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What Is the problem?
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Our Approach: Segregate the Heap

m Step #1: Memory Usage Analysis
Build context-sensitive points-to graphs for program
We use a fast unification-based algorithm

m Step #2: Automatic Pool Allocation
Segregate memory based on points-to graph nodes
Find lifetime bounds for memory with escape analysis
Preserve points-to graph-to-pool mapping

m Step #3: Follow-on pool-specific optimizations
Use segregation and points-to graph for later optzns

Chris Lattner



Why Segregate Data Structures?

m Primary Goal: Better compiler information & control
Compiler knows where each data structure lives in memory
Compiler knows order of data in memory (in some cases)
Compiler knows type info for heap objects (from points-to info)
Compiler knows which pools point to which other pools

m Second Goal: Better performance

Smaller working sets
Improved spatial locality
Sometimes convert irregular strides to regular strides

Chris Lattner



Contributions

1. First “region inference” technique for C/C++:
Previous work required type-safe programs: ML, Java
Previous work focused on memory management

2. Region inference driven by pointer analysis:
Enables handling non-type-safe programs
Simplifies handling imperative programs
Simplifies further pool+ptr transformations

3. New pool-based optimizations:

Exploit per-pool and pool-specific properties

4. Evaluation of impact on memory hierarchy:

We show that pool allocation reduces working sets
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Talk Outline

m Introduction & Motivation

m Automatic Pool Allocation Transformation

m Pool Allocation-Based Optimizations

m Pool Allocation & Optzn Performance Impact
m Conclusion
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Automatic Pool Allocation Overview

m Segregate memory according to points-to graph

m Use context-sensitive analysis to distinguish
between RDS instances passed to common routines
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Points-to Graph Assumptions

m Specific assumptions: (head)
Build a points-to graph for each function st HM‘R/)
Context sensitive list* | int J/
Unification-based graph Linked List

Can be used to compute escape info
m Use any points-to that satisfies the above

m Our implementation uses DSA [Lattner:PhD]

Infers C type info for many objects
Field-sensitive analysis
Results show that it is very fast
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Pool Allocation: Example
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Pool Allocation Algorithm Detalls

m Indirect Function Call Handling:

Partition functions into equivalence classes:

m If F1, F2 have common call-site b same class
Merge points-to graphs for each equivalence class
Apply previous transformation unchanged

m Global variables pointing to memory nodes
See paper for detalils

m poolcreate/pooldestroy placement
See paper for details
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Pool Specific Optimizations

Different Data Structures Have Different Properties

m Pool allocation segregates heap:
Roughly into logical data structures
Optimize using pool-specific properties
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m Examples of properties we look for:
Pool is type-homogenous
Pool contains data that only requires 4-byte alignment
Opportunities to reduce allocation overhead
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Looking closely: Anatomy of a heap

m Fully general malloc-compatible allocator:
Supports malloc/free/realloc/memalign etc.
Standard malloc overheads: object header, alignment
Allocates slabs of memory with exponential growth
By default, all returned pointers are 8-byte aligned

m In memory, things look like (16 byte allocs):

_ /| 4-byte padding for
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One 32-byte Cache Line
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PAOpts (1/4) and (2/4)

m Selective Pool Allocation
Don’t pool allocate when not profitable

m PoolFree Elimination
Remove explicit de-allocations that are not needed

See the paper for details!
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PAOpts (3/4): Bump Pointer Optzn

m If a pool has no poolfree’s:
Eliminate per-object header
Eliminate freelist overhead (faster object allocation)
m Eliminates 4 bytes of inter-object padding
Pack objects more densely in the cache
m Interacts with poolfree elimination (PAOpt 2/4)!
If poolfree elim deletes all frees, BumpPtr can apply

One 32-byte Cache Line Chris Lattner



PAOpts (4/4): Alignment Analysis

m Malloc must return 8-byte aligned memory:
It has no idea what types will be used in the memory

Some machines bus error, others suffer performance
problems for unaligned memory

m Type-safe pools infer atype for the pool:
Use 4-byte alignment for pools we know don't need it
Reduces inter-object padding

/| 4-byte object header
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Simple Pool Allocation Statistics

Qfe)e)relffls

DSA + Pool allocation
compile time is small: less
than 3% of GCC compile

time for all tested
programs. See paper for
detalls

Program LOC Stat | Num TH% Dyn

Pools TH Pools
164 gzip 8616 4 4 100% 44
175.vpr 17728 107 91 85% 44
197 parser-b 11204 49 48 98% 6674
252.eon 35819 124 123 99% 66
300.twolf 20461 94 88 94% 227
anagram 650 4 3 75% 4
be 7297 24 22 91% 19
ft 1803 3 3 100% 4
ks 782 3 3 100% 3
yacr2 3982 20 20 100% 83
analyzer 923 5 5 100% 8
neural 785 5 5 100% 93
pcompress?2 903 5 5 100% 8
llu-bench 191 | 1 100% 2
chomp 424 4 4 | 100% 7
fpgrowth 634 6 6 100% 3.4M
espresso 14959 160 160 100% 100K
povray3l 108273 46 R 11% 14
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m Several programs unaffected by pool allocation (see paper)
m Sizable speedup across many pointer intensive programs
m Some programs (ft, chomp) order of magnitude faster

See paper for control experiments (showing Impact of pool

runtime librany, overhead induced by pool allecation args, etc)
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Pool Optimization Speedup (FullPA)
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m Optimizations help all of these programs:

Despite being very simple, they make a big impact Chis Lat



Cache/TLB miss reduction
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Chomp Access Pattern with Malloc
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Chomp Access Pattern with PoolAlloc

*Chomp® with Pool Allocation
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FT Access Pattern With Malloc
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m Heap segregation has a similar effect on FT:
See my Ph.D. thesis for detalls
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Related Work

m Heuristic-based collocation & layout

Requires programmer annotations or GC

Does not segregate based on data structures

Not rigorous enough for follow-on compiler transforms
m Region-based mem management for Java/ML

Focused on replacing GC, not on performance

Does not handle weakly-typed languages like C/C++

Focus on careful placement of region create/destroy
m Complementary techniques:

Escape analysis-based stack allocation

Intra-node structure field reordering, etc
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Pool Allocation Conclusion

Goal of this paper: Memory Hierarchy Performance

Two key ideas:

1. Segregate heap based on points-to graph
Give compiler some control over layout
Give compiler information about locality
Context-sensitive b segregate rds instances

2. Optimize pools based on per-pool properties
Very simple (but useful) optimizations proposed here
Optimizations could be applied to other systems

http://llvm.cs.uiuc.edu/
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How can you use Pool Allocation?

m We have also used it for:
Node collocation & several refinements (this paper)
Memory safety via homogeneous pools [TECS 2005]
64-bit to 32-bit Pointer compression [MSP 2005]

m Segregating data structures could help in:
Checkpointing
Memory compression
Region-based garbage collection
Debugging & Visualization
More novel optimizations

http://llvm.cs.uiuc.edu/
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