap objects based only
on allocation site, i.e., would not identify disjoint data struc-
ture instances in many common programs.

Both the FICS algorithm of Liang and Harrold [14] and
the Connection Analysis of Ghiya and Hendren [8] attempt
to disambiguate pointers referring to disjoint data struc-
tures. But both ignore heap locations not relevant for alias
analysis, and both algorithms have higher complexity.

Cheng and Hwu [2] describe a flow-insensitive, context-
sensitive algorithm for alias analysis, which has two limita-
tions relative to our goals: (a) they represent only relevant
alias pairs, not an explicit heap model; and (b) they use a
k-limiting technique that would lose connectivity informa-
tion for nodes beyond k links. They allow a pointer to have
multiple targets (as in Andersen’s algorithm), which is more
precise but introduces several iterative phases and incurs
significantly higher time complexity than our algorithm.

Deutsch [4] presents a powerful heap analysis algorithm
that is both flow- and context-sensitive and uses access paths
represented by regular expressions to represent recursive
structures efficiently. Although based on access paths, it
appears possible to reconstruct heap information from the
regular expressions created. In practice however, his algo-
rithm appears to have much a higher complexity than ours.

6. CONCLUSION

This paper presented a heap analysis algorithm that is
designed to enable analyses and transformations on disjoint
instances of recursive data structures. The algorithm uses
a combination of techniques that balance heap analysis pre-
cision (context sensitivity, cloning, field sensitivity, and an
explicit heap model) with efficiency (flow-insensitivity, unifi-
cation, and a completely non-iterative analysis). We showed
that the algorithm is extremely fast in practice, uses very
little memory, and scales almost linearly in analysis time
for 35 benchmarks spanning 3 orders-of-magnitude of code
size. We believe this algorithm enables novel approaches for
the analysis and transformation of pointer-intensive codes,
by operating on entire recursive data structures (achieving
some of the goals of shape analysis, with a weaker but more
efficient approach). We are exploring several such applica-
tions in our research, including automatic pool allocation
for distinct data structures into disjoint pools in the heap,
transparent pointer compression, pointer prefetching, and
automatic parallelization.

7. REFERENCES

[1] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU,
University of Copenhagen, May 1994.

[2] B.-C. Cheng and W. mei Hwu. Modular interprocedural
pointer analysis using access paths: Design,
implementation, and evalutation. In ACM Conf. on Prog.
Lang. Design and Implementation, Vancouver, 2000.

[3] M. Das, B. Liblit, M. Fahndrich, and J. Rehof. Estimating
the impact of scalable pointer analysis on optimization. In
8th Int’l Static Analysis Symp.,, 2001.

[4] A. Deutsch. Interprocedural may-alias analysis for pointers:
Beyond k-limiting. In ACM Conf. on Prog. Lang. Design
and Implementation, pages 230—241, June 1994.

[5] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without runtime checks or garbage collection. In
Proc. Languages, Compilers, and Tools for Embedded
Systems (LCTES’03), San Diego, CA, Jun 2003.

(6] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of
function pointers. In ACM Conf. on Prog. Lang. Design
and Implementation, Orlando, FL, 1994.

[7] M. Féhndrich, J. Rehof, and M. Das. Scalable
context-sensitive flow analysis using instantiation
constraints. In ACM Conf. on Prog. Lang. Design and
Implementation, Vancouver, Canada, June 2000.

[8] R. Ghiya and L. J. Hendren. Connection analysis: A
practical interprocedural heap analysis for C. International
Journal of Parallel Programming, 24(6):547-578, 1996.

[9] R. Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic
graph? A shape analysis for heap-directed pointers in C. In
Symposium on Principles of Programming Languages,
pages 1-15, 1996.

[10] M. Hind. Pointer analysis: haven’t we solved this problem
yet? In PASTE 01, pages 54-61. ACM Press, 2001.

[11] J. R. Larus and P. N. Hilfinger. Detecting conflicts between
structure accesses. In ACM Conf. Prog. Lang. Design and
Implementation, pages 21-34, July 1988.

[12] C. Lattner and V. Adve. Automatic Pool Allocation for
Disjoint Data Structures. In Proc. ACM Workshop on
Memory System Performance, Berlin, Jun 2002.

[13] C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation. In
Proc. 2004 Int’l Symposium on Code Generation and
Optimization (CGO) (to appear), San Jose, USA, Mar 2004.

[14] D. Liang and M. J. Harrold. Efficient points-to analysis for
whole-program analysis. In ESEC / SIGSOFT FSE, pages
199-215, 1999.

[15] D. Liang and M. J. Harrold. Efficient computation of
parameterized pointer information for interprocedural
analysis. In Static Analysis Symposium, July 2001.

[16] E. Ruf. Effective synchronization removal for java. In Conf.
Prog. Lang. Design and Implementation, June 2000.

[17] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis
problems in languages with destructive updating. ACM
Trans. on Prog. Lang. and Systems, 20(1), Jan. 1998.

[18] R. Sedgewick. Algorithms. Addison-Wesley, Inc., Reading,
MA, 1988.

[19] B. Steensgaard. Points-to analysis by type inference of
programs with structures and unions. In Computational
Complexity, pages 136-150, 1996.

[20] B. Steensgaard. Points-to analysis in almost linear time. In
Symposium on Principles of Programming Languages,
pages 32—41, Jan 1996.

[21] F. Vivien and M. Rinard. Incrementalized pointer and
escape analysis. In ACM Conf. on Prog. Lang. Design and
Implementation, 2001.

[22] R. P. Wilson and M. S. Lam. Effective context sensitive
pointer analysis for C programs. In SIGPLAN Conference
on Programming Language Design and Implementation,
pages 1-12, June 1995.

