
 

 

D
iv

is
io

n
 o

f 
C

o
m

p
u

te
r 

S
ci

en
ce

 a
t 

th
e 

D
ep

ar
tm

en
t 

o
f 

In
fo

rm
at

ic
s 

an
d

 M
at

h
em

at
ic

s 
 DEGREE PROJECT 2004:PM08 

 
 

 

Anders Alexandersson 
 
 
 
 
 

RubyComp 
 
A Ruby-to-LLVM Compiler Prototype 



RubyComp - A Ruby-to-LLVM Compiler Prototype

Anders Alexandersson
Dept. of Computer Science

University of Trollḧattan/Uddevalla
Sweden

anders.alexandersson@student.htu.se

Abstract

Dynamic programming languages are not generally pre-
compiled, but are interpreted at run-time. This approach
has some serious drawbacks, e.g. complex deployment, hu-
man readable source code not preserving the intellectual
properties of the developers and no ability to do optimiza-
tions at compile-time or run-time.

In this paper we study the possibility to pre-compile the
Ruby language, a dynamic object-oriented language, into
Low Level Virtual Machine (LLVM) code for execution by
the LLVM run-time, a compiler framework for lifelong op-
timization of an application. The result of the project is a
Ruby compiler prototype, describing the infrastructure and
overall design principles to map the highly dynamic prop-
erties of the Ruby language into low-level static constructs
of the LLVM language.

The LLVM framework supports different hardware plat-
forms, and by using LLVM as the target of compilation the
benefits of that portability are gained.

1. Introduction

Software engineers have historically used models such as
the waterfall model [18] to develop software, which were
simple flows from specification through analysis, design,
implementation and testing. These early models were very
formal and it was easy to divide the work on different ex-
perts. The problem, however, was when a change was
needed, since the models did not embrace alterations of the
initial specification. Over time more flexible processes de-
veloped as e.g. the Unified Process (UP) [13], that con-
tained processes specifically dealing with change, to bet-
ter cope with customer updates and new requirements. In
UP an initial specification is made, after which a prototype
is developed and presented for the customer, who can give
feedback, should something need to be changed. Other ex-
amples [20] of models embracing change are exploratory

development, throw-away prototyping, incremental devel-
opment, spiral development and recent arrivals like extreme
programming.

This trend of development by prototyping created a need
for programming languages that were easy and quick to use,
in order to easily develop the prototype. Languages such as
C/C++ and Java have a complex and sensitive syntax, where
a small error generates compile-time failures. These lan-
guages are hard to work with when quick experiments are
wanted, and are therefore not suitable for fast prototyping.

One answer to this problem are the dynamic languages,
which do not require detailed specifications on variable
types, return types etc. at the time of programming but are
able to solve that automatically at run-time. The program-
mer simply creates the logic, and the language itself takes
care of the syntactic details. However, this flexibility comes
with a price - performance. In [4] it is shown that the dy-
namic object-oriented language Smalltalk had only 5-20%
of the performance of C programs. The reason for this loss
of performance is the fact that the program is interpreted at
run-time, requiring extensive processor resources.

Therefore it would be desirable to be able to compile
the dynamic programs to native code, or at least closer to
it, to minimize the processor load of transferring the pro-
gram from a high-level language into a low-level language
at run-time. Then, the processor would primarily deal with
executing the program itself and not with the overhead of
interpretation.

One example of a relatively new dynamic programming
language is Ruby [21]. It was developed by Yukihiro Mat-
sumoto and publicly released in 1995, and has since then
grown at an astounding rate in Japan. Its popularity can
be explained by its integration of the power of object-
orientation, the convenience of scripting languages, the sim-
ple and transparent syntax and the open source license [21].

In this paper we focus on emitting Low Level Virtual
Machine (LLVM) code [16]. LLVM is a compiler frame-
work for lifelong optimization of an application from initial
compilation and optimization to analyses of execution on



the end-users machine with following dynamic reoptimiza-
tions and recompilations.

By using this framework the benefits of the continu-
ous optimizations and the LLVM built-in support for dif-
ferent processor architectures are gained, currently x86 and
SPARC V9 [17]. In this way the Ruby program is only
needed to be compiled once into LLVM code, and the
LLVM compiler framework takes care of the rest, down to
the native code of a specific processor architecture, analo-
gous to the Java Virtual Machine and its byte-code.

The goal of this paper is thus to study the feasibility of
and present a design of a Ruby compiler prototype, that
transforms Ruby source code into LLVM code executable
by the LLVM run-time, at the same time preserving the dy-
namic properties of the Ruby language, including the pos-
sibility of updating the source code at run-time.

In section 4 the limitation of this project is defined, and
in sections 5 and 6 the compiler- and run-time architectures
is presented. In section 7 follows a discussion on supporting
Ruby dynamics, and finally in sections 8-11 results, con-
clusions, suggestions for future work and overall discussion
can be found.

2. Background

The term dynamic programming language can be defined
as a programming language in which programs can change
their structure as they run [23]. New functions or classes
can be introduced, overriding or replacing old ones at run-
time.

Much work has been made on the diverse issues of the
compilation of dynamic languages. In [3] the Self (a lan-
guage related to Smalltalk) compiler is described, and how
to map the dynamic language Self to optimized native code
using a collection of optimizing techniques such as type
analysis, customization, splitting etc. The focus of this
work is to analyze the program and replace complex struc-
tures, as e.g. messages and polymorphic methods, with sim-
pler and thus faster constructs. The result is a performance
of half that of a C program.

In [1] it is argued that the flexibility of the dynamic lan-
guages is good in exploratory programming, as in proto-
types, but that the same dynamic properties limit the type-
safety checking and optimizations at delivery time. This
work deals with solving dynamic inheritance, primarily for
Self, but the technique applies to other languages as well.

Further in [22], the issue of the bad performance of dy-
namic languages is discussed when making a method call
to a class, which has to be recursively resolved at run-time
by following the tree of inheritance. According to the au-
thors, this is a common phenomena in many languages, also
in static languages including C++, as not even then the tar-
get of a call is always known at compile-time. If the target

of a particular call could be determined at compile-time,
the cost would be no more than any regular function call.
The authors in [22] present a fast and intuitive technique for
generating compact selector-indexed dispatch tables, which
boosts performance considerably.

In [2] a study of how the dynamic language Kawa, a di-
alect of Scheme [10], is compiled into Java byte code is
described. The authors utilize e.g. the JavaClassLoader
to dynamically load source code entered at run-time. In a
related work [19] extensions to the Java Virtual Machine is
suggested in order to add support for dynamic languages,
and it is argued that by using Java as the target of compila-
tion, practically any hardware in the world can be reached.

In this paper LLVM is the target of the Ruby compilation
due to the hardware portability offered, and also partly due
to the lifelong optimization techniques. The LLVM run-
time uses a jitter to load code dynamically, and as the main
difficulty of compiling Ruby is the fact that the program can
be updated during run-time, this feature is a prerequisite.

As all classes in Ruby are open, i.e. extendable at any
time, a user can add new methods to classes, replace meth-
ods or add new ones. Because of this, any part of the pro-
gram has to be recompilable during run-time, which puts
considerable demands on the compiler- and run-time archi-
tecture compared to a static language compiler. In this paper
suggestions for such architectures, in collaboration with the
LLVM framework architecture, are proposed in sections 5
and 6.

3. Methodology

In this project a step by step approach is used to be able
to develop independent parts of the prototype separately.
The details of these steps can be found in Appendix A. The
overall process is to implement the first steps of Appendix
A in LLVM code manually, which represent the core of
the run-time architecture as described in later sections, after
which the same code is created automatically.

Also, the architects of the LLVM framework have of-
fered support on the LLVM developers mailing list [14], re-
garding the low-level details of the LLVM run-time, and the
LLVM syntax as a whole.

4. Limitations

This project serves only as an overall proof of concept.
Therefore, there is no support for the complete Ruby class
library or non-trivial concepts as e.g. threads, files, garbage
collection etc., but focus is on the core infrastructure of
representing classes, function calls and inheritance, as de-
scribed in Appendix A, with special focus on preserving the
dynamic Ruby properties.



5. Design of Compiler Architecture

The overall focus regarding the compiler architecture is
to describe a core design, supporting the most basic con-
cepts as classes, method calls etc., at the same time being
flexible enough to allow smooth future extensions.

Below follows a presentation of the actual implementa-
tion of the prototype [9], along with theoretical suggestions
on how to realize topics not yet implemented. A more ex-
tensive theoretical discussion of future work can be found
in later sections.

5.1. Overview

The compiler itself is completely written in Ruby. Ini-
tially, the compiler takes the Ruby source code and parses
it into an abstract syntactic tree (AST). The resulting AST
is then processed and a model of the LLVM program is cre-
ated. When the AST has been completely processed, and
the model is complete, the model is transformed into LLVM
code by a simple mapping. An overview of the compiler
architecture is seen in figure 1.

However, to be able to handle dynamic updates during
run-time, the compiler has to be linked in together with the
program being executed, and thus reside as LLVM repre-
sentation during run-time as well as an initial stand-alone
application.

The implementation of the integration of the compiler, as
LLVM representation, is outside the scope of this project.
Theoretically however, the compiler could be applied on
itself generating the compiler LLVM representation, and
linked into the compiled application. Also, the LLVM jitter
could be integrated in the same binary, to further simplify
deployment and eliminate the need for any LLVM installa-
tion on the user system. These integration topics are further
discussed in later sections.

This paper presents an LLVM Modelling Layer (LML),
which serves as a framework of classes that can be used
when processing the AST, hiding the complexity of the
LLVM syntax, and generates the LLVM representation au-
tomatically. An LLVM Abstraction Layer [8] is used in the
modelling phase.

5.2. Parser

For generating ASTs for experimental purposes the
Rockit parser [6] has been used.

However, the details of the parser do not affect the mech-
anisms in the translation process between the AST and the
LLVM representation, and therefore the processing of the
AST is not elaborated on here.

Thus, any parser can be used, although it is preferable
that it is written in Ruby, in order to be able to apply the

Figure 1. Compiler architecture.

compiler on itself, generating the integrated compiler, as
described earlier in section 5.1.

If another language is used for the parser, an LLVM com-
piler for that language is needed. The architects behind
the LLVM framework provide a complete C/C++ to LLVM
compiler [17], which could be used.

5.3. LLVM Modelling Layer

The LLVM application model in the LML is built of
classes representing the LLVM concepts, which can be
mapped into a sequence of LLVM instructions.

Below is a summary of the currently implemented
classes in the LML. A Class diagram of the most important
classes can be found in Appendix B, and an emitted source
code example in Appendix C.

1. LLVMApp

The LLVMApp class represents the complete LLVM
application. As an LLVM application has very much
the same structure as a standard C program, the
LLVMApp defines different sections for constants,
function declarations, function definitions and main.

These sections are defined by the use ofSequence
classes [8] which are merely arrays of LLVM instruc-



tions. Instructions can be added to anLLVMAppsec-
tion simply by calling methods on the desiredSe-
quenceclass, passing the instruction as parameter.

This design offers complete control as to where in the
LLVM application instructions are created, and more
sections can be added, if needed in the future.

2. LLVMApp::addClass

The LLVMApp class provides the methodaddClass
that represents the addition of a class definition to an
application.

llapp = LLVMApp.new

llapp.addClass(”myClass”)

The naming mechanism in this prototype utilizes the
fact that any string surrounded by double quotes can
be used as a variable in LLVM [17]. These strings will
be transformed into LLVM identifiers in the emission
phase, and thus plain strings are used as LLVM vari-
able names in the LML.

An alternate way of defining an LLVM variable in the
LML is by using the Ruby classSymbol, i.e. the syn-
tax :mySymbol[21]. In the emission phase e.g.:my-
Variable will be transformed into the identifier%my-
Variable, which is the second way of representing a
variable in LLVM. (This alternate way of represent-
ing variables is necessary, as external functions in the
LLVM framework utilize that form. Theprintf C func-
tion [12] is e.g. accessed by the identifier%printf.)

3. LLVMApp::getClass

To retrieve a certain class from the LLVM applica-
tion in the LML, the methodgetClassis used, pass-
ing the desired class as parameter. TheLLVMClassis
returned.

4. LLVMClass

The LLVMClassrepresents the concept of a class in
LLVM. The class methods are represented as an ar-
ray of LLVMMethods. Also, further details are held
in this class to support dynamic compilation, which is
discussed in later sections.

5. LLVMClass::addMethod

To add a method to a class in the LML the method
addMethodis used, passing theLLVMMethodand its
signature as parameters, which adds theLLVMMethod
to the hash table of class methods in theLLVMClass.

A hash table is used in order to be able to extract a
specific method based on its signature, which is needed

during dynamic redefinitions etc. of methods at run-
time. See further discussion below regarding dynamic
issues.

6. LLVMMethod

The LLVMMethodclass represents the concept of an
LLVM function. It contains the return value, identi-
fier, parameters and body of the function, and provides
methods for processing those attributes. These meth-
ods are used later in order to instantiate the class of
which the method is a member, as described below.

Assuming thatPuts is an inheritance of anLLVM-
Method, with the specific properties of theput string
function puts assigned to its instance variables, the
following example illustrates how a method can be
added to a class definition:

puts = Puts.new

llapp = LLVMApp.new

llapp.addClass(”MyClass”)

llapp.getClass(”MyClass”).addMethod(puts.IDsignature, puts)

Note the use of the methodputs.IDsignatureto extract
the LLVM representation signature of that method,
which always will be a unique key as not two meth-
ods with identical signatures can co-exist in a class.

Having a minimal class definition, an instance of that
class can now be created by theLLVMApp.

7. LLVMApp::createClass

The createClassmethod of theLLVMApp class is
responsible for building the LLVM representation of
a class and instantiate it with the class- and instance
names passed as arguments:

llapp.createClass(”MyClass”, ”myInstance”)

Still, the symbols ”MyClass” and ”myInstance” rep-
resent the LLVM identifiers of the class and instance
respectively.

Having an instance, a method call can now be made.

8. LLVMApp::call

To call a method of a class in the LML, thecall
method of theLLVMApp is used, passing the return
variable (optional), instance identifier, the method to
be called and an array of parameters to that method:

llapp.call(”returnVariable”, ”myInstance”, puts, [”Hello World”] )



In this example one parameter only is passed, but the
general form is [arg1, arg2,..., argN].

If the method returnsvoid or the return value can be
ignored,nil can be passed:

llapp.call(nil, ”myInstance”, puts, [”Hello World”] )

By passingnil, the compiler architecture instructs the
LLVM run-time to create an unnamed variable auto-
matically, that receives the value. This value can sim-
ply be ignored.

The return variable identifier can be used in later calls
to other methods.

9. LLVMClass::addSuperClass

The prototype supports inheritance by the use of the
addSuperClassmethod. By calling this method and
passing the superclass as parameter, the superclass
will be added to the class.

llapp.getClass(”MyClass”).addSuperClass(”MySuperClass”)

If a method is overridden by the class currently be-
ing created (i.e. the class has anaddMethodcall with
a method of the same signature) the superclass version
of that method will not be used, but the overridden ver-
sion will be used, as specified by the Ruby inheritance
semantics.

10. LLVMApp::shutdown

The shutdownmethod of theLLVMApp is simply re-
sponsible for cleaning up any allocated memory and fi-
nalizing the main method, completing the application.

11. LLVMApp#to llvm

After the call to theshutdownmethod, the job of the
LML is finished, and a final call to the methodto llvm
of theLLVMApp is issued, which assembles the com-
plete LLVM code of the LLVM application, as defined
in the differentSequencesdescribed above, and can be
written to file.

The complete model for creating a minimal LLVM
application is, then, created as follows:

puts = Puts.new

llapp = LLVMApp.new
llapp.addClass(”MySuperClass”)
llapp.getClass(”MySuperClass”).addMethod(puts.IDsignature, puts)

llapp.addClass(”MySubClass”)

llapp.getClass(”MySubClass”).addSuperClass(”MySuperClass”)

llapp.createClass(”MySubClass”, ”mySubInstance”)

llapp.call(nil, ”mySubInstance”, puts, [”Hello World”] )

llapp.shutdown

f = File.new(”hello world.ll”, ”w+”)

f.puts llapp.tollvm

f.close

The current prototype supports the addition of any num-
ber of classes, containing any number of methods, having
any number of parameters. Presently only theput string
methodputsis implemented, which can be called with any
string, any number of times.

5.4. Extending the LLVM Modelling Layer

To extend the prototype with support for more Ruby
methods, all that is needed is to implement derivatives of the
LLVMMethodclass, which contains all mechanisms needed
in order to integrate the method into the system architecture.

The task of implementing the LLVM body of that
method is further eased by the fact that the C front-end [17]
created by the LLVM architects can be used to obtain the
correct LLVM code for built-in core functions. The corre-
sponding C function can be implemented in a standard C
program, after which the front-end can compile that C pro-
gram into an LLVM program, which in turn can be disas-
sembled using the llvm-dis tool [17] and analyzed.

Using this technique e.g. theprintf C function is shown
to be an external function accessible in the LLVM run-time
through the LLVM pointer%printf(sbyte*, ...)and simply
used in a standard call:

%result = int %printf(sbyte* %string)

In the same way e.g. thegetchar()C function is shown
to be%result = int %getchar(...).

By systematically using this technique, any function sup-
ported by the C/C++ language and which has logical equiv-
alence in Ruby can be implemented smoothly.

To further add support for other Ruby concepts, as e.g.
class instance variables, modules, etc. new methods can be
implemented in theLLVMAppor its member classes. The
support for adding an instance variable can e.g. be a mem-
ber of theLLVMClasscalledaddInstanceVariable.

6. Run-Time Architecture

6.1. Overview

At run-time the original classes, functions etc. of the
Ruby program are represented by the building blocks of
LLVM [17], as described below.



First the concept of class representation is described,
then themap concept, kernel concept, inheritance and fi-
nally run-time meta-data.

6.2. Classes

Classes are represented as LLVMstructscontaining a
pointer to amap, which holds the class methods. Thestruct
also supports the possibility to implement variables repre-
senting the instance variables of any type, although this is
outside the scope of this project, as specified by Appendix
A.

This design provides the possibility to update the meth-
ods without affecting the instance variables.

6.3. Maps

A map is a struct containing function pointers to func-
tions representing the class methods. Thekernel(see next
section) functions have fixed positions in the map, to sim-
plify dynamic updates of redefined functions. The number
of functions a specific map holds is determined at the initial
compilation, as eachLLVMClassknows how many methods
it contains (see section 5.3, point 4). In this initial version
of the prototype, all instances have their own map. This can
in the future be improved to a design where all instances of
a class share the same map.

By separating the methods and the class with amap, the
possibility opens up to add new methods to a class at run-
time without loosing any instance variables. A newmapis
simply allocated and initialized with the current number of
methods (struct holds one additional pointer), the old one
discarded and the pointer from the classstruct is updated to
point to the newmap. The instance variables are held in the
classstruct, which is unchanged.

The complete class representation in LLVM can be seen
in figure 2.

Figure 2. Run-time architecture

6.4. Run-Time kernel

The run-time architecture contains the concept of the
kernel, which is a special class that holds the built-in ba-
sic functions of Ruby, as e.g. basic I/O operations etc. It is
created before any user classes.

In this project thekernel is limited to theput string
methodputsonly, but can be extended in the future, as said
in 5.4.

6.5. Inheritance

With [22] in mind, inheritance is hard-coded in this pro-
totype, i.e. there are no pointers to a superclass in the run-
time architecture. The methods and other properties of the
superclass are identified by the compiler and direct point-
ers to those functions are created in themap. Any instance
variables can also be copied into thestruct. In this way
no pointer traversing is needed, which is a slow mechanism
used in e.g. C/C++ [22]. Any dynamic or polymorphic
behavior is handled by the meta-data and the dynamic com-
pilation as described in the next section.

6.6. Run-Time Metadata

As inheritance, function pointers etc. are statically coded
in the run-time architecture, metadata describing these rela-
tionships is needed in order to have control over the system
state. If e.g. a method in a superclass is redefined, in the
source code or at run-time, all existing (and future) classes
and sub-classes of that class are expected to use the new
method instantly.

Such information is specified automatically in the LML,
as the classes therein contain this state information.

In the case of a redefinition in the source code the LML
can be processed directly residing as Ruby classes, and the
appropriate LLVM code be generated to implement the new
method and update all affected pointers in all affectedmaps.

In the case of a redefinition at run-time by user input, the
LLVM representation of the LML, generated by the future
complete version of the compiler, applied on itself, consti-
tutes the run-time metadata. New source code read from
the user, can be parsed, compiled and loaded as discussed
in the next section, and the LLVM version of the LML be
processed as above to update the system state.

7. Supporting Ruby Dynamics

The below discussion is an outline of possible solutions
that need to be elaborated on and further refined in future
work.



7.1. Class dynamics

The source code dynamics, i.e. source code updates
specified in the original source code file, can be handled
by incorporating meta-data in the LML classes. If a method
of a class is redefined, allmapsof all instances of that class
have to be updated to point to the new method.

To implement this mechanism, an LML method:

LLVMClass::redefine(oldMethod, newMethod)

is suggested, passing theLLVMMethod instances as
parameters.

llapp.getClass(”myClass”).refdefine(puts, newputs)

This method can be designed analogous to the
LLVMApp::createClassmethod (see generated code exam-
ple in Appendix C), which takes a class instance and assigns
pointers to the correspondingmap. Theredefinemethod can
also take a class instance, butreassignthe pointer of a spe-
cific map position, specified in theLLVMMethods passed
(all LLVMMethodsknow their own position in amap).

After the method pointer in themap is updated, all cur-
rently created instances of that class have to be updated as
well. As theredefinemethod will generate an LLVM func-
tion analogous tocreateClasswhich updates one specific
position in a map, that function can be reused for all in-
stances of the updated class.

By creating a property in theLLVMClassholding all
identifiers of all created instances of that specificLLVM-
Classat the time of creation increateClass, a class will al-
ways know all of its instances. By processing this list and
generating successive calls to the LLVM function above, all
current instances of an updated class can also be updated.

7.2. Subclass dynamics

A method can also be inherited, and if a superclass is up-
dated, all subclasses have to be updated too. As methods
are statically linked in this prototype, there are no pointers
to the superclass. Therefore meta-data is again needed, to
keep track of which methods are inherited, and need updat-
ing.

A suggestion for solving this is to add a property to the
LLVMMethod, which holds the identifier of theLLVMClass
which implements that method. When the method is inher-
ited, which occurs increateClass, that property can be ex-
tracted and used to retrieve the implementing class. This
is as earlier described made by theLLVMApp::getClass
method. By adding another property, analogous to the list
of instances described above, to theLLVMClasswhich de-
scribes all subclasses that uses specific methods of that

LLVMClass, these subclasses can be updated too.
The data structure for describing these subclass relation-

ships is suggested to be a hash table, having the signa-
ture of the method being updated (contained in theLLVM-
Methoditself) as the key and an array of subclasses using
that method as value.

By using the method signature, which is unique in a spe-
cific class, all possible subclass-method combinations can
be specified unambiguously.

As information is specified regarding all instances of a
specific class (direct instances and inherited instances) it is
possible to update the entire system state to reflect the dy-
namic update.

7.3. Run-Time input dynamics

Regarding the user input dynamics, it is assumed that
the compiler can be completed, and is capable of compiling
the compiler source code itself. It is also assumed that the
resulting LLVM representation of the compiler can be inte-
grated into the application binary together with the LLVM
jitter, to create a stand-alone compiler-jitter-application sys-
tem, which is a prerequisite in order to be able to parse and
compile user input.

If a user updates the source code during execution, the
complete program representation needs to be recompiled to
reflect those changes. If e.g. a class method is redefined,
that method has to be parsed and compiled by the built-in
compiler and loaded, after which all pointers in allmapsto
that method need to be updated.

The LLVM compiler framework provides a function
ParseAssemblyFilewhich takes a file of human readable
LLVM code, and returns a pointer to an newly created
LLVM Module [17]. Provided that this function can be
compiled into LLVM, which future work will disclose, it
can be disassembled using the llvm-dis tool in the LLVM
framework into human readable form, and included as a
source code function in the LLVM representation of the
compiler.

The LLVM compiler framework also provides a func-
tion:

ExecutionEngine::getPointerToGlobal(Function*)

which takes a pointer to a byte code LLVM representa-
tion of an LLVM function, loads that function and returns
an LLVM pointer to that loaded function, which can be used
to call the function.

The first problem is, however, that thegetPointer-
ToGlobalfunction resides in an executing component in the
LLVM run-time jitter, i.e. theExecutionEngine, and to be
able to call thegetPointerToGlobalfunction, a pointer to the
ExecutionEngineis needed. This is according to the LLVM



architects not currently supported by the LLVM framework,
and therefore modifications of the framework are needed.

The second problem is that thegetPointerToGlobalonly
handles complete LLVM modules [17] and not separate
functions. Running thegetPointerToGlobalon a separate
function would, according to the LLVM architects, cre-
ate linking problems when resolving external function calls
and types, as thegetPointerToGlobalworks with mapping
of memory addresses, which is not possible over different
modules.

The first problem can according to the LLVM architects
partly be solved by simply adding a method to theExecu-
tionEnginethat returns the instance pointer, i.e. thethis
pointer, which can be used to call thegetPointerToGlobal
function. The part not solved, however, is that theExecutio-
nEngineresides as a compiled C++ program, which means
that the calls from the LLVM representation of the compiler
need to be able to call C++ functions. According to the
LLVM architects, there is currently no support for doing
this either, and further modifications are thus needed.

The second problem could possibly be solved by inte-
grating the function into an LLVM module first. How-
ever, the LLVM architects suggest a different approach al-
together, which involves writing the Ruby compiler in C++
instead, making it possible to interact seamlessly with the
LLVM run-time. A deeper discussion of this issue can be
found in section 9.

Assuming though, that these interaction details can be
solved, a user-defined function entered at run-time can be
compiled, loaded and its properties analyzed after which
pointer updates or recompilation ofmaps as described in
7.1 and 7.2 can be made, depending on whether the func-
tion is a redefinition or a new one.

This approach of dynamically recompiling all classes
when a redefinition occurs at run-time, puts some demand
on processor resources. This kind of changes are however
likely to be rare, and thus the overall performance over time
is likely to remain high.

8. Result

The current prototype implements:

1. Specification of classes

2. Addition of methods to those classes of any signature

3. Instantiation of classes

4. Inheritance

5. Calls to methods, with any number of arguments of
any type

6. Memory management, freeing any allocated memory

Currently only theputsmethod is implemented through
the Putsclass which inherits fromLLVMMethod. This in-
heritance is the mechanism for adding any new methods,
and once created in this way they are automatically inte-
grated in the system architecture, and can be added by the
addMethodcall.

Apart from the above implementation, the prototype is
prepared for implementation of dynamic behavior as fol-
lows:

1. The run-time architecture supports dynamic updates in
original source code by the use of the metadata in the
LML. In this way direct pointers can be used.

2. The run-time architecture supports dynamic updates
during run-time, provided that the interaction with the
LLVM run-time jitter can be solved, either by modi-
fying the open source LLVM framework, or by using
C++ instead of Ruby for the compiler.

Currently, the compiler prototype does not contain any
parser, and thus does not process any AST. The prototype
however does provide the LML classes needed in order to
manually implement the example programs 1,2 and 3 in Ap-
pendix A.

Regarding example program 4, the compiler- and run-
time architectures are prepared for it and can be extended to
support it in the future, by simply implementing theredefine
method as outlined in 7.1.

9. Discussion

The main problem identified by this paper is the interac-
tion with the LLVM run-time, in order to load new source
code dynamically.

Two solutions are proposed:

1. Modify the LLVM framework, to still be able to use
Ruby as the language of the compiler.

2. Write the compiler in C++ instead to integrate seam-
lessly with the LLVM run-time.

First of all, it is desirable to keep the complexity as low
as possible in the compiler. In the case of using Ruby, only
two languages are used: Ruby for the compiler and source
code, and emitted LLVM code. If C++ is used, three lan-
guages are used: Ruby source code, C++ compiler code and
emitted LLVM code. If three languages are to be mastered,
it is likely that fewer people can work on the compiler, as
an open source project, compared to the two-language case.

Secondly Ruby is more flexible than C++, which makes
it easier to experiment with the prototype and improve it.



ThePyPyproject [11] is an example of this, where the dy-
namic languagePython is implemented in itself, creating
code that is easier to understand due to the high level of
abstraction, compactness and modularity, compared to C.

Further, in theRubyVMproject [7] the construction of a
Ruby virtual machine written in sRuby, a static dialect of
Ruby, is outlined where it is argued that the resulting code
would be easier to debug, analyze, and change.

The advantages of using C++ for the compiler are on the
one hand the easier integration with the LLVM run-time and
on the other hand better performance. The integration issue
can however be solved as the LLVM framework is an open
source project, and the code can be modified to fit the needs
of the Ruby compiler.

Also, regarding the performance aspect, it is not a prob-
lem that the compiler is slow, since dynamic updates are
likely to be rare in the context of the execution lifetime. In
the initial compilation, performance is even less of a prob-
lem, as it is done one time. Furthermore, the LLVM rep-
resentation of the compiler undergoes continuous optimiza-
tions [16], and by the use of LLVM as target, performance
is boosted automatically throughout the compiler lifetime.

Thus, as the current trend in software development aims
at rapid prototyping [13, 5] the choice of Ruby as the lan-
guage for the compiler is still suggested in this paper, with
its support for flexibility, modularity and extensive ease of
use.

10. Conclusion

The core of the prototype design is to handle dynamic be-
havior by recompilation from one static state to another, by
the use of meta-data. Between recompilations static point-
ers are used, which enables good performance.

The prototype contains an LLVM Modelling Layer, hid-
ing the LLVM syntax which is used to process the AST.

Some important obstacles have been identified in the
LLVM framework, preventing support for full dynamic be-
havior, and to solve this, the framework needs modifica-
tions.

As a whole and provided that the LLVM framework can
be modified to fit the needs of the Ruby dynamic require-
ments, compiling Ruby to LLVM is indeed feasible.

11. Future work

The first thing suggested to be done in the future, is to
solve the interaction problems between the compiler and the
LLVM run-time. The following source code [15] needs to
be analyzed ($R local repository folder):

1. $R/llvm/tools/llvm-as/llvm-as.cpp

How can the method ParseAssembly-
File(InputFilename)be modified to take a pointer
to a string in memory representing an LLVM
function instead of a file on disk representing a
complete LLVM module [17]? How can it then be
modified to return aFunction* for use inExecutio-
nEngine::getPointerToGlobal(Function*)instead of a
Module*?

2. $R/llvm/lib/ExecutionEngine/ExecutionEngine.cpp

How can theExecutionEnginebe modified to return
a pointer to itself? Suggested solution by the LLVM
architects is to return thethispointer of the instantiated
class.

Furthermore, how can calls from LLVM code be made
to C++ objects running in memory?

Once this interaction is solved guaranteeing support for
dynamic updates at run-time, more Ruby concepts are sug-
gested to be implemented, as e.g. modules, threads, garbage
collection etc.

Finally the current prototype emits human-readable
LLVM code which has to be assembled into binary LLVM
code by thellvm-as tool. Future work thus also involves
how to emit LLVM binary byte code directly. A suggestion
from the LLVM architects is to study theParseAssembly-
File(InputFilename), and the llvm-as.cpp in general.

12. Acknowledgements

I would like to thank my examiner Robert Feldt and my
supervisor Richard Torkar for excellent guidance and help,
navigating a for me new field.

I also deeply thank Chris Lattner and Misha Brukman
for the help and support regarding the LLVM syntax and
the LLVM framework architecture.

References

[1] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type
inference of SELF: Analysis of objects with dynamic
and multiple inheritance.Lecture Notes in Computer
Science, 707:247–??, 1993.

[2] P. Bothner. Kawa—compiling dynamic languages to
the Java VM. InProceedings of the USENIX 1998
Technical Conference, FREENIX Track, New Orleans,
LA, 1998. USENIX Association.

[3] C. Chambers.The Design and Implementation of the
SELF Compiler, an Optimizing Compiler for Object-
Oriented Programming Languages. Ph.d. diss, Stan-
ford University, 1992.



[4] C. Chambers and D. Ungar. Iterative type analysis and
extended message splitting: Optimizing dynamically-
typed object-oriented programs. InSIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, pages 150–164, 1990.

[5] L. DeRose, K. Gallivan, E. Gallopoulos, B. Marsolf,
and D. Padua. An environment for the rapid proto-
typing and development of numerical programs and
libraries for scientific computation, 1994.

[6] R. Feldt. Rockit parser. http://rockit.sf.
net , 2004.

[7] R. Feldt. Rubyvm - a library of virtual machine
components for executing ruby programs written
in ruby. http://www.ce.chalmers.se/
˜feldt/ruby/ideas/rubyvm/rubyvm.pdf ,
2004.

[8] R. Feldt and A. Alexandersson. Rubycomp backend
svn repository. http://www.pronovomundo.
com/open_svn/llvm , 2004.

[9] R. Feldt and A. Alexandersson. Rubycomp svn
repository. http://www.pronovomundo.com/
open_svn/rubycomp , 2004.

[10] J. D. Guttman, J. D. Ramsdell, and M. Wand. VLISP:
A verified implementation of Scheme.Lisp and Sym-
bolic Computation, 8(1/2):5–32, 1995.

[11] J. Hallen. Pypy - implementing python in
python. http://www.python.org/pycon/
dc2004/papers/27/ , 2004.

[12] E. Huss. The c library reference guide.
http://www.acm.uiuc.edu/webmonkeys/
book/c_guide/ , 2004.

[13] C. Larman. Applying UML and Patterns. Prentice
Hall, 2nd edition, 2001.

[14] C. Lattner. Llvm developers mailing list.
http://mail.cs.uiuc.edu/mailman/
listinfo/llvmdev , 2004.

[15] C. Lattner. Llvm framework cvs repository.
http://llvm.cs.uiuc.edu/releases/
register.html , 2004.

[16] C. Lattner and V. Adve. Code generation and opti-
mization, 2004. cgo 2004. international symposium
on, vol., iss., 20-24 march 2004. pages 75–86, 2004.

[17] C. Lattner and V. Adve. Llvm language reference
manual. http://llvm.cs.uiuc.edu/docs/
LangRef.html , 2004.

[18] W. W. Royce. Managing the development of large
software systems. InProceedings WESCON, August
1970.

[19] O. Shivers. Supporting dynamic languages on the java
virtual machine. Technical Report AIM-1576, 1996.

[20] I. Sommerville.Software Engineering. Pearson Edu-
cation Limited, 2nd edition, 2001.

[21] D. Thomas and A. Hunt. Programming ruby
- the pragmatic programmer’s guide.http://
rubycentral.com/book/index.html , 2004.

[22] J. Vitek and R.N. Horspool. Taming message passing:
Efficient method look-up for dynamically typed lan-
guages.Lecture Notes in Computer Science, 821:432–
??, 1994.

[23] Wikipedia. Dynamic programming language.
http://en.wikipedia.org/wiki/
Dynamic_language , 2004.



Appendix

A. Detailed Steps in Project

A.1. Step 1

Method calls using strings, to standard output. Ex. puts ”Hello world!”

A.2. Class definitions

Class definitions, using method calls from step 1.

class C
def m1

puts ”Hello world!”
end

end

c = C.new
c.m1

Output:
Hello world!

A.3. Inheritance

class Super
def s1

puts ”s1!”
end

end

class C< Super
def m1

puts ”m1!”
end

end

c = C.New
c.s1
c.m1

Output:
s1!
m1!

A.4. Redefining methods

Redefining a method with a new one, or overloading with a new version.

class C
def m1



puts ”Hello world!”
end

end

c = C.new
c.m1

class C
def m1

puts ”Redefined m1!”
end

end

c.m1

Output:
Hello world!
Redefined m1!



B. LLVM Modelling Layer Class diagram

Figure 3. Compiler Class Diagram



C. Emitted Source Code Example

C.1. LML instructions

putskernel = Puts.new

llapp = LLVMApp.new
llapp.addClass(”Kernel”)
llapp.getClass(”Kernel”).addMethod(putskernel.IDsignature, putskernel)
llapp.createClass(”Kernel”, ”myKernel”)
llapp.call(nil, ”myKernel”, putskernel, [”Kernel: Hello Kernel”] )

llapp.addClass(”Subclass”)
llapp.getClass(”Subclass”).addSuperClass(”Kernel”)
llapp.createClass(”Subclass”, ”mySubclass”)
llapp.call(nil, ”mySubclass”, putskernel, [”Subclass: Hello World”] )

llapp.shutdown

f = File.new(”hello.ll”, ”w+”)
f.puts llapp.tollvm

f.close

C.2. LLVM instructions

Contents of hello.ll, with added comments

; Hard coded strings, represented as constants
”Kernel: Hello KernelConst” = internal constant [22 x sbyte ] c”Kernel: Hello Kernel\0A\00”
”Subclass: Hello WorldConst” = internal constant [23 x sbyte ] c”Subclass: Hello World\0A\00”

; Class definition of Kernel
”myKernelMap” = type{int (sbyte*)*}

”Kernel” = type{”myKernelMap”*}

; Declaration of external function in the LLVM framework
declare int %printf(sbyte*, ...)

; Class definition of Subclass
”mySubclassMap” = type{int (sbyte*)*}
”Subclass” = type{”mySubclassMap”*}

; Function definition
int %putskernel(sbyte* %string)
{

%tmp0 = call int (sbyte*, ...)* %printf(sbyte* %string)
ret int 0

}

; Create the class in memory
”Kernel”* ”createKernel”()
{

; Allocate the map of the class
”myKernelMapInstance” = malloc ”myKernelMap”



; Allocate the class
”myKernel” = malloc ”Kernel”

; Get a pointer to the allocated map
”myKernelMapPTR” = getelementptr ”Kernel”* ”myKernel”, long 0, ubyte 0

; Store the pointer value of the map pointer in the class, connecting them
store ”myKernelMap”* ”myKernelMapInstance”, ”myKernelMap”** ”myKernelMapPTR”

; Get a pointer to the function at position 0, the puts function
”puts kernelPTRPTRMAP” = getelementptr ”Kernel”* ”myKernel”, long 0, ubyte 0
”puts kernelPTRMAP” = load ”myKernelMap”** ”putskernelPTRPTRMAP”
”puts kernelPTR” = getelementptr ”myKernelMap”* ”putskernelPTRMAP”, long 0, ubyte 0

; Store the poiner value of the %putskernel function
store int (sbyte*)* %putskernel, int (sbyte*)** ”putskernelPTR”

; Class is now created, return the pointer to it
ret ”Kernel”* ”myKernel”

}

; Function for calling the putskernel function of myKernel
int ”callmyKernelputskernel”(sbyte* ”Kernel: Hello Kernel”,”Kernel”* ”myKernel”)
{

; Get a pointer to the %putskernel function via the myKernel pointer
”PTRMAP” = getelementptr ”Kernel”* ”myKernel”, long 0, ubyte 0
”MAP” = load ”myKernelMap”** ”PTRMAP”
”puts kernelPTR” = getelementptr ”myKernelMap”* ”MAP”, long 0, ubyte 0

; Load the pointer value of the %putskernel function
%tmp = load int (sbyte*)** ”putskernelPTR”

; Call %putskernel
”tmp result” = call int (sbyte*)* %tmp(sbyte* ”Kernel: Hello Kernel”)

; Return result
ret int ”tmp result”

}

; Create SubClass. Static pointers are assigned, inheritance controled by meta data
”Subclass”* ”createSubclass”()
{

”mySubclassMapInstance” = malloc ”mySubclassMap”
”mySubclass” = malloc ”Subclass”
”mySubclassMapPTR” = getelementptr ”Subclass”* ”mySubclass”, long 0, ubyte 0
store ”mySubclassMap”* ”mySubclassMapInstance”, ”mySubclassMap”** ”mySubclassMapPTR”
”puts kernelPTRPTRMAP” = getelementptr ”Subclass”* ”mySubclass”, long 0, ubyte 0
”puts kernelPTRMAP” = load ”mySubclassMap”** ”putskernelPTRPTRMAP”
”puts kernelPTR” = getelementptr ”mySubclassMap”* ”putskernelPTRMAP”, long 0, ubyte 0
store int (sbyte*)* %putskernel, int (sbyte*)** ”putskernelPTR”
ret ”Subclass”* ”mySubclass”

}

; Function for calling the putskernel function of mySubclass
int ”callmySubclassputskernel”(sbyte* ”Subclass: Hello World”,”Subclass”* ”mySubclass”)
{

”PTRMAP” = getelementptr ”Subclass”* ”mySubclass”, long 0, ubyte 0



”MAP” = load ”mySubclassMap”** ”PTRMAP”

”puts kernelPTR” = getelementptr ”mySubclassMap”* ”MAP”, long 0, ubyte 0
%tmp = load int (sbyte*)** ”putskernelPTR”
”tmp result” = call int (sbyte*)* %tmp(sbyte* ”Subclass: Hello World”)

ret int ”tmp result”
}

; — Main. Start of program. —
int %main()
{

; Create myKernel
”myKernel” = call ”Kernel”* ”createKernel”()

; Get a pointer to the string constant
”Kernel: Hello Kernel” = getelementptr [22 x sbyte]* ”Kernel: Hello KernelConst”, long 0, long 0

; Call %putskernel of myKernel
call int ”callmyKernelputskernel”(sbyte* ”Kernel: Hello Kernel”,”Kernel”* ”myKernel”)

; Create mySubclass
”mySubclass” = call ”Subclass”* ”createSubclass”()

; Get a pointer to the string constant
”Subclass: Hello World” = getelementptr [23 x sbyte]* ”Subclass: Hello WorldConst”, long 0, long 0

; Call %putskernel of mySubclass
call int ”callmySubclassputskernel”(sbyte* ”Subclass: Hello World”,”Subclass”* ”mySubclass”)

; — Free allocated memory —

; Destroy map of myKernel first
”myKernel MapPTRPTR” = getelementptr ”Kernel”* ”myKernel”, long 0, ubyte 0
”myKernel MapPTR” = load ”myKernelMap”** ”myKernelMapPTRPTR”
free ”myKernelMap”* ”myKernelMapPTR”

; Destroy myKernel
free ”Kernel”* ”myKernel”

; Destroy map of mySubclass first
”mySubclassMapPTRPTR” = getelementptr ”Subclass”* ”mySubclass”, long 0, ubyte 0
”mySubclassMapPTR” = load ”mySubclassMap”** ”mySubclassMapPTRPTR”
free ”mySubclassMap”* ”mySubclassMapPTR”

; Destroy mySubclass
free ”Subclass”* ”mySubclass”

; Exit program
ret int 0

}




