
Automatic Pool Allocation:Automatic Pool Allocation:
Improving Performance by Controlling Improving Performance by Controlling

Data Structure Layout in the HeapData Structure Layout in the Heap

June 13, 2005June 13, 2005
PLDI 2005PLDI 2005

http://http://llvm.cs.uiuc.edullvm.cs.uiuc.edu//

Chris LattnerChris Lattner
lattner@cs.uiuc.edulattner@cs.uiuc.edu

VikramVikram AdveAdve
vadve@cs.uiuc.eduvadve@cs.uiuc.edu

Chris Lattner

What is the problem?What is the problem?
List 1
Nodes

What the program creates:What the program creates:

List 2
Nodes

Tree
Nodes

What we want the program to create and theWhat we want the program to create and the
compiler to see:compiler to see:

What the compiler sees:What the compiler sees:

Chris Lattner

Our Approach: Segregate the HeapOur Approach: Segregate the Heap

nn Step #1: Memory Usage AnalysisStep #1: Memory Usage Analysis
vv Build contextBuild context--sensitive pointssensitive points--to graphs for programto graphs for program
vv We use a fast unificationWe use a fast unification--based algorithmbased algorithm

nn Step #2: Automatic Pool AllocationStep #2: Automatic Pool Allocation
vv Segregate memory based on pointsSegregate memory based on points--to graph nodesto graph nodes
vv Find lifetime bounds for memory with escape analysisFind lifetime bounds for memory with escape analysis
vv Preserve pointsPreserve points--to graphto graph--toto--pool mappingpool mapping

nn Step #3: FollowStep #3: Follow--on poolon pool--specific optimizationsspecific optimizations
vv Use segregation and pointsUse segregation and points--to graph for later to graph for later optznsoptzns

Chris Lattner

Why Segregate Data Structures?Why Segregate Data Structures?

nn Primary Goal: Primary Goal: Better compiler information & controlBetter compiler information & control
vv Compiler knows where each data structure lives in memoryCompiler knows where each data structure lives in memory
vv Compiler knows order of data in memory (in some cases)Compiler knows order of data in memory (in some cases)
vv Compiler knows type info for heap objects (from pointsCompiler knows type info for heap objects (from points--to info)to info)
vv Compiler knows which pools point to which other poolsCompiler knows which pools point to which other pools

nn Second Goal:Second Goal: Better performanceBetter performance
vv Smaller working setsSmaller working sets
vv Improved spatial localityImproved spatial locality
vv Sometimes convert irregular strides to regular stridesSometimes convert irregular strides to regular strides

Chris Lattner

ContributionsContributions

1.1. First First ““region inferenceregion inference”” technique for C/C++:technique for C/C++:
vv Previous work Previous work requiredrequired typetype--safe programs: ML, Javasafe programs: ML, Java
vv Previous work focused on memory managementPrevious work focused on memory management

2.2. Region inference driven by pointer analysis:Region inference driven by pointer analysis:
vv Enables handling nonEnables handling non--typetype--safe programssafe programs
vv Simplifies handling imperative programsSimplifies handling imperative programs
vv Simplifies further Simplifies further pool+ptrpool+ptr transformationstransformations

3.3. New poolNew pool--based optimizations:based optimizations:
vv Exploit perExploit per--pool and poolpool and pool--specific propertiesspecific properties

4.4. Evaluation of impact on memory hierarchy:Evaluation of impact on memory hierarchy:
vv We show that pool allocation reduces working setsWe show that pool allocation reduces working sets

Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation TransformationAutomatic Pool Allocation Transformation
nn Pool AllocationPool Allocation--Based OptimizationsBased Optimizations
nn Pool Allocation & Pool Allocation & OptznOptzn Performance ImpactPerformance Impact
nn ConclusionConclusion

Chris Lattner

nn Segregate memory according to pointsSegregate memory according to points--to graphto graph
nn Use contextUse context--sensitive analysis to distinguish sensitive analysis to distinguish

between RDS instances passed to common routinesbetween RDS instances passed to common routines

Automatic Pool Allocation OverviewAutomatic Pool Allocation Overview

Pool 1 Pool 2

Pool 1

Pool 2

Pool 3

Pool 4

Points-to graph (two disjoint linked lists)

Chris Lattner

PointsPoints--to Graph Assumptionsto Graph Assumptions

nn Specific assumptions:Specific assumptions:
vv Build a pointsBuild a points--to graph for each functionto graph for each function
vv Context sensitiveContext sensitive
vv UnificationUnification--based graphbased graph
vv Can be used to compute escape infoCan be used to compute escape info

nn Use any pointsUse any points--to that satisfies the aboveto that satisfies the above
nn Our implementation uses DSA [Our implementation uses DSA [Lattner:PhDLattner:PhD]]

vv Infers C type info for many objectsInfers C type info for many objects
vv FieldField--sensitive analysissensitive analysis
vv Results show that it is very fastResults show that it is very fast

Linked List

list: HMR
list* int

head

Chris Lattner

list *list *makeListmakeList(int(int Num) {Num) {
list *New = list *New = mallocmalloc(sizeof(list(sizeof(list));));
NewNew-->Next = Num ? >Next = Num ? makeListmakeList(Num(Num--1) : 0;1) : 0;
NewNew-->Data = Num; return New;>Data = Num; return New;

}}

int int twoListstwoLists() {() {

list *X = list *X = makeListmakeList(10);(10);
list *Y = list *Y = makeListmakeList(100);(100);
GL = Y;GL = Y;
processListprocessList(X(X););
processListprocessList(Y(Y););
freeListfreeList(X(X););
freeListfreeList(Y(Y););

}}

Pool Allocation: ExamplePool Allocation: Example

Pool P1; poolinit(&P1);

pooldestroy(&P1);

, &P1)

, Pool* P){
poolalloc(P);

, P)

, &P1)

P1

, P2)

Pool* P2

, P2)

P2

Change calls to free into Change calls to free into
calls to calls to poolfreepoolfree àà retain retain

explicit explicit deallocationdeallocation

Chris Lattner

Pool Allocation Algorithm DetailsPool Allocation Algorithm Details

nn Indirect Function Call Handling:Indirect Function Call Handling:
vv Partition functions into equivalence classes:Partition functions into equivalence classes:

nn If F1, F2 have If F1, F2 have common callcommon call--sitesite ⇒⇒ same classsame class

vv Merge pointsMerge points--to graphs for each equivalence classto graphs for each equivalence class
vv Apply previous transformation unchangedApply previous transformation unchanged

nn Global variables pointing to memory nodesGlobal variables pointing to memory nodes
vv See paper for detailsSee paper for details

nn poolcreate/pooldestroypoolcreate/pooldestroy placementplacement
vv See paper for detailsSee paper for details

Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation TransformationAutomatic Pool Allocation Transformation
nn Pool AllocationPool Allocation--Based OptimizationsBased Optimizations
nn Pool Allocation & Pool Allocation & OptznOptzn Performance ImpactPerformance Impact
nn ConclusionConclusion

Chris Lattner

Different Data Structures Have Different PropertiesDifferent Data Structures Have Different Properties
nn Pool allocation segregates heap:Pool allocation segregates heap:

vv Roughly into logical data structuresRoughly into logical data structures
vv Optimize using poolOptimize using pool--specific propertiesspecific properties

nn Examples of properties we look for:Examples of properties we look for:
vv Pool is typePool is type--homogenoushomogenous
vv Pool contains data that only requires 4Pool contains data that only requires 4--byte alignmentbyte alignment
vv Opportunities to reduce allocation overheadOpportunities to reduce allocation overhead

buildbuild
traversetraverse
destroy destroy

complex complex
allocation allocation

patternpattern

Pool Specific OptimizationsPool Specific Optimizations

list: HMR
list* int

head

list: HMR
list* int

head

list: HMR
list* int

head

Chris Lattner

Looking closely: Anatomy of a heapLooking closely: Anatomy of a heap

nn Fully general Fully general mallocmalloc--compatible allocator:compatible allocator:
vv Supports Supports malloc/free/realloc/memalignmalloc/free/realloc/memalign etc.etc.
vv Standard Standard mallocmalloc overheads: object header, alignmentoverheads: object header, alignment
vv Allocates slabs of memory with exponential growthAllocates slabs of memory with exponential growth
vv By default, all returned pointers are 8By default, all returned pointers are 8--byte alignedbyte aligned

nn In memory, things look like (16 byte In memory, things look like (16 byte allocsallocs):):

1616--bytebyte
user datauser data

1616--bytebyte
user datauser data

1616--bytebyte
user datauser data

One 32-byte Cache Line

4-byte object header
4-byte padding for

user-data alignment

Chris Lattner

PAOptsPAOpts (1/4) and (2/4)(1/4) and (2/4)

nn Selective Pool AllocationSelective Pool Allocation
vv DonDon’’t pool allocate when not profitablet pool allocate when not profitable

nn PoolFreePoolFree EliminationElimination
vv Remove explicit deRemove explicit de--allocations that are not neededallocations that are not needed

See the paper for details!See the paper for details!

Chris Lattner

PAOptsPAOpts (3/4): Bump Pointer (3/4): Bump Pointer OptznOptzn

nn If a pool has no If a pool has no poolfreepoolfree’’ss::
vv Eliminate perEliminate per--object headerobject header
vv Eliminate Eliminate freelistfreelist overhead (faster object allocation)overhead (faster object allocation)

nn Eliminates 4 bytes of interEliminates 4 bytes of inter--object paddingobject padding
vv Pack objects more densely in the cachePack objects more densely in the cache

nn Interacts with Interacts with poolfreepoolfree elimination (elimination (PAOptPAOpt 2/4)!2/4)!
vv If If poolfreepoolfree elimelim deletes all frees, deletes all frees, BumpPtrBumpPtr can applycan apply

1616--bytebyte
user datauser data

1616--bytebyte
user datauser data

One 32-byte Cache Line

1616--bytebyte
user datauser data

1616--bytebyte
user datauser data

Chris Lattner

PAOptsPAOpts (4/4): Alignment Analysis(4/4): Alignment Analysis

nn MallocMalloc must return 8must return 8--byte aligned memory:byte aligned memory:
vv It has no idea what types will be used in the memoryIt has no idea what types will be used in the memory
vv Some machines bus error, others suffer performance Some machines bus error, others suffer performance

problems for unaligned memoryproblems for unaligned memory

nn TypeType--safe pools infer a type for the pool:safe pools infer a type for the pool:
vv Use 4Use 4--byte alignment for pools we know donbyte alignment for pools we know don’’t need itt need it
vv Reduces interReduces inter--object paddingobject padding

1616--bytebyte
user datauser data

1616--bytebyte
user datauser data

1616--bytebyte
user datauser data

One 32-byte Cache Line

4-byte object header

Chris Lattner

Talk OutlineTalk Outline

nn Introduction & MotivationIntroduction & Motivation
nn Automatic Pool Allocation TransformationAutomatic Pool Allocation Transformation
nn Pool AllocationPool Allocation--Based OptimizationsBased Optimizations
nn Pool Allocation & Pool Allocation & OptznOptzn Performance ImpactPerformance Impact
nn ConclusionConclusion

Chris Lattner

Simple Pool Allocation StatisticsSimple Pool Allocation Statistics
Programs from SPEC Programs from SPEC

CINT2K, CINT2K, PtrdistPtrdist, ,
FreeBenchFreeBench & Olden & Olden

suites, plus unbundled suites, plus unbundled
programsprograms

DSA is able to infer DSA is able to infer
that most static pools that most static pools
are typeare type--homogenoushomogenous

91

DSA + Pool allocation
compile time is small: less
than 3% of GCC compile
time for all tested
programs. See paper for
details

Chris Lattner

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

175.vpr

197.parser-b

300.tw
olf

bc ft analyzer

llu-bench

chom
p

fpgrow
th

espresso

povray31

bisort

health

m
st

perim
eter

tsp
R

u
n
tim

e
ra

tio
 (s

m
al

le
r i

s
fa

st
er

)
Pool Allocation SpeedupPool Allocation Speedup

nn Several programs unaffected by pool allocation (see paper) Several programs unaffected by pool allocation (see paper)
nn Sizable speedup across many pointer intensive programsSizable speedup across many pointer intensive programs
nn Some programs (ft, chomp) order of magnitude fasterSome programs (ft, chomp) order of magnitude faster

See paper for control experiments (showing impact of pool See paper for control experiments (showing impact of pool
runtime library, overhead induced by pool allocation runtime library, overhead induced by pool allocation argsargs, etc), etc)

Most programs are 0% Most programs are 0%
to 20% faster with pool to 20% faster with pool

allocation aloneallocation alone

Two are 10x faster, one Two are 10x faster, one
is almost 2x fasteris almost 2x faster

Chris Lattner

0

0.2

0.4

0.6

0.8

1

1.2

1.4

175.vpr

197.parser-b

300.tw
olf

bc ft analyzer

llu-bench

chom
p

fpgrow
th

espresso

povray31

bisort

health

m
st

perim
eter

tsp

R
u
n
tim

e
R

at
io

 (1
.0

 =
 B

as
e

P
o
o
l A

llo
ca

tio
n
)

No Pool Allocation

All Optimizations

Pool Optimization Speedup (Pool Optimization Speedup (FullPAFullPA))

Baseline 1.0 = Run Time with Pool AllocationBaseline 1.0 = Run Time with Pool Allocation

nn Optimizations help all of these programs:Optimizations help all of these programs:
vv Despite being very simple, they make a big impactDespite being very simple, they make a big impact

Most are 5Most are 5--15% faster 15% faster
with optimizations than with optimizations than
with Pool with Pool AllocAlloc alonealone

One is 44% faster, other One is 44% faster, other
is 29% fasteris 29% faster

Pool Pool optznsoptzns effect can effect can
be additive with the pool be additive with the pool

allocation effectallocation effect

Pool optimizations help Pool optimizations help
some some progsprogs that pool that pool

allocation itself doesnallocation itself doesn’’tt

PA PA
TimeTime

Chris Lattner

0

0.2

0.4

0.6

0.8

1

1.2

175.vpr

197.parser-b

300.tw
olf

bc ft analyzer

llu-bench

chom
p

fpgrow
th

espresso

povray31

bisort

health

m
st

perim
eter

tsp

C
ac

h
e

m
is

s
ra

ti
o

L1 Misses
L2 Misses

TLB Misses

Cache/TLB miss reductionCache/TLB miss reduction

Sources:Sources:
vv DefragmentedDefragmented heapheap
vv Reduced interReduced inter--object object

paddingpadding
vv Segregating the heap!Segregating the heap!

Miss rate measuredMiss rate measured

with with perfctrperfctr on AMD on AMD
AthlonAthlon 2100+2100+

Chris Lattner

Chomp Access Pattern with Chomp Access Pattern with MallocMalloc

Allocates three Allocates three
object types (red, object types (red,

green, blue)green, blue)

Spends most Spends most
time traversing time traversing

green/red nodesgreen/red nodes

Each traversal Each traversal
sweeps through sweeps through

all of memoryall of memory

Blue nodes are Blue nodes are
interspersed with interspersed with
green/red nodesgreen/red nodes

Chris Lattner

Chomp Access Pattern with Chomp Access Pattern with PoolAllocPoolAlloc

Chris Lattner

FT Access Pattern With FT Access Pattern With MallocMalloc

nn Heap segregation has a similar effect on FT:Heap segregation has a similar effect on FT:
vv See my Ph.D. thesis for detailsSee my Ph.D. thesis for details

Chris Lattner

Related WorkRelated Work

nn HeuristicHeuristic--based collocation & layoutbased collocation & layout
vv Requires programmer annotations or GCRequires programmer annotations or GC
vv Does not segregate based on data structuresDoes not segregate based on data structures
vv Not rigorous enough for followNot rigorous enough for follow--on compiler transformson compiler transforms

nn RegionRegion--based based memmem management for Java/MLmanagement for Java/ML
vv Focused on replacing GC, not on performanceFocused on replacing GC, not on performance
vv Does not handle weaklyDoes not handle weakly--typed languages like C/C++typed languages like C/C++
vv Focus on careful placement of region create/destroyFocus on careful placement of region create/destroy

nn Complementary techniques:Complementary techniques:
vv Escape analysisEscape analysis--based stack allocationbased stack allocation
vv IntraIntra--node structure field reordering, etcnode structure field reordering, etc

Chris Lattner

Pool Allocation ConclusionPool Allocation Conclusion

Goal of this paper: Memory Hierarchy PerformanceGoal of this paper: Memory Hierarchy Performance

Two key ideas:Two key ideas:
1.1. Segregate heap based on pointsSegregate heap based on points--to graphto graph

vvGive compiler some control over layoutGive compiler some control over layout
vvGive compiler information about localityGive compiler information about locality
vvContextContext--sensitive sensitive ⇒⇒ segregate segregate rdsrds instancesinstances

2.2. Optimize pools based on perOptimize pools based on per--pool propertiespool properties
vv Very simple (but useful) optimizations proposed hereVery simple (but useful) optimizations proposed here
vvOptimizations could be applied to other systemsOptimizations could be applied to other systems

http://http://llvm.cs.uiuc.edullvm.cs.uiuc.edu//

Chris Lattner

How can you use Pool Allocation?How can you use Pool Allocation?

nn We have also used it for:We have also used it for:
1.1. Node collocation & several refinements (this paper)Node collocation & several refinements (this paper)
2.2. Memory safety via homogeneous pools [TECS 2005]Memory safety via homogeneous pools [TECS 2005]
3.3. 6464--bit to 32bit to 32--bit Pointer compression [MSP 2005]bit Pointer compression [MSP 2005]

nn Segregating data structures could help in:Segregating data structures could help in:
vv CheckpointingCheckpointing
vv Memory compressionMemory compression
vv RegionRegion--based garbage collectionbased garbage collection
vv Debugging & VisualizationDebugging & Visualization
vv More novel optimizationsMore novel optimizations

http://http://llvm.cs.uiuc.edullvm.cs.uiuc.edu//

