Automatic Pool Allocation:

Improving Performance by Controlling
Data Structure Layout in the Heap

Chris Lattner Vikram Adve

latther@cs.uiuc.edu vadve@cs.uiuc.edu

June 13, 2005
PLDI 2005

http://llvm.cs.uiuc.edu/

What Is the problem?

List 2
Nodes

List 1
Nodes

What the oagrider sesstes:

What we want the program to create and the
compiler to see:

RN ([[[[[TTTT

A// Chris Lattner

Our Approach: Segregate the Heap

m Step #1: Memory Usage Analysis
Build context-sensitive points-to graphs for program
We use a fast unification-based algorithm

m Step #2: Automatic Pool Allocation
Segregate memory based on points-to graph nodes
Find lifetime bounds for memory with escape analysis
Preserve points-to graph-to-pool mapping

m Step #3: Follow-on pool-specific optimizations
Use segregation and points-to graph for later optzns

Chris Lattner

Why Segregate Data Structures?

m Primary Goal: Better compiler information & control
Compiler knows where each data structure lives in memory
Compiler knows order of data in memory (in some cases)
Compiler knows type info for heap objects (from points-to info)
Compiler knows which pools point to which other pools

m Second Goal: Better performance

Smaller working sets
Improved spatial locality
Sometimes convert irregular strides to regular strides

Chris Lattner

Contributions

1. First “region inference” technique for C/C++:
Previous work required type-safe programs: ML, Java
Previous work focused on memory management

2. Region inference driven by pointer analysis:
Enables handling non-type-safe programs
Simplifies handling imperative programs
Simplifies further pool+ptr transformations

3. New pool-based optimizations:

Exploit per-pool and pool-specific properties

4. Evaluation of impact on memory hierarchy:

We show that pool allocation reduces working sets

Chris Lattner

Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Transformation

m Pool Allocation-Based Optimizations

m Pool Allocation & Optzn Performance Impact
m Conclusion

Chris Lattner

Automatic Pool Allocation Overview

m Segregate memory according to points-to graph

m Use context-sensitive analysis to distinguish
between RDS instances passed to common routines

*sRoot
Yorcg 109

Points-to graph (two disjoint linked lists) Pool 1 (new %root

int: GMRC
Global

list: HMRC (" list: HMRC

list* int list* int
.))U J

new %slateral

new %sbranch

new %leaf

Pool 1 Pool 2

Chris Lattner

Points-to Graph Assumptions

m Specific assumptions: (head)
Build a points-to graph for each function st HM‘R/)
Context sensitive list* | int J/
Unification-based graph Linked List

Can be used to compute escape info
m Use any points-to that satisfies the above

m Our implementation uses DSA [Lattner:PhD]

Infers C type info for many objects
Field-sensitive analysis
Results show that it is very fast

Chris Lattner

Pool Allocation: Example

| 1 st *makeLi st (int Nun
|1 st *New

New >Next = Num ? nakeLi st (Num 1/

New >Dat a Num return New

}

int twolists([EE=a) {

erJN Ji cJeaJJoca't]on

list *X = nmakkeList(10
list *Y = eList(l
QA =Y,

proces:sLi gt (X) ;
processLyst(Y);
freeLi st (X

freeList(

list: HMRC

CO (e

(list: HMRC

int: GMRC
Global

list* | int)

Chris Lattner

Pool Allocation Algorithm Detalls

m Indirect Function Call Handling:

Partition functions into equivalence classes:

m If F1, F2 have common call-site b same class
Merge points-to graphs for each equivalence class
Apply previous transformation unchanged

m Global variables pointing to memory nodes
See paper for detalils

m poolcreate/pooldestroy placement
See paper for details

Chris Lattner

Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Transformation

m Pool Allocation-Based Optimizations

m Pool Allocation & Optzn Performance Impact
m Conclusion

Chris Lattner

Pool Specific Optimizations

Different Data Structures Have Different Properties

m Pool allocation segregates heap:
Roughly into logical data structures
Optimize using pool-specific properties

c N [N
build (head, head complex
traverse e - /\ e /W allocation
deswoy | et)| | (i) (i) oo

NS 70 AN —/ —/ /

m Examples of properties we look for:
Pool is type-homogenous
Pool contains data that only requires 4-byte alignment
Opportunities to reduce allocation overhead

Chris Lattner

Looking closely: Anatomy of a heap

m Fully general malloc-compatible allocator:
Supports malloc/free/realloc/memalign etc.
Standard malloc overheads: object header, alignment
Allocates slabs of memory with exponential growth
By default, all returned pointers are 8-byte aligned

m In memory, things look like (16 byte allocs):

_ /| 4-byte padding for
4-byte object header | user-data alignment

Le-0yie Le-0yie Le-0Y
LS ar clziizl NSERGIEE Lser o
— -/

One 32-byte Cache Line

Chris Lattner

PAOpts (1/4) and (2/4)

m Selective Pool Allocation
Don’t pool allocate when not profitable

m PoolFree Elimination
Remove explicit de-allocations that are not needed

See the paper for details!

Chris Lattner

PAOpts (3/4): Bump Pointer Optzn

m If a pool has no poolfree’s:
Eliminate per-object header
Eliminate freelist overhead (faster object allocation)
m Eliminates 4 bytes of inter-object padding
Pack objects more densely in the cache
m Interacts with poolfree elimination (PAOpt 2/4)!
If poolfree elim deletes all frees, BumpPtr can apply

One 32-byte Cache Line Chris Lattner

PAOpts (4/4): Alignment Analysis

m Malloc must return 8-byte aligned memory:
It has no idea what types will be used in the memory

Some machines bus error, others suffer performance
problems for unaligned memory

m Type-safe pools infer atype for the pool:
Use 4-byte alignment for pools we know don't need it
Reduces inter-object padding

/| 4-byte object header

Le-0yie Le-0yie Le-0yie
NSERGIEE NSERG e Liser clziizl
— -/
N

One 32-byte Cache Line

Chris Lattner

Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Transformation

m Pool Allocation-Based Optimizations

m Pool Allocation & Optzn Performance Impact
m Conclusion

Chris Lattner

Simple Pool Allocation Statistics

Qfe)e)relffls

DSA + Pool allocation
compile time is small: less
than 3% of GCC compile

time for all tested
programs. See paper for
detalls

Program LOC Stat | Num TH% Dyn

Pools TH Pools
164 gzip 8616 4 4 100% 44
175.vpr 17728 107 91 85% 44
197 parser-b 11204 49 48 98% 6674
252.eon 35819 124 123 99% 66
300.twolf 20461 94 88 94% 227
anagram 650 4 3 75% 4
be 7297 24 22 91% 19
ft 1803 3 3 100% 4
ks 782 3 3 100% 3
yacr2 3982 20 20 100% 83
analyzer 923 5 5 100% 8
neural 785 5 5 100% 93
pcompress?2 903 5 5 100% 8
llu-bench 191 | 1 100% 2
chomp 424 4 4 | 100% 7
fpgrowth 634 6 6 100% 3.4M
espresso 14959 160 160 100% 100K
povray3l 108273 46 R 11% 14

Chris Lattner

0.9 +

Runtime ratio (smaller is faster)

0.1 -~

Pool Allocation Speedup

0.8

0.7 ~

0.6 ~

0.5 +

0.4 ~

0.3

0.2 ~

()

D

\V

Two are 10x faster, one

IS almiost 2x faster

|_\
9

dng/T

Josred:

)

e

:

g #'é'
3

:

gmag'@'

'—\

m Several programs unaffected by pool allocation (see paper)
m Sizable speedup across many pointer intensive programs
m Some programs (ft, chomp) order of magnitude faster

See paper for control experiments (showing Impact of pool

runtime librany, overhead induced by pool allecation args, etc)

Chris Lattner

Pool Optimization Speedup (FullPA)

1.4
= No Pool Allocation
- - m All Optimizations

1.2 —
- - B PA
bS]]] —
5 - S ; I L | - .
3 Time
B -
DO_ -
o O - - - -
a -
m
Il
o
o 0.6 17
kel
©
g » '~
o) 1 0)0)0)0 ALl 0
g 0.4
€ PDIMe Proe =10)0)0
x

0.2 1 AllOC Al E 010)=

O T T T T T

S8 B FTC i ETiTE 8 i ¢
: o) : o) @ a 3

I

g

Baseline 1.0 = Run Time with Pool Allocation

m Optimizations help all of these programs:

Despite being very simple, they make a big impact Chis Lat

Cache/TLB miss reduction

H 1.2
Miss rate measured O L1 Misses
with perfctr on AMD L2 Misses
1 O TLB Misses

Athlon 2100+

-

’ 0.6 T — [] - - - | - |

04+ M — B H | Y pENE pENS pENS pENS pE

Sources: o211l -l -l - - i e
Defragmented heap

Cache miss ratio

Reduced inter-object s e e e B LA A p
padding :
Segregating the heap!

1dN'GLT
Jlomy'00€
oq

Y
lazAjeue
yauag-njj
dwoyo
ymo.bdy
ossaldsa
TeARINOd
uosiq
1sw
Jarswniad
dsy

g-Josred /6T

Chris Lattner

Chomp Access Pattern with Malloc

1.472e+@82

Alle cecl traversel
opject ty s[/veeas () ou% f
(Jre 2l df refory

1.4662+

Blue HOCJ"T*S af e
Jmersoerssfd W
dreer)/red podﬁs

1.458e+

Sdendsg|most
tirne trapersing
grezn/rec] nodes

211/
]

1 1 1
a 188888 LT 300808 408888 Seaaaa sapgal[|S Lattner

Time (Load #2

1.452e+882

Chomp Access Pattern with PoolAlloc

*Chomp® with Pool Allocation

Accessed Address

l.616e+B2

1.6142+83

1.612e+83

1.61e+@8

.E@Ze+@E

LEBEc+EE

. E6B4e+B@E

.EBZe+@E

1.6e+88

.598e+@8

1.596e+B82
a

Memory Location accessed ws Time:

E—— * + * + e
_ ' ' ' ' l\\ _
- :::::’r--- F] i # ¢ ¥ --ﬁ‘=:::: m
L * ¥ + ¥ + ¥ A
F o ’ * ¢ ’ L —
i |
— - * L] * + il
IBéBBB EBéBBB SBéBBB 4Bé888 SBéBBB

Time (Load #2

ewon[|S Lattner

FT Access Pattern With Malloc

o e S Rl i
A v, e . 3 — ‘{g’!ﬂ: N e e
P e - A o
£

m Heap segregation has a similar effect on FT:
See my Ph.D. thesis for detalls

Chris Lattner

Related Work

m Heuristic-based collocation & layout

Requires programmer annotations or GC

Does not segregate based on data structures

Not rigorous enough for follow-on compiler transforms
m Region-based mem management for Java/ML

Focused on replacing GC, not on performance

Does not handle weakly-typed languages like C/C++

Focus on careful placement of region create/destroy
m Complementary techniques:

Escape analysis-based stack allocation

Intra-node structure field reordering, etc

Chris Lattner

Pool Allocation Conclusion

Goal of this paper: Memory Hierarchy Performance

Two key ideas:

1. Segregate heap based on points-to graph
Give compiler some control over layout
Give compiler information about locality
Context-sensitive b segregate rds instances

2. Optimize pools based on per-pool properties
Very simple (but useful) optimizations proposed here
Optimizations could be applied to other systems

http://llvm.cs.uiuc.edu/

Chris Lattner

How can you use Pool Allocation?

m We have also used it for:
Node collocation & several refinements (this paper)
Memory safety via homogeneous pools [TECS 2005]
64-bit to 32-bit Pointer compression [MSP 2005]

m Segregating data structures could help in:
Checkpointing
Memory compression
Region-based garbage collection
Debugging & Visualization
More novel optimizations

http://llvm.cs.uiuc.edu/

Chris Lattner

