Memory Safety Without Garbage Collection
for Embedded Applications

DINAKAR DHURJATI, SUMANT KOWSHIK, VIKRAM ADVE,
and CHRIS LATTNER

University of lllinois at Urbana-Champaign

Traditional approaches to enforcing memory safety of programs rely heavily on run-time checks
of memory accesses and on garbage collection, both of which are unattractive for embedded ap-
plications. The goal of our work is to develop advanced compiler techniques for enforcing memory
safety with minimal run-time overheads. In this paper, we describe a set of compiler techniques
that, together with minor semantic restrictions on C programs and no new syntax, ensure memory
safety and provide most of the error-detection capabilities of type-safe languages, without using
garbage collection, and with no run-time software checks, (on systems with standard hardware
support for memory management). The language permits arbitrary pointer-based data structures,
explicit deallocation of dynamically allocated memory, and restricted array operations. One of the
key results of this paper is a compiler technique that ensures that dereferencing dangling pointers
to freed memory does not violate memory safety, without annotations, run-time checks, or garbage
collection, and works for arbitrary type-safe C programs. Furthermore, we present a new inter-
procedural analysis for static array bounds checking under certain assumptions. For a diverse set
of embedded C programs, we show that we are able to ensure memory safety of pointer and dy-
namic memory usage in all these programs with no run-time software checks (on systems with
standard hardware memory protection), requiring only minor restructuring to conform to simple
type restrictions. Static array bounds checking fails for roughly half the programs we study due
to complex array references, and these are the only cases where explicit run-time software checks
would be needed under our language and system assumptions.

Categories and Subject Descriptors: C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems; D.3 [Software]: Programming Languages; D.4.6 [Software]: Op-
erating Systems—Security and protection

General Terms: Security, Languages

Additional Key Words and Phrases: Embedded systems, compilers, programming languages, static
analysis, security, region management, automatic pool allocation

This work has been sponsored by the NSF Embedded Systems program under award CCR-02-09202
and in part by an NSF CAREER award, EIA-0093426 and by ONR, N0004-02-0102.

Authors’ address: Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris Lattner, Depart-
ment of Computer Science, 4307A Siebel Center, University of Illinois at Urbana-Champaign,
Urbana, IL 61801; email: dhurjati@uiuc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 1539-9087/05/0200-0073 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005, Pages 73-111.

74 . D. Dhurjati et al.

1. INTRODUCTION

Programming environments, including programming languages, compilers,
and run-time systems, play a vital role in improving the reliability and efficiency
of software. One key class of properties that is provided by many high-level pro-
gramming languages is that of program safety, which guarantees that certain
kinds of semantic errors (e.g., type violations or memory access violations) will
not be allowed to occur undetected. Such safety guarantees are important for
several reasons. First, and most important, they improve software reliability by
ensuring that common programming errors are detected and prevented, either
at compile-time or at run-time. Second, they ensure better isolation between
different components or modules of a software system, which can be particu-
larly important to enable flexible software upgrades (including safety-critical
or mission-critical software), as discussed in Section 2. Finally, in some cases,
they allow errors to be detected at development time (e.g., via static check-
ing), which is greatly preferable to run-time error detection in safety-critical
or mission-critical systems, and in systems operating under tight performance
constraints or energy constraints.

Unfortunately, most embedded software systems today obtain virtually none
of these benefits. Most such systems are programmed in efficient but “unsafe”
languages, especially C or C++, rather than languages that provide the safety
guarantees described above. There are several key reasons behind these choices.
Virtually all safe languages today, for example, Java [Gosling et al. 2000],
Modula-3 [Cardelli et al. 1992], Safe-C [Austin et al. 1994], and CCured [Necula
et al. 2002], rely on garbage collection to ensure that there cannot be references
to deallocated heap memory, and use a variety of run-time software checks be-
fore individual memory operations such as bounds checks for array references,
null pointer checks, and type conversion checks. Garbage collection (GC) algo-
rithms suitable for real-time systems introduce significant overheads in both
execution time and memory usage [Bacon et al. 2003], while non-real-time GC
algorithms introduce unpredictable run-time delays and also incur some in-
creases in average time and space. Region-based languages attempt to achieve
safety without GC [Boyapati et al. 2003; DeLine and Fahndrich 2001; Gay and
Aiken 1998; Tofte and Talpin 1997] but require significant porting effort and
have to fall back on GC to prevent significant increases in memory usage for
some data usage patterns [Bollella and Gosling 2000; Jim et al. 2002] (these
are discussed in more detail in Section 7). Finally, the overheads of run-time
software checks used in safe languages can also be high: languages such as
SafeC, CCured, and Cyclone have reported slowdowns ranging from 20% up
to 200% for different applications [Austin et al. 1994; Grossman et al. 2002;
Necula et al. 2002]. These potential drawbacks have made the use of existing
safe languages unattractive for embedded software applications.

The broad outcome of this paper is to show that, with minor semantic re-
strictions on C programs and no new syntax, we can provide nearly all the
benefits of safe languages, without using garbage collection, and with few or
no run-time software checks. The minimum guarantee we provide is memory
safety. We define a software entity (a module, thread, or complete program) to

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 75

be memory safe if (a) it never references a memory location outside the data
area allocated by or for that entity, and (b) it never executes instructions out-
side the code area created by the compiler and linker within that space. The
importance of memory safety for embedded systems is motivated in Section 2.
Furthermore, with the exception of dangling pointer references (discussed be-
low), we detect and prevent all other errors that would be prevented by a lan-
guage with strong type safety [Oaks 2001], so that programs also obtain most
of the error detection and prevention benefits of type-safe languages. Further-
more, for systems with hardware-supported address space protection and a
reserved address range, we achieve this without using any run-time software
checks (i.e., explicit code before a memory reference), except on complex ar-
ray references. On other systems, we would also require software null-pointer
checks.

These results are based on some novel compiler techniques, combined with
several existing techniques. Perhaps the most novel technique developed in
this work is a fully automatic compiler strategy that guarantees memory safety
even in the presence of “dangling pointer references” to freed heap objects. Our
strategy ensures that such references will never lead to a memory access vi-
olation, and in fact never allows a memory object to be accessed in a manner
that violates its declared type (even through dangling pointers). This technique
works for C programs that obey ordinary type rules, requires no new annota-
tions or language mechanisms, and permits explicit memory deallocation. This
technique builds on a transformation previously developed by us called auto-
matic pool allocation [Lattner and Adve 2002, 2005], which partitions instances
of logical data structures (as identified by the compiler) into distinct pools in
the heap, while allowing explicit allocation and deallocation of objects within
the data structures. Automatic pool allocation does not itself ensure memory
safety, but we show how it can be used to do so in this paper. The solution
is important for achieving memory safety without GC because reliably detect-
ing or preventing dangling references automatically (in the presence of explicit
memory deallocation) is extremely difficult, either via compile-time analysis or
run-time checks [Patil and Fischer 1995; Heine and Lam 2003].

We also present a powerful interprocedural algorithm for propagating con-
straints on integer variables, which enables us to prove the safety of affine
array references at compile time using existing integer programming tech-
niques [Kelly et al. 1996; Pugh 1992]. The interprocedural algorithm is impor-
tant so that array bounds checking can be performed without requiring annota-
tions for function calls and interfaces. We also incorporate support for checking
operations on null-terminated strings and for safe usage of a set of trusted
run-time functions (e.g., I/O operations and system calls) directly into the same
constraint propagation and checking framework used for array bounds check-
ing. Pointer arithmetic is handled using techniques similar to that of checking
array accesses.

We combine these new strategies with two existing compiler-based safety
checking techniques. One is a memory initialization technique that takes ad-
vantage of hardware-supported address space protection to prevent uses of
uninitialized pointers, without any software null-pointer checks at run time

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

76 . D. Dhurjati et al.

(essentially, converting them into a run-time hardware check). The second is
traditional escape analysis to detect conservatively the stack locations that are
accessible from outside a function to prevent the use of dangling pointers to
stack locations.

Some of our safety checking techniques (particularly for null pointer deref-
erences, dangling pointers to stack locations, and array safety) require minor
semantic restrictions, in addition to the ordinary type usage restrictions needed
for heap safety. Taken together, these semantic restrictions define a language
that is essentially a subset of C (there are no new keywords or syntax) and
guarantee that programs obeying these restrictions will obtain the safety guar-
antees described earlier without incurring any run-time software checks (and
without GC). In practice, we find that the complex array references are the most
likely to violate these restrictions, whereas the other restrictions are usually
met immediately or with minor program changes.

We evaluated the applicability and the memory overhead of our language
and compiler analyses for memory safety on a diverse collection of embedded
programs from two widely used benchmark suites, MiBench [Guthaus et al.
2001] and MediaBench [Lee et al. 1997], as well as some control and sensor
applications. Our results show that we are able to ensure the safety of point-
ers and dynamic memory usage in all these programs without incurring any
run-time overhead. This is due to a combination of our technique for prevent-
ing null pointer dereferences using a run-time hardware check and the static
technique for ensuring safe dereferencing of dangling pointers, both of which
work successfully for all the programs. Our compiler analysis identifies specific
data structures in three of these programs where our memory management
strategy could lead to some potential increase in memory consumption, and we
found that in all the three cases the actual increase is not significant. The static
technique for checking the lifetimes of stack-allocated data works successfully
for 19 of the 20 codes tested. The static array bounds checking analysis, how-
ever, is completely successful for only 11 out of the 20 codes. The other codes
would require some run-time software checks. We draw some ideas for future
language and compiler mechanisms that might succeed for the other programs.
Overall, these results show that with the exception of array bounds checks, the
set of compiler techniques in this work is able to achieve memory safety without
garbage collection and without run-time software checks, for a language that is
essentially a “type-safe” subset of C, including programs with complex pointer-
based data structures and extensive heap usage. To our knowledge no other
programming language or compiler system achieves this goal for any nontrivial
class of programs.

The rest of this paper is organized as follows. Section 2 describes our goals
for compiler-based checking and minimizing run-time overhead, and summa-
rizes the assumptions we make about programs and systems in our current
work. Section 3 gives the necessary background information to understand our
techniques. Section 4 describes the language restrictions and the compiler tech-
niques for ensuring safety of pointer references, stack safety, and heap safety.
Section 5 does the same for array references. Section 6 describes our exper-
iments evaluating the effectiveness of our techniques in supporting different

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 77

classes of embedded and control applications. Section 7 compares our work with
previous work on providing program safety through compiler and language
techniques. Section 8 concludes with a summary of our results and suggests
directions for further research.

2. GOALS AND ASSUMPTIONS

Current- and future-embedded systems demand increasing software flexibility,
including the ability to upgrade or introduce software modules into existing ap-
plications both offline and during active operation. Such software upgrades are
becoming increasingly common for small consumer devices, and are expected to
be important even for more constrained systems such as embedded control sys-
tems [Sha 1998, 2001] and sensor networks [Levis and Culler 2002]. One of the
key requirements for enabling dynamic software upgrades is to ensure that new
software modules or applications do not compromise the safe and correct func-
tioning of an embedded device. One part of this problem is ensuring the memory
safety of embedded software, that is, to guarantee that an upgraded software
module cannot corrupt the code or data of its host application. Moreover, many
of these embedded systems must operate under stringent energy, memory, and
processing power limitations, and often under hard or soft real-time constraints
as well. This reinforces the importance of minimizing the run-time overheads
of memory safety.

2.1 Goals

The goal of this work is to enforce memory safety and (wherever possible) de-
tect and prevent type errors and memory access errors under two constraints:
(a) permit explicit memory deallocation instead of requiring some form of auto-
matic memory management (e.g., garbage collection or a region-based memory
system), and (b) avoid introducing any run-time software checks before pro-
gram operations (e.g., null pointer, array bounds, or type conversion checks).
Some run-time support is necessary but we consider it acceptable, specifically,
initialization of global or dynamically allocated memory, and some system as-
sumptions for error detection described later.

Achieving the above goals for arbitrary C programs is extremely difficult,
and perhaps impossible. First, some of the compiler techniques in this paper
are only applicable to programs that follow basic type-safety rules.! Second,
some language constructs (e.g., unanalyzable array references or pointers to
stack-allocated memory that outlive the stack frame) make it impossible to
ensure memory safety without run-time software checks. We define a set of
restrictions on programs that are sufficient to allow our compiler techniques to
be applied, and to eliminate the need for run-time software checks (in one case,
our restrictions allow a software check to be converted to an efficient hardware
check). To make it as simple as possible to modify existing embedded code to
conform to our restrictions, we avoid adding any new language mechanisms

Tn our ongoing work, we are exploring extensions that allow these techniques to be used for
arbitrary programs, while requiring only some additional software run-time checks but still avoid-
ing the need for automatic memory management.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

78 . D. Dhurjati et al.

or syntax. Instead, we impose usage (i.e., semantic) restrictions that can be
defined within the framework of an existing language such as C, and checked
by a compiler.

This approach may “fail” in two ways for a given input program. One kind
of failure is that we are unable to eliminate some explicit software run-time
checks, that is, we fail to meet constraint (b) above. Note that in practice,
we could insert software checks for such cases, although we do not do so in
this work. Alternatively, we would also consider it a failure if extensive source
changes to the input program were required to meet our restrictions (especially,
the type safety restrictions needed for our current work). Our experiments in
Section 6 evaluate how often these two kinds of failure occur for a wide range
of embedded applications.

Although our experiments focus on C programs in this paper, our seman-
tic restrictions are defined in low-level language-independent terms, and our
safety checking compiler is implemented entirely in a language-independent
compiler infrastructure called LLVM (low-level virtual machine) [Lattner and
Adve 2004].2 These features, together with the lack of any new source-level
constructs, imply that our safety-checking strategy can be used for programs
in any source-level language compiled to LLVM object code.

2.2 Assumptions of This Work

The system assumptions of the current work are summarized below. The
semantic restrictions and other techniques for basic type safety, pointer
initialization, stack safety, array safety, and heap safety are described in turn,
in the following sections.

First, we make some assumptions about the run-time environment. We as-
sume that certain run-time errors are safe, that is, the run-time system can
recover from such errors by killing the applet, thread, or process executing the
untrusted code.

We assume a safe run-time error is generated if either the stack or the heap
grows beyond the available address space.

We assume the system has a reserved address range and any access to these
addresses causes a safe run-time error, typically triggered by a page fault han-
dler or by a reserved address range in hardware on systems without virtual
memory management. In practice, embedded platforms vary widely in their
addressability.

—In standard Linux implementations with 32-bit addressing, the high end of
the address space is reserved for the kernel (typically 1 GB out of 4 GB).
Our technique to handle null pointer dereferences described in Section 4.2
is most suited to such platforms, where we avoid run-time software checks.

—Smaller embedded platforms with 16-bit and even 8-bit addressing typically
do not have a reserved address range. In these cases, null pointer checks
must be inserted before every load or store.

2LLVM defines a simple, fully typed instruction set based on static single assignment (SSA) form as
the input code representation in order to enable compile-time, link-time, and run-time optimization
of programs. See http://1lvm.cs.uiuc.edu.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 79

Rule (P2) in Section 4.2 requires that the size of any structure does not exceed
the size of the reserved address range. In the event that a program contains
a structure larger than the size of the reserved address space, the program-
mer can either restructure the code to use smaller structures or run-time null
pointer checks are necessary for any references to the structure.

We assume that certain standard library functions and system calls are
trusted and can be safely invoked by the untrusted code (calls whose argu-
ments must be checked are discussed in Section 5). We assume (and check)
that the source code of all other functions is available to the compiler. We also
require that the program be single threaded.

3. BACKGROUND: DS GRAPHS AND AUTOMATIC POOL ALLOCATION

Several of the static program safety analyses described in the following sec-
tions rely on a core pair of compiler techniques developed in our group, namely
data structure analysis (DSA) [Lattner and Adve 2005] and automatic pool
allocation [Lattner and Adve 2005].

Data structure analysis (DSA) is a pointer analysis algorithm that is care-
fully designed to identify disjoint instances of entire pointer-based data struc-
tures and their lifetimes, while remaining fast and scalable enough for large,
realistic programs. DSA computes a points-to-graph representation that we call
a data structure graph (DS Graph) (see Figure 1). DS graphs provide all of the
information used in the rest of this work (including automatic pool allocation).
We describe DS graphs first and then briefly discuss the properties of DSA
needed to achieve our goals while keeping it efficient and scalable.

A DS graph captures compile-time information about the memory objects
created by a program and the pointer relationships between them. A separate
DS graph is computed for each function in a program, except that all functions
within a strongly connected component of the call graph share a single, common
points to graph (we do not try to be context sensitive within such recursive
regions). Different nodes within the same graph represent distinct memory
objects. Formally, a DS graph is a directed multigraph, where the nodes and
edges are defined as follows:

DS Node. A DS node is a 5-tuple {t, F, M, A, G}. T is some program-defined
type, or L representing an unknown type. In the analysis, | is treated like an
unknown-size array of bytes. F' is an array of fields, one for each possible field
of the type t. Scalar or array types have a single field. M is a set of memory
classes, written as a subset of {H, S, G, U}, indicating Heap, Stack, Global, and
Unknown memory objects, respectively. A U node is assigned type L. Finally, if
G € M, then G is a nonempty set of global variables and functions included in
the objects for this node; otherwise, G is empty. Finally, A is a Boolean that is
true if the node includes an array object.

DS Edge. A DS edge is a 4-tuple: {s, fs,t, f;}, where s and ¢ are DS nodes,
and f; and f; are fields of s and ¢, respectively. Thus, the graph provides a
field-sensitive representation of points-to information. A field of a node may
have no outgoing DS edge only if the field is known not to contain a pointer

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

80 . D. Dhurjati et al.

struct list { list #*Next; int *Data; };
list* createnode(int *Data) {
list *New = malloc(sizeof(list));
New->Data = Data;
return New;
}
void splitclone(list *L, list **R1, list **R2) {

if (L == 0) { *R1 = *R2 = 0; return; }
if (some_predicate(L->Data)) {
*R1 = createnode(L->Data);
splitclone(L->Next, &(*R1)->Next, R2);
} else {
*R2 = createnode(L->Data);
splitclone(L->Next, R1, &(*R2)->Next);
3}

(a) Fragment of C program manipulating linked lists

o

(b) DS Graphs for createnode() (left) and splitclone().

Fig. 1. Example illustrating data structure graphs.

type, for example, it is a function, floating point, or small integer type, or if
M = {U}.

Figure 1(b) shows the DS graph computed by our compiler for function
splitclone of the example in Figure 1(a). Note that each node of type list
has two fields. The cycles indicate recursive data structures.

The DSA algorithm, which computes DS graphs, is described in Lattner and
Adve [2003]. DSA is “fully context sensitive” in the sense that it names heap
objects by entire acyclic call paths (which we refer to as “full heap cloning”),
and it is field sensitive, that is, it distinguishes distinct pointer fields within a
structure. Being fully context sensitive is important because it allows the anal-
ysis to distinguish heap objects that may be created, processed, and destroyed
by calling common functions. This enables automatic pool allocation (which is
based on DS graphs, as described below) to put distinct instances of the same
logical data structure into distinct pools in many cases. In the DS graph for
splitclone in Figure 1, R1 and R2 point to distinct nodes, indicating that the
analysis has proved the two linked lists are completely disjoint. This allows pool
allocation to put these two lists in distinct pools, even though they are created
in an interleaved fashion and by calling the same function.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 81

To achieve speed and scalability, DSA is flow insensitive and it uses a
unification-style analysis, that is, a pointer field at a node has exactly one out-
going DS edge so that all pointer target objects of the pointer are merged into a
single graph node. We argue in Lattner and Adve [2003] that the combination of
full heap cloning with unification is scalable to very large programs in practice.
DSA correctly analyzes non-type-safe programs and incomplete programs, and
infers the call graph incrementally as part of the analysis using a new, nonit-
erative technique. The first two properties are essential for real-world use.

DSA actually computes multiple DS graphs for each function. The “complete
bottom-up” DS graph for a function incorporates the effects of all functions
reachable from the current function (i.e., immediate callees and their callees
and so on), including functions called via function pointers [Lattner and Adve
2005]. The final, “top-down” DS graph of a function incorporates the effects of
both the callers as well as the callees of a function, so that it captures the full
set of memory objects and aliasing relationships from all possible call sites (as
well as those due to side effects of callee functions).

We have evaluated DSA experimentally for over 35 C programs, and found
that it is both extremely efficient and scales well across a large range of program
sizes [Lattner and Adve 2003]. DSA requires about 2—8 s and less than 16 MB of
memory for several C programs ranging in size from 60K to 130K lines of code.
Empirically, it also scales almost linearly in analysis time for 35 benchmarks
spanning 4 orders-of-magnitude of code size. No previous algorithm we know
of has demonstrated both speed and scalability with full heap cloning. DSA is
compared with previous pointer analyses in more detail in Lattner and Adve
[2003].

3.1 The Automatic Pool Allocation Transformation

Given an ordinary imperative program that uses explicit allocation (e.g.,
malloc) and deallocation (e.g., free), the automatic pool allocation transforma-
tion [Lattner and Adve 2005] rewrites the program to segregate heap objects
into multiple pools, by performing allocation and deallocation operations from
those pools. The transformation attempts to use separate pools of memory for
each logical data structure instance (e.g., a particular linked list or a graph)
that is not exposed to unknown external functions. This differs from other au-
tomatic region inference algorithms that infer regions primarily for performing
automatic memory management [Chin et al. 2004; Tofte and Birkedal 1998],
which do not consider data structure relationships in choosing how to partition
objects into regions.

We use a pool allocation library with five simple operations: (a) poolinit
(Pool** PP, unsigned size) allocates and initializes a new pool descriptor
for objects of the specified size; (b) pooldestroy(Pool* PP) clears the pool de-
scriptor and releases the remaining memory in the pool back to the system
heap; (c) poolalloc (Pool* PP, unsigned nbytes) allocates a single object or
an array of objects in the pool, depending on nbytes and the size of the objects
in the pool; and (d) poolfree (Pool* PP, T* ptr) deallocates an object within
the pool by marking its memory as available for reallocation by poolalloc. A

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

82 . D. Dhurjati et al.

0 A g(struct s *p) {
e create_10_Node_List (p);
g(p); DO)
i . initialize(p);
// p->next is dangling n(p);
p->next->val = ... ; free_all_but_head(p);

’ y
h(struct s *p) {
for (j=0; j < 100000; j++) {
tmp = (struct s*) malloc(sizeof(struct s));
insert_tmp_to_list(p,tmp);
q = remove_least_useful_member(p) ;
free(q);

Fig. 2. Pointer safety and pool allocation example.

pool is created before the first allocation for its data structure instance and is
destroyed at a point where there are no accessible references to data in the
pool. The pool library internally uses ordinary malloc and free to obtain mem-
ory from the system heap and return it when part of a pool becomes unused or
the pool is destroyed.

To illustrate the pool allocation transformation we use the example in
Figure 2. In this example, function f calls g, which first creates a linked list
of 10 nodes, initializes them, and then calls h to do some computation. g then
frees all of the nodes except the head and then returns.

The pool allocation transformation operates as follows:

(1) Identify pools within each data structure: We traverse the complete bottom-
up data structure graph (DSG) of each function to identify heap nodes. Each
heap node in this DSG corresponds to objects of a single data type, allocated
within the current function or one of its callees. Objects corresponding to
this node are allocated in a single pool.

(2) Identify where to create/destroy pools: For each procedure, the DSG can be
used to identify those DS nodes that are not accessible after the procedure
returns (i.e., nodes that are not reachable from globals, formal arguments
and return value). For each such node, we insert calls to create and destroy
the corresponding pools of memory at the entry and exit of the procedure.? In
our running example, the linked list does not escape from the procedure f ()
to its callers and so we create and destroy the pool for the list in procedure
£(), as shown in Figure 3.

(3) Transform (de)allocation operations and function interfaces: We transform
all malloc and free calls in the original program to use the pool allocation
versions, as illustrated in function h(). For any function containing such
operations on a pool created outside the function, we add extra arguments

30ur pools do not require nested lifetimes. We could move poolinit later in the function and move
the pooldestroy earlier or into a callee using additional flow analysis, but we do not do so currently.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 83

£O {
Pool *PP;
poolinit (PP, sizeof (struct s));

g(struct s *p, Pool *PP) {
create_10_Node_List(p, PP);
initialize(p);

g(p, PP); ?ﬁie zii’but head(p, PP);

// p->next is dangling I Ps ’

p->next->val = ... ;

pooldestroy (PP) ;

h(struct s *p, Pool *PP) {
for (j=0; j < 100000; j++) {
tmp = poolalloc(PP);
insert_tmp_to_list(p, tmp);
q = remove_least_useful_member(p);
poolfree(PP, q);
}
}

Fig. 3. Example after pool allocation transformation.

to pass the appropriate pool pointers into the function (and do the same for
possible callers of such functions, and their callers and so on). The transfor-
mation uses the call graph constructed by DSA for all interprocedural steps
and correctly handles programs with function pointers and recursion. The
changes are illustrated by the functions g() and h() and their invocations
in Figure 3.

The result of this transformation for type-safe programs is that all heap-
allocated objects are assigned to type-homogeneous pools, nodes in disjoint data
structure instances identified by DSA are assigned to distinct sets of pools, and
individual items are allocated and freed from the individual pools at the same
points that they were before. A pool is destroyed when there are no more live
(i.e., reachable) references to the data in the pool.

Note that the transformation as described so far does not ensure program
safety. Explicit deallocation via poolfree can return freed memory to its pool
and then back to the system, which can then allocate it to a different pool.
Dangling pointers to the freed memory could allow data of arbitrary types to
be accessed, and could violate memory safety.

4. SAFETY OF POINTER REFERENCES

Enforcing safe pointer usage consists of ensuring basic typing rules, handling
uninitialized pointers, stack safety, and heap safety.

4.1 Basic Issues

The first set of restrictions is the typing rules that are summarized below. We
assume a low-level type system including a set of primitive integer and floating
point types, arrays, pointers, user-defined records (structures), restricted union
types, and functions.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

84 . D. Dhurjati et al.

(T1) Our type system is the same as that of the C language, but is further
restricted by rules T2 and T3.

(T2) Casts to a pointer type from any other type are disallowed, except certain
pointer-to-pointer casts for compatible targets. Permitted casts include
casts between pointers to primitive types of the same size or casts from a
pointer to a primitive type to a pointer to a primitive type with a smaller
size.

(T3) A union can contain only types that can be cast to each other, for example,
a union cannot include a pointer and a non-pointer type.

Rule (T3) is similar to rule (T2) as unions are implemented using casts. The
exceptions to rule (T2) are essentially reinterpreting casts for the target numer-
ical value. Note, however, that if the pointer points to an array, the resulting
pointer would have no size information and hence any subsequent array index
operations would likely be rejected as unsafe by the array bounds checking algo-
rithm (Section 5). Explicit array declarations are just as in C, that is, they need
to specify the size of each dimension, except for the first dimension of an array
formal parameter. Enforcing the above rules is trivial in LLVM [Lattner and
Adve 2004], where all operations are typed and only an explicit cast instruction
can be used to perform any type conversion.

In a language without garbage collection, and with the type restrictions T1—
T3 above, there are three key ways in which pointer usage can lead to unsafe
memory behavior (we ignore array references here, since they are addressed in
Section 5): (a) Uninitialized pointer variables (either scalars or elements of ag-
gregate objects) could be used to access invalid memory addresses. (b) A pointer
into the stack frame of a function that is live after the function returns could
be used to access an object of a different type (i.e., to violate type safety). (c) A
pointer to a freed memory object (a “dangling pointer”) could be used to access
an object of a different type allocated later. These problems must be detected
and disallowed at compile-time where possible, and safely detected or toler-
ated at run time otherwise, without introducing explicit software checks before
individual memory references. Below, we examine each of these conditions in
turn.

4.2 Uninitialized Pointers

We employ two restrictions, (P1) and (P2) below, in addition to our requirement
that the run-time system have a reserved address range, to ensure that an
uninitialized pointer (scalar or an element of an aggregate object) is either
never dereferenced or results in a safe run-time error.

(P1) Every local pointer variable must be initialized before being referenced,
that is, before being used or having its address taken.

(P2) Any individual data type (i.e., not an array) should be no larger than the
size of the reserved address range.

Our compiler prevents errors due to uninitialized pointer values by statically
checking that the program honors rules (P1) and (P2). Rule (P1) is motivated

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 85

by the following code snippet, disallowed by our language:
int a, *p, **pp; pp = &p; print(x*pp); p = &a;

Here, the address of uninitialized pointer p is taken before it is initialized,
thus making **pp potentially unsafe. Such uses are difficult to detect statically
(because the use may be in a different function), and even a flow-sensitive
interprocedural algorithm is likely to lead to false errors. We prefer to disallow
taking the address of an uninitialized pointer. We use a standard global data
flow analysis to check rule (P1) above that considers only local scalar pointer
variables. (Note that interprocedural analysis is not required for identifying
uninitialized variables, since any variable needs to be initialized in the calling
function before it is passed as an argument).

Detecting uses of uninitialized values for global variables and for pointers
within dynamically allocated data (e.g., structure fields or array elements) is
difficult at compile time. Type-safe language implementations usually initialize
pointer fields in aggregate objects to null and use run-time null pointer checks
to detect uses of uninitialized values. In order to avoid performing such checks
explicitly in software, we initialize all uninitialized global scalar pointers, and
all pointer fields in globals and dynamically allocated data structures at alloca-
tion time, to point to the base of the reserved address range. This is enabled by
our typing rules, which ensure that the type of each dynamically allocated ob-
ject is known statically. Pointer fields in stack-allocated variables of aggregate
types are also initialized to the same value. This includes arrays of pointers in
the aggregate type which are initialized in a loop only once at allocation time.
Finally, the constant 0 used in any pointer-type expression is replaced with the
same value. Rule (P2) above specifies that the size of any individual structure
type? cannot exceed the size of the reserved address range. With this rule, the
above initialization ensures that the effective address for the load or store of
any scalar variable or structure field using an uninitialized pointer (e.g., p—>X,
where p is uninitialized) will fall within the reserved address range, thus trig-
gering a safe run-time error. If a reserved address range is unavailable or the
structure size restriction above is unacceptable, then explicit software checks
for null pointer references would be required.

4.3 Stack Safety

The second way in which pointer usage can lead to unsafe memory behavior
(problem (b) in Section 4.1) is when a pointer into a stack frame of a function is
live after the lifetime of the function. This potentially arises when the address
of a local variable is made accessible after the function returns. To avoid this
problem, many type-safe languages like Java disallow taking the address of
local variables. We choose to be less restrictive: we disallow only placing the
address of a stack location in any heap location or global variable, or returning
it directly from a function (rule P3 below). Microsoft CLR’s type system [Gordon
and Syme 2001] has exactly this restriction.

4An array does not need this size restriction. An uninitialized pointer used as an array reference
will be caught by the array bounds checker since the array will have no known size expression.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

86 . D. Dhurjati et al.

DSG(F) : Bottom-up data structure graph for function F
ReachableNodes(N, F): DS Nodes reachable from Node N in DSG(F)

for (each function F in program M)
for (each DSNode N in DSG(F))
if (N is pointed to by an argument or return value of F or global)
for (each DS node N’ in ReachableNodes(N, F))
if (N’ contains an ’S’ (stack) flag)
Report ‘‘Rule P3 violated by N’’’

Fig. 4. Stack safety algorithm.

(P3) The address of a stack location cannot be stored in a heap-allocated object
or a global variable and cannot be returned from a function.

Rule P3 can be enforced using a simple traversal of the data structure graph
for each function, checking whether any stack-allocated object is reachable from
the function’s pointer arguments, return node or globals. Note that this is equiv-
alent to traditional escape analysis for detecting upwards-escaping objects. This
algorithm is shown in detail in Figure 4.

4.4 Heap Safety

The third error above, that of detecting unsafe accesses to freed memory, is a
particularly challenging problem for a language with explicit memory deallo-
cation. We use our running example in Figure 2 to illustrate the challenges.
Note the use of dangling pointer in function f after g returns. In such code, it
is extremely difficult for any compiler to identify statically which references (if
any) may be unsafe and which are not. Moreover, consider h(), which allocates
one node and frees one node of the list 10* times. Eliminating explicit frees by
using region allocation (such as in Control-C, Cyclone, or other region-based
languages) would increase the instantaneous memory consumption of the pro-
gram by 10* * sizeof (struct s) bytes because the region holding list items
can be freed only after exiting the function £.

The basic principle underlying our approach is the following: (Type homo-
geneity principle) If a freed memory block holding a single object were to be
reallocated to another object of the same type and alignment, then dereferencing
dangling pointers to the previous freed object cannot cause a type violation. This
principle implies that to guarantee memory safety, we do not need to prevent
dangling pointers or their usage in the source—we only need to ensure that they
cannot be dereferenced in a type unsafe manner. The principle allows correct
programs (i.e., programs with no uses of dangling pointers) to work correctly
without any run-time overhead. Programs with dangling pointer errors will
execute safely but we will not detect such errors for these programs.

One objection to achieving safety via the above principle is that it can make
it more difficult for programmers to detect dangling pointer errors because such
errors would not produce any type violations. During debugging, however, the
above principle need not be used. In fact, the pool allocation library and run-
time system can use many run-time techniques to assist in detecting dangling

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 87

pointer errors. During production runs, on the other hand, we believe that the
principle is appropriate to use and its benefits greatly outweigh any possible
loss in error detection. During production runs of embedded software or system
software, there is little benefit in halting execution as soon as a potential mem-
ory corruption occurs (in fact, many memory corruption errors may not lead
to significant failures, so halting execution immediately could be premature).
The benefits of ensuring memory safety despite such errors (while avoiding the
overheads of garbage collection) are much more significant for such software.

Using the above principle directly, one naive but impractical and incorrect
solution is to separate the heap into disjoint pools for distinct data types and
never allow memory used for one pool to be reused later for a different pool. This
is impractical because it can lead to large increases in the instantaneous mem-
ory consumption. The worst-case increase for a program with N pools would be
roughly a factor of N — 1, when a program first allocates data of type 1, frees all
of it, then allocates data of type 2, frees all of it, and so on. More importantly,
the simple solution is incorrect because it would allow errors that make the
results of the compiler’s pointer analysis invalid, and therefore invalidate any
static checks that use pointer analysis (including our stack safety, and array
bounds checking algorithms). This problem is explained in the next section.

Our solution is essentially a more sophisticated application of this basic
principle, using automatic pool allocation to achieve type-homogeneous pools
with much shorter lifetimes in order to avoid significant memory increases as
far as possible.

4.4.1 Exploiting Pool Allocation for Heap Safety. The basic principle of
type homogeneity mentioned earlier can be applied to ensure program safety
after the pool allocation transformation. Since our pools are already type homo-
geneous, we simply need to ensure that the memory within some pool P; is not
used for any other dynamically allocated data (either another pool P or heap
allocations within trusted libraries) until P; is destroyed. This can be done eas-
ily by modifying the run-time library so that memory of a pool is not released
to the system heap except by pooldestroy. With this change, any reference via
a dangling pointer to a pool object will be guaranteed to reference either the
original object or a new object of the same type and alignment as the original,
and belonging to the same pool. This ensures that the basic principle described
above is satisfied.

An important but subtle point is that (stated informally), it is essential that
a dangling pointer can only refer to objects from the same pool (DS node) as
the original object in order that the results of the pointer analysis (DSA) are
valid. This is because the results of DSA indicate that a pointer to a DS node can
refer to any object represented by that node, but not objects represented by other
nodes. If a dangling pointer could refer to an object that logically belongs to some
other DS node (but at the same memory address as the original object), then
this result of DSA would no longer be valid. More formally, after the sequence
free(q);...; p = malloc(...), if qis still usable (i.e., it is a dangling pointer),
then the modified pool run-time library guarantees that the memory of *q will
be reused for *p only if the old object *q and the new object *p were allocated

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

88 . D. Dhurjati et al.

using the same pool descriptor. This in turn implies that g and p must have been
inferred to point to the same DS node, since we use a distinct pool descriptor for
each DS node. Thus, the DS graph correctly indicates that q and p may point
to the same object. In other words, our pointer analysis results are valid for
any execution of the program, including executions that may cause a dangling
pointer such as q to be dereferenced.

Note that the naive solution of using one pool per static type would not
ensure correctness of pointer analysis. This is because, in the above example,
p could reuse the memory of q even though p and g point to two different DS
nodes holding the same data type. Thus, *p and *q would be aliased in this
execution even though DSA claimed they were not. Similarly, our solution based
on automatic pool allocation ensures that the results of DSA are correct but if
some static analysis (e.g., array bounds checking) used a more precise pointer
analysis than DSA, the results of such a pointer analysis may be illegal for
some executions due to dangling pointer references. In particular, the pointer
analysis results used for any static analysis pass must be no more precise than
the pointer analysis used by automatic pool allocation to segregate memory into
pools.

4.4.2 Detecting Potential Increases in Memory Consumption. The second
key issue is memory consumption. The change to the pool allocation run-time
library above prevents reuse of memory between two simultaneously live pools.
This can have the same disadvantage as the naive type-based pools—the mem-
ory requirement of the program could increase. Note, however, that our pools
are much more short-lived than in the naive approach and are tied to dynamic
data structure instances in the program, not static types. We expect, therefore,
that during the lifetime of a pool, the most important reuse of memory (if any)
is within the pool rather than between the pool and other pools. Only the latter
causes any potential increase in memory consumption. Nevertheless, any such
increases are likely to be of significant concern to programmers of embedded
systems.

The goal of our further analysis is to distinguish the situations outlined
above, and inform the programmer about data allocation points where poten-
tial memory increases can occur. We can classify each pool P into one of three
categories:

Case 1 (No reuse): Between any poolfree for pool P and the pooldestroy for
P, there are no calls to poolalloc from any pool including P itself. In this case,
there is no reuse of P’s memory until P is destroyed. Figure 5(a) illustrates this
situation. Note that all poolfree calls to P can be eliminated as a performance
optimization. This is essentially static garbage collection for the pool since its
memory is reclaimed by the pooldestroy introduced by the compiler.

Case 2 (Self-reuse): Between any poolfree operation on pool P and the call to
pooldestroy for P, the only poolalloc operations are to the same pool P. In this
case, the only reuse of memory is within pool P, and the explicit deallocation
via poolfree ensures that no increase in the program’s memory consumption
will occur. This is illustrated in Figure 5(b): after the first poolfree on p1 there

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 89

1= linit 5 L.
pl = poolinit(s); I; _ mz;:Tizi(;j;' pl = poolinit(s);

t = makeTree(pl); t = makeTree(pl);

_ PD); vhile(...) {) (1)

while(...) { while(...) {
processTree(pl,t);

processTree(pl,t); processTree(pl,t);
freeSomeItems(pl,t);

freeSomeItems(pl,t); addTtens (pl,t) ; freeSomeItems(pl,t);

pl,t); // self-reuse addItems(pl,t); // self-reuse

addItems(p2,t); // cross-reuse

} }
}
£ T. 1,t); £ T 1,t);
oibenroypi); TroSTros(pL corpesreay 513
P yipLJs poolDestroy(pl); P TIPS
(a) No reuse (case 1) (b) Self-reuse (case 2) (c) Self- and cross-reuse (case 3)

Fig. 5. Example illustrating three types of reuse behavior for a pool p1.

are new allocations in pool p1 (via the function addItems), but not by any other
pool.

Case 3 (Cross-reuse): Between the first poolfree operation on P and the
pooldestroy for pool P, there are poolalloc operations for other pools. Pool
pl in Figure 5(c) falls in this category because there are allocations from pool
p2 via the call to addItems(p2,t). Our transformation in this case may lead
to increased memory consumption, and we require this to be approved by the
programmer via a compiler option. In such situations, the programmer would
first analyze or profile the memory consumption of the code, focusing on data
structures assigned to case 3 pools identified by our classification algorithm.
Typically the programmer has the following choices:

(a) Often, the increase in memory with case 3 pools is acceptable. These are
cases where there is limited wasted memory from pools with overlapping
lifetimes, in spite of not freeing memory back to the system (possibly due
to a lot of pool memory self-reuse).

(b) In some situations, the source code of the program could be restructured to
avoid case 3 pools. For instance, since our calls to poolinit and pooldestroy
are at the entries and exits of functions, enclosing the use of a data structure
from the point it is first used till its last use within a function potentially
moves the pooldestroy for the pool earlier in the program. However, case 3
pools are sometimes unavoidable if there are long-lived data structures with
overlapping lifetimes.

Furthermore, standard software engineering practices tend to minimize
the number of case 3 pools. Examples include separating long-lived and
short-lived data into distinct data structure instances, avoiding long-lived
pointers to short-lived data, and modular program design (especially con-
fining data structure instances within functions). These observations are
supported by our experimental results, which show that case 3 pools oc-
cur in few of our benchmarks, and the increase in memory consumption is
small.

Note that the pool in our running example of Figure 3 has only self-reuse, and
we can guarantee memory safety without any increase in memory consumption.
Our experiments in Section 6 have produced very few instances of case 3; they

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

90 . D. Dhurjati et al.

occurred only in 3 out of the 20 embedded and control programs we examined,
and none had significant increase in memory consumption due to the change
to the pool run-time library.

4.4.3 Compiler Algorithm for Categorizing Pools. We have developed a
compiler analysis to categorize pools into the three cases described above. This
algorithm is run after the automatic pool allocation transformation as shown
in Figure 9 and identifies to which group each pool belongs. For this static anal-
ysis, each call to poolinit() is a distinct pool. When analyzing a particular
function, each distinct pool descriptor (which may be a formal argument or a
call to poolinit()) is treated as a potentially distinct pool.

Categorizing pools requires analyzing the potential order of execution of
pool operations across the entire program, using an interprocedural control flow
analysis. Automatic pool allocation records information about the pools used in
each function and the locations of calls to poolalloc, poolfree, and pooldestroy
inserted for each pool. Pool pointers are passed between procedures but they
are not otherwise copied and their address is never taken, so each pool pointer
variable declared within a function identifies a distinct pool.

The algorithm for identifying and categorizing reuse within and across pools
is shown in Figure 6. We say a function F (or a call site C) indirectly calls a
pool operation (e.g., poolfree) if it calls some function that may directly or in-
directly call that operation. The sets FreeSites(F,P) and AllocSites(F,P),
respectively, identify the call sites within function F that directly or indi-
rectly invoke poolfree and poolalloc on pool P. The sets PoolsFreed(F) and
PoolsAlloced(F), respectively, are sets of incoming pools (i.e., formal pool
pointer arguments to function F') for which F' may directly or indirectly call
poolfree or poolalloc.

Consider first a single-procedure program containing calls to poolfree,
poolalloc,and pooldestroy. The analysis then traverses paths from a poolfree
on a pool to the pooldestroy calls on that pool, looking for all calls to poolalloc
that appear on such a path. This is shown as routine AnalyzeFunction in
Figure 6. AnalyzeFunction contains an iterative forward dataflow algorithm,
which, for each program point, computes the set of all pools that are freed
but not destroyed along some path to the point. For each basic block BB, the
sets BBfreesBefore (BB) and BBfreesAfter (BB) represent these sets at the en-
try and exit of the block. The set BBfreesBefore(BB) is simply a union of
the sets BBfreesAfter (p) for all predecessor blocks p of BB. A pool in the set
BBfreesBefore(BB) is propagated to BBfreesAfter (BB) unless there is a call to
pooldestroy on that pool in BB. Each iteration is a linear-time traversal of the
basic blocks, and we have found that there are only a small constant number of
iterations in practice (as expected because this dataflow problem has the acyclic
propagation property [Aho et al. 1986]). Every poolalloc call is then analyzed
by checking for calls to poolfree on undestroyed pools on any path preceding
it. This is computed using BBfreesBefore for the basic block corresponding to
the poolalloc call and the set of pools freed but not destroyed in the basic
block before the poolalloc call. Pools are categorized based on the instances of
poolfree (if any) found on such paths.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

FreeSites(F,P)
AllocSites(F,P):
PoolsFreed(F)
PoolsAlloced(F):

Memory Safety Without Garbage Collection . 91

: set of call sites in F that may call poolfree on pool P directly or indirectly

set of call sites in F that may call poolalloc on pool P directly or indirectly

: set of pool arguments of F that may have a poolfree in F or one of its callees

set of pool arguments of F that may have a poolalloc in F or one of its callees

// Analyze direct and indirect calls to poolalloc, poolfree and pooldestroy and classifies pools in a function
AnalyzeFunction(Function F)

begin

BBfreesBefore(BB) : set of pools freed but not destroyed on some path to the beginning of basic block BB
BBfreesAfter(BB) : set of pools freed but not destroyed on some path to the end of basic block BB
BBdestroys(BB) : set of pools destroyed in basic block BB
for (each basic block BB in F)
initialize BBfreesAfter(BB) with pools freed in BB
initialize BBdestroys(BB) with pools destroyed in BB
BBfreesAfter(BB) = BBfreesAfter(BB) - BBdestroys(BB)
while (change) // forward propagate frees on pools, kill free upon destroy
for (each basic block BB in F in a reverse post-order traversal of the CFG)
BBfreesBefore(BB) = Union of BBfreesAfter(pred(BB)) for all predecessors of BB
BBfreesAfter(BB) = BBfreesAfter(BB) union (BBfreesBefore(BB)) - BBdestroys(BB)
Recompute change
// Classify pools as Case 1, 2 or 3
for (each call site AI in AllocSites(F,P))
AIBB: basic block corresponding to AL
BBdestroysBeforeAl = set of pools destroyed before AI in AIBB
BBfreesBeforeAl = BBfreesBefore(AIBB) UNION (set of pools freed preceding AI in AIBB)
for (Pool P1 in (BBfreesBeforeAI - BBdestroysBeforeAI))
if (P1 == P) Add (F, P1) to ‘‘Case 2 Pools’’

else

Add (F, P1) to ‘‘Case 3 Pools’’

if (!(Case 2 or Case 3))

Add (F,
end;

P) to ‘‘Case 1 Pools’’

// Propagate calls to poolalloc and poolfree interprocedurally and analyze pools in each function
AnalyzeProgram(Program M)

begin

for (each SCC in CallGraph of M in post-order)
while (change = true)
change = false

for

(each function F in the SCC)
// Compute AllocSites(F,P), FreeSites(F,P), PoolsFreed(F) and PoolsAlloced(F)
for (each pool pointer variable P in F) // formal argument or local variable
for (each call site CS in F that has P as an argument)
for (each function CalledF that can be called at CS)
if (CalledF is poolfree for P OR PoolsFreed(CalledF) contains P)
if (FreeSites(F,P) does not contain CS)
change = true
add CS to FreeSites(F,P)
if (P is an argument of F) add P to PoolsFreed(F)
if (CalledF is poolalloc on P OR PoolsAlloced(CalledF) contains P)
if (AllocSites(F, P) does not contain CS)
change = true
add CS to AllocSites(F,P)
if (P is an argument of F) add P to PoolsAlloced(F)

for (each function F in the SCC)
AnalyzeFunction(F)

end;

Fig. 6. Algorithm to identify and classify potential memory reuse within and between pools.

Consider next an input program without recursion. The algorithm then
makes a bottom-up traversal of the call graph, computing the four kinds of

sets above

for each function. The bottom-up traversal ensures that the sets

PoolsFreed(C) and PoolsAlloced(C) will be computed for all possible callees
C of a function F, before visiting F. To compute the sets for F, we visit each

call site S

in F' and add this call to FreeSites(F,P) if it causes an invo-

cation of poolfree(P), and to AllocSites(F,P) similarly. We also add each
pool so encountered to PoolsFreed(F) or PoolsAlloced(F). We assume that
pooldestroy on a pool is only called at the function in which the pool is created

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

92 . D. Dhurjati et al.

and hence we do not need to propagate these calls interprocedurally. We can
now invoke AnalyzeFunction(F) directly to classify all pools in F. Note that
AnalyzeFunction(F) makes no distinction between local and indirect calls to
poolfree/poolalloc for pool P since both kinds of call sites are included in
FreeSites(F,P) and AllocSites(F,P).

To handle recursive and nonrecursive programs uniformly, we actually per-
form the bottom-up traversal on the strongly connected components (SCCs) of
the call graph. Within each SCC, we use a simple iterative algorithm in which
the sets are propagated from a function to its call sites within the SCC until
the sets FreeSites(F,P) and AllocSites (F,P) stabilize for all functions F in the
SCC and every pool P. Once they have stabilized, the sets can be propagated
from each function in the SCC to every call site of that function outside the
SCC. AnalyzeFunction is then applied to each function F in the current SCC as
explained earlier.

5. ARRAY RESTRICTIONS

In general, array operations are one of the most expensive to check for memory
safety at run time. We identify some restrictions on the language (as few as
possible, given the state of the art of static program analysis) that can allow us
to verify statically the safety of all array accesses in a program.

5.1 Language Design

From the viewpoint of language design for static safety checking, one of the
fundamental limits in static program analysis lies in the analysis of con-
straints on symbolic integer expressions. For ensuring safety, the compiler
must prove (symbolically) that the index expressions in an array reference
lie within the corresponding array bounds on all possible execution paths. For
each index expression, this can be formulated as an integer constraint sys-
tem with equalities, inequalities, and logical operators used to represent the
computation and control-flow statements of the program. Unfortunately, sat-
isfiability of integer constraints with multiplication of symbolic variables is
undecidable. A broad, decidable class of symbolic integer constraints is Pres-
burger arithmetic, which allows addition, subtraction, multiplication by con-
stants, and the logical connectives v , A, —, 3, and V. (For example, the Omega
library [Kelly et al. 1996] provides an efficient implementation that has been
used for solving such integer programming problems in compiler research.)
Exploiting static analysis based on Presburger arithmetic requires that pro-
grams only use linear expressions with (known) constant coefficients for all
computations that determine the set of values accessed by an array index
expression.

With this intuition, we derive a set of language rules for array usage. First,
recall the definition of an affine transformation. Let F' : R® — R. Then a
transformation F is said to be affine if F(p) = Cp + g, where C is any linear
transformation, and g contains only constants or known symbolic variables in-
dependent of p. In the following, we assume affine transformations with known
constant integer coefficients (C).

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 93

On all control flow paths,

(Al) The index expression used in an array access must evaluate to a value
within the bounds of the array.

(A2) For all dynamically allocated arrays, the size of the array must be a posi-
tive expression.

(A3) For every reference of an array A, either the index expression in the array
reference must be a provably affine transformation of the size of A or the
following must hold:

(a) the array reference has to be inside a loop;

(b) the index expression in the array reference must be a provably affine
transformation of the vector of index variables of enclosing loops;

(c) the bounds of the enclosing loops must be provably affine transfor-
mations of the size of A and outer loop index variables or vice versa;
and

(d) if the index expression in the array reference depends on a symbolic
variable s which is independent of a loop index variable (i.e., appears
in the constant term in the affine representation), then the memory
locations accessed by that reference have to be provably independent
of the value of s.

Al by itself guarantees safe array accesses, but the compiler can check that
a program satisfies Al if the additional language rules A2—A3 are obeyed.

The length of an array can be any nonnegative expression. Arrays can also
be passed as formal parameters and be returned as return values (using point-
ers, just as in C), relying on interprocedural analyses during compilation to
propagate the array sizes.

Note the use of the phrase “provably affine” in the rules, indicating that
the ability of the compiler to prove a transformation is affine plays a role in
accepting or rejecting a program. Pointers to arrays, if loaded from memory
locations (some multilevel pointers), are typically hard to reason about and
we cannot prove them as affine in our system. A more sophisticated compiler
might be able to prove more array accesses as affine. In this work, we present
a technique that uses interprocedural analysis to prove that a large number of
array accesses, which do not involve pointers loaded from heaps, actually use
only affine transformations.

Rule A3(d) requires some explanation. A simpler alternative would be to
restrict the affine expressions to use only known constants even in the second
term (gq), but this is unnecessarily restrictive. For example, a loop could run
K to N + K — 1 and an index expression within the loop could be of the form
Ali — K], where K is some (unknown) loop-invariant value. This array access
is easy to prove safe, but would be disallowed under the simpler rule. Instead,
A3(d) allows a variable such as K to appear as long as the specific value of K
does not affect which array locations are accessed. Thus, in the example, the
array locations accessed in the loop are A[0..N —1], regardless of the value of K .

Array accesses and pointer arithmetic are handled uniformly in our code
representation. We lower all array accesses to pointer arithmetic operations

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

94

. D. Dhurjati et al.

Table I. Some Trusted Library Routines with Implied

Constraints and Preconditions

Return Value Safety Pre-
Library Call Constraints conditions
n = read(fd, buf, <= count buf.size
count) >= count
n = puts(s) -
p = memcpy(pl, p2, .size = pl.size | pl.size
n) >=n
fp = fopen(p,m) - —
n = getc(s) - _
n = strlen(s) n <= s.size -
p = strcpy(sl,s2) p.size = sl.size | sl.size
>= s2.size
p = strdup(s) p.size = s.size -
p = strncpy(sl, s2, | p.size = sl.size | sl.size >=n
n)

(followed by memory accesses) and work on the resulting program. This means
that we enforce our semantic restrictions on arrays as well as other legal pointer
arithmetic operations uniformly.

One practical issue for embedded programs is that they make significant use
of I/O operations, the string library, and command line arguments. We added
the following rule (A4) to allow trusted string and I/O library routines that
make use of arrays:

(A4) A setof trusted library routines with specified preconditions may be used,
and arguments passed to those routines must satisfy the preconditions.

The rule also specifies that the arguments to trusted library routines must sat-
isfy some safety preconditions, to prevent buffer overruns within the library
routines. Some library routines also provide constraints (postconditions) relat-
ing the output of a routine to its inputs, which can be used by the compiler to
check buffer or string safety. For example, the expression n = read(fd, buf,
count) where buf is a character array has the safety precondition (buf.size >=
count) (as explained later in (A5), for a character buffer A, A.size represents
the allocated size - 1) and the constraint on the return value (n <= count)
since read can read only up to count bytes. Some trusted library calls and the
corresponding constraints are listed in Table 1.

The advantage of providing trusted routines with predefined constraints
(rather than including their source code in our analysis) is two-fold. It allows
the body of the library routine to use nonaffine array accesses or non-type-safe
code. Also, we do not need to compute or propagate detailed constraints from
the body of the library routine, thus speeding up the analysis.

Finally, to ensure that string routines will not read beyond the size of the
array, we always initialize the last character in any array of characters to be
null. We also added the following rule:

(A5) The last element of a character array cannot be accessed by the program
(trusted library calls like strlen can access it).

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 95

(A5) requires that the program must not modify the last character, and we
enforce this rule by excluding the last element in the array size expression.

5.2 Compiler Implementation

Compiler checking for safe array usage requires four steps:

—generating constraints from each procedure,
—interprocedural propagation of constraints,
—verifying whether each array access is safe, and
—verifying each safety precondition is true.

5.2.1 Generating the Constraints. We generate a set of constraints for each
array access in a program, including only those constraints that affect the array
access. The algorithm is described in Figure 7. We use a flow-insensitive algo-
rithm that exploits the SSA representation in LLVM. The LLVM instruction set
distinguishes registers (which are in SSA form) and memory, and it allocates to
registers all local scalar variables (including pointer variables) whose address is
not taken. Global variables, heap-allocated data, and address-taken local vari-
ables are kept in memory and are not in SSA form. All instruction operands
are SSA registers, and memory locations are accessed only via load and store
instructions. To get constraints for an array access, A[i] [j], we traverse def-
use chains backwards from the definitions of the SSA variables holding &4, 1,
and j, respectively. These constraints are simply inequalities on integer SSA
variables that can be inferred from the program statements. For most program
statements, generating the constraints is straightforward. For example, from a
simple statementlikei = (x + z) * 5, we would generate an affine constraint
i = 5x +5z (our examples use C syntax, although such a statement would inter-
nally require three LLVM instructions and two temporaries, not shown here).
No constraints are generated for any nonaffine expression, including a load
instruction. Not generating a constraint for a variable makes the variable un-
constrained, and the safety checker will treat the array access as unsafe, unless
the variable is irrelevant. We recursively traverse the def-use chains for each
variable (e.g., x and z), stopping only if we encounter a nonaffine operation, a
formal argument, a return value from a call, or an instruction whose constraints
have already been computed and cached. We cache the final constraints on each
instruction we traverse so that they can be reused.

We explain the basics of our approach with the help of the example in
Figure 8.

For array access A[i] in Figure 8, the constraints we generate are a conjunc-
tion of

— (A.size = 51-1) generated using the def-use edges from the array decla-
ration with the last character excluded from the size because of A5.

— (len <= A.size && k <= 50) generated using the def-use edges and return
value constraints on library functions strlen and read.

— (i < len && k > 0) generated from the control dependence graph using the
ControlDependentConditions procedure in the algorithm.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

96 . D. Dhurjati et al.

Constraints ::= AffineConstraint // affine equality or inequality interms of program variables
| Constraints &% Constraints // conjunction of two constraints
| Constraints || Constraints //disjunction of two constraints.

//Helper Functions
isSatisfiable(Constraints c) : returns true if c is satisfiable, false if not. //uses Omega
ControlDependentConditions(var v) : returns a list of Conditions on which v is control dependent.
def(v) : definition of the variable v
VarsUsed(Variable v) : returns a list of variables used in the def of v
CollectConstraintsAtAl1CallSitesOfThisFunction() : merges constraints from all call sites of this function
CollectConstraintsOnReturnValue(Function f) : returns the constraints on return value of f

in terms of its arguments (if affine).
stepfn(v) : if v is an induction variable in a loop, it returns the step value of the loop.

// The following tries to check if array access A[i] is safe
AnalyzeArrayAccess(A, i)
begin
Constraints ¢ = generateConstraints(A);
¢ = ¢ & generateConstraints(i); //We merge the constraints of A and i
c=c &k ((A.size < 0) || (i >= A.size))
if (isSatisfiable(c)) return false //Access is unsafe
else return true //Access is safe
end

//The following generates constraints for SSA variable v
generateConstraints(Variable v)
begin
Constraints c;
if v is in cache return constraints from cache;
//First check if the definition of v is an affine expression
if def(v) is affine arithmeticOperation
¢ = def(v); //generate constraints for simple arithmetic operations
¢ = ¢ && generateConstraints(VarsUsed(def(v)));
//check def(v) is a malloc or alloca of an array
else if def(v) is (non char) array allocation of size d
c = (v.size = d)
else if def(v) is char array allocation of size d
¢ = (v.size = d - 1) //This is because of A5
else if def(v) is formal argument
¢ = CollectConstraintsAtAllCallSitesOfThisFunction();
else if def(v) is return value of a function call
¢ = CollectConstraintsOnReturnValue(callee(def(v));
¢ = c & generateConstraints(VarsUsed(args(def(v))))
else if def(v) is a PHI(x1,x2) and def(v) is induction variable of a loop
and x2 is coming through backward edge of the loop
if stepfn(def(v)) is positive ¢ = c && ((v >= x1) || (v <= x2))
else if stepfn(def(v)) is negative ¢ = ¢ && ((v <= x1) || (v >= x2))
//We now add the control dependent conditions and their definitions
ConditionList = ControlDependentConditions(v);
foreach (Condition k in ConditionList)
c = c && k && generateConstraints(VarsUsed(k));
store constraints of v as c in cache
return c;
end

Fig. 7. Algorithm for array bounds checking.

For an SSA ¢ node, x3 = ¢(x1, X9), we check if it represents an induction
variable, using an existing induction variable analysis [Bachmann et al. 1994;
Birch 2002]. If the ¢ node is not an induction variable, then we simply ignore
the constraints on the ¢ node since this cannot lead to affine constraints. If
the ¢ is an induction variable, we know it merges values from a back edge
and a forward edge. If the step function of the variable is positive, we add the
constraint ((x3 > x1) V (X3 < X3)), where x; comes from a forward edge and xs
comes from a backward edge. If it is negative, we add the constraint (x3 < x1) v

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 97
char A[51]; // last character is set to null

k = read(fd, A, 50); // requires A.size >= 50; implies k <= 50

if (k> 0) {
len = strlen(A); // implies len <= A.size
for (i=0; i < len; i++)
if (A[i] == >-’
break;
// use A and i
}

Fig. 8. Array usage example.

(x3 > X9). An induction variable with an unknown step function cannot produce
affine constraints and will simply be ignored.

Overall, induction variable recognition allows us to generate useful con-
straints about index variables (e.g., i >= 0) and (together with the renaming of
variables in SSA form) avoids generating inconsistent equalities like i = i +
1 for both induction variables and ordinary variables.

The complete set of constraints we generate for the example ref-
erence is (A.size = 50 && len <= A.size && k <= 50 && i < len & k > O
&& i >= 0).

5.2.2 Interprocedural Propagation. In many cases, size expressions for an
array or constraints on variables used in index expressions must be propagated
interprocedurally. For this purpose we have developed an algorithm for inter-
procedural constraint propagation. The interprocedural algorithm consists of
two passes on the call graph. First, a bottom-up pass gets constraints on re-
turn values in terms of procedure arguments. A top-down pass then merges
constraints on arguments coming in to a procedure from different call sites
and then tries to prove safety for all array accesses and safety preconditions in
that procedure. Our current implementation cannot prove the safety of accesses
which depend on recursive functions and hence simply rejects them. Our ex-
periments have shown that array accesses that depend on recursive functions
are very rarely provably affine.

The algorithm has a worst-case exponential time complexity. In practice,
however, we have found that, for most embedded applications, a simple heuristic
like collecting all the constraints for each of the different arrays passed to the
procedure and then merging and simplifying them removes many redundant
constraints and greatly increases efficiency.

Our static checking algorithm assumes that there will be no overflows and
underflows in the integer arithmetic involved in index or array size computa-
tions. Statically verifying this is extremely difficult and furthermore, once veri-
fied, does not allow us to perform many traditional compiler optimizations that
reorder computations (unless we also verify that there is no overflow/underflow
for any possible reordering of the computations). Fortunately, many modern
processors, though not all, have the ability to raise exceptions on overflow or
underflow on arithmetic operations. In the embedded world, most processors

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

98 . D. Dhurjati et al.

derived from the MIPS instruction set (e.g., MIPS32, MIPS64, R4300i) have
such an ability. Among the general-purpose processors, DEC Alpha, VAX, and
IBM/S 360 descendants provide such feature. The x86 and sparc architectures
do not automatically raise hardware exceptions upon overflow/underflow, but
set some flags in condition code register. However, they do provide special “trap
on overflow” instructions like INTV in x86 and tcc in sparc, which when in-
serted after an arithmetic operation would check the overflow/underflow flag
and raise an exception if the flag is set. To guarantee safety on these processors,
we would need to insert the corresponding “trap on overflow” instruction after
every arithmetic operation that affects an array access.

5.2.3 Checking for Array-Bound Violations. We use the Omega integer set
library [Kelly et al. 1996] to test each array index expression for safety. Once
we generate constraints for an array reference, we add conditions representing
array bounds violations for the reference (such as (i < 0 || i >= A.size) in
the earlier example). We then use the Omega library to check if the resulting
constraint system is satisfiable. If the system is not satisfiable (as we have
here), the constraints have been proven inconsistent and the array access is
safe. Otherwise, the access is potentially unsafe and we reject the program.

5.2.4 Checking Safety Preconditions. To verify the preconditions for each
trusted library call (e.g., the call to read above), we simply need to check if the
negation of the precondition ((A.size >= 50))along with known constraints on
variables in the argument expressions (buf . size and count) result in an incon-
sistent system. Here, (A.size < 50 && A.size = 50) is trivially inconsistent.
In this manner, we generate and check the preconditions for every trusted li-
brary call used by the program.

6. RESULTS

In this section, we address some of the key questions about the effectiveness
of our semantic restrictions and compiler techniques used to check memory
safety:

(1) How much effort is required to convert existing embedded programs to
conform to our semantic restrictions?

(2) Are the pool allocation transformation and heap safety analysis powerful
enough to enforce pointer and heap safety statically in different embedded
programs?

(3) How often do we encounter pools from each of the three categories in these
programs?

(4) How much does the heap safety transformation affect the execution time

and the memory usages of the programs?
(5) Are the semantic restrictions and static analyses for stack safety sufficient

for existing embedded programs?
(6) Are the array restrictions and bounds-checking algorithm flexible enough

to permit existing embedded programs (without extensive changes)?

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 99

T~ LLVM LLVM Data Structure

c—] GCC Object code Linker :a]ysis)

Pointers

. Categorizing Safe Code
Pool Allocation Pools - -

|:| Existing Infrastructure

l:l Analyses developed in this work
Fig. 9. Implementation.
6.1 Implementation

We have implemented a safety-checking compiler that includes all the compiler
techniques described in this paper, using the LLVM compiler infrastructure.
Figure 9 is a high-level block diagram showing the sequence of steps we use to
enforce safety. Previously existing compiler components are shown by shaded
boxes and the rest are new components developed for this work. We have also
modified our run-time pool allocation library so it does not release free memory
in a pool back to the system heap until the pool is destroyed.

6.2 Methodology and Porting Effort

Our test programs were derived from two embedded application benchmark
suites: 13 from MiBench [Guthaus et al. 2001] and 4 from MediaBench [Lee et al.
1997] (of the other programs in MediaBench, two fail pool allocation and one
is not accepted by the current LLVM C frontend), two classes of experimental
control codes, and sensor network applications. MiBench consists of embedded
programs from a variety of domains including telecommunications, security,
networking, and so on. MediaBench is predominantly multimedia programs. In
addition, we tested a set of PID controllers for an inverted pendulum running
on the Simplex real-time architecture [Sha 1998], LQR state space controllers
for the Pendubot experiment from the controls laboratory at the University
of Illinois, and real-time sensor applications in sensor networks running on
TinyOS [Hill et al. 2000]. We believe that these programs cover a wide variety
of embedded applications used in practice. The applications that our LLVM
C frontend or the pool allocation pass currently refuse to compile are similar
to the ones that we report here with respect to code size (except ghostscript)
and in usage of dynamic memory, and we do not expect the results to change
qualitatively for the remaining benchmarks.

The program rasta used a library called 1ibsphere whose source was not
available. The experiments for rasta assumed that this library is safe and

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

100 . D. Dhurjati et al.

Table II. Benchmarks, Code Sizes, and Analysis Results

Lines of Lines of Heap and
Code Code Pointer
Lines of Modified for | Modified for Safety Stack | Array

Benchmark Code Type Safety | Array Safety (case) Safety | Safety
Control

Pendulum 300 (Average) 0 0 Yes Yes Yes

Pendubot 1,300 (Average) 0 31 Yes (case 1) Yes Yes

TinyOS apps 300 (Average) 0 0 Yes Yes Yes
Automotive

basicmath 579 1 3 Yes Yes Yes

bitcount 17 5 0 Yes Yes Yes

gsort 156 0 1 Yes Yes Yes

susan 2,122 1 0 Yes (case 1) Yes No
Office

stringsearch 3,215 0 3 Yes Yes Yes
Security

sha 269 0 1 Yes Yes Yes

blowfish 1,502 1 5 Yes Yes Yes

rijndael 1,773 3 6 Yes No Yes
Network

dijkstra 348 0 0 Yes (case 2) Yes No
Telecomm

CRC 32 282 0 1 Yes Yes Yes

adpem codes 741 0 0 Yes Yes No

FFT 469 0 0 Yes (case 1) Yes No

gsm 6,038 0 0 Yes (cases 1,2) | Yes No
Multimedia

g721 1,622 11 0 Yes Yes No

mpeg(decode) 9,839 0 0 Yes (cases 1,3) | Yes No

epic 3,524 7 0 Yes (cases 1,3) | Yes No

rasta 7,373 25 0 Yes (cases 1,3) | Yes No
Totals: 20 41,769 70 53 20 19 11

checked the safety of the available source. Also, for each of the programs above,
we designate library and system calls (file reading and writing routines, for
instance), whose source is unavailable, as being trusted. This is safe since we
manually enforce that each of these programs is linked only to trusted libraries.

The benchmarks, their sizes, and our results for each are shown in Table II.

We found that a few lines of code had to be changed in several benchmarks
to conform to our rules, particularly for type safety and array safety. These are
shown in the third and fourth columns of Table II. The largest changes were
for rule (T3) in rasta, Pendubot, and g721. All the three programs used unions
with incompatible types; rasta had a union with a float and an array of four
chars to swap the bytes of the float value, and g721 did the same for an unsigned
int. We rewrote the code using shift operations and eliminated the union. The
benchmark epic used a wrapper around malloc to check the return value of
malloc and to exit the program if it were null. This resulted in casts from charx*
to a pointer to the type being allocated after each call to this wrapper function.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 101

We replaced the wrapper function with a plain malloc call in order to prevent
these casts. The return value check, however, is preserved since these calls to
malloc are converted into poolalloc, and the return value of malloc is checked
by the poolalloc library function. The other changes for type safety were very
small. For instance, we needed to initialize local pointer variables before use
within their parent function. Also, the fread and fwrite system calls take a
char* value as their first argument, leading to a cast from an arbitrary pointer
to a charx* before it is passed as argument. This violates rule (T2) and also
prevents pool allocation from being applied to the object being passed in. We
have defined separate trusted wrapper functions around fread and fwrite for
each primitive nonpointer type, and we changed the source code to use the
appropriate wrapper functions. (Programs that read nonprimitive data from a
file would be rejected.)

For the array safety rules, we had to rewrite a few lines of code in eight
programs. The changes were generally minimal and obvious. For instance, in
blowfish a command line argument was accessed by iterating and checking if
the last character was null, which had to be rewritten to use strlen() for the
loop bound and using an induction variable in the while loop which depends
on the strlen(). In another case (search_string), an array of strings were ac-
cessed in a while loop with the index variable unrelated to the bounds. We had
to rewrite the code to make the access obey our language rules described in
Section 5.

Besides requiring very few modifications, the changes themselves were sim-
ple and local and in most cases obvious from reading the code or from compiler
error messages. Overall, we believe the porting effort to use our compiler for
standard C programs is small to negligible.

6.3 Effectiveness of Pointer and Heap Safety Analysis

The Heap and Pointer Safety column in Table II shows that our compiler was
able to enforce safety of heap and pointer usage for all 20 programs we studied.
More precisely, the DSA and pool allocation techniques together are sufficiently
precise to partition the programs heap data into type homogeneous pools (af-
ter the few changes to these programs we made to ensure that the programs
pass our type safety requirements). About half the benchmarks use no dynamic
memory allocation (though they still use pointers). For the other benchmarks,
the same column shows the different categories of pools found in each one. The
results show that we were able to prove heap safety without increase in mem-
ory consumption (i.e., case 1 or case 2 pools—no reuse or only self-reuse), for all
13 MiBench benchmarks, 1 of the 4 MediaBench programs, and all the control
programs.

Only three programs, mpeg2decode, rasta, and epic, have pools with cross-
reuse by other pools (case 3). In practice, our experimental results (see Table I1I
and Section 6.3.1) have shown that these do not result in a significant increase in
memory consumption (see Table III). The three programs, mpeg2decode, rasta,
and epic make extensive use of dynamic memory, yet they contain very few
pools that fall under case 3: just 4 of the 8 pools in mpeg2decode, 3 of 12 in

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

102 . D. Dhurjati et al.

Table III. Execution Time and Memory Usage for Heap Safety Approach

Benchmark Execution Time (s) Memory Usage (bytes)
Heap Orig Pool Pool Alloc.
Orig | Safety | Exec | Mem | Alloc Mem. | Mem + Safety Mem.
Time | Time | Ratio | Usage Usage Ratio 1 | Restriction | Ratio 2

Automotive

basicmath 1.667 | 1.672 | 1.00 16,384 16,384 1 16,384 1

bitcount 0.710 | 0.727 | 1.02 16,384 16,384 1 16,384 1

gsort 0.405 | 0.404 | 1.00 | 24,576 24,576 1 24,576 1

susan 0.670 | 0.675 | 1.01 | 253,952 | 253,952 1 253,952 1
Office

stringsearch | 0.024 | 0.024 | 1.00 16,384 16,384 1 16,384 1
Security

sha 0.145| 0.138 | 0.95 | 24,576 24,756 1 24,576 1

blowfish 0.713 | 0.722 | 1.01 | 24,576 24,756 1 24,576 1

rijndael 0.340 | 0.366 | 1.07 | 24,576 24,576 1 24,576 1
Network

dijkstra 0.340 | 0.349 | 1.02 | 32,768 32,768 1 32,768 1
Telecomm

CRC 32 1.463 | 1.53 1.04 | 16,384 16,384 1 16,384 1

adpem codes | 1.255 | 1.252 | 1.00 0 0 — 0 —

FFT 0.495 | 0.478 | 0.96 | 540,672 540,672 1 540,672 1

gsm 1.979 | 1.959 | 0.98 | 24,576 24,576 1 24,576 1
Multimedia

g721 0.354 | 0.355 | 1.00 | 24,576 24,576 1 24,576 1

mpeg(decode) | 0.331 | 0.320 | 0.97 | 385,024 | 401,408 1.04 | 401,408 1

epic 0.126 | 0.128 | 1.01 | 671,744 | 681,616 1.01| 779,920 1.14

rasta 0.124 | 0.125 | 1.01 | 147,456 | 212,992 144 | 212,992 1

Exec. ratio is the ratio of execution time after pool allocation to the original time (A ratio of 2 means the program
runs twice as long as the original).

Mem. ratio 1 is the ratio of the memory usage of program after pool allocation to that of the original program.
Mem. ratio 2 is the ratio of the memory usage of pool allocated program with our safety restriction to that of just
the poolallocated program.

epic, and 19 of 80 in rasta.? In fact, all the case 3 pools in mpeg2decode, rasta,
and epic also have self-reuse from the same pool, so that the effect of not
freeing memory to other pools is mitigated. We have also observed that some
case 3 pools in these three benchmarks can be converted to case 1 or 2 with
more sophisticated compiler analyses where the pooldestroy on a pool is moved
as close to the last poolfree on the pool as possible without compromising
safety [Lattner and Adve 2005].

Another interesting use of dynamic memory is seen in dijkstra, where a
linked list is live throughout the program and the program repeatedly allo-
cates and deallocates memory. In a language with explicit regions such as

5The specific number of pools and numbers of cases 1, 2 and 3 pools depend on the precision of
DSA and pool allocation. We have made several improvements in DSA and pool allocation since
our initial experiments [Dhurjati et al. 2003], leading to larger numbers of total pools and larger
numbers of cases 2 and 3 pools in epic, rasta, and mpeg2decode. Nevertheless, the overall results
are qualitatively similar, and our new measurements of memory consumption show that the impact
on peak memory consumption of these codes is negligible.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 103

Cyclone [Grossman et al. 2002] or RT-Java, this list would have to go on a
garbage-collected heap or incur a potentially large memory increase. In our
technique, the case 2 pool allows reuse of memory within the pool. Finally,
there were a number of case 1 pools, which are amenable to the optimization of
turning off individual object frees entirely, effectively performing static garbage
collection with no increase in memory usage.

6.3.1 Evaluation of Run-time Costs of Heap Safety. In Table III we present
our results on evaluating the run-time costs of the heap safety approach. Since
we do not insert any run-time array bounds checks in this work, the programs
rejected by our array bounds checker are actually unsafe. We include their
execution times only to show the effect of the pool allocation transformation
on performance. First, we compared the execution times of these applications
after the pool allocation transformation used for heap safety to the original
execution time. Most of the execution times after pool allocation are within 2%
of the original execution time, and only one program shows an increase of 7%.
In some cases, we can even see that the pool allocation transformation improves
the execution time. These results show that our heap safety mechanism only
results in a marginal increase (if any) in execution time.

Next we measured the maximum memory usage of these programs. To iden-
tify the causes for increase or decrease in memory consumption, we measured
the usage in three versions: original program, pool-allocated program, and pool-
allocated program along with our safety restriction that memory cannot be re-
leased to the system until pooldestroy. Our other analyses (stack safety, array
safety, and so on) do not change the memory consumption of the program. To
better understand the numbers, we first give a brief description of our pool allo-
cation run-time library. The library internally manages memory using malloc
and free. To amortize the allocation costs over various allocation requests, it
mallocs memory in multiples of pages of size 1K bytes. It releases memory to
the system if it has more than a threshold number of free pages.

The column “Mem ratio 1” in Table III shows the memory increase due to pool
allocation when compared to the original program. The increase is insignificant
in most programs except rasta, where it is 44%. We found that rasta has many
global pools which allocated a total memory of 8 bytes, while we were reserving
a page of 1024 bytes for each such pool in our run-time library. In general,
the total memory usage for these embedded programs is not high and any
wastage (such as in rasta) appears large in percentage terms but its impact
is minor in practice. If we decrease the page size to 512 bytes, we found that
memory increase reduced to 28%, showing that a well-tuned pool allocation run-
time library that dynamically increases page sizes depending on the allocation
requests can do much better than our simple untuned version.

We then measured the additional increase in memory usage due to our safety
restriction. As mem ratio 2 illustrates, only epic, which has a case 3 pool, shows
an increase (of 14%) due to the additional safety restriction. Other programs
with case 3 pools, rasta and mpeg2decode, do not show any increase.

Overall, our results indicate that case 3 pools occur infrequently even in com-
plex embedded programs and typically never occur at all in simpler programs.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

104 . D. Dhurjati et al.

When it does occur, the increase in maximum memory usage seems accept-
able. This is strong empirical evidence that our technique is powerful enough
to enforce heap safety statically in a broad range of embedded programs.

6.4 Effectiveness of Stack Safety Checks

Our stack safety check ensures that pointers to the stack frame in a function are
not accessible after that function returns. The stack safety column of Table II
shows that only one program (rijndael) failed this check. This proved to be a
false positive that occurred because data structure analysis is flow insensitive.
In rijndael, a pointer to a local variable is stored in a global but the global is
reinitialized by a callee of the function before the function returns. Such cases
must be handled by restructuring the program. Overall, these results indicate
that stack safety should not be a significant obstacle for static safety checking
with our approach.

6.5 Effectiveness of Array Access Checks

Our array bounds checker passed all the three classes of control programs, 8
of the 13 benchmarks from MiBench, and none from MediaBench, after the
few changes described earlier. Interestingly, our tests detected four potential
array bound violations in the MiBench suite and two in MediaBench: one each
in dijkstra (both the large and small versions), epic, and blowfish and two
violations in g721. Two of the errors, in dijkstra and blowfish, were due to
incorrect assumptions on number of command line arguments. The errorin g721
was in using a fixed size buffer to copy a file name obtained from a command
line argument. This could cause stack corruption. The error in epic was an
incomplete check before an array access.

The array bounds checking algorithm failed to prove safety for nine of the
programs. Two of these programs used non-affine bit operations on the index
variables. Five other programs use indirect indexing for arrays, for example,
A[BI[j1]. One possible solution we aim to explore is to use Ada style subrange
types for index expressions, and attempt to prove their safety when the index
values are computed.

Another two programs use memory locations in the heap to store the size of
an array, then load and use this size value in another function, requiring the
compiler to prove that the heap location is not modified in between. We believe
that this can be handled fairly simply by interprocedural load value numbering.

Overall, safety checking of complex array references remains the most signif-
icant obstacle to our goal of enforcing memory safety with no run-time software
checks for a broad class of embedded applications.

7. RELATED WORK

Existing techniques for achieving memory safety can be differentiated based on
the language properties that they enforce. On the one end of the spectrum lies
software fault isolation (SFI) [Wahbe et al. 1993], which ignores all language-
level information and enforces memory safety by sand-boxing every memory ac-
cess/jump at run-time. SFI does not detect semantic errors such as array bounds
errors, references to uninitialized values, or accesses to locations in dead stack

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 105

frames. Furthermore, SFI introduces significant and sometimes high run-time
overhead, ranging from 25% to 59% when checking only write references and
typically over 100% when checking both reads and writes. On the other end,
languages like Java [Gosling et al. 2000], Cyclone [Jim et al. 2002], and others
enforce strong type safety, which trivially ensures memory safety. Type safety
helps in better reasoning/understanding of programs and early bug detection,
but enforcing type safety typically involves placing some run-time checks on in-
dividual memory operations like array bounds checks, null pointer checks, and
relying on garbage collection or programmer annotations (for region-based lan-
guage extensions together with GC) for ensuring safe dynamic memory usage.
Our approach lies closer to type-safe languages in the sense that we enforce type
safety for most language features (which does not require run-time checks), but
in order to eliminate the need for garbage collection, we permit dereferences
of dangling pointers as long as they point to the correct type. This violates the
technical definition of strong type safety.

A number of other approaches have been proposed to eliminate garbage col-
lection and specific types of run-time overheads for type safe (and some non-
type-safe) languages, and in the following we compare our approach with those.

The real-time specification for Java (RT Java) [Bollella and Gosling 2000]
enables programmers to avoid garbage collection entirely for subsets of the
heap by providing three additional types of MemoryAreas that are not garbage
collected. Run-time checks are required for ensuring safety of references be-
tween the different areas. Of these, the ScopedMemory type defines nested
(i.e., scoped) regions for dynamic allocation. It is much more restrictive and has
more run-time overheads than our pools: memory can only be allocated from the
current region, it requires the programmer to specify region entry/exit points,
and perhaps most importantly, it requires run-time checks to ensure that there
are no references from objects in an outer scoped region (or from a different
type of memory area) to an inner one [Bollella and Gosling 2000]. Finally, RT
Java also inherits the other run-time checking needs of standard Java such as
for arrays, null pointer checks, and type coercions.

Real-time garbage collection techniques (e.g., see [Bacon et al. 2003], and
the references therein) use incremental collection methods to reduce the unpre-
dictability of garbage collection. Such techniques can incur fairly high memory
overhead to achieve acceptable real-time behavior, up to 2.5 times the actual
space consumption of a program in a recent work [Bacon et al. 2003].

As an alternative to garbage collection, several recent languages (e.g., RT
Java [Bollella and Gosling 2000], Cyclone [Grossman et al. 2002; Jim et al.
2002], and others [Boyapati et al. 2003; Gay and Aiken 1998]) have adopted
mechanisms for region-based memory management. These languages disallow
direct deallocation of items within a region in order to ensure program safety.
These languages have two key disadvantages relative to our work: (a) they
generally require extensive programmer annotations to identify regions; and
(b) they provide no mechanisms to free or reuse memory within a region, so that
data structures that shrink and grow (with nonnested object life times) must
be put into a separate garbage-collected heap or may incur a potentially large
increase in memory consumption. (e.g., Cyclone and RT Java both include a

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

106 . D. Dhurjati et al.

separate garbage-collected heap.) Automatic region inference [Grossman et al.
2002; Tofte and Birkedal 1998] can eliminate or mitigate the first but not the
second, and has only been successful for type-safe languages without explicit
deallocation. (This algorithm differs from automatic pool allocation in two im-
portant ways: it does not track object references across destructive heap up-
dates, potentially allowing objects to be leaked, and it segregates objects pri-
marily by lifetime, and does not internally segregate objects by data structure
or points-to relationships.)

In contrast to these approaches, we infer regions automatically, we use no
garbage collection, we permit explicit deallocation of individual data items
within regions, and we ensure program safety through a combination of us-
ing homogeneous regions and additional static analyses. There are two poten-
tial disadvantages in our work, however. We do not prevent certain kinds of
errors such as dangling pointer references. Second, we rely heavily on interpro-
cedural analysis (many of the annotations in Cyclone and other languages are
designed to avoid this need), but we retain the benefits of separate compilation
by performing all our analysis at link time (a key advantage of using the LLVM
compilation framework [Lattner and Adve 2004]).

Boyapati et al. [2003] present a static type system combining ownership
types with region types, to eliminate the run-time checks needed for ensuring
safe region deallocation in RT Java. As a region-based language, they have the
same differences from our work as discussed above. They provide an additional
mechanism based on “subregions” of a region for sharing region data safely
across threads, using reference counts to reclaim the data. We do not support
multithreaded applications so far.

Linear types and alias types [Crary et al. 1999; DeLine and Fahndrich 2001;
Fahndrich and DeLine 2002; Walker and Morrisett 2001] have been used to
prove memory safety statically in the presence of explicit deallocation of ob-
jects. They achieve this primarily with severe restrictions on aliases in a pro-
gram, which so far have not proved practical for realistic programs. One of these
languages, Vault [DeLine and Fahndrich 2001], also uses such a type system
(much more successfully) to encode many important correctness requirements
for other dynamic resources within an application (e.g., file handles and sock-
ets). It would be very attractive to use Vault’s mechanisms within our program-
ming environment to check statically key correctness requirements of system
calls and trusted libraries.

Many other systems including CCured [Condit et al. 2003; Necula et al. 2002]
and SafeC [Austin et al. 1994; Jones and Kelly 1997 and the references therein],
have tried the approach of adding meta data and inserting run-time software
checks to make C programs safe. Most of these systems, except CCured, re-
port prohibitively high overhead (up to 500%) to be of any use for production
level software. Here, we compare our approach to two such systems, SafeC and
CCured. SafeC uses a fat pointer representation to store spatial and temporal
information for all pointers in a program and uses run-time software checks to
detect memory errors. They report execution overheads up to 540% and space
overheads up to 100%. These overheads are simply unacceptable in the con-
text of embedded systems. In contrast, we do not need to insert any run-time

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 107

software checks except for array bound violations. CCured extends the C type
system to infer statically verifiable safe pointers and adds run-time checks for
other pointers. Our type safety rules, by not allowing casts between pointers,
essentially restrict the C language to these safe pointers of CCured. Within this
restricted language, our approach differs from CCured in a few fundamental
ways. First, CCured relies on garbage collection for ensuring safe deallocation
of heap memory, while we eliminate garbage collection altogether and provide
a memory safety guarantee in the presence of dangling pointers (with no run-
time overhead). Note that CCured does not detect dangling dereferences either:
replacing manual memory deallocation by garbage collection in a program with
a dangling pointer dereference error will only silently convert the error into a
logical error. Also, unlike CCured we use static analysis to eliminate run-time
checks for array bounds in some cases, we detect and avoid certain potential
errors for stack references, and on some platforms we do not use any run-time
software checks for uninitialized pointers.

A valuable strategy for compiler-based secure and reliable systems is proof-
carrying code (PCC) [Necula 1997]. The benefit of PCC is that the safety-
checking compiler (usually a complex, unreliable system) can be untrusted,
and only a simple proof checker (which can be made much more reliable) is
required within the trusted code base. Fundamentally, PCC does not change
which aspects of a program require static analysis and which require run-time
checking—that still depends on the language design and compiler capabilities.
Thus, PCC is orthogonal to our work, and could be valuable for taking our
safety-checking compiler outside the trusted code base.

There has been extensive work on static elimination of array bounds checks
(e.g., see Bodik et al. [2000], Wagner et al. [2000], Gupta [1993]), but the goal
of that work is generally to eliminate a subset of bounds checks since complete
elimination is impossible for standard languages. In contrast, we impose care-
fully chosen language restrictions to enable compiler analysis to eliminate such
checks entirely in conforming programs. We use a constraint generation tech-
nique similar to the ABCD algorithm [Bodik et al. 2000] within a procedure,
but go beyond them by developing an interprocedural constraint propagation
algorithm. The work of Gupta [1993] tries to reduce the run-time overhead
of bounds checks by eliminating partially redundant checks. Since we have
focused on complete elimination of bounds checks, those techniques do not di-
rectly apply to our work. Wagner et al. [2000] have developed a tool for detec-
tion of buffer overrun vulnerabilities in general C programs. Their analysis is
necessarily imprecise, however, both in terms of generating constraints (flow
insensitive) and solving them, resulting in many false positives. In contrast, we
use a more precise context-sensitive analysis and a more rigorous constraint
solver. CSSV [Dor et al. 2003] is another static bounds checking tool, which
requires manual annotations to prove safety of array references. We do not use
any programmer annotations but rely on our language restrictions and the in-
terprocedural constraint propagation algorithm to prove array safety. Cousot
and Halbwachs [1978] in their seminal work present an abstract interpretation
technique to compute affine relationship among variables of a program at ev-
ery program point within a procedure using an iterative fix point analysis for

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

108 . D. Dhurjati et al.

convergence. While our symbolic analysis can also be considered as one case
of abstract interpretation, the use of def-use chains of static single assignment
(SSA) form along with traditional induction variable analysis helps us to avoid
iteration for loops and ignore unrelated constraints. Use of SSA form for effi-
cient intraprocedural symbolic analysis is not new [Bodik et al. 2000; Tu and
Padua 1995]. Our main contribution is in extending the symbolic analysis to
the interprocedural case without losing context sensitivity.

8. CONCLUSIONS AND FUTURE WORK

The broad approach of the work presented here has been to identify minimal
semantic restrictions on imperative programs and to develop new compiler tech-
niques that together enable memory safety to be enforced without using garbage
collection or run-time checks (on systems with hardware memory protection).
To our knowledge no other programming language or compiler system achieves
this goal for any nontrivial class of programs. We believe our results show that
we have achieved the goal for a significant subclass of embedded C programs,
and the subclass is quite broad if array bounds checks are ignored.

More specifically, we identified four challenges to ensuring memory safety—
detecting uninitialized pointer dereferences, stack safety, array bounds check-
ing, and heap safety. We addressed each of these problems using minimal se-
mantic restrictions on programs and some novel compiler techniques. One of
the key new results in this work is to show how an automatic pool allocation
transformation allows us to ensure that dereferencing dangling pointers to
freed memory does not cause any violations of memory safety without program-
mer annotations, run-time checks, or garbage collection. An additional compiler
analysis helps to pinpoint the infrequent case where certain data structures
could experience an increase in memory consumption. Our results show that
these techniques allow us to check heap and pointer safety for all 20 programs
we studied without causing any significant increase in memory consumption.
We also developed a technique for eliminating null pointer software checks
by converting them into hardware checks, a static check for stack safety, as
well as a new interprocedural array bounds checking algorithm that exploits
our semantic restrictions. Our checks for null pointers dereferences and stack
safety are also effective for nearly all these programs, but our current analysis
for checking array references can do complete static checking for only half the
benchmarks we studied.

Overall, as shown in some of our results, the programs certified as safe by
our compiler can execute as fast as those compiled by a native C compiler,
while guaranteeing memory safety. Furthermore, we usually require minimal,
simple, and completely portable rewriting of existing C programs to make them
conform to our restrictions (often improving over the original). Furthermore, al-
though our presentation and examples have focused on C, the semantic restric-
tions are defined on a low-level language-independent type system and instruc-
tion set and are implemented in a language-independent, link-time compiler
framework; and therefore they should be applicable to other similar imperative
languages.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 109

There are some key steps remaining before we can achieve our long-term goal
of a secure, low-overhead programming environment based on the techniques
above. First, we must explore better language and compiler support for complex
array operations. Second, we must provide a robust and flexible run-time envi-
ronment with mechanisms to enforce correct usage of system calls and run-time
libraries. Finally, we aim to extend our techniques so that they can be used for
arbitrary programs, including non-type-safe code that is relatively common in
low-level system software, by introducing some additional run-time checks but
still without requiring automatic memory management (i.e., permitting explicit
memory deallocation).

REFERENCES

Amo, A. V., SEta1, R., aND ULLMaN, J. D. 1986. Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman, Reading, MA.

Austin, T. M., Breacs, S. E., anDp Soni, G. S. 1994. Efficient detection of all pointer and array
access errors. In SIGPLAN Conference on Programming Language Design and Implementation.
290-301.

Bacumany, O., Wang, P. S.; anD Ziva, E. V. 1994, Chains of recurrences—A method to expedite
the evaluation of closed-form functions. In International Symposium on Symbolic and Algebraic
Computation. 242—-249.

Bacon, D., CuHENg, P., AND Rajan, V. 2003. A real-time garbage collector with low overhead and
consistent utilization. In Proceedings of 30th ACM Symposium on Principles of Programming
Languages (POPL03). 285-298.

BircH,d. 2002. Using the chains of recurrences algebra for data dependence testing and induction
variable substitution. M.S. thesis, Computer Science Dept., Florida State University, Tallahassee,
FL.

Bonik, R., Guprta, R., AND SArRrAR, V. 2000. ABCD: Eliminating array bounds checks on de-
mand. In SIGPLAN Conference on Programming Language Design and Implementation. 321—
333.

BoLLELLA, G. AND GOSLING, J. 2000. The real-time specification for Java. Computer 33, 6, 47—
54,

Bovararti, C., SaLcIANU, A., BEEBEE, W., AND RINaRD, M. 2003. Ownership types for safe region-based
memory management in real-time Java. In SIGPLAN Conference on Programming Language
Design and Implementation, 324-337.

CArDELLI, L., DONAHUE, J., GLASSMAN, L., JorpAN, M., KaLsow, B., AND NELsoN, G. 1992. Modula3
language definition. ACM Sigplan Not. 27, 8 (Aug.).

CHiN, W.-N., Craciuy, F., Qiy, S., anp Rinarp, M. 2004. Region inference for an object-oriented
language. SIGPLAN Not. 39, 6, 243—-254.

Conprr, J., HARREN, M., McPEAK, S., NEcULA, G. C., AND WEIMER, W. 2003. CCured in the real world.
In Proceedings of SIGPLAN Conference on Programming Language Design and Implementation,
232-244.

Cousort, P. aND HarLBwachs, N. 1978. Automatic discovery of linear restraints among variables
of a program. In Conference Record of the 5th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Tucson, AZ. ACM Press, New York, 84-97.

Crary, K., WALKER, D., AND MorrisETT, G. 1999. Typed memory management in a calculus of
capabilities. In Conference Record of POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San Antonio, TX. ACM, New York, 262-275.

DELINE, R. aAND FanunpricH, M. 2001. Enforcing high-level protocols in low-level software. In
Proceedings of SIGPLAN Conference on Programming Language Design and Implementation.
Snowbird, UT. 59-69.

DuurgaTi, D., KowsHIK, S., ADVE, V., AND LATTNER, C. 2003. Memory safety without runtime checks
or garbage collection. In Proceedings of the Conference on Languages, Compilers, and Tools for
Embedded Systems. San Diego, CA, 69-80.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

110 . D. Dhurjati et al.

Dor, N., Ropen, M., aND Saciv, M. 2003. CSSV: Towards a realistic tool for statically detect-
ing all buffer overflows in C. In SIGPLAN Conference on Programming Language Design and
Implementation, San Diego, CA, 155-167.

FannpricH, M. aND DELINE, R. 2002. Adoption and focus: Practical linear types for imperative
programming. In Proceedings of SIGPLAN Conference on Programming Language Design and
Implementation. 13-24.

Gay, D. anD AIKEN, A. 1998. Memory management with explicit regions. In SIGPLAN Con-
ference on Programming Language Design and Implementation, Montreal, Canada. 313-
323.

Gorpon, A. D. anp Symg, D. 2001. Typing a multi-language intermediate code. ACM SIGPLAN
Notices. 36, 3, 248-260.

GOsLING, J., Joy, B., STEELE, G., AND BracHA, G. 2000. The Java Language Specification. Sun
Microsystems.

GRrossMAN, D., MORRISETT, G., Jim, T., Hicks, M., WaNgG, Y., AND CHENEY, J. 2002. Region-based mem-
ory management in Cyclone. In Proceedings of SIGPLAN Conference on Programming Language
Design and Implementation. 282—293.

Gupra, R. 1993. Optimizing array bound checks using flow analysis. ACM Lett. Prog. Lang.
Syst. 2, 1-4 (Mar.—Dec.), 135-150.

GurHAUS, M. R., RINGENBERG, J. S., Ernst, D., AustiN, T. M., Mupcg, T., AND Brown, R. B. 2001.
Mibench: A free, commercially representative embedded benchmark suite. In IEEE 4th Annual
Workshop on Workload Characterization, Austin, TX, 1-12.

Heing, D. L. anp Lam, M. S. 2003. A practical flow-sensitive and context-sensitive C and C++
memory leak detector. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation. New York, 168-181.

Hiwi, J., Szewczyk, R., Woo, A., HoLLAR, S., CULLER, D., anD PisteR, K. 2000. System architec-
ture directions for network sensors. In International Conference on Architectural Support for
Programming Languages and Operating Systems. 93—104.

Jm, T., MoORRISETT, G., GRossMaN, D., Hicks, M., CHENEY, dJ., AND WaNG, Y. 2002. Cyclone: A safe
dialect of C. In Proceedings of USENIX Annual Technical Conference, 275-288.

JonEs, R. W. M. anp KeLry, P. H. J. 1997. Backwards-compatible bounds checking for arrays and
pointers in C programs. In Automated and Algorithmic Debugging. 13—26.

KeLry, W., MasLov, V., PucH, W., RossER, E., SHPEISMAN, T., AND WoNNACOTT, D. 1996. The Omega
Library Interface Guide. Tech. Rep., Computer Science Dept., U. Maryland, College Park. Apr.
LATTNER, C. 2002. LLVM: An infrastructure for multi-stage optimization. M.S. thesis, Computer
Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL. See http://1lvm.

cs.uiuc.edu.

LATTNER, C. AND ADVE, V. 2005. Automatic pool allocation: Improving performance by controlling
data structure layout in the heap. In Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, Chicago, IL.

LATTNER, C. AND ADVE, V. 2003. Data Structure Analysis: An Efficient Context-Sensitive Heap
Analysis. Tech. Report UIUCDCS-R-2003-2340, Computer Science Dept., Univ. of Illinois at
Urbana-Champaign.

LATTNER, C. AND ADVE, V. 2004. LLVM: A complilation framework for lifelong program analysis
and transformation. In Proceedings of the Second International Conference on Code Generation
and Optimization. Palo Alto, CA. 75-86.

LEE, C., PotkonJaAK, M., AND MancioNe-SmiTH, W. H. 1997. MediaBench: A tool for evaluating and
synthesizing multimedia and communicatons systems. In International Symposium on Micro-
architecture. 330-335.

Levis, P. aNnDp CULLER, D. 2002. Mate: A tiny virtual machine for sensor networks. In International
Conference on Architectural Support for Programming Languages and Operating Systems, San
Jose, CA. 85-95.

Necura, G. C. 1997. Proof-carrying code. In Proceedings of of the 24th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’97), Paris. 106—-119.

NEecura, G. C., McPEag, S., anp WEIMER, W. 2002. CCured: Type-safe retrofitting of legacy code.
In Proceedings of 29th ACM Symposium on Principles of Programming Languages (POPL '02),
London. 128-139.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

Memory Safety Without Garbage Collection . 111

Oaxks, S. 2001. Java Security, 2nd ed. O'Reilly. ISBN 0-596-00157-6.

Parin, H. aND FiscHER, C. 1995. Low-cost, concurrent checking of pointer and array accesses in C
programs. Software—Practice and Experience 27, 1, 87-110.

Pucna, W. 1992. A practical algorithm for exact array dependence analysis. Commun. ACM 35, 8
(Aug.), 102-114.

Sua, L. 1998. Dependable system upgrades. In Proceedings of IEEE Real-Time System
Symposium, 440.

Sua, L. 2001. Using simplicity to control complexity. IEEE Software, 20—-28.

TorTE, M. AND BirkEDAL, L. 1998. A region inference algorithm. ACM Trans. Prog. Lang. Sys. 20, 1,
724-7617.

Torte, M. anD TaLPIN, J.-P. 1997. Region-based memory management. Inform. Comput. 132,2,
109-176.

Tu, P. anDp Papua, D. A, 1995. Gated SSA-based demand-driven symbolic analysis for parallelizing
compilers. In International Conference on Supercomputing. 414-423.

WAGNER, D., FosTER, J. S., BREWER, E. A., AND ATREN, A. 2000. A first step towards automated detec-
tion of buffer overrun vulnerabilities. In Network and Distributed System Security Symposium,
San Diego, CA. 3-17.

WanBE, R., Lucco, S., ANDERSON, T. E., AND Granam, S. L. 1993. Efficient software-based fault
isolation. ACM SIGOPS Operating Systems Review 27, 5 (December), 203—216.

WALKER, D. AND MoORRISETT, G. 2001. Alias types for recursive data structures. Lecture Notes in
Computer Science Vol. 2071, 177+.

Received November 2003; revised April 2004, August 2004; accepted August 2004

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.

