Coordinating Adaptationsin Distributed Systems

Brian Ensink Vikram Adve
ensink@cs.uiuc.edu vadve@cs.uiuc.edu
University of lllinois at Urbana-Champaign University of lllinois at Urbana-Champaign

Abstract ing adaptations across multiple distributed processedeWh
there has been a great deal of research on the first three as-

Distributed applications may use sophisticated run- pects of adaptation (see Section 6), there has been little
time adaptation strategies to meet their performance work that we know of that addresses the specific prob-
or quality-of-service goals. Coordinating an adapta- lem of coordinating adaptations. Middleware or libraries
tion that involves multiple processes can require complexthat encapsulate adaptation behavior may hide this com-
communication or synchronization, in addition to commu- plexity from the application, but have to face the same
nication in the base application. We propose conceptually challenges in their own implementation.
simple high-level directives and a sophisticated runtife a Coordination is critical to maintain the correctness of an
gorithm for coordinating adaptation automatically and application during adaptation. In particular, adaptation
transparently in distributed applications. The coordina- a distributed application can require the affected praess
tion directives specifwhen to adaptin terms of the relative to communicate, synchronize, and perhaps schedule opera-
computational progress of each relevant process. The coor-tions for the future. Such coordination requirements cause
dination algorithm relies on simple compiler transforma- two potentially important difficulties. First, explicit oo
tions to track the progress of the processes, and performsdination via inter-process communication and synchreniza
the adaptive changes locally arasynchronouslhat each tion can significantly increase the complexity of adaptatio
process. Measurements of the runtime overhead of the autoin distributed programs. Second, reasonable manual imple-
matic coordination algorithm for two adaptive applicat®on mentations would typically use barriers or distributedkkc
(a parallel PDE solver and a distributed video track- but these mechanisms add overhead during normal (non-
ing code) show that the overhead is less than 1% of execu-adaptive) execution.
tion time for both these codes, even with relatively frequen In this paper, we propose a novel strategy for coordinat-
adaptations, and does not grow significantly with the num- ing adaptations in distributed applications that shiftchmu

ber of coordinating processes. of the burden to a sophisticated, transparent runtime algo-
_ rithm. The programmer uses simple directives to specify
1. Introduction criteria forwhen an adaptation must happes a function

Applications in distributed and mobile environments re- of the relative computational progress of the affected pro-
quire flexibility and robustness in the presence of ever cesses (without having to write any explicit communication
changing performance characteristics of the system. Manyor synchronization code). The adaptation is then scheduled
applications use runtime adaptations to improve overall pe automatically and efficiently by a compiler and runtime sys-
formance. An application can adapt its behavior to make tem. We develop a sophisticated runtime algorithm that co-
the most effective use of limited resources [25, 5], or to im- ordinates and schedules the adaptation operatmoadly
prove Quality of Service provided to the user [20, 23, 16], and asynchronouslgn the different processes, as specified
or to adapt to changing performance conditions on systemsby the program criteria (using simple compiler support to
and networks such as in a Computational Grid [15]. track the progress of the processes).

Implementing adaptive distributed applications, li- We evaluate the performance overheads of runtime co-
braries, or middleware can be a challenging technical andordination for two programs: a parallel PDE solver imple-
software development problem. Adaptation strategies re-menting the ghostzones adaptation from Cactus-G [2] and a
quire addressing a number of difficult issues including file-transfer program implementing key adaptations from a
performance monitoring and prediction, adaptation mech- distributed video server and video tracking code [20]. Our
anisms for changing the behavior of the code, resourceresults show that the overheads of the runtime coordina-
management and scheduling strategies for underlying systion are small or negligible, less than 1% in all cases. The
tem resources, and coordination techniques for coordinat-key to this performance is the novel asynchronous execu-

tion achieved by our runtime coordination algorithm.
Our compiler and runtime support for coordination have
been implemented in the context of Program Control Lan-

guage (PCL), a high-level language for specifying adapta-

tions within a distributed application. This choicenstfun-

damental to this work: the coordination rules could be spec-

ified and implemented even if PCL was not used to im-

plement adaptations. The coordination rules rely on iden-

tifying control flow regions within the target program, and
on tracking the relative execution progress of differeit pr
cesses with respect to instances of these regions.

Edges can represent control flow, synchronization, or
both. In particularan instance of the eddg — T5 con-
nects a pair of task instances, one eactliioand7s. This
edge instance represents ordinary control-flow if the two
task instances are executed by the same thread, and repre-
sents an synchronization operation otherwise.

The static task graph abstraction of an application need
not be explicitly constructed during development (in fact,
STG representation is directly used by the language, com-
piler or runtime system). The only necessary requirement
is for the programmer to understand the control flow of the

The next section provides some necessary backgroundgrogram around regions of the code whose behavior is di-
on PCL. The subsequent sections describe the languageectly modified by adaptation operations, in order to syecif
constructs (Section 3), the compiler support and runtime “entry points” into those regions. (In PCL, these regions in

algorithm (Section 4), our experimental evaluation (Sec-

tion 5) and a discussion of related work (Section 6). Sec-

tion 7 concludes by summarizing our contributions.

2. Background: Static Task Graph and PCL

In this section, we provide a brief description of our
adaptive framework and an implementation of it called Pro-

gram Control Language (PCL). PCL and the framework are ™~ ™ - o -
W plain the coordination strategy and its implementation in

described in more detail in [12]. That work described ho

PCL could be used to perform remote adaptation opera-

tions automatically, but hado support for automatically
coordinating adaptation operations occurring on multiple
processesin this paper, we build upon our previous work

by developing a transparent coordination strategy that can

be used with PCL or with other methods for implementing
adaptive distributed programs.

2.1. The Static Task Graph (STG)

The Static Task Graplof an application (STG) provides
a global view of the control flow of a distributed applica-
tion. Conceptually the behavior of the application can be al
tered by changing the graph.

Def. (task): A taskin a distributed program is a single-
entry, single-exit section of code executed by a single
thread and containing no synchronization operations.

Def. (statictask graph): A static task grapl{STG) is a di-

rected graph in which each node represents a task and

an edge fronil; to T, implies T} must complete be-
fore T, can begin.

Note that a task is a static entity; logically, one or more

clude the tasks that are added, removed, or have parameters
modified by an adaptation).
2.2. Basic Language Constructsin PCL

The adaptation constructs in PCL are operations that
modify program behavior by conceptually modifying the
program’s STG. Figure 1 presents a subset of PCL. We
briefly introduce the key constructs in PCL in order to ex-

PCL completely.

The user places acl _AdaptSite directive in the
code to name a location in the STG where tasks can be in-
serted and removed. The name of the adapt site must be
unique and is used by those PCL directives which insert or
delete tasks. A task is identified either by a function name
(the task is the entire function) or by a label identifying a
structured program scope. (The current version of PCL only
supports complete functions as tasks.) No other informatio
about the task graph is needed.

pcl_AdaptSite(<name>, <arg-list>);
pcl_AddTask(<adaptsite>, <task>, <P> [, <cid>]);
pcl_RemoveTask(<adaptsite>, <task>, <P> [, <cid>]);
pcl_ReplaceTask(<adaptsite>, <old-task>, <new-task>,
<P> [, <cid>]);
pcl_ChangeParameter(<name>, <new-value>, <P>);
pcl_AdaptMethod(<function>);
pcl_AsyncCall(<adapt-method>, <arg-list>);

Figure 1. Key Operations of PCL

Task graph operations includepcl _AddTask,
pcl _-RemoveTask, and pcl _ReplaceTask to in-
sert, delete, or replace a task at an adapt site in the STG.
Each operation takes arguments that name the adapt
site and the task(s) needed by the operation. In addi-

instanceof each task are created and executed at runtime,tion, each specifies the process where the operation should

possibly by different threads. A static task graph is simila
to a control-flow graph, but for a distributed program. A task
may include multiple basic blocks of the control flow graph.
This is useful because coarse-grain tasks are often sufficie
for representing the relevant aspects of distributed rogr
behavior. Tasks can be eithesmputationsynchronization

or communication tasksvhere the latter represent instruc-
tions executed for explicit interprocess communication.

be executed. Thecl _.ChangeParameter directive al-
lows the user to change the value otantrol parameter
on a target process$’. A control parameter is other-
wise an ordinary variable, so it can be used in program
control flow to change program behavior without modify-
ing the task graph.

In [12] we show that executing the adapt logic asynch-
ronously significantly decreases the overhead of using

PCL. The user writes all adapt logic in one or more sep- A simple manual implementation might synchronize the
arate functions and uses thecl _AdaptMethod di- two processes, wait for the channel to empty out, and then
rective to indicate the function contains adapt logic. Fi- switch formats in both processes in synchrony. Note, how-
nally, the user invokes the adapt method asynchronouslyever, that this synchronization is not strictly necessary;
with the pcl _AsyncCall directive, supplying an argu- it is sufficient to ensure theumber of instances of the
ment list to be passed to the adapt method. sendtask whenpcl _ReplaceTask() is performed at
3. Specifying Coordination the server matches tmymber of receive in;tancemen
. . pcl ReplaceTask() is performed at the client. The two
Requirementsin PCL counts might reach the same value at different points in
Many distributed applications use coordination tech- time. The second (“internal”) requirement above is met by
niques to coordinate and protect access to critical re-performing the adaptation before entering the encode task
sources or data. This synchronization between processesr the corresponding decode task.
may be implied by message send and receive opera- gjmilarly, Section 5.1.1 describes an adaptation of the
tions, or may be done explicitly using distributed locks and nymper of ghostzones in a parallel PDE solver. This adap-
barriers. Writing adaptive logic for such applications re- tation requires that two neighbors perform their respectiv

quires careful consideration of the implicit and explicit parts of an adaptation before the same iteration of the time-
synchronization to avoid introducing errors. step loop.

3.1. A Motivating Example More generally, we find that adaptation operations be-

Consider a simple streaming-video client and server ap-tWeen a set of processes typically require some condition
plication that supports multiple video formats. A small-por that tracks the relative progress of the processes involved
tion of the task graph of this application is shown in Fig- A generahzaﬂqn_ of t_he examples described above Woul_d bg
ure 2. Either the server or the client can monitor network that each participating process has reached some point in
conditions and change video formats to maintain some de-ItS execution relative to the initiating process and/oreoth
sired QoS metric (e.g., frame rate) as network conditions Participating processes. As a simple example, one might re-

change. The encode/send and recv/decode operations déluire that the number of instances of two tagksand 75
executed by two different processes, might be related as

Nrp, > Nr,. In practice, we have found that the simple
rule of the formNy, = Ny, (as in the two examples above)
arises most commonly. This simple rule states that all par-
ticipating processes are at teamelogical point within a
distributed computation.

Defining these coordination criteria more formally re-
quires some notion of the set of tasks that are affected by
Figure 2. Partial STG of a streaming video ap- the adaptation (such as the pair of encode-send and receive-
plication. The shaded area is region R1. decode tasks above). These tasks usually will be executed
by multiple processes, each of which may have different en-
pend on the current frame format which can be changed!ry and exit points to the tasks. The next section defines the
by replacing these two tasks. The adapt site$1 and notion of atask graph regiorthat captures the execution be-
AS2 mark the location of tasks that will be replaced by havior of a set of tasks. We use regions to enable the pro-
the adaptation. Initially, there is a task at each adapt sitegrammer to specify coordination policies that can be imple-
to encode and decode frames in format “A” as indicated in mented by the compiler and runtime system.
the figure. A single format adaptation would involve two
pcl _ReplaceTask() operations, one at each adapt site
AS1 and AS2. A PCL code fragment for this is given and Def. (region): A region of the static task graph is a sub-

3.2. Regionsand Execution Progress

discussed in Section 3.4 and Figure 3. graph induced by an arbitrary set of tagids, 7, },
Switching the video format, regardless of whether it is with the sole restriction that a thread cannot be created
performed with PCL, requires some coordination. The com- OF destroyed within the region (i.e., due to the execu-

munication channel may contain several frames and partial ~ tion of any of the tasks in the region).

frames in transit over the network. There are two require- p (region-in edge): For a regionR, aregion-inedge is
ments for synchronizing the adaptation. First, both client an edge: — b such that ¢ R andb € R.

and server should switch formats prior to the same frame.

Second, neither switch should take place while an encode-Def. (region-out edge): For a regionR, aregion-outedge
send task or receive-decode task is in execution. is an edgé — c such thab € R andc ¢ R.

A region may include one or more tasks, and may have Choicesfor Internal Policy:

one or more region-in and region-out edges. For example, Any . Atanytime

the region labelled “R1” in Fig. 2 has two region-in edges ~ Regionin : Ataregion-in edge
(executed by different processes in this case) and sipilarl ~ RegionOut . Ataregion-out edge

two region-out edges. OutsideRegion : When the region is inactive

In order to express correctness criteria in terms of the gne of these four policies will be specified as part of an
progress of tasks in the distributed program, we define theadapt operation or group of operations, as described in Sec-
following: tion 3.4.

The external constrainfThis constraint is used to spec-
ify requirements on the relative state of different papitt
ing processes. In the most general case, a scheduling pol-
icy can be a function that takes as input a sefNopairs
specifying the participating processes and the regiontcoun
Def. (region count): For a regionR and thread, the re- on each:n = {(P,, Ng(P))),...,(Py,Nr(Py))}. The

gion countNg(t) is the number of region instances function returns a set of region count values indicating
that have been completed by thread when the adaptation should be executed on each process:

Def. (active region): A region R is active in thread ata ~ Qut = {T1,...,Tw)}. This function is executed at run-
particular instant if thread is executing some task in time and can refer to internal program state. _
the regionR at that instant. We also refer to this as an [N practice, as noted earlier, we have found only two poli-
active instance of regioR. cies to be needed, and we provide simple keywords that can

be used to specify these:

Def. (region instance): A threadt begins a new region in-
stance when flow of control of the thread crosses a
region-in edge. The region instance completes when
flow of control crosses eegion-outedge.

3.3. Scheduling Semantics
With our language support, the programmer can specify Byilt-in Choices for External p0||Cy

synchronization requirements such as those for the video- Any : at any time, indepen-

server application via simple high-level declarationgh- dent of region counts.

outthe complexity, overhead, and maintenance costs of pro- EqualRegionCounters : the smallest common

gramming the necessary synchronization behavior explic- region count that can

itly into the distributed application. be reached on all pro-
We begin by defining a few key terms. |8gical adap- cesses.

tation (or simply, an “adaptation”) is a set of adaptation op-
erations that must be coordinated to perform some adaptive The algorithm implementing the EqualRegionCounters pol-
change (if using PCL, these are task graph operations listed®Y SIMPIY sets ever{/; to bemax; <;<x Nr(Fj).

in Figure 1). We assume that the coordination of adapta-3.4. Composite Operations (COPs)

tion must be done relative to some region of the task graph, A coordination policy specifies internal and external
R; in every case, we have fourRito be a small set of tasks constraints for somsetof adaptation operations. The set
affected directly by the adaptation. We define pgaetici- as a whole is treated as a single logical adaptation. In or-
pating processeas all the processes that must perform one der to specify such a set and its coordination requirements,
of the operations in the adaptation. We assume that one prowe introduce a language construct to PCL callébanpos-

cess explicitly initiates an adaptation; referred to a®tig ite Operationor COP.
inating processThe originating process may also be a par- A composite operatiod’ consists of one or more com-
ticipating process. ponent operationsp;. Our implementation uses PCL so

Fundamentally, coordinating a distributed adapta- each component operation can be any of the adapt oper-
tion comes down to a scheduling decision of when to ex- ations shown in Figure 1. Each component operatipn
ecute the adaptation on each participating procEss has a process identifid?; indicating the target participat-
There are two main aspects which influence this deci- ing process of the operation. There are no restrictions on
sion: theinternal stateof P; in terms of regionR, and the number of participating processes in a single compos-
the external stateof P; relative to other participating pro- ite operation.

cessed; ;. The list of composite operations begins and ends with
The internal constraintThe correctness of the target ap- calls to two new PCL built-in functions:

plication may depend on whether the region is active or in- int pcl _OpenComposite(void);

active on each proced3;. The user must decide how this int pcl _CloseComposite(int CID,

relationship constrains the scheduling decision. The -adap InternalPolicy 1P, ExternalPolicy EP,

tation can be performed using one of four rules: char* RegionName).

The process that executes the composite operation
is the originating process. As shown above, the co-
ordination criteria are specified as arguments to the
pcl _CloseComposite() function. InternalPol-
icy and ExternalPolicy are PCL-defined enumeration
types that take the values listed in the previous sec- Figure 4. Compiler generated code for a Region-
tion. In edge of region RGN1

int C; /* composite operation id */

whil e (RGN1_subnit Counter > 0)
Regi onWai t (RG\L) ; ;

++RGN1_r egi onCount er ;

i f (RGN1_pendi ngCounter > 0)
Commi t AnyPendi ng() ;

A

1 Cm: pcl_OpenComposite();
2 pcl_Repl aceTask("ASL", "sendTypeA", "sendTypeB', Ps, C: and the communication overhead of CORBA is not a sig-
3 pcl_ReplaceTask("AS2", "recvTypeA’, "recvTypeB’, Pc. O pificant concern (as our experimental results demonstrate)
4 if (pcl_C oseConposite(C, BeforeRegion,
Equal Regi onCount ers, "RGN1")) Each process is given a unique numligrused for inter-
5 o 1~ handle error condition process communication. The runtime library makes use of
a thread to asynchronously execute adapt logic and an ad-
Figure 3. Example of a Combined Operation ditional thread to run CORBA This prevents incoming
with Coordination Criteria and outgoing remote method invocations from interfering

with the asynchronous execution of the adapt logic. We use
RTL; to refer to the runtime library thread associated with
processP;.

The internal and externahny adaptation policies are
easy to support. The runtime system at the originating pro-
cess sends the composite operation to each participating

4. Compiler and Runtime Support

The key to the coordination mechanisms introduced in
section 3 is a novel synchronization algorithm which uses
simple compiler support to perform adaptation operations

on each participating process at the appropriate logit@lti -, ,cess, which executes it immediately, regardless abits |
We discuss the compiler and runtime support below. cal state or that of other processes.

4.1. Compiler Support The remainder of this section first focuses on the
We extended our PCL compiler to support composite EqualRegionCounters policy for external coordi-
operations and coordination. The PCL compiler is imple- nation in conjunction with theRegionin policy. We
mented using the LLVM compiler infrastructure [19]. PCL then discuss how the algorithm changes for the other poli-
compiler operates as a source-to-C compiler, and can supeies. All the algorithms below assume reliable message
port any source language compiled to the LLVM intermedi- delivery, which is possible with CORBA.
ate representation. The PCL language directives are repre- . .
sented as ordinary function calls within the input program. 4.2.1. Runtime Support on the Originator Suppose the

The PCL compiler replaces each PCL directive with code originati_ng site executes the_code of Figur_e 3.t0 create the
(primarily sequences of runtime library invocations) ta im composite operatiod’ on region ZG V1. This distributed

plement the directive adaptation has two component operations; which re-

The compiler inserts the code of Figure 4 along each Re-p:zg: : tt:l:Ii(O%ntﬁgecl?:;\:errggg;ﬁiiﬂiogéngznri\;e
gionin edge. This is the key step that requires a true com-P P

piler rather than a simple preprocessor, since this step re_refer to the originating process &sand any participating

quires correlating information from directives placed Ezﬁgfsfoifés(l)\l ote that$' could be either;, P or some
far apart in the code, namely, thpel _AdaptSite() P S S . .
pcl _Region , and pel _CloseComposite() direc. The key insight in the coordination algorithm is recog-

. . . . hizing that an adaptation which modifies multiple processes
tives. The inserted code serves three purposes. First .

: . . o heed not occur at the same wall clock time, but only at the
lines 1-2 will block if a COP is in the process of be-

ing scheduled but is not yet committed. Second, line 3 in- specified logical time on each process. Even if the logical

crements the region coui¥re 1 (P). Finally, lines 4-5 “m?s are equal (e.g., for trﬁquaIReglonCounte_rs
will call a runtime function that will execute any adap- policy), they may occur out of phase due to load imbalance

tations that have been scheduled for the current value Ofornetworklatency. Nevertheless, they can be scheduled cor

Nreni(P). These operations are described in more de- rectly as long as they s_pecify a future logical timeadfin-
tail below. This compiler transformation is straight fongda volved processes. (This property must be preserved by the

. . Ivsi scheduling function, e.g., by the useméx; < ;< v Nr(F;)
i-@- rwﬁﬁméo%ﬁgﬂve anayysis. for EqualRegionCounters). The adaptation operation

The PCL runtime library uses CORBA [30] to commu-
nicate with the respective runtime libraries of other pro- 1 CORBA may internally create additional threads to handé®ining
cesses. The use of CORBA simplified the implementation, ~ and outgoing remote method invocations.

on each process can be executed locally at the scheduled CloseCompositeOp(COPC)

time. The region count mechanism records the logical pro- v ParticipatorsP; € C
gression of time. v g‘g’gi’;?,iﬁoﬁgtgocmp”“wp(C) on P

T_he pseudo_-code which executes when a composite op- ;ecv_ﬁR(ji()Pj‘roln\}PZP‘))
eration closes is shown in Flgu_re 6_. The originating site per Out= S;edu,e",;,goﬁmr;m
forms three main steps shown in Figure 5. Assurpés the Y T; € Out _
originator. First, it send€’ to all participating processes, v P e uleompositeOp(@, T on Py
i.e., toP, andP.,. recv ACK from P;

After sendingC, the originating process waits for a re- SubmitCompositeOp(COPC) ScheduleCompositeOp(COPC, int T5)
ply containing the region count from each participant. The R = Region(C) R = Region(C)
originating process builds a set of (process, region-gount A L ?”Z?d"(”cefc)
pairs. In this example, the set would be: S = originator(C) ++pendingCountern

sendN g (Pipis) 105 —submitCounterp
{(Ps*a NRGNl(R@)), (Pc, Ngran1 (PC))} if submitCounterg ==

notify(R)
When all replies have been receivédgalls the scheduling
algorithm passing it the region counts. The algorithm re- Figure 6. Coordination Algorithm. For sim-
turns another seftT, 7.} which indicates the region-count plicity, the timeout logic for ACKs is omitted
time when each participating process must execute the com-
posite operation, wherg, > Ngani1(P;).

Finally, the originating process musbmmitthe adapta- At point (2) in Figure 5 the participar®; has received a
tion on each participating process by sendindl’; to each composite operatio@ for regionRG N1. The runtime sys-
process. Each participating process replies with@n and tem increments gaubmit countewhich counts how many
after allack s have been received the composite operation composite operations have been received but not yet com-
is committed although the component operations may not mitted, and puts”' on the submit listwhich temporarily
have been executed yet on their target processes. holds COPs until they are committeB; then reads the re-

The key to the correctness of this algorithm is the as- gion countNgqy1(P;) and sends it to the originating pro-
sumption that the input region count values for each par- cessS. The execution of the target application on the par-
ticipating site will continue to be valid from the time they ticipant is allowed to continue unless it attempts to enter a
are first sent until the adaptation is committed (i.e., betwe new region instance.
points (2) and (4) in Figure 5. This ensures that no partic- P; performs the steps shown in Figure 6 when it receives
ipating site will begin a new region instance until after the a commit message (point (4) in Figure 5) for region count
composite operation has been committed, although it canZ; from the originator. If the target application had been
execute other unrelated code. This is guaranteed by the runblocked because it attempted to enter a region it will be no-
time system on each participating process, as follows. tified and allowed to continue. If it was not blocked it will

) o continue without any knowledge of the new composite op-
4.2.2. Runtime Support on Participators The RTL on gration or any of the steps taken to commit it at tife
each participant is resp(’)n5|ble for two things. First, isu After the PCL runtime on?; schedules”, the adapta-
guarantee the originator's assumption that no new regionin yjon, will be executed at tim@;. The code of Figure 4 exe-
stance is entered from the time it reads the region instance; o5 any pending composite adaptations for the current re-
counter until the adaptatlon is pomm|tted. Second it mustgiOn count, at each Region-In edge. When an operation
execute the committed adaptation locally according to the ;g ramoved from the pending list it is executed locally.

schedule specified by the originator. This combination of distributed scheduling and local ex-
ecution allows a complex distributed adaptation to be coor-

(D ubm ! cop . dinated without the use of expensive barriers and distibut
region instance :())new regi on locks. The video server could even send all frames, schedul-
(3 S "Bl ocked ing adaptations on itself and the client and performing adap
Originating ackco ! Participating tations locally, and then exit before the client receives a
: node single frame. When the client begins receiving frames it
(5) will execute each adaptation locally at the scheduled regio

. L count time and all frames will be received correctly.
Figure 5. Messages sent between the originating

site and each participating site 4.2.3. Other policies The discussion above focused on
the EqualRegionCounters and Regionln policies.
The RegionOut policy will execute the adaptation on a

region-out edge of the region, which can be implemented extern void Adapt(...):

in the same way as olRegionin policy. TheOutside pc: _égiapt NF}DhOd(Adapt')';\IeV\GZS' .
policy indicates the adaptation should be performed when ~ P¢'-Controt Parameter(Hzet)
some regionR is not active. Implementing this would re- while (/* continue */) {

pcl _Regi on("RG\1") ;
pcl _AdaptSite("AS1", ... /* args */);
/* update ghostzones if necessary */
/* conmpute matrix */
if (nlterations \% ADAPT_PERI OD)
pcl _AsyncCal | (Adapt, ... /* args */);

quire a mutex for each region, which is locked along every
region-in edge and unlocked along every region-out edge
on each process. The mutex would be acquired before exe-
cuting the adaptation. This is more expensive than our cur-)
rent implementation of thRegionin policy, but we have
not found applications where it is strictly necessary. void Adapt(...) { ...
. . 10 C = pcl _OpenConposite();

A longer version of the current paper [11] diSCUSSES 11 pcl_ChangePar amet er (" NewcZSi ze", gSize, Q):
other key algorithmic issues, including why the algorithm 12 pcl_ChangePar amet er (" NewGZSi ze", gSize, rank-1, C);
. 13 pcl _AddTask("AS1", "ChangeAboveGhostsize", O);
is deadlock-free, why a centralized originating process is 14 pci _AddTask("AS1", "ChangeBel owGhost si ze". rank-1, O):

unlikely to be a significant bottleneck, and the effect ofnet 15 pcl _d oseConposi te(C, , S
work Iatency Bef or eRegi on, Equal Regi onCounters, "RG\N1");

5. Experience and Results
In this section we first discuss our experience with im-

plementing two distributed adaptations using the coordina Adding the ghostzone adaptation only required writing
tion strategy described here, and then present experimentazode to update the solver data structures (which must be
results for the overhead and Scalability of our coordimatio written regard|ess of how adpatation is imp|emented or co-
algorithm. ordinated), plus a small amount of PCL code, shown in Fig-
5.1. Applications ure 7. Briefly, the adapt method in this PCL code examines

One of the challenges in the topic addressed here is thatPerformance metrics (not shown) and may issue the com-
to our knowledge, there are no realistic adaptive disteut POSite adaptation operation shown. Each process monitors
applications in the public domain, even though several havePerformance and adapts the ghostzone size at only one of its
been mentioned in the literature (e.g., [25, 13, 21, 20]). To two boundaries to avoid competing adaptations. The com-
support our research, we wrote simple but representativeP0site operation changes the control paramétewGZ-
versions of two adaptive codes that capture key adaptationSiZ€ On both participating processes and then inserts a task
behavior in real codes. One is a simple PDE solver with which will read the new value of the control parameter and
a distributed ghostzone adaptation similar to CactusG [2]. change the data structures of the PDE solver.

The second is a model video tracker in C with similar adap- In the absence of our language support for coordination
tations to those in the video tracking code. Due to space lim-the user would have to use primitive distributed coordina-
itations we On|y br|eﬂy describe these two app"cations_ A tion methods such as a barrier. Such a barrier would need to

more complete description can be found in [11]. be passed averytimestep rather than only those timesteps
when an adaptation is scheduled.
5.1.1. PDE solver We have implemented a simple PDE

solver with adaptive ghostzones, similar to [2]. We used a 5.1.2. Distributed Video Tracking Model In a dis-
one dimensional decomposition to simplify the paralleliza tributed video tracking application [20], a video server
tion of the problem, but this does not reduce the complexi- sends a stream of individual image files to each client. The
ties of distributed coordination. files may be raw or compressed depending on the CPU and
Ghostzones are used in domain-decomposition-basedetwork load at the server to each client. This was the exam-
PDE solvers to hide network latencies by replacing many ple we used in the language and algorithm sections 3 and 4
smaller messages by fewer but larger messages, but at thand a partial taskgraph of this application is shown in Fig-
cost of some redundant computation. If there @rghost- ure 2.
zones on the boundary then each pair of adjacent processes Each client must be informed when the server switches
will have to exchangé&s rows of data every- iterations, compression. Coordination is required to prevent the tlien
and each process perforras— 1 rows of redundant com- from incorrectly interpreting the data. The distributed co
putation at each boundary. The ghostzones adaptatiorordination support of PCL allows the adaptation to happen
changes the value @ at a particular boundary, to main- without adding any additional meta-data to the data stream
tain computational efficiency under varying network con- to notify the client, or writing explicit messages to do so.
ditions. Coordination is required so that any changé&to Rather, the runtime system handles all the necessary coor-
occurs at the same logical time step on any pair of adja-dination to prepare each client to receive the correct frame
cent processes. type when the server adapts.

UM WNPE

}
Figure 7. PCL code fragment for PDE solver

C = pcl _OpenConposite();

if (/* add conpression */) {
pcl _AddTask("AS1", "ConpressBlock", O);
for (/* each client dest */)

pcl _AddTask("AS2", "DeconpressBl ock", dest, C);

ticipating processaybe blocked by the runtime system for
a short time before the adaptation is committed.

Figure 9 shows the execution times and percent overhead
of each program. The overhead is lower than 1% in all cases.
The overhead is very low for several reasons. First, thetadap

else if (/* renpve conpression */) {
pcl _RempveTask("AS1", " ConpressBlock", C); logic on the originating process is executed asynchrogousl
for (/* each client dest */)

to the base application which allows the application to con-
} ' ‘ tinue forward progress. Second, costly network messages
pcl _C oseConposi te(C, BeforeRegion, . . .

Equal Regi onCount ers, "RGNL"); are requireanly when an adaptation is needed and not also
in the steady state. Finally, the region code of Figure 4 will
only block the base application if a composite operation is
being schedulednd the application attempts to enter the
region. If the application is not currently executing th&tp

The code fragment in Figure 8 is part of the servers of the code then the application will not be blocked dur-
adapt method which decides whether it should start send-ing scheduling.

ing compressed or raw data. The code fragment will add a
component operation t6' to add or remove the appropri-
ate task for every client destination.

pcl _RenoveTask("AS2", "DeconpressBl ock", dest, O);

Figure 8. PCL code fragment for video server

Number of Nodes

7 14 21
5.2. Experiments PDE solver| no adaptationd 937.73| 387.16 | 262.24
Two aspects of our algorithm are important to evaluate: adaptive | 939.56 | 387.96 | 264.18

overhead 0.20% | 0.21% | 0.74%
adapt. period | 37.6 155 10.5

File Copy | no adaptationy 481.26 | 481.64 | 482.32

adaptive 482.10| 483.38| 482.73
overhead 0.18% | 0.36% | 0.07%

the overhead introduced by the coordination algorithm and
the scalability of the algorithm as the number of participat
ing processes grows.

To perform our experiments we ran two versions of each
of the above applications. The first version had adaptation
disabled. The second version used a fixed sequence of adap-
tations but these adaptations did not actually change pro-
gram behavior, so that the only difference compared with
the first version would be the overheads of the adap_tation.5'2_2. Scalability We used the video server program to
(The PDE_ solver always used the same ghostzone size of]evaluate scalability since its adaptation invols pro-
and the video server always used raw blocks). The full COStcesses. We variedV and measured the execution time

of coordinating and executing the composite operatiortis in of the coordination algorithm, using thBeforeRe-

flljjrzged in every case. All numbers are the average of threegion . EqualRegionCounters policy. (Using a

. . different scheduling policy discussed in 3.3 will not signi
Each measurement of the PDE solver is for 500 itera-

. S cantly change the scalability results because each digorit
tions on a square matrix with 10,000 rows and columns par- oy« jtes on a single processor and compares Sriyim-

titioned among the processors. The adaptive version issuee g The hulk of the execution time of the algorithm results
an adaptation every 20 iterations. The video server sent &, network messages.)

“videq” consisting of 12,000 frames of about 8K each, and Figure 10 shows the average time to execute the coor-
s:ustalneq a _rate %f aboudt 25 fr.ames per seccf)nd. The adapdination algorithm with/V participating processes. The av-
tive version issued an adaptation every 100 frames, Or ev-g .o avacution time of the coordination algorithm for the
ery'4 sgcor]ds. The frgqgency of adaptghon |n.b0th appll'PDE solver was 0.093 seconds. As the figure shows, the
cations is higher than is likely in production environments coordination algorithm appears to scale very well although

further increasing the observed overhead. there is a somewhat high fixed cost. This indicates the fixed
All of our measurements were performed on a number of -t is aimost all network latency, not CPU overhead.
Sun Ultra-10 and Sun-Blade-1000 workstations connected Overall, the experimental results show that using our al-

by a 100Mbps LAN throughout our department.

Figure 9. Overhead measurements (seconds)

gorithm for coordinating distributed adaptations is bdth e

5.2.1. Overhead The coordination algorithm introduces ficient and scalable.

overhead into the distributed application in two different 6. Related Work

ways. First, the adapt method is invoked asynchronously in ~ There have been a number of programming languages
both programs by a separate thread. This thread and the apaimed at simplifying different aspects of distributed com-
plication thread compete for CPU time. Second, each par-puting, e.g., Lynx [28], Emerald [17] and SR [3]. Some lan-

: —_——— such as Quality-of-Service in distributed network applica
number of clients (+1 for number of participating sites) . L
6 31 20 1 30 1 40 1 50 1 60 | 70 | 80 tions [20, 5, 7], fault-tolerant distributed systems [9]p-m

0111012 012 0151 014 013 010 012 0.12 b_ile applications [25, 13], and distributed scientific apg
tions [4, 26, 1]. Because these systems share some of the
goals of PCL (in terms of simplifying adaptive distributed
applications), and they are described and compared with
PCL in [12]. To our knowledge, these systems do not auto-
mate the task of coordinating adaptation operations on mul-
tiple processes; this coordination must be explicitly man-

guages such as Strand [14] expose a mix of standard syn;Clged by the programmer

chronization and shared memory mechanisms as language There are sophisticated distributed algorithms for a wide

constructs. There have also been specific "”?”guage meChr'ange of distributed coordination problems, including mu-
anisms such as Java RMI and standard middleware sys:

tual exclusion, logical time and logical clocks, global gha
tems such as CORBA_‘ [30_]’ DCOM [24] _and Java Beans. shots, distributed consensus, and concurrency contrel. Th
All these systems primarily focus on high-level mecha-

: e concepts of logical time and global snapshots on the sur-
nisms for remote communication, resource management

. : face appear related to our language mechanisms for speci-
and scheduling. We are not aware of a programming lan- PP guag b

fying a correct logical state in which adaptation should oc-

guage that spemﬂcally focus_es_on enabling runtime adapta-cur_ In fact, however, all of those concepts rely on commu-
tion in either sequential or distributed programs.

ication events in a distributed computation to identifg th
Researchers at BBN Systems have developed powerfulg P fy

middleware for reliable and adaptive distributed Svstems rogress and ordering of events across processes. In con-
' W ' ptive distribu y "trast, regions and region counts are purely local propertie

Their _plat_forms mglude distributed coordination and syn- within each process or thread, and are not defined in terms
chronization techniques for resource management and shar:

ing in th f 00S traints 122 271 and f of communication operations. Our runtime algorithm for
Ing In the presence o QO constraints [22, 27] and for co- scheduling adaptation operations is closer to some of the al
ordinating and scheduling real time systems [10]. To our

..._gorithms mentioned above. Our algorithm is relatively sim-
knowledge, however, none of the work proposes specific

) L . i ple and uses centralized decision making at the initiating
support for coordinating distributed adaptations fromhhig site because, in practice, we expect each logical adaptatio
level specifications, which has been the focus of this pa ' '

: ; P“"to involve a relatively small number of processes. Never-
per. Our algorithm cogld be useful not JusF at_the appl_|ca- theless, some of the techniques in existing algorithmah(suc
tion Ieve_l b.Ut als_o fqr implementing coordination require- as those for distributed consensus or leader electionficoul
ments within their middleware. be used to implement more sophisticated synchronization

" Chehn etal [2] d?_scrlpe ba sygtem _f(:)r rtyn_nme adapta- strategies, particularly in the presence of unreliable com
ion where coordination is based on identifying message . i w000t hode or process failures.

flows through an adaptive component. An adaptation re-]
places an old algorithm module with a new one and occurs 7. Conclusion
in three steps: Preparation, Outgoing Switchover, and In- In this paper we presented language mechanisms, com-
coming Switchover. A global barrier is needed after the first piler support, and a novel runtime algorithm for coordinat-
step to ensure that all adaptive components are ready to reing adaptations in distributed applications. The langutige
ceive new messages. The PCL coordination approach rerectives allow programmers to specify coordination resuir
guires no such barrier because adaptations are scheduled fanents in simple high-level terms, without explicit commu-
a future agreed-upon time for all adaptive components. nication or synchronization. Our runtime algorithm sched-
Workflakes [29] is an externalized dynamic adaptation ules the adaptation operations to be executed locally and
platform that works by superimposing a performance feed- asynchronously (using logical times based on computa-
back loop onto an existing distributed system. Workflakes tional progress rather than application messages), getyin
performs adaptations externally and at the process lewél, a simple compiler support to track computational progress.
the system does not provide specific features for adding per- The main limitation of our approach is that it focuses
formance monitoring or adaptation “effector” mechanisms on coordination rules based on the relative flow of execu-
(these must already exist in the target application). Tlse sy tion of different processes. In future work, it would be in-
tem provides sophisticated mechanisms programmers caneresting to extend the approach to other potential coordi-
use to control the operations of the effector mechanisms,nation requirements. Within these limitations, however, o
but does not automate this process — it must be specifiedapproach has several advantages. First the coordination re
manually by the programmer. guirements can be expressed by a single process, indepen-
A number of other middleware and runtime systems also dent of the actual processes where the actual adaptations
support dynamic adaptation [6, 18], many for specific goals occur. Second, the expense of coordination is incurred only

Figure 10. Scalability measurements, all
times in seconds (bottom row)

when needed, rather than continuously as would be the cas§l4] 1. Foster. Strand and pcn: Two generations of comparsiti
with barriers or distributed locks. Furthermore when coor-
dination is required for an adaptation the overhead is mini- [15]
mal, and the algorithm is very scalable. Third, the runtime
library implements all remote communication to schedule [16]
and execute the adaptation, sparing the user from the dif-
ficulties of writing another level of communication specifi-
cally for coordinating adaptations.

References

(1]

2

—

(3]

(4]

5

—_

(6]

(7]

(8]

&)

(10]

(11]

(12]

(13]

V. S. Adve et al. Model-Based Control of Adaptive Applica
tions: an Overview. IProc. IPDPS 2002 Workshop on Next
Generation Systembt. Lauderdale, FL, Apr. 2002.

G. Allen et al. Cactus-G Toolkit: Supporting Efficient £x
ecution in Heterogeneous Distributed Computing Environ-
ments. InSupercomputing 200Nov. 2001.

G. R. Andrews et al. An overview of the SR language and
implementation.ACM Trans. on Prog. Languages and Sys-
tems 10(1):51-86, Jan. 1988.

F. Berman and R. Wolski. The apples project: A status re-
port. InProc. 8th NEC Research Symposjurio7.

V. Bharghavan et al. The TIMELY adaptive resource man-
agement architecturéEEE Personal Communications Mag-
azine 5(4), Aug. 1998.

G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. An
architecture for next generation middleware Pimceedings

of the IFIP International Conference on Distributed Syséem
Platforms and Open Distributed Processjrigopndon, 1998.
Springer-Verlag.

J. Bolliger and T. Gross. A Framework-Based Approach
to the Development of Network-aware Application&EE
Trans. on Software Engineering4(5):376—-390, May 1998.
W.-K. Chen, M. Hiltunen, and R. Schlichting. Construngi
adaptive software in distributed systems.Proceedings of
the 21st International Conference on Distributed Compyitin
Systemgpages 635643, Mesa, AZ, April 2001.

M. Cukier et al. AQUA: An Adaptive Architecture That Pro-
vides Dependable Distributed Objects. Pnoceedings of
the 17th IEEE Symposium on Reliable Distributed Systems
(SRDS’98) pages 245-253, West Lafayette, Indiana, Octo-
ber 1998.

L. DiPippo et al. Towards reducing the complexity of
adaptive real-time large-scale distributed embedde@sByst
IEEE Workshop on Large Scale Real-Time and Embedded
Systems, 2002.

B. Ensink and V. Adve. Language support for coordinat-
ing adaptation in distributed systems.
UIUCDCS-R-2002-2309, University of Illinois at Urbana-
Champaign, December 2002.

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Technical Report [28]

B. Ensink, J. Stanley, and V. Adve. Program Control Lan- [29]

guage: A Programming Language for Adaptive Distributed
Applications. Journal of Parallel and Distributed Comput-
ing, 63(11):1082-1104, Nov. 2003.

J. Flinn and M. Satyanarayanan. Energy-Aware Adaptati
for Mobile Applications. InProc. 16th ACM Symposium on
Operating System PrincipleBec. 1999.

[30]

programming languages, 1993.

I. Foster and C. KesselmaiThe Grid: Blueprint for a New
Computing InfrastructureMorgan Kaufman, Inc., 1999.

A. Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapt-
ing to network and client variability via on-demand dynamic
distillation. InProceedings of ASPLOS-VYIDct. 1996.

E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-gradh
mobility in the Emerald systemACM Trans. on Computer
Systems6(1):109-133, February 1988.

Y. Krishnamurthy, V. Kachroo, D. A. Karr, C. Rodrigues)d

D. C. Schmidt. Integration of qos-enabled distributed ob-
ject computing middleware for developing next-generation
distributed applicationACM SIGPLAN Notices36(8):230—
237, 2001.

C. Lattner and V. Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation.Rroc.
2004 Int'l Symposium on Code Generation and Optimization
(to appear) San Jose, USA, Mar 2004.

B. Li and K. Nahrstedt. A Control-based Middleware Fexm
work for Quality of Service AdaptationdEEE Journal on
Selected Areas in Communicatiofg(9):1632—1650, 1999.
J. Linderoth and S. Wright. Implementing Decompositio
Algorithms for Stochastic Programming on a Computational
Grid. Technical Report ANL/MCS-P909-0101, Argonne Na-
tional Laboratory, Jan. 2001.

J. Loyall, R. Schantz, P. Pal, J. Zinky, and M. Atighetch
Emerging patterns in adaptive, distributed real-time, edab
ded middleware.OOPSLA 2001 Workshop on Patterns for
Distributed Real-time and Embedded Systedtt. 2001.

M. Mcllhagga, A. Light, and |. Wakeman. Towards a de-
sigh methodology for adaptive applications.Aroc. 4th An-
nual ACM/IEEE Int'| Conf. on Mobile computing and net-
working, pages 133-144. ACM Press, 1998.

Microsoft. DCOM technical overview. Microsoft Windeswv
NT Server white paper, Microsoft Corporation, 1996.

B. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tjlton
J. Flinn, and K. Walker. Agile Application-Aware Adapta-
tion for Mobility. In Proc. 16th ACM Symposium on Operat-
ing System Principle®ct. 1997.

A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg
K. Roche, and S. Vadhiyar. Numerical Libraries and the
Grid: The GrADS Experiment with ScaLAPACK. Techni-
cal Report UT-CS-01-460, U. Tennessee, 2001.

R. E. Schantz, J. P. Loyall, C. Rodrigues, D. C. Schmidt,
Y. Krishnamurthy, and I. Pyarali. Flexible and Adaptive
QoS Control for Distributed Real-time and Embedded Mid-
dleware. Submitted to Middleware 2003.

M. L. Scott. The Lynx Distributed Programming Language
Motivation, Design, and Experienc€omputer Languages
1991.

G. Valetto and G. Kaiser. Using process technology to-co
trol and coordinate software adaptation. Rroceedings of
the 25th International Conference on Software Engineering
pages 262-272, January 2003.

S. Vinoski. CORBA: integrating diverse applicationghin
distributed heterogeneous environmehEEE Communica-
tions Magazinel4(2), 1997.

