
AN IMPLEMENTATION OF SWING MODULO SCHEDULING WITH EXTENSIONS

FOR SUPERBLOCKS

BY

TANYA M. LATTNER

B.S., University of Portland, 2000

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

Abstract

This thesis details the implementation of Swing Modulo Scheduling, a Software Pipelining tech-

nique, that is both effective and efficient in terms of compile time and generated code. Software

Pipelining aims to expose Instruction Level Parallelism in loops which tend to help scientific and

graphical applications.

Modulo Scheduling is a category of algorithms that attempt to overlap iterations of single basic

block loops and schedule instructions based upon a priority (derived from a set of heuristics). The

approach used by Swing Modulo Scheduling is designed to achieve a highly optimized schedule,

keeping register pressure low, and does both in a reasonable amount of compile time.

One drawback of Swing Modulo Scheduling, (and all Modulo Scheduling algorithms) is that

they are missing opportunities for further Instruction Level Parallelism by only handling single

basic block loops. This thesis details extensions to the Swing Modulo Scheduling algorithm to

handle multiple basic block loops in the form of a superblock. A superblock is group of basic

blocks that have a single entry and multiple exits. Extending Swing Modulo Scheduling to support

these types of loops increases the number of loops Swing Modulo Scheduling can be applied to. In

addition, it allows Modulo Scheduling to be performed on hot paths (also single entry, multiple

exit), found with profile information to be optimized later offline or at runtime.

Our implementation of Swing Modulo Scheduling and extensions to the algorithm for superblock

loops were evaluated and found to be both effective and efficient. For the original algorithm,

benchmarks were transformed to have performance gains of 10-33%, while the extended algorithm

increased benchmark performance from 7-22%.

iii

Acknowledgments

The implementation and writing of this thesis has been challenging, stressful, yet fulfilling and

rewarding. While I feel a sense of pride in what I have accomplished, I would not have completed

this without the immense love and support from my husband Chris. I have watched him achieve

inspirational success in his own educational pursuits and learned a great deal from him. He has

always stood by me despite my frequent stress-induced break downs. I can not thank him enough

for his patience, understanding, encouragement, and love.

I would also like to thank my parents, Greg and Ursula Brethour. You both have supported my

seemingly crazy decision to attempt graduate school. Thank you for your love and support, and

for bringing me up with the determination to succeed no matter what the adversity.

I am also very grateful to Jim Ferguson, of NCSA, for allowing me to reduce my appointment

and attend graduate school. Without your letter of recommendation, financial support, and un-

derstanding, this would not have been possible. I learned a lot from you and my fellow DAST

coworkers, and I am extremely grateful for everything.

Special thanks to my advisor, Vikram Adve, who helped me pursue my dreams of writing a

thesis. Thank you for your guidance, knowledge, and support.

Lastly, I owe a lot to the friends I have made during my years at UIUC. Thank you for the

laughter, fun, memories, and for keeping me sane.

iv

Table of Contents

List of Figures . vii

List of Tables . viii

Chapter 1 Introduction . 1
1.1 Modulo Scheduling . 2
1.2 Research Contributions of this Thesis . 4
1.3 Organization of this Thesis . 4

Chapter 2 Scheduling Background . 5

Chapter 3 Previous Work . 8
3.1 Modulo Scheduling Approaches . 9

3.1.1 Iterative Modulo Scheduling . 10
3.1.2 Slack Modulo Scheduling . 12
3.1.3 Integrated Register Sensitive Iterative Software Pipelining 13
3.1.4 Hypernode Reduction Modulo Scheduling . 15

3.2 Global Modulo Scheduling . 17
3.2.1 Hierarchical Reduction . 17
3.2.2 If-Conversion . 18
3.2.3 Enhanced Modulo Scheduling . 19
3.2.4 Conclusion . 20

Chapter 4 Implementing Swing Modulo Scheduling . 22
4.1 LLVM Compiler Infrastructure . 23

4.1.1 Architecture Resource Description . 25
4.2 Data Dependence Graph Construction . 27

4.2.1 Dependence Analysis . 28
4.3 Calculating the Minimum Initiation Interval . 32

4.3.1 Resource II . 32
4.3.2 Recurrence II . 32

4.4 Node Properties . 35
4.5 Node Ordering . 37
4.6 Scheduling . 39
4.7 Loop Reconstruction . 43

v

Chapter 5 Extending Swing Modulo Scheduling for Superblocks 48
5.1 Overview . 49
5.2 Changes to Dependence Graph . 50
5.3 Changes to Loop Reconstruction . 52
5.4 Superblock Loop Example . 54

Chapter 6 Results . 64
6.1 Ultra SPARC IIIi Architecture . 64
6.2 Swing Modulo Scheduling Results . 66

6.2.1 Methodology and Benchmarks . 66
6.2.2 Loop Statistics . 67
6.2.3 Compile Time . 70
6.2.4 Static Measurements . 73
6.2.5 Performance Results . 76

6.3 Superblock Swing Modulo Scheduling Results . 79
6.3.1 Methodology and Benchmarks . 79
6.3.2 Superblock Statistics . 80
6.3.3 Compile Time . 83
6.3.4 Static Measurement Results . 86
6.3.5 Performance Results . 88

Chapter 7 Conclusion . 93

References . 95

vi

List of Figures

1.1 Single Iteration of a Loop . 2
1.2 Pattern of Software Pipelined Loop . 3
1.3 Software Pipelined Loop with Prologue, Kernel, and Epilogue 3

3.1 Pseudo Code for General Modulo Scheduling . 9

4.1 Simple Loop Example . 23
4.2 LLVM Machine Code for a Simple Loop . 24
4.3 LLVM Instructions and Corresponding Machine Instructions 26
4.4 Dependence Graph After Dependence Analysis . 29
4.5 Pseudo Code for Dependence Analyzer . 30
4.6 Pseudo Code for Circuit Finding Algorithm . 33
4.7 Pseudo Code for Partial Node Ordering Algorithm 37
4.8 Simple Loop Example Partial Order . 38
4.9 Pseudo Code for Final Node Ordering Algorithm . 39
4.10 Pseudo Code for Scheduling Algorithm . 40
4.11 Pseudo Code for Loop Reconstruction Algorithm . 44
4.12 Modulo Scheduled Loop for our Example Loop (Prologue) 46
4.13 Modulo Scheduled Loop for our Example Loop (Kernel and Epilogue) 47

5.1 Pseudo Code for Determining Values Live Outside the Trace 52
5.2 Pseudo Code for Loop Reconstruction Algorithm for Superblocks 53
5.3 Simple Superblock Loop Example . 55
5.4 LLVM Machine Code for a Superblock Loop . 56
5.5 Dependence Graph After Dependence Analysis . 57
5.6 Superblock Loop Example Partial Order . 58
5.7 Modulo Scheduled Loop for our Superblock Loop (Prologue) 61
5.8 Modulo Scheduled Loop for our Example Loop (Kernel and Epilogue) 62
5.9 Modulo Scheduled Loop for our Example Loop (Side Exit and Side Epilogue) 63

6.1 Compile Times for the Phases of SMS . 72
6.2 Theoretical II to Achieved II Ratio . 75
6.3 Runtime Ratio Results . 78
6.4 Compile Times for the Phases of Extended SMS . 85
6.5 Runtime Ratio Results . 91

vii

List of Tables

4.1 Node Latencies for Simple Loop Example . 34
4.2 Node Attributes for Simple Loop Example . 35
4.3 Schedule for a Single Iteration of the Loop Example 41
4.4 Kernel for Loop Example . 42

5.1 Node Latencies for Simple Loop Example . 56
5.2 Node Attributes for Simple Loop Example . 57
5.3 Schedule for a Single Iteration of the Loop Example 59
5.4 Kernel for Loop Example . 59

6.1 Loop Statistics for the Benchmarks . 68
6.2 Compile Time Breakdown for Benchmarks . 71
6.3 Static Measurements for the Benchmarks . 73
6.4 Performance Results for the Benchmarks . 77
6.5 Superblock Loop Statistics for the Benchmarks . 81
6.6 Compile Time Breakdown for Benchmarks . 83
6.7 Static Measurements for the Benchmarks . 87
6.8 Performance Results for the Benchmarks . 89

viii

Chapter 1

Introduction

Modern compilers implement several optimizations that extract the parallelism in programs in

order to speed up program execution or to utilize multiple processor machines more effectively.

Many of these optimizations are applied to loops. Such optimizations include loop distribution,

loop interchange, skewing, tiling, loop reversal, and loop bumping [36]. Other techniques unroll

loops to increase the size of the loop body to increase potential for scheduling. This produces a

more efficient schedule, but ignores the parallelism across loop iterations [31].

Often, these techniques are not successful due to dependences between instructions and across

iterations of the loop. A more sophisticated approach, Software Pipelining, reconstructs the loop

such that each iteration of the loop is executed at a constant interval, producing an optimal schedule.

This approach aims to keep the processor’s pipeline full and ultimately speed up the execution time

of the program.

Software Pipelining has existed for many years and has been proven to be a viable scheduling

solution for VLIW (Very Long Instruction Word) and superscalar architectures. As more archi-

tectures emerge that provide support for Software Pipelining [20, 24, 37], existing algorithms are

being refined, and new techniques are being developed.

In the early days of Software Pipelining, the techniques would schedule instructions from sev-

eral iterations and look for a pattern [36]. Modulo Scheduling is a family of Software Pipelining

techniques that uses a “modulo” technique (instead of maximal unrolling) to place instructions in

the schedule such that when iterations are overlapped there are no resource or data conflicts. This

thesis describes an implementation and extension of one such algorithm, Swing Modulo Scheduling.

1

1.1 Modulo Scheduling

The idea behind Modulo Scheduling can easily be illustrated with the following example. Figure 1.1

shows a sequence of instructions that represent the body of a loop. Assume that this sequence of

instructions reads a value from an array, adds some constant to that value, and stores that value.

For this simple example, there are only data dependences within one iteration, since subsequent

iterations access a different element within the same array.

1 load
2 add
3
4 store

Figure 1.1: Single Iteration of a Loop

Assume that the add instruction is a single-stage pipelined operation that takes two cycles,

while the load and store both take one cycle. As you can see the original loop takes 4 cycles

between the initiation of each iteration.

Modulo Scheduling attempts to minimize the time between initiations of loop iterations, and

lower the overall execution time of the loop. It does this by modifying the loop such that there

are no resource or data conflicts and attempts to keep the processor’s pipeline constantly full (i.e.

no stalls). Figure 1.2 shows how the code is structured into three sections such that the ramp up

stage begins to fill the pipeline, steady state is reached where the pipeline is always full, and finally

it ramps down as the pipeline empties and the loop terminates. The goal is to ensure that the

majority of the execution time is spent in steady state.

The loop is reconstructed into 3 components [31] related to the pattern described in Figure 1.2:

• Prologue: A sequence of instructions leading to steady state.

• Kernel: Instructions that are executed on every cycle of the loop once its reached steady

state.

• Epilogue: Instructions that are executed to finish the loop.

Using the example in Figure 1.1, if we look at 4 iterations of the loop and pick an instruction

from each iteration, we can form a kernel.

2

Steady State

Ramp

Up

Ramp

Down

N
u
m

b
er

 o
f

o
v
e r

la
p
p
ed

 i
te

ra
ti

o
n
s

Time

Figure 1.2: Pattern of Software Pipelined Loop

Figure 1.3(a) shows the iterations and instructions selected for the kernel. The prologue for

our simple loop is composed of all the instructions above the kernel, and the epilogue are all the

instructions below the kernel. With this reconstructed loop, the kernel (Figure 1.3(b)) now initiates

iterations of the loop in three cycles instead of the original loop’s four cycles. If this loop has a large

iteration count, the majority of the time would be spent executing the kernel’s optimal schedule

and speeding up the overall execution time of the program by 1.3 times.

Modulo Scheduling algorithms traditionally combine a set of heuristics and list scheduling to

create this kernel. These techniques are discussed further in Chapter 3. List scheduling and other

scheduling terms are explained in Chapter 2.

1 load

2 add

3

4 store

Prologue

Epilogue

Kernel

1 load

2 add

3

4 store

1 load

2 add

3

4 store

1 load

2 add

3

4 store

(a) Software Pipelined Loop

1 store
2
3 add
4 load

(b) Kernel

Figure 1.3: Software Pipelined Loop with Prologue, Kernel, and Epilogue

3

1.2 Research Contributions of this Thesis

The first main contribution of this thesis is an implementation of Swing Modulo Scheduling in the

LLVM Compiler Infrastructure [26]. The results show that it is an effective and efficient Mod-

ulo Scheduling technique. Our implementation shows that Swing Modulo Scheduling successfully

achieves an optimal schedule while reducing register pressure (for most cases).

The second main contribution of this thesis is to extend the Swing Modulo Scheduling algorithm

to handle more than single basic block loops. We have modified the algorithm to handle superblock

loops (single-entry, multiple-exit, multiple basic block loops). These extensions allow the algorithm

to be applied at various stages of compilation:

• Statically: Just as the original Swing Modulo Scheduling algorithm was done statically, the

extensions simply expand the number of loops acceptable for this transformation.

• Offline: Using profile information, hot paths (subsets of the loop in the form of single entry,

multiple exit loops), can be recognized and be transformed by our extensions.

• Runtime: Similar to the profile driven optimization, hot paths are found during program

execution, and are transformed dynamically using the extended algorithm.

1.3 Organization of this Thesis

This thesis begins with background information in Chapter 2 on scheduling. In order to understand

why Swing Modulo Scheduling was chosen, an overview of Modulo Scheduling and Global Modulo

Scheduling approaches, along with related work is presented in Chapter 3. The implementation of

Swing Modulo Scheduling is explained in Chapter 4 and extensions to the algorithm are detailed

in Chapter 5. The implementation and extensions of this algorithm are evaluated in Chapter 6.

Finally, Chapter 7 discuss potential future work, and concludes this work.

4

Chapter 2

Scheduling Background

Instruction Scheduling aims to rearrange instructions to fill the gap that the delay between depen-

dent instructions creates. If other instructions were not scheduled in this gap, the processor would

stall and waste cycles. Instruction scheduling is typically done after machine independent optimiza-

tions, and either before or after register allocation. Depending upon the compiler infrastructure,

scheduling is done on target machine assembly, or on a low-level representation that closely models

assembly.

All Instruction Scheduling techniques aim to produce an optimal schedule, a schedule with the

shortest length. Schedule length is measured as the total execution time in cycles. In addition, the

optimal schedule must be found in a reasonable amount of time.

Instruction Scheduling algorithms must satisfy both dependence and resource constraints when

creating a schedule. Dependence constraints are determined by constructing a data dependence

graph, a directed graph whose nodes represent instructions, and edges represent a dependence

between instructions. A dependence between two instructions is formed when two instructions

have a common operand, and one of those instructions defines the operand.

If resource constraints are met, the schedule will not require more resources then the architecture

has available. Instruction Scheduling must have a resource usage model that breaks down the

resource per pipeline stage for each category of instructions (i.e., loads, integer arithmetic, floating

point arithmetic, etc). Using this resource model, the scheduler can populate a resource reservation

table. A resource reservation table is a matrix in the form of r × c where, r is the resources, and c

is the cycles of the schedule. Each entry in this table is an instruction that uses a resource for that

cycle.

5

While finding the optimal schedule is the main goal, Instruction Scheduling must also be aware

of the potential increase of register pressure by reordering instructions. Register pressure is a

measure of the number of live values at a given point in the program. A Live Range is a range from

when a value is defined, to its final use in the program. A value is live at a given point if the last

use of that value has not occurred. Because architectures have limited registers, the number of live

values should not exceed the total number of registers available. If that value has been exceeded,

the registers are spilled to memory and loaded again when needed. Reading and writing to memory

can be quite costly.

Instruction Scheduling can be broken into three categories: Local Scheduling, Global Scheduling,

and Cyclic Scheduling [36]. Local Scheduling handles single basic blocks which are regions of

straight line code that have a single entry and exit. Global Scheduling can handle multiple basic

blocks with acyclic control flow, and Cyclic Scheduling handles single or multiple basic blocks with

cyclic control flow. Software Pipelining falls into the latter category.

Local Scheduling typically uses a form of List Scheduling. List Scheduling schedules instructions

starting at cycle zero, until all instructions have been scheduled. For each cycle it maintains a list

of ready instructions (those with no resource or dependence conflicts), and schedules that list in an

order based upon some heuristic. Here are a few of the traditional heuristics used:

• Maximum distance (latency) from the node, to a node without successors. This is also known

as height-based priority.

• Maximum number of children, direct or all descendants.

• Smallest estart value, where estart is equal to the total latency of the node’s predecessors.

• Smallest lstart value, where lstart is equal to the total latency of the node’s successors.

• Lower Mobility, where Mobility is the difference between lstart and estart.

• Nodes on the critical path, which means they have a mobility of zero.

Local Scheduling is limited because it operates only on single basic blocks which are typically

not very large. Therefore, while optimal schedules may be found for those small regions, the

overall impact on performance could be quite small. Global Scheduling schedules instructions from

6

multiple basic blocks and overlaps the execution of instructions from different basic blocks. There

exist many Global Scheduling algorithms [36] such as:

• Trace Scheduling: It identifies frequently executed traces in the program and treats the path

as an extended basic block which is scheduled using a list scheduling approach.

• Superblock Scheduling: Superblocks are a subset of traces which have a single entry and

multiple exit attributes (therefore they are traces without side exits). List scheduling is

typically used to schedule the superblock.

• Hyperblock Scheduling: Excessive control flow can complicate scheduling, so this approach

uses a technique called If-Conversion [3] to remove conditional branches. If-Conversion is

discussed in Section 3.2.2.

With this background in Instruction Scheduling, Software Pipelining, a form of Cyclic Schedul-

ing, will be discussed in great detail in Chapter 3.

7

Chapter 3

Previous Work

Software Pipelining [9] is a group of techniques that aim to exploit Instruction Level Parallelism

(ILP) by overlapping successive iterations of a loop. Over the years, two main approaches to

Software Pipelining have developed: Move-then-Schedule, and Schedule-then-Move. The Move-

then-Schedule techniques [16, 30, 14, 22], which will not be discussed in this thesis, move instructions

across the back-edge of the loop in order to achieve a pipelined loop. The Schedule-then-Move

algorithms attempt to create a schedule that maximizes performance and constructs a new pipelined

loop composed of instructions from current and previous iterations.

The Schedule-then-Move group of techniques is further decomposed into two families. The

first is known as Unroll-based Scheduling, which use loop unrolling while scheduling to form a

software pipelined loop. It repeats this process until the schedule becomes a repetition of an

existing schedule. As one can speculate, this type of approach often leads to high time complexity.

The second group, Modulo Scheduling [27, 33, 12, 21, 4, 16, 28], aims to create a schedule with no

resource or dependence conflicts that can be repeated at a constant interval. Since Swing Modulo

Scheduling (SMS) falls into the second category, this thesis will briefly describe a few of the other

well known algorithms in this category.

Modulo Scheduling is traditionally restricted to single basic block loops without control flow,

which can limit the number of candidate loops. Global Software Pipelining techniques have emerged

to exploit some of the opportunities for ILP in multiple basic block loops that frequently occur in

computation intensive applications. We will explore a few techniques in this area, as it directly

relates to the SMS extensions discussed in Chapter 5.

8

3.1 Modulo Scheduling Approaches

Modulo Scheduling techniques typically use heuristic based approaches to find a near-optimal sched-

ule. While there exist other approaches, such as enumerating all possible solutions and choosing the

best one [4], finding the optimal schedule is an NP-complete problem. Therefore, most production

compilers [18] implement Modulo Scheduling using heuristic based algorithms.

Modulo Scheduling algorithms exhibit the same pattern when pipelining a loop (Figure 3.1).

Each begins by constructing a Data Dependence Graph (DDG). Using the DDG, the Minimum

Initiation Interval (MII), which is the minimum amount of time between the start of successive

iterations of a loop, is computed. Modulo Scheduling algorithms aim to create a schedule with

an Initiation Interval (II) equal to MII, which is the smallest II possible and results in the most

optimal schedule. The lower the II, the greater the parallelism.

MII is defined to be the maximum of the resource constrained II (ResMII), and recurrence

constrained II (RecMII) of the loop. The exact ResMII may be calculated by using reservation

tables, a method of modeling resource usage, but this can lead to exponential complexity [33].

Modulo Scheduling algorithms typically use an approximation by computing the total usage count

for each resource and using the most heavily used resource count as ResMII.

Recurrences in the data dependence graph occur when there is a dependence from one instruc-

tion to another from a previous iteration. These loop-carried dependences have a distance property

which is equal to the number of iterations separating the two instructions involved. Using the

data dependence graph, all recurrences are found using any circuit finding algorithm1. For each

recurrence, II is calculated using the total latencies (L) of all the instructions, the total distance

(D), and the following constraint: L − II ∗D <= 0. The recurrence with the highest calculated II

sets the RecMII.

1 ∀b ∈ Single basic block loops without control flow
2 DDG = Data dependence graph for b

3 MII = max(RecMII, ResMII)
4 Schedule(b) //Algorithms differ on this step
5 Reconstruct(b) //Reconstruct into prologue, kernel, epilogue

Figure 3.1: Pseudo Code for General Modulo Scheduling
1Circuit finding algorithms find all circuits (a path where the first and last node are identical) where no vertex

appears twice.

9

Using the MII value as their initial II value, the algorithms attempt to schedule each instruction

in the loop using some set of heuristics. The set of heuristics used varies widely across implemen-

tations of Modulo Scheduling. If an optimal schedule can not be obtained, II is increased, and

the algorithm attempts to compute the schedule again. This process is repeated until a schedule

is obtained or the algorithm gives up (typically because II has reached a value greater than the

original loop’s length in cycles).

From this schedule, the loop is then reconstructed into a prologue, a kernel, and an epilogue.

The prologue begins the first n iterations. After n ∗ II cycles, a steady state is achieved and a new

iteration is initiated every II cycles. The epilogue finishes the last n iterations. Loops with long

execution times will spend the majority of their time in the kernel.

A side effect of Modulo Scheduling is that register pressure is inherently increased when over-

lapping successive iterations. If register pressure increases beyond the available registers, registers

must be spilled and the effective II is unintentionally increased. If this situation arises, the Modulo

Scheduled loop is typically discarded, and the original loop is used instead.

This thesis will briefly discuss three Modulo Scheduling algorithms which use the pattern men-

tioned above, and that are similar to SMS.

3.1.1 Iterative Modulo Scheduling

Iterative Modulo Scheduling [33] (IMS) uses simple extensions to the common acyclic list scheduling

algorithm and the height-based priority function. IMS begins by constructing a standard data

dependence graph, but also includes two pseudo-operations: start and stop. The start node is

made to be the predecessor of all nodes in graph and the stop node is the successor to all nodes

in the graph.

IMS then proceeds to calculate MII, which is the maximum of ResMII and RecMII (Section 3.1).

Using MII as the initial II value, IMS schedules all the instructions using a modified acyclic list

scheduling algorithm. IMS’s list scheduling algorithm differs from traditional list scheduling in the

following ways:

• IMS finds the optimal time slot for each instruction instead of scheduling all instructions

possible per time slot. Additionally, instructions can be unscheduled and then rescheduled.

10

• When determining which instruction to schedule next, the instruction with the highest priority

is returned based upon a given priority scheme. Instructions may be returned more then once

since they may be unscheduled and, later, rescheduled.

• estart is a property that represents the earliest time an instruction may be scheduled (based

upon the predecessors in the partial schedule). Because an instruction’s predecessors can be

unscheduled and a node can be rescheduled, estart maintains a history of past values and

uses either the current estart (if it is less than the last estart value), or one cycle greater

than the last estart. This is to prevent instructions from repeatedly causing each other to

be unscheduled and rescheduled with no change in the schedule.

• A special version of the schedule reservation table, a modulo reservation table, is used in

order to adhere to the modulo constraint. Each instruction uses time-slot modulo II when

being inserted into the schedule.

• The maximum time slot an instruction may be scheduled is limited to the minTime+ II −1,

which differs from traditional list scheduling that uses ∞ as its maximum time.

• If a schedule could not be found, the algorithm gives up.

IMS extends the height based priority function to take loop carried dependencies into consid-

eration. An instruction’s height is equal to the height of the node in the graph, minus the product

of II and the distance from the instruction to its predecessor.

Once a scheduling order has been determined, the range of time slots each instruction may be

issued to is determined by predecessors already inserted into the schedule. estart is calculated

considering those immediate predecessors, which preserves the dependence between the instruction

and its predecessors. The dependence between the instruction being scheduled and its successors

is preserved by asserting that if any resource or dependence conflict should occur, the instruction’s

successors are unscheduled. There is no strategy for determining which successor to remove, as

IMS removes them all. The displaced instructions will then be rescheduled at a later time.

An extensive study was done on the effectiveness of IMS [10] and other Modulo Scheduling

approaches. It determined that IMS has a high register requirement (unlike SMS), but computes

11

a schedule with near optimal II for complex architectures2.

3.1.2 Slack Modulo Scheduling

Slack Modulo Scheduling [21] (Slack) is a bidirectional Modulo Scheduling strategy that schedules

some instructions late, and some early. As with all Modulo Scheduling algorithms, Slack attempts

to create sufficient iteration overlap such that the loop initiates iterations at the maximum possible

issue rate. The Slack scheduling algorithm takes resource and recurrence constraints, register

pressure, and critical paths into consideration when performing instruction scheduling and to limit

back-tracking. The term “slack” refers to the amount of freedom the instruction has in its placement

in the schedule.

The algorithm begins by constructing a data dependence graph (DDG). Using the DDG, it

computes the MII value by examining the resource and recurrence constraints. It uses the same

algorithm as IMS to determine ResMII and RecMII, and uses the maximum as the value for MII.

Like IMS, it uses two pseudo instructions: start and stop. start is a predecessor to all nodes

in the DDG and is scheduled at a fixed issue slot, cycle 0. stop is a successor to all nodes in the

DDG and is scheduled like any other instruction. The purpose of the start and stop nodes are to

ensure that the estart and lstart are well defined for all instructions (there is never a situation

where a node does not have a predecessor or successor in the schedule).

During all stages of the algorithm, the scheduler maintains a minimum distance relation (mindist)

between all pairs of instructions. Maintaining the mindist relation effectively keeps track of the

earliest start time (estart) and the latest start time (lstart) bounds for each instruction, given

the partial schedule. mindist is the minimum number of cycles that a given instruction must be

issued before its successor. If there is no path between two instructions, mindist is set to −∞. The

mindist computation is reduced to an all-pairs shortest path algorithm by negating the distances

on each dependence. It is important to note that mindist must be recalculated for each new II.

The Slack scheduling algorithm is outlined as follows:

1. Selecting an Instruction to be Scheduled: Slack chooses instructions with the minimum

number of issue slots, conflict free placements, to be scheduled first. This property is called

2Complex architectures are those which pipeline simple instructions, while complex ones (fp division, modulo,
square root) are not [10].

12

the dynamic priority of an instruction. The number of issue slots is approximated by the

slack value when there is no resource contention. If contention occurs, the number of issue

slots is approximated by dividing the slack value in half. If there is a tie for dynamic priority,

the instruction with the lowest lstart is chosen. The slack value is the difference between

lstart and estart.

2. Choosing the Issue Cycle: A sophisticated heuristic that analyzes flow dependencies is

used to determine if the instruction should be placed as early as possible or as late as possible.

3. Scheduling an Instruction: If no conflict free issue slot exists for the instruction being

scheduled, then one or more instructions must be ejected from the schedule. The instructions

to be ejected are those issued after lstart for the instruction being scheduled. If an instruc-

tion is being rescheduled, the maximum of estart and one plus the last placement slot, is

used as the estart value. This prevents instructions from continuously ejecting each other

from the schedule. estart and lstart for all instructions are updated after an instruction

is successfully scheduled or unscheduled.

4. Increment II: If instructions are being ejected too many times, all are removed from the

schedule, and II is incremented. The Slack scheduling steps are then repeated until a schedule

is found or the algorithm gives up.

According to a study [10] that compared various modulo scheduling approaches, Slack did

approximately the same as SMS in reducing register pressure on all types of architectures, but

required much more compile time. SMS is usually able to compute a better schedule then Slack for

architectures of low3 and medium4 complexity and Slack was also beat by IMS on higher complexity

architectures.

3.1.3 Integrated Register Sensitive Iterative Software Pipelining

Integrated Register Sensitive Iterative Software [12] (IRIS) Pipelining uses an integrated approach

composed of modified heuristics proposed in Stage Scheduling [17] and Rau’s iterative method [33].

3Low complexity architectures are those with fully pipelined instructions with 3 integer and 3 floating point units,
and issue width of 8 instructions [10].

4Medium complexity architectures have fully pipelined instructions, but only 2 integer and 2 floating point units
and an issue width of 4 instructions [10].

13

This approach aims to achieve a high initiation rate while maintaining low register requirements.

IRIS is a bidirectional strategy and schedules instructions as early or as late as possible.

IRIS is similar to IMS, described in Section 3.1.1, but contains the following modifications:

• Earliest start (estart) and latest start (lstart) are calculated as described by the Slack

Modulo Scheduling algorithm [21]. This creates a tighter bound on lstart.

• Instructions are placed as early or as late as possible in the schedule, which is determined by

using modified Stage Scheduling [17] heuristics. The search for an optimal issue slot is done

from estart to lstart, or vice-versa.

IRIS is identical to IMS in that it uses the same height-based priority function, the same

thresholds to determine when a schedule should be discarded and II increased, and the same

technique to eject instructions from the schedule.

This algorithm differs mainly in its use of modified Stage Scheduling [17] heuristics, which are

used to determine which direction to search for a conflict-free issue slot. The heuristics are as

follows:

1. If the instruction is a source node in the DDG, the partial schedule is searched for any

successors. If one or more exist, the algorithm searches from lstart to estart for an issue

slot.

2. If the instruction is a sink node in the DDG, and only has predecessors in the schedule, then

the search for an issue slot begins from estart to lstart.

3. If this instruction has only successors in the partial schedule, and forms a cut edge5, then

the schedule is scanned from lstart to estart for an open time slot, and vice-versa for

predecessors.

4. If an instruction does not fall into any of the categories above, it begins searching for an issue

slot from estart and ends with lstart.

5A cut edge is an edge whose removal from a graph produces a subgraph with more components than the original
graph.

14

According to the comparative study [10], both IRIS and IMS do fairly well, in terms of finding

an optimal schedule, on complex architectures since they are both iterative techniques. However,

IRIS was least effective in terms of register requirements when compared against SMS for all types

of architectures.

3.1.4 Hypernode Reduction Modulo Scheduling

Hypernode Reduction Modulo Scheduling [28] (HRMS) is another bidirectional technique that uses

an ordering phase to select the order in which instructions are scheduled. HRMS attempts to

shorten the lifetime of loop variants without sacrificing performance.

Like other Modulo Scheduling approaches, HRMS computes the MII from the resource and

recurrence constraints and creates a data dependence graph for the program. HRMS is unique in

how it orders the instructions to be scheduled. The ordering phase guarantees an instruction will

only have predecessors or successors in the partial schedule: The only exception are recurrences, to

which have priority. The ordering phase is only performed once, even if II increases.

The ordering phase is an iterative algorithm and for each iteration the neighbors of a Hypernode

are ordered, and then reduced into a new Hypernode. A Hypernode is a single node that represents a

node or subgraph of the DDG. The ordering pass is easily explained for graphs without recurrences.

The basic algorithm will be presented first, and then the modifications made for recurrences will

be discussed.

For a graph without recurrences, the initial Hypernode may be the first node or any node in the

DDG. The predecessors and successors of a Hypernode are alternatively ordered with the following

steps:

1. The nodes on all paths between the predecessors/successors are collected.

2. The predecessor/successor nodes from the previous step and the Hypernode are reduced into

a new Hypernode.

3. A topological sort is done on the subgraph that the Hypernode represents, and the resulting

sorted list is appended to the final ordered list.

4. The steps are repeated until the graph is reduced to a single Hypernode.

15

Graphs with recurrences are processed first by the ordering phase, and no single node is selected

as the initial Hypernode. The recurrences are first sorted according to their RecMII, with the

highest RecMII having priority, resulting in a list of sets of nodes (each set is a recurrence). If

any recurrence shares the same back edge as another, the sets are merged together into the one

with the highest priority. If any node is in more than one set, it is removed from all but the

recurrence with the highest RecMII. Instead of ordering predecessors and successors alternatively

to this Hypernode, the ordering phase does the following, beginning with the first recurrence in the

list:

1. Find all the nodes from the current recurrence to the next in the list. This is done with all

back edges removed in order to prevent cycles.

2. Reduce the recurrence, the nodes collected from the previous step, and the current Hypernode

(if there is one), into a new Hypernode.

3. Perform a topological sort on the subgraph that the Hypernode represents, and append the

nodes to the final ordered list.

4. Repeat the above steps until the graph is reduced to one without recurrences, and then use

the algorithm described for graphs without recurrences.

The scheduling phase of HRMS uses the final ordered list and attempts to schedule instructions

as close as possible to their predecessors and successors already in the partial schedule. It uses the

same calculations for the start and end cycles that SMS does, which will be discussed in Section 4.6.

If there are no free slots for the instruction, the schedule is cleared, II is increased, and scheduling

begins again.

HRMS is the algorithm that has the most in common with SMS. They both find optimal

schedules in a reasonable amount of compile time. However, because they differ in how the nodes

are ordered for scheduling (HRMS does not take into consideration the criticality of nodes), HRMS

is not as successful as SMS in achieving low register pressure.

16

3.2 Global Modulo Scheduling

While Modulo Scheduling is an effective technique for scheduling loop intensive programs, it is

limited to single basic block loops (without control flow). These restrictions cause many Software

Pipelining opportunities on complex loops to be missed. Therefore, a family of techniques that

work on complex loops, called Global Modulo Scheduling emerged.

As mentioned previously, there are two groups of Schedule-then-Move techniques: Unrolling

based, and Modulo Scheduling. There are several unrolling based global Software Pipelining tech-

niques that are able to handle loops with control flow: Perfect Pipelining [2], GURPR* [38], and

Enhanced Pipelining [15]. Since the focus of this thesis is on Modulo Scheduling, these techniques

will not be discussed.

Global Modulo Scheduling approaches are typically techniques that transform a complex loop

into a single basic block of straight line code, and then perform Modulo Scheduling as normal. Code

generation is slightly more challenging as the original control flow needs to be reconstructed within

the new pipelined loop. There are two well known techniques for transforming complex loops into

straight line code: Hierarchical Reduction [25] (described in Section 3.2.1) and If-conversion [3]

(described in Section 3.2.2). Last, Enhanced Modulo Scheduling [41] builds off the ideas behind

If-conversion and Hierarchical Reduction.

3.2.1 Hierarchical Reduction

Hierarchical Reduction [25] is a technique to transform loops with conditional statements into

straight line code which can then be modulo scheduled using any of the techniques previously

discussed. The main idea is to represent all the control constructs as a single instruction, and

schedule this like any other instruction. Lam modeled her technique after a previous scheduling

technique by Wood [42], where conditional statements were modeled as black boxes taking some

amount of time, but further refined it so the actual resource constraints would be taken into

consideration.

Hierarchical reduction has three main benefits. First, it removes conditional statements as a

barrier to Modulo Scheduling. Second, more complex loops are exposed that typically contain

a significant amount of parallelism. Finally, it diminishes the penalty for loops that have short

17

execution times because it exposes the opportunity to modulo schedule outer loops that could

contain these short inner loops. Hierarchical reduction requires no special hardware support.

This technique schedules the program hierarchically starting with the inner most control con-

structs. After scheduling the construct, it is reduced to a single node that represents all the resource

constraints of its components. A program is successfully scheduled after it is reduced to a single

node. The Hierarchical Reduction technique is described in detail in the following steps:

1. The instructions corresponding to the then and else branches of a conditional statement

are scheduled independently.

2. All scheduling constraints are captured by examining the modulo reservation table and taking

the maximum of all the entries for the two branches. A node is created to represent the entire

conditional statement.

3. The data dependence graph is updated by replacing all the instructions that are represented

by this new node, and the dependences are preserved between what this node represents and

other instructions.

4. Finally, the steps are repeated until the whole program has been scheduled and reduced to a

single node.

Hierarchical Reduction does require some changes to code generation of the new pipelined loop.

For code scheduled in parallel with the conditional statement, that code is duplicated in both

branches. It is important to note that while Hierarchical Reduction does successfully represent the

recurrence constraints of conditional constructs, it does take the worst case as its value. However,

this may not be the path most taken in the loop, and the resulting II may not be truly optimal.

3.2.2 If-Conversion

If-conversion is another technique for transforming loops with conditional statements into straight

line code. The idea is to associate the control dependence to a variable which exposes the relation-

ships between instructions in terms of data flow. Essentially, the control dependence is converted to

a data dependence [3]. One of the more popular If-conversion algorithms is the RK algorithm [32],

and many Modulo Scheduling approaches [34, 13, 41] use it.

18

If-conversion replaces conditional branches with a compare instruction that sets a flag. Instruc-

tions that were dependent upon the conditional branch are now instructions that only execute if

the flag is set. If-conversion typically requires hardware support, but some algorithms [41] have

made slight modifications to avoid this. Hardware support such as predicated execution, common

on VLIW and EPIC architectures (such as IA64) set a conditional flag per instruction and allow

instructions to execute only when the conditional flag is true.

While If-conversion does allow loops with conditional statements to be software pipelined, the

downside is that both execution path’s resources must be summed when determining the resource

constraints for the loop. This can lead to a pipelined loop that does not have an optimal II.

3.2.3 Enhanced Modulo Scheduling

Enhanced Modulo Scheduling [41] (EMS) is another Modulo Scheduling technique to modulo sched-

ule loops with conditional branches by translating them into straight line code. If-conversion and

Hierarchical Reduction both place restrictions on the scheduling of instructions that may pre-

vent Modulo Scheduling from achieving an optimal II. EMS attempts to avoid these problems by

combining the best of both algorithms. It uses If-conversion, without special hardware support, to

eliminate prescheduling conditional constructs. It uses the regeneration techniques like Hierarchical

Reduction to insert conditional statements back after Modulo Scheduling.

EMS consists of five basic steps: Applying If-conversion, generating the data dependence graph,

Modulo Scheduling the loop, applying modulo variable expansion, and finally regenerating the

explicit control structure of the code by inserting conditional branches.

If-conversion is performed to transform the loop body into straight line predicated code using

the RK algorithm [32]. By using an internal predicated representation similar to the Cydra 5

processors [34], conditional branches are replaced by a predicate definition and are assigned to

the appropriate basic blocks. Each basic block is assigned one predicate, which has both a true

and a false form. The define instruction sets the predicate to true/false, and clears the false/true

predicate if the instruction is true/false.

The data dependence graph is generated by analyzing the anti, true, and output dependencies

between all instructions just like previous Modulo Scheduling algorithms discussed. Special rules

19

are used to determine the dependencies when predicates are involved. There are flow dependences

between the instruction that defines the predicate and all instructions that belong to the basic

block assigned that predicate. Output dependences exist between the predicate define instruction

and the predicate merge instruction. The predicate merge instruction is placed in the block that

post dominates all of its predecessors. Finally, there is an anti-dependence between all instructions

assigned a predicate, and the predicate merge.

EMS uses an iterative Modulo Scheduling algorithm similar to IMS [33], but with some minor

enhancements. It uses the same techniques to select instructions based on priority, and schedules

instructions at their earliest allowable slot. However, instead of the standard modulo reservation

table, the table is extended to allow three entries per slot: empty, no-conflict, and full. No conflict

indicates that there is an instruction scheduled for this slot, but other instructions from different

paths can be scheduled in the same slot provided there is not control path between them.

Modulo Variable Expansion is a technique first developed by Lam [25] to calculate variable

lifetimes of the resulting kernel. The longest variable lifetime is used to determine how many times

to unroll the loop in order to not overwrite any values before they are used. After unrolling, the

variables are renamed.

Finally, EMS must regenerate the control flow structure in the newly pipelined loop by replacing

the predicate define instructions with conditional branches.

While EMS sounds like the ideal Global Modulo Scheduling algorithm, it was only applied to

loops without loop carried dependencies resulting from memory instructions. This can seriously

limit the number of valid loops to be software pipelined.

3.2.4 Conclusion

Implementing all of the Modulo Scheduling approaches described in this chapter is outside the

scope of this thesis. However, a study by Codina et.al [10] performed an in-depth comparison of

each approach. They found Swing Modulo Scheduling to generate the most optimal schedules for

low and medium complexity architectures. Additionally, for all architectures, SMS was found to

be the best at maintaining low register pressure and took the least amount of compile time to

find an optimal schedule. For complex architectures, the iterative techniques (IMS and IRIS) both

20

found a more optimal schedule, but had a much higher register pressure. Because SMS is successful

at finding an optimal schedule while keeping register pressure low, and does both in an efficient

manner, it appears to be the better approach.

Both Global Modulo Scheduling techniques, Hierarchal Reduction and Enhanced Modulo Schedul-

ing handle multiple basic blocks. However, both take the resource and dependence constraints of all

paths within the loop into consideration when constructing the schedule. For loops where one path

is more frequently executed, this can lead to a less than optimal schedule. The extensions to Swing

Modulo Scheduling (Chapter 5) introduce a Modulo Scheduling technique that only considers the

most frequently executed (hot) path of the loop.

21

Chapter 4

Implementing Swing Modulo

Scheduling

Swing Modulo Scheduling [27] (SMS) is a Modulo Scheduling approach that considers the criticality

of instructions and uses heuristics with a low computational cost. The goal of SMS is to achieve

the theoretical Minimum Initiation Interval (MII), as discussed previously in Section 3.1, reduce

the number of live values in the schedule (MaxLive) and reduce the Stage Count (SC). The Stage

Count is simply the number of iterations live in the resulting kernel. This chapter presents our

implementation of SMS in the LLVM Compiler Infrastructure [26].

Unlike other Modulo Scheduling algorithms [21, 33, 12], SMS does no backtracking (unschedul-

ing of instructions), so instructions are only scheduled once. If an instruction can not be scheduled,

the whole schedule is cleared, II is increased, and scheduling begins again. SMS is also unique in

how it orders instructions for scheduling. It orders instructions by taking the RecMII of the recur-

rence the instruction belongs to and the criticality of the path (in the Data Dependence Graph)

into consideration. This ordering technique aims to reduce the stage count and achieve a schedule

of length MII. During scheduling, MaxLive is reduced by only scheduling instructions close to their

predecessors and successors.

Swing Modulo Scheduling is composed of three main steps:

1. Computation and Analysis of the Data Dependence Graph (DDG).

2. Node Ordering.

3. Scheduling.

22

for (i = 0 ; i < 500; ++ i)
A[i] = A[i −1] ∗ 3 . 4 f ;

(a) C Code

%i . 0 . 0 = phi uint [0 , % entry] , [% indvar . next , % no ex i t]
%tmp.5 = cast uint %i . 0 . 0 to long

”addrOfGlobal :A1” = getelementptr [5 0 0 x f loat]∗ %A, long 0
%tmp.6 = getelementptr [5 0 0 x f loat] ∗ ”addrOfGlobal :A1” , long 0 , long %tmp .5
%copyConst = cast uint 4294967295 to uint

%tmp.8 = add uint % i .0 . 0 , % copyConst
%tmp.9 = cast uint %tmp . 8 to long

”addrOfGlobal :A2” = getelementptr [5 0 0 x f loat]∗ %A, long 0
%tmp.10 = getelementptr [5 0 0 x f loat] ∗ ”addrOfGlobal :A2” , long 0 , long %tmp .9
%tmp.11 = load f loat ∗ %tmp.10
%tmp.12 = mul f loat %tmp . 1 1 , 0 x400B333340000000
store f loat %tmp . 1 2 , f loat ∗ %tmp .6
%indvar . next = add uint % i . 0 . 0 , 1
%exitcond = seteq uint %indvar . next , 5 0 0
br bool %exitcond , label %loopex i t , label %no ex i t

(b) LLVM Code

Figure 4.1: Simple Loop Example

The first two are computed once, while scheduling is repeated until a schedule has been achieved

or the algorithm has reached some maximum II and gives up. Because scheduling is the only part

repeated, the computation time is kept reasonable. Like other Modulo Scheduling algorithms, SMS

works on all innermost loops without calls and control flow. Loop reconstruction is performed after

scheduling is successful, but is not technically part of the SMS algorithm.

Swing Modulo Scheduling was originally chosen over other Modulo Scheduling algorithms men-

tioned in Chapter 3 because of its ability to keep computation time to a minimum, while still

achieving MII and keeping register pressure low. We discuss our experiences with how SMS actu-

ally performed in Chapter 6.

4.1 LLVM Compiler Infrastructure

Swing Modulo Scheduling was implemented in the Low Level Virtual Machine (LLVM) Compiler

Infrastructure [26]. LLVM is a low-level, RISC-like instruction set and object code representation. It

provides type information and data flow information (using SSA [11]), while still being extremely

light-weight. The LLVM Compiler Infrastructure provides optimizations that can be applied at

compile time, link-time, run-time, and offline profile driven transformations.

SMS was implemented as a static optimization in the SPARC V9 back-end. SMS is performed

before register allocation, but after local scheduling. However, nothing in our implementation

prevents it from being performed at run-time or offline. The SPARC back-end uses a low-level

23

(n1) sethi %lm(−1) , % reg (va l 0 x100d0eb20)
(n2) sethi %hh(%disp (addr−of−va l A)) , % reg (va l 0 x100d31a90)
(n3) add %reg (va l 0 x100bb0200 i . 0 . 0 : PhiCp) , %g0 , % reg (va l 0 x100baf6a0 i . 0 . 0)
(n4) sethi %hh(<cp#1>), %reg (va l 0 x100d18060)
(n5) or %reg (va l 0 x100d31a90) , %hm(%disp (addr−of−va l A)) , % reg (va l 0 x100d31b30)
(n6) sethi %lm(%disp (addr−of−va l A)) , % reg (va l 0 x100d31c70)
(n7) or %reg (va l 0 x100d18060) , %hm(<cp#1>), %reg (va l 0 x100d15740)
(n8) or %reg (va l 0 x100d0eb20) , % lo (−1) , % reg (va l 0 x100d0ea80)
(n9) add %reg (va l 0 x100baf6a0 i . 0 . 0) , % reg (va l 0 x100d0ea80) , % reg (va l 0 x100d0e9e0 maskHi)
(n10) sethi %lm(<cp#1>), %reg (va l 0 x100d18100)
(n11) s l lx %reg (va l 0 x100d31b30) , 32 , % reg (va l 0 x100d31bd0)
(n12) s l lx %reg (va l 0 x100d15740) , 32 , % reg (va l 0 x100d157e0)
(n13) or %reg (va l 0 x100d18100) , % reg (va l 0 x100d157e0) , % reg (va l 0 x100d15880)
(n14) sethi %hh(%disp (addr−of−va l A)) , % reg (va l 0 x100d12f60)
(n15) or %reg (va l 0 x100d31c70) , % reg (va l 0 x100d31bd0) , % reg (va l 0 x100d31d10)
(n16) sr l %reg (va l 0 x100d0e9e0 maskHi) , 0 , % reg (va l 0 x100bb9a50 tmp . 8)
(n17) or %reg (va l 0 x100d31d10) , % lo (%disp (addr−of−va l A)) , % reg (va l 0 x100d319f0)
(n18) s l l %reg (va l 0 x100bb9a50 tmp .8) , 2 , % reg (va l 0 x100d31950)
(n19) or %reg (va l 0 x100d15880) , % lo (<cp#1>), %reg (va l 0 x100d12ec0)
(n20) or %reg (va l 0 x100d12f60) , %hm(%disp (addr−of−va l A)) , % reg (va l 0 x100d13000)
(n21) add %reg (va l 0 x100d319f0) , 0 , % reg (va l 0 x100bb73a0 addrOfGlobal :A2)
(n22) ld %reg (va l 0 x100d12ec0) , 0 , % reg (va l 0 x100d17fc0)
(n23) s l lx %reg (va l 0 x100d13000) , 32 , % reg (va l 0 x100d10640)
(n24) sethi %lm(%disp (addr−of−va l A)) , % reg (va l 0 x100d106e0)
(n25) ld %reg (va l 0 x100bb73a0 addrOfGlobal :A2) , % reg (va l 0 x100d31950) , % reg (va l 0 x100bb9bf0 tmp . 1 1)
(n26) s l l %reg (va l 0 x100baf6a0 i . 0 . 0) , 2 , % reg (va l 0 x100d318b0)
(n27) or %reg (va l 0 x100d106e0) , % reg (va l 0 x100d10640) , % reg (va l 0 x100d10780)
(n28) add %reg (va l 0 x100baf6a0 i . 0 . 0) , 1 , % reg (va l 0 x100cfb200 maskHi)
(n29) or %reg (va l 0 x100d10780) , % lo (%disp (addr−of−va l A)) , % reg (va l 0 x100d33d30)
(n30) sr l %reg (va l 0 x100cfb200 maskHi) , 0 , % reg (va l 0 x100bb9e40 indvar . next)
(n31) add %reg (va l 0 x100bb9e40 indvar . next) , %g0 , % reg (va l 0 x100bb0200 i . 0 . 0 : PhiCp)
(n32) add %reg (va l 0 x100d33d30) , 0 , % reg (va l 0 x100bb7460 addrOfGlobal :A1)
(n33) subcc %reg (va l 0 x100bb9e40 indvar . next) , 500 , %g0 , % ccreg (va l 0 x100d343f0)
(n34) fmuls %reg (va l 0 x100bb9bf0 tmp.11) , % reg (va l 0 x100d17fc0) , % reg (va l 0 x100bb9c70 tmp . 1 2)
(n35) st %reg (va l 0 x100bb9c70 tmp.12) , % reg (va l 0 x100bb7460 addrOfGlobal :A1) , % reg (va l 0 x100d318b0)
(n36) be %ccreg (va l 0 x100d343f0) , % disp (l a b e l l o o p e x i t)
(n37) ba %disp (l a b e l no ex i t)

Figure 4.2: LLVM Machine Code for a Simple Loop

representation that closely models the SPARC V9 assembly [1]. Each instruction has an opcode

and a list of operands. For SMS in the SPARC back-end, we only deal with operands of the

following types:

• Machine Register: This is a representation of a physical register for the SPARC architec-

ture.

• Virtual Register: These are LLVM values, which is the base representation for all values

computed by the program that may be used as operands to other values.

• Condition Code Register: The register that stores the results of a compare operation.

• PC Relative Displacement: A displacement that is added to the program counter (PC).

This is used for specifying code addresses in control transfer instructions (i.e. branches).

24

• Global Address: The address for a global variable.

Throughout this Chapter, we illustrate the phases of Swing Modulo Scheduling on a simple

example. Figure 4.1 shows a C for-loop that sets elements of a floating point array to the previous

element multiplied by some constant. It also shows the LLVM representation for the loop. This

loop is perfect for SMS since floating point computations typically have a high latency and it is

ideal to overlap their execution with other instructions. Figure 4.2 shows the LLVM code translated

to a machine code representation that closely models the SPARC V9 instruction set [1]. SMS is

performed on this low-level representation. Lastly, Figure 4.3 shows the LLVM instructions for our

simple loop example and their corresponding machine instructions.

4.1.1 Architecture Resource Description

The LLVM Compiler Infrastructure provides a SchedInfo API to access information about the ar-

chitecture resources that are crucial for Scheduling of any kind, including Swing Modulo Scheduling.

The SchedInfo API provides information such as the following:

• Instruction Resource Usage: The resources an instruction uses during each stage of the

pipeline.

• Resources Available: The resources and number of each resource.

• Issue Slots: Total number of issue slots.

• Total Latency: The associated latency for each instruction (or class of instructions) which

is the time (in cycles) for how long it takes from the time the instruction starts until its

dependents can use its results.

For our implementation we have written a SchedInfo description for the SPARC IIIi architecture

which is described in Section 6.1.

25

%i.0.0 = phi uint [0, %entry], [%indvar.next, %no exit]
(n31) add %reg(val 0x100bb9e40 indvar.next), %g0, %reg(val 0x100bb0200 i.0.0:PhiCp)
(n3) add %reg(val 0x100bb0200 i.0.0:PhiCp), %g0, %reg(val 0x100baf6a0 i.0.0)

%tmp.5 = cast uint %i.0.0 to long
”addrOfGlobal:A1” = getelementptr [500 x float]* %A, long 0

(n14) sethi %hh(%disp(addr-of-val A)), %reg(val 0x100d12f60)
(n20) or %reg(val 0x100d12f60), %hm(%disp(addr-of-val A)), %reg(val 0x100d13000)
(n23) sllx %reg(val 0x100d13000), 32, %reg(val 0x100d10640)
(n24) sethi %lm(%disp(addr-of-val A)), %reg(val 0x100d106e0)
(n27) or %reg(val 0x100d106e0), %reg(val 0x100d10640), %reg(val 0x100d10780)
(n29) or %reg(val 0x100d10780), %lo(%disp(addr-of-val A)), %reg(val 0x100d33d30)
(n32) add %reg(val 0x100d33d30), 0, %reg(val 0x100bb7460 addrOfGlobal:A1)

%tmp.6 = getelementptr [500 x float]* ”addrOfGlobal:A1”, long 0, long %tmp.5
(n26) sll %reg(val 0x100baf6a0 i.0.0), 2, %reg(val 0x100d318b0)

%copyConst = cast uint 4294967295 to uint
(n1) sethi %lm(-1), %reg(val 0x100d0eb20)
(n8) or %reg(val 0x100d0eb20), %lo(-1), %reg(val 0x100d0ea80)

%tmp.8 = add uint %i.0.0, %copyConst
(n9) add %reg(val 0x100baf6a0 i.0.0), %reg(val 0x100d0ea80), %reg(val 0x100d0e9e0 maskHi)
(n16) srl %reg(val 0x100d0e9e0 maskHi), 0, %reg(val 0x100bb9a50 tmp.8)

%tmp.9 = cast uint %tmp.8 to long
”addrOfGlobal:A2” = getelementptr [500 x float]* %A, long 0

(n2) sethi %hh(%disp(addr-of-val A)), %reg(val 0x100d31a90)
(n5) or %reg(val 0x100d31a90), %hm(%disp(addr-of-val A)), %reg(val 0x100d31b30)
(n11) sllx %reg(val 0x100d31b30), 32, %reg(val 0x100d31bd0)
(n6) sethi %lm(%disp(addr-of-val A)), %reg(val 0x100d31c70)
(n15) or %reg(val 0x100d31c70), %reg(val 0x100d31bd0), %reg(val 0x100d31d10)
(n17) or %reg(val 0x100d31d10), %lo(%disp(addr-of-val A)), %reg(val 0x100d319f0)
(n21) add %reg(val 0x100d319f0), 0, %reg(val 0x100bb73a0 addrOfGlobal:A2)

%tmp.10 = getelementptr [500 x float]* ”addrOfGlobal:A2”, long 0, long %tmp.9
(n18) sll %reg(val 0x100bb9a50 tmp.8), 2, %reg(val 0x100d31950)

%tmp.11 = load float* %tmp.10
(n25) ld %reg(val 0x100bb73a0 addrOfGlobal:A2), %reg(val 0x100d31950), %reg(val 0x100bb9bf0 tmp.11)

%tmp.12 = mul float %tmp.11, 0x400B333340000000
(n4) sethi %hh(¡cp#1¿), %reg(val 0x100d18060)
(n7) or %reg(val 0x100d18060), %hm(¡cp#1¿), %reg(val 0x100d15740)
(n10) sethi %lm(¡cp#1¿), %reg(val 0x100d18100)
(n12) sllx %reg(val 0x100d15740), 32, %reg(val 0x100d157e0)
(n13) or %reg(val 0x100d18100), %reg(val 0x100d157e0), %reg(val 0x100d15880)
(n19) or %reg(val 0x100d15880), %lo(¡cp#1¿), %reg(val 0x100d12ec0)
(n22) ld %reg(val 0x100d12ec0), 0, %reg(val 0x100d17fc0)
(n34) fmuls %reg(val 0x100bb9bf0 tmp.11), %reg(val 0x100d17fc0), %reg(val 0x100bb9c70 tmp.12)

store float %tmp.12, float* %tmp.6
(n35) st %reg(val 0x100bb9c70 tmp.12), %reg(val 0x100bb7460 addrOfGlobal:A1), %reg(val 0x100d318b0)

%indvar.next = add uint %i.0.0, 1
(n28) add %reg(val 0x100baf6a0 i.0.0), 1, %reg(val 0x100cfb200 maskHi)
(n30) srl %reg(val 0x100cfb200 maskHi), 0, %reg(val 0x100bb9e40 indvar.next)

%exitcond = seteq uint %indvar.next, 500
(n33) subcc %reg(val 0x100bb9e40 indvar.next), 500, %g0, %ccreg(val 0x100d343f0)

br bool %exitcond, label %loopexit, label %no exit
(n36) be %ccreg(val 0x100d343f0), %disp(label loopexit)
(n37) ba %disp(label no exit)

Figure 4.3: LLVM Instructions and Corresponding Machine Instructions

26

4.2 Data Dependence Graph Construction

Swing Modulo Scheduling begins by constructing the Data Dependence Graph (DDG) for a single

basic block without control flow or calls. The DDG consists of nodes that represent instructions1

and their corresponding properties, and edges that represent the true, anti, and output dependencies

in the loop.

Our implementation only constructs a DDG for the instructions deemed to be the loop body.

This excludes instructions related to the iteration count and branch. The SMS algorithm (or any

Modulo Scheduling algorithm) has no mechanism to ensure that these excluded instructions are

from the current iteration, stage 0, in the resulting kernel. Keeping these instructions in the current

iteration is critical to proper execution of the loop. These excluded instructions are reinserted during

the loop reconstruction phase described in Section 4.7.

The DDG construction examines each instruction of the loop body and determines its relation-

ship between all other instructions. Each edge in the DDG represents a data dependence between

the two instructions. There are three types of dependencies in the DDG:

• True Dependence: If the first instruction writes to a value, and a second instruction reads

the same value, there is a true dependence from the first instruction to the second.

• Anti Dependence: If the first instruction reads a value, and a second instruction writes a

value, then there is an anti dependence from the first instruction to the second.

• Output Dependence: If two instructions both write to the same value, then there is an output

dependence between them.

Each dependence has a distance associated with it, called the iteration difference. If the distance

is zero, this means the dependence is a loop-independent dependence, in other words a dependence

within one iteration. If the distance is greater than zero, there is a dependence across iterations,

a loop-carried dependence. The value of the distance for loop-carried dependences is one, unless

further analysis can prove the actual number of iterations between the instructions.

Dependences are generated for all machine registers, memory instructions, and LLVM values

(both described in Section 4.1). Loop-carried dependences exist for memory and any LLVM values

1All references to instruction mean the low-level Machine Instruction representation in the SPARC back-end.

27

or machine registers that are live across iterations. LLVM values that are live across iterations were

originally represented as φ2 instructions at the LLVM level. Because SMS is operating on a lower-

level representation, it must determine which machine instructions were generated by the LLVM

φ instruction. Two copy instructions located at the start and end of the basic block are generated

for each φ instruction. There is a true-dependence from the last instruction related to the φ, and

the first instruction with a distance of one. Memory instructions have loop-carried dependences of

distance one, and the dependence type is determined by the types of the two instructions involved

(load or store). Simple dependence analysis is used to eliminate many of these dependences, by

examining the memory pointers and determining if the same memory is being accessed. A more

sophisticated dependence analysis (Section 4.2.1) is used to determine the actual distance for the

dependencies.

Figure 4.4 is the dependence graph for the example loop. Each node in the graph corresponds

to an instruction in the loop body. The edges between the nodes are the dependences between

the instructions. Each dependence is marked with its type, and the distance (if greater than zero).

The dependence graph for our example mostly has true dependences because our code is in SSA[11]

and no value is defined more than once. Additionally, there are loop-carried dependences (with a

distance of one) between all loads and stores that were proven to access the same memory.

4.2.1 Dependence Analysis

Simple dependence analysis eliminates many dependencies between loads and stores but can not

determine the actual distance for loop-carried dependencies. Assuming a distance of one is conser-

vative and results in many missed opportunities for parallelism. Our implementation uses a more

sophisticated analysis to calculate the actual distances for loop-carried dependences.

We implemented a Dependence Analyzer that uses two analyses, Alias Analysis (AA) and Scalar

Evolution (SE), which are both provided by the LLVM compiler infrastructure. Alias Analysis

provides information about the points-to relationship for references in the program, which it may

decide is a may/must/no relation. The Scalar Evolution analysis uses Chains of Recurrences (CRs)

as a way of representing the fixed relation between two memory references [7, 40, 39, 43, 6].

2A φ instruction [11] is a merge point for a variable, where it has as many operands as there are versions of the
variable.

28

Dependence Graph

sll (n26)

True[0]

st (n35)

Anti[1]

ld (n25)

True[0]

fmuls (n34)

True[0]

sll (n18)

True[0]

add (n21)

True[0]

sethi (n2)

True[0]

or (n5)

True[0]

sllx (n11)

True[0]

or (n15)

True[0]

or (n17)

True[0]

sethi (n6)

True[0]

add (n9)

True[0]

srl (n16)

True[0]

sethi (n1)

True[0]

or (n8)

True[0]

sethi (n4)

True[0]

or (n7)

True[0]

sllx (n12)

True[0]

or (n13)

True[0]

or (n19)

True[0]

sethi (n10)

True[0]

ld (n22)

True[0]

add (n32)

True[0]

sethi (n14)

True[0]

or (n20)

True[0]

sllx (n23)

True[0]

or (n27)

True[0]

or (n29)

True[0]

sethi (n24)

True[0]

Figure 4.4: Dependence Graph After Dependence Analysis

29

getDependenceInfo(Instruction inst1, Instruction inst2, bool srcBeforeDest)
1 Deps = EmptyList //Empty list of dependences
2 if (inst1 == inst2)
3 return Deps //No dependences to the same node (self loops)
4 if(!isLoad(inst1) || !isStore(inst1) || !isLoad(inst2) || !isStore(inst2))
5 return Deps//Only deal with memory instructions
6 if (isLoopInvariant(inst1) && isLoopInvariant(inst2))
7 aliasResult = AA.alias(inst1, inst2)
8 if (aliasResult != NoAlias)
9 Deps = createDep(inst1, inst2, srcBeforeDest, 0)
10 return Deps
11 else
12 return Deps
13 else
14 inst1B = base pointer of memory reference for inst1
15 inst2B = base pointer of memory reference for inst2
16 aliasResult = AA.alias(inst1B, inst2B)
17 if (aliasResult == MustAlias)
18 advDepAnalysis(inst1, inst2, srcBeforeDest)
19 else if(aliasResult == MayAlias)
20 Deps = createDep(inst1, inst2, srcBeforeDest, 0)
21 return Deps

advDepAnalysis(Instruction inst1, Instruction inst2, bool srcBeforeDest)
1
2 if (!isSingleDimensional(inst1) || !isSingleDimensional(inst2))
3 return createDep(inst1, inst2, srcBeforeDest, 0)
4 SCEV1 = SE.getSCEV(inst1)
5 SCEV2 = SE.getSCEV(inst2)
6 if (isAffine(SCEV1) && isAffine(SCEV2))

//Affine means A + B*x form
7 if (SCEV1.B != SCEV2.B)
8 return createDep(inst1, inst2, srcBeforeDest, 0)
9 if (SCEV1.A == SCEV2.A)
10 return createDep(inst1, inst2, srcBeforeDest, 0)
11 dist = SCEV1.A - SCEV2.A
12 if (dist > 0)
13 return createDep(inst1, inst2, srcBeforeDest, dist)

createDep(Instruction inst1, Instruction inst2, bool srcBeforeDest, int dist)
1 if (!srcBeforeDest && dist==0)
2 dist = 1
3 if (isLoad(inst1) && isStore(inst2)))
4 if(srcBeforeDest)
5 return Anti-Dependence with a distance of dist

6 else
7 return True-Dependence with a distance of dist

8 else if (isStore(inst1) && isLoad(inst2))
9 if(srcBeforeDest)
10 return True-Dependence with a distance of dist

11 else
12 return Anti-Dependence with a distance of dist

13 else if (isStore(inst1) && isStore(inst2))
14 return Output-Dependence with a distance of dist

Figure 4.5: Pseudo Code for Dependence Analyzer

30

Figure 4.5 shows the algorithm used by our dependence analyzer. The getDependenceInfo

function takes two instructions and a boolean that indicates if the first instruction is executed

before the second and returns the list of dependences between them. If the two instructions are the

same, there is no dependence because an instruction only occurs once in the final loop. The two

instructions are then checked to ensure that they are both memory operations (load or a store).

Once the dependence analyzer is confident that two memory operations are being analyzed,

it examines each memory reference and determines if the memory addresses accessed are loop

invariant. If the addresses are loop invariant, then Alias Analysis alone can be used to determine

if there is a dependence between them. If the two addresses are not loop invariant, then Alias

Analysis is used to compare the base pointers for each memory reference. If AA can prove there

is a No-Alias relation, then no dependence is created. If AA can only prove that the two base

pointers May-Alias, then a dependence is created. Lastly, if AA can prove that the two addresses

Must-Alias, then further dependence analysis is need.

The createDep procedure creates the dependence between the two instructions. The distance

of the dependence is almost always determined by the callee. However, if the first instruction occurs

after the second (in execution order), and the distance has defaulted to zero (this means the true

distance could not be found), the distance is set to one. This means that a conservative assumption

is taken that the instructions have a dependence across one iteration.

If further analysis is needed, the advDepAnalysis function is called. It begins by determining

if the memory access is to a single dimensional array. Our dependence analyzer only handles

single dimensional arrays (as they are most common), but there is nothing preventing it from

being extended to handle multi dimensional arrays. Using Scalar Evolution analysis, the memory

reference is transformed into a uniform representation: A+ B ∗x, where A is the offset, and B*x is

some constant times the base pointer. Our dependence analyzer has already used Alias Analysis to

determine the relationship between base pointers (Must-Alias). The B values are compared, and if

they are not equal a dependence is created between the instructions. Lastly, the offsets (A value)

are compared. If they are equal, the same element is being accessed and a dependence is created.

If they are not equal, the difference between the two values is the distance of the dependence, and

a dependence is created.

31

4.3 Calculating the Minimum Initiation Interval

The Minimum Initiation Interval (MII) is the minimum number of cycles between initiations of

two iterations of the loop. The value is constrained by resources or dependences in the Data

Dependence Graph. If there are not enough resources available, instructions will be delayed from

issuing until the needed resources are free. If there are dependence constraints, instructions can

not complete until all its operand values are available. SMS uses the MII as a starting value for

II when generating a schedule, which is the lowest value that can be achieve given resource and

dependence constraints.

4.3.1 Resource II

The Resource Minimum Initiation Interval (ResMII) is calculated by summing the resource usage

requirements for one iteration of the loop. A reservation table [33] represents the resource usage

patterns for each cycle during one iteration of a loop. By performing a bin-packing of the reservation

table for all instructions, the exact ResMII is found. However, this process can be time consuming

(bin-packing is an NP complete problem), so an approximation for ResMII is computed.

To calculate an approximation for ResMII, each instruction is examined for its resource usages.

The most heavily used resource sets the ResMII. Figure 4.2 shows all the instructions for our

example loop. Examining these instructions will show that the most heavily used resource is the

integer unit. A total of 33 instructions use this resource, and there are 2 integer units, which sets

the ResMII for this loop at 17.

4.3.2 Recurrence II

Recurrences may be found in the the DDG if instructions have dependences across iterations of

the loop. Memory operations (load/store) are most likely the cause of a recurrence in the DDG.

Recurrences are also known as circuits or cycles.

In order to compute the Recurrence Minimum Initiation Interval (RecMII), all recurrences

in the DDG must be found. In our implementation of SMS, the algorithm proposed by Donald

Johnson [23] is used to find all elementary circuits in the DDG. If no vertex except the first and

last appear twice, then a circuit is termed elementary. Johnson’s algorithm is extremely efficient

32

findAllCircuits(DDG G)
1 empty stack

2 s = 1
3 while (s < n)
4 Ak = { Adjacency structure of a strong component K with least vertex

in subgraph of G induced by {s, s+ 1, ..., n} }
5 if (Ak 6= ∅)
6 s = {Least vertex in Ak}
7 ∀ i ∈ Ak

8 blocked(i) = false
9 B(i) = ∅
10 circuit(s)
11 s = s+ 1
12 else
13 s = n

circuit(int v)
1 f = false
2 stack v

3 blocked(v) = true
4 ∀w ∈ Ak(v)
5 if(w = s)
6 output circuit composed of stack followed by s
7 f = true
8 else if (¬blocked(w))
9 if (circuit(w))
10 f = true
11 if (f)
12 unblock(v)
13 else
14 ∀w ∈ Ak

15 if (v ∋ B(w))
16 put v on B(w)
17 unstack v
18 return f

unblock(int u)
1 blocked(u) = false
2 ∀w ∈ B(u)
3 delete w from B(u)
4 if (blocked(w))
5 unblock(w)

Figure 4.6: Pseudo Code for Circuit Finding Algorithm

33

(compared to all other existing circuit finding algorithms) and finds all circuits in a graph in

O((n + e)(c + 1)), where c is the total number of circuits, n is the total number of nodes, and e is

the total number of edges in the DDG.

Figure 4.6 shows Johnson’s circuit finding algorithm. It begins, by ordering all the nodes in

the graph. It finds the Strongly Connected Component3 (SCC) with the least vertex, and finds

all recurrences within this SCC. Recurrences are built by building elementary paths from the least

vertex. The circuit() procedure is responsible for appending a node to the path, determining if a

recurrence is found, and unblocking the node once it exits. Nodes are blocked whenever they are

added to the path in order to guarantee that a node can never be used twice on the same path.

The process of unblocking a node is delayed as long as possible, usually until a recurrence is found.

It repeats the process for each SCC in the graph, in the order set by how the nodes are ordered.

Node Latency Node Latency

sethi (n1) 1 or (n17) 1
sethi (n2) 1 sll (n18) 1
sethi (n4) 1 or (n19) 1
or (n5) 1 or (n20) 1
sethi (n6) 1 add (n21) 1
or (n7) 1 ld (n22) 3
or (n8) 1 sllx (n23) 1
add (n9) 1 sethi (n24) 1
sethi (n10) 1 ld (n25) 3
sllx (n11) 1 sll (n26) 1
sllx (n12) 1 or (n27) 3
or (n13) 1 or (n29) 1
sethi (n14) 1 add (n32) 1
or (n15) 1 fmuls (n34) 4
srl (n16) 1 st (n35) 0

Table 4.1: Node Latencies for Simple Loop Example

Each recurrence in the graph imposes a constraint on the interval between each instruction

in this recurrence and the same instruction, Distance(c) iterations later. This constraint must

be at least the total latency of the recurrence, Latency(c). However, the distance is really II∗

Distance(c), which means the constraint is defined as follows [33]: RecMII = Latency(c)/ Distance(c).

Table 4.1 shows the latencies for all the nodes in the dependence graph.

Using the Data Dependence Graph in Figure 4.4, the circuit finding algorithm finds one recur-

rence consisting of the following nodes: ld (n25), fmuls (n34), and st (n35). The total latency of

3A strongly connected component is a component in which every vertex is reachable from every other vertex.

34

this circuit is 7, and the total distance is 1. Therefore, the RecMII for the loop is 7. Because this

is smaller than our ResMII, the ResMII is used as the starting II value.

4.4 Node Properties

After the Data Dependence Graph has been constructed, a few node properties need to be calculated

in order to properly order and schedule the instructions. Because a graph may contain cycles, one

back edge (doesn’t matter which one) is ignored for each recurrence. For the following node property

calculations, λ is the latency of a instruction, δ is the distance of the dependence edge between two

nodes, Pred() is the set of predecessors for a node, Succ() is the set of successors for a node, and

MII is minimum initiation interval described in Section 4.3.

Node ASAP ALAP MOB Depth Height Latency

sethi (n1) 0 1 1 0 12 1
sethi (n2) 0 0 0 0 13 1
sethi (n4) 0 1 1 0 12 1
or (n5) 1 1 0 1 12 1
sethi (n6) 0 2 2 0 11 1
or (n7) 1 2 1 1 11 1
or (n8) 1 2 1 1 11 1
add (n9) 2 3 1 2 10 1
sethi (n10) 0 3 3 0 10 1
sllx (n11) 2 2 0 2 11 1
sllx (n12) 2 3 1 2 10 1
or (n13) 3 4 1 3 9 1
sethi (n14) 0 7 7 0 6 1
or (n15) 3 3 0 3 10 1
srl (n16) 3 4 1 3 9 1
or (n17) 4 4 0 4 9 1
sll (n18) 4 5 1 4 8 1
or (n19) 4 5 1 4 8 1
or (n20) 1 8 7 1 5 1
add (n21) 5 5 0 5 8 1
ld (n22) 5 6 1 5 7 3
sllx (n23) 2 9 7 2 4 1
sethi (n24) 0 9 9 0 4 1
ld (n25) 6 6 0 6 7 3
sll (n26) 0 12 12 0 1 1
or (n27) 3 10 7 3 3 1
or (n29) 4 11 7 4 2 1
add (n32) 5 12 7 5 1 1
fmuls (n34) 9 9 0 9 4 4
st (n35) 13 13 0 13 0 0

Table 4.2: Node Attributes for Simple Loop Example

• ASAPu: The As Soon As Possible attribute indicates the earliest time that the instruction

35

may be scheduled. It is computed as follows:

If Pred(u) = { }

ASAPu = 0

else

ASAPu = max∀vǫPred(u) (ASAPv + λv + δv,u ∗ MII)

• ALAPu: The As Late As Possible attribute determines the latest cycle an instruction may

be scheduled. It is computed using the following:

If Succ(u) = { }

ALAPu = max∀vǫV ASAPv

else

ALAPu = min∀vǫSucc(u) (ALAPv − λu + δu,v ∗ MII)

• MOBu: The Mobility of an instruction is the number of time slots that an instruction may

be scheduled in. The lower the value, the more critical the node and a MOB of zero indicates

the most critical path. This attribute is calculated as follows:

MOBu = ALAPu − ASAPu

• Du: The Depth of a node is the number of nodes or maximum distance between this node

and a node with no predecessors. It is computed as follows:

If Pred(u) = { }

Du = 0

else

Du = max∀vǫPred(u) (Dv + λv)

• Hu: The Height of a node is the maximum distance between this node and a node without

successors. It is calculated as follows:

36

If Succ(u) = { }

Hu = 0

else

Hu = max∀vǫSucc(u) (Hv + λu)

Table 4.2 shows the calculated properties for all the nodes in the data dependence graph.

Looking at this table, we can see that there are a few long latency instructions (fmuls (n35), ld

(n25), ld (n22)) which should ideally be overlapped with other instructions. The nodes with a low

Mobility and high Height are those instructions that are considered on the critical path. The ASAP

and ALAP values give some indication as to how early or how late instructions can be scheduled

based upon latencies of predecessors and successors.

4.5 Node Ordering

The node ordering step is a sophisticated algorithm that uses the data dependence graph and the

node attributes to create a scheduling order. The ordering algorithm is used to give priority to

instructions that are on the most critical paths, while keeping register pressure low. It accomplishes

the first by using heuristics to schedule instructions with the highest mobility last. The second is

achieved by ordering instructions such that no instruction is scheduled after both its predecessors

and successors. By keeping an instruction close to its predecessors and successors, live value ranges

are decreased. The only exception is for recurrences, where one instruction is scheduled after its

predecessors and successors (which can not be avoided).

1 P = Empty ordered list of sets of nodes
2 while (ReccList 6= ∅)
3 Recc = {Recurrence with highest RecMII}
4 if (P = ∅)
5 P = P | Recc

6 else
7 ∀ v, where v are nodes connecting Recc to any set in P

8 Recc = Recc | v

9 P = P | Recc

10 NodesLeft = {All nodes not in P}
11 ∀ connected components, C, ∈ NodesLeft

12 P = P | C

Figure 4.7: Pseudo Code for Partial Node Ordering Algorithm

37

The ordering algorithm begins by calculating a partial order, a list of sets of nodes. Figure 4.7

describe the partial node ordering algorithm, where | denotes the list append operation. For a graph

with recurrences, the first set in the partial order list is the recurrence with the highest RecMII.

The next highest RecMII recurrence set is appended to the partial list including any nodes that

connect it to any recurrence already in the partial order, and removing any nodes already in the

partial order. This is repeated until all recurrences have been added. If there are nodes not in the

partial order or the graph has no recurrences, nodes are grouped into connected components, a set

of nodes that are connected, and the set is appended to the partial order.

Figure 4.8 shows the partial order for our simple loop example. The partial order is an ordered

list of sets. The first set consists of nodes from the lone recurrence in the dependence graph. The

other sets represent the connected components in the graph (minus the recurrence). There is no

order in which the connected components are added.

Once the partial order has been computed, the final node ordering algorithm produces a list of

nodes that is sent to the scheduler. The algorithm shown in Figure 4.9 traverses each subgraph

of the set of nodes in the partial order. In the case of a connected dependence graph with no

recurrences, it traverses the whole graph.

The algorithm begins with the node at the bottom of the most critical path and visits all the

ancestors according to their depth, traveling bottom-up. If the ancestors have equal depth, priority

is given to nodes with less mobility. Once all the ancestors are visited, the descendants of the

node are visited in order of height, traversing top-down. This upward and downward traversal is

repeated until all nodes have been placed in the final order and the entire graph has been traversed.

Set #1: ld (n25), fmuls (n34), st (n35)

Set #2: sethi (n2), or (n5), sllx (n11), or (n15), or (n17), add (n21), sethi (n6)

Set #3: sethi (n10), sethi (n4), or (n7), sllx (n12), or (n13), or (n19), ld (n22)

Set #4: sethi (n1), or (n8), add (n9), srl (n16), sll (n18),

Set #5: sethi (n14), or (n20), sllx (n23), or (n27), or (n29), add (n32), sethi (n24)

Set #7: sll (n26)

Figure 4.8: Simple Loop Example Partial Order

The final node ordering algorithm shown in Figure 4.9, uses | to denote the list append operation,

and Succ L(O) and Pred L(O) are defined as follows:

Pred L(O) = {v | ∃ u ∈ O where v ∈ Pred(u) and v ∋ O}

38

Succ L(O) = {v | ∃ u ∈ O where v ∈ Succ(u) and v ∋ O}

1 O = Empty List
2 foreach S //Each set in the partial order in decreasing priority
3 if ((Pred L(O) ∩ S) 6= ∅)
4 R = Pred L(O) ∩ S

5 order = bottom-up
6 else if((Succ L(O) ∩ S) 6= ∅)
7 R = Succ L(O) ∩ S

8 order = top-down
9 else
10 R = {Node with the highest ASAP in S, pick any if more then one}
11 order = bottom-up
12 while (R 6= ∅)
13 if (order = top-down)
14 while (R 6= ∅)
15 V = {Element of R with highest Height. Use highest MOB to break ties}
16 O = O | V

17 R = (R− V) ∪ (Succ(V) ∩ S)
18 order = bottom-up
19 R = Pred L(O) ∩ S

20 else
21 while (R 6= ∅)
22 V = {Element of R with highest Depth. Use lowest MOB to break ties}
23 O = O | V

24 R = (R− V) ∪ (Pred(V) ∩ S)
25 order = top-down
26 R = Succ L(O) ∩ S

Figure 4.9: Pseudo Code for Final Node Ordering Algorithm

For the loop example, the Final Node ordering algorithm processes each set in the partial order

and determines the final node ordering to be the following:

O = {st (n35), fmuls (n34), ld (n25), sll (n18), srl (n16), add (n9), or (n8), sethi (n1), add

(n21), or (n15), sllx (n11), or (n5), sethi (n2), ld (n22), or (19), or (n13), sllx (n12), or (n7), sethi

(n4), sethi (n6), sethi (n10), add (n32), or (n29), or (n27), sllx (n23), or (n20), sethi (n14), sethi

(n24), sll (n26)}

4.6 Scheduling

The scheduling phase of Swing Modulo Scheduling schedules the nodes in the order determined by

the node ordering algorithm. Conceptually a schedule is a table where the rows represent cycles,

and columns are issue slots 4. Scheduling an instruction reserves an issue slot for a specific cycle.

The combination of instructions that can be grouped together in the issue slots is dependent upon

4Our implementation (for the SPARC IIIi) has 4 issue slots.

39

the architecture and resources. If all instructions have not been scheduled, the table is called a

partial schedule.

When scheduling instructions, SMS attempts to place instructions as close to their predecessors

or successors in the partial schedule. By placing instructions close to their neighbors, register

pressure is reduced.

1 ∀n ∈ O

2 if ((Succ(n) ∈ PS) && (Pred(n) ∈ PS))
3 EStart = maxv∈PSP (u)(tv+ λv− δv,u∗ II)
4 LStart = maxv∈PSS(u)(tv− λu− δu,v∗ II)
5 Schedule node in free slot starting from EStart until min(LStart, EStart+ II− 1
6 else if (Pred(n) ∈ PS)
7 EStart = maxv∈PSP (u)(tv+ λv− δv,u∗ II)
8 Schedule node in free slot starting from EStart until EStart+ II− 1
9 else if (Succ(n) ∈ PS)
10 LStart = maxv∈PSS(u)(tv− λu− δu,v∗ II)
11 Schedule node in free slot starting from LStart until LStart− II+ 1
12 else
13 EStart = ASAPu

14 Schedule node in free slot starting from EStart until EStart+ II− 1
15 if (!scheduled)
16 II = II+ 1
17 Clear schedule and restart

Figure 4.10: Pseudo Code for Scheduling Algorithm

Figure 4.10 shows the SMS scheduling algorithm, where PS stands for the partial schedule,

PSP means the predecessors in the partial schedule, and PSS is the successors in the partial

schedule. Each instruction is scheduled from a start-cycle to an end-cycle, which creates a window

of time that the instruction can be legally scheduled. The start and end cycles are calculated based

upon what is already in the partial schedule. The schedule is scanned forwards (if the start-cycle is

earlier than the end-cycle) or backwards (if the start-cycle is later than the end-cycle). Instructions

are scheduled according to the following rules:

• For instructions that have no successors or predecessors in the partial schedule, the instruction

is scheduled from estart until estart + II− 1, where estart = ASAPu.

• If the instruction only has predecessors in the partial schedule, the instruction is scheduled

from estart until estart + II− 1, where estart = maxv∈PSP (u)(tv +λv −δv,u ∗II).

• If the instruction only has successors in the partial schedule, the instruction is scheduled from

lstart until lstart − II+ 1, where lstart = minv∈PSS(u)(tv −λu −δu,v ∗II).

40

• For instructions that have both successors and predecessors (which only happens once per

recurrence), the instruction is scheduled from estart until min(lstart, estart +II −1).

estart and lstart are defined the same as the previous two situations.

If no free slot exists for an instruction, the entire schedule is cleared and II is increased. Schedul-

ing resumes and this pattern repeats until a schedule is found or the maximum II has been reached.

In our implementation maximum II is set to the total latency of the original loop.

Cycle Issue1 Issue2 Issue3 Issue4

0 sethi(n2) sethi(n6)

1 sethi(n1) or(n5)

2 or(n8) sllx(n11)

3 add(n9) or(n15)

4 srl(n16) or(n17)

5 sll(n18) add(n21)

6 ld(n25)

7

8

9 sll(n26)

10 sethi(n14) sethi(n24)

11 sethi(n5) or(n20)

12 or(n7) sllx(n23)

13 sethi(n10) sllx(n12)

14 or(n13) or(n27)

15 or(n19) or(n29)

16 ld(n22) add(n32)

17

18

19 fmuls(n34)

20

21

22

23 st(n35)

Table 4.3: Schedule for a Single Iteration of the Loop Example

Using this schedule, the kernel is constructed by taking all instructions scheduled at a cycle

greater than II, finds what stage they are from, and what cycle in the kernel it should be scheduled.

The stage is found by dividing the cycle by II (and rounding down). The kernel cycle is equal to

the instruction’s scheduled cycle modulo II. Additionally, the instructions related to the induction

variable and branch (not considered during previous phases) are reinserted at their proper location

(preserving dependencies and placing the branch at the end) in the kernel. During the scheduling

process kernel conflicts, resource conflicts with instructions from another stage,were checked before

an instruction was assigned an issue slot.

41

Table 4.3 shows the schedule for a single iteration and the kernel for the loop we have been

using as an example throughout the chapter. The SPARC IIIi architecture can issue 4 instructions

per cycle. The combination of instructions that can be issued depends on what resources they use

during each stage of the pipeline. For simplicity, the schedule in Table 4.3 only shows the issue

slots, but the scheduling algorithm checks both that there is an available issue slot, and all resources

are available.

In the schedule, all instructions before cycle 17 belong to stage 0 (the current iteration of the

loop), while all instructions after belong to stage 1. The scheduling algorithm has managed to

generate a schedule of length 17, which was our MII. This is an optimal schedule. The instructions

have been scheduled such that many of the single cycle instructions can be overlapped with the

floating point multiply (n34) which takes 4 cycles. Table 4.4 shows the kernel for the modulo

scheduled loop. The number enclosed in brackets indicates which stage the instruction is from.

The fmuls (n34) instruction is from stage 1, which means that the instruction is from a previous

iteration.

Cycle Issue1 Issue2 Issue3 Issue4

0 sethi(n2) sethi(n6)

1 sethi(n1) or(n5)

2 or(n8) sllx(n11) fmuls(n34)[1]

3 add(n9) or(n15)

4 srl(n16) or(n17)

5 sll(n18) add(n21)

6 ld(n25) st(n35)[1]

7

8

9 sll(n26)

10 sethi(n14) sethi(n24)

11 sethi(n5) or(n20)

12 or(n7) sllx(n23)

13 sethi(n10) sllx(n12)

14 or(n13) or(n27)

15 or(n19) or(n29)

16 ld(n22) add(n32)

Table 4.4: Kernel for Loop Example

42

4.7 Loop Reconstruction

The loop reconstruction phase is responsible for generating the prologues, epilogues, kernel, and

fixing the control flow of the original program to branch to the modulo scheduled loop. Figure 4.11

shows the loop reconstruction algorithm.

The kernel constructed by the scheduling phase consists of instructions from multiple stages.

Instructions from a stage greater than zero are a part of a previous iteration. Prior to entering the

kernel, the previous iterations must be initiated in the prologues. Lines 6-14 in Figure 4.11 illustrate

how the prologue is constructed. There are as many basic blocks in the prologue as there are stages

in the kernel, minus one. For example, our sample loop kernel (Table 4.4) has two stages, and a

max stage of one. This results in a prologue with one basic block, which consists of all instructions

from the original basic block (in original execution order) that are from stage 0 in the kernel. If an

instruction’s operand is used in an instruction from a greater stage, a copy of that value is made to

save the value. Figure 4.12 shows the generated prologue for our sample loop. Notice the extra or

and fmovs instructions that save values that are used in the kernel, these are the inserted copies.

The epilogue exists to finish iterations that were initiated in either a prologue or the kernel,

but have not completed. Lines 18-23 show the steps to create the epilogue. For each stage greater

than zero in the kernel, there is a basic block in the epilogue.

The kernel construction is detailed in Lines 24-29 in Figure 4.11. For any instruction that defines

a value that is used by an instruction from a later stage, that value must be saved. Instructions

from stages greater than zero are then updated to use the correct version of the value. Figure 4.13

shows the kernel for our example loop.

Finally, the branches need to be corrected to branch to the proper basic block. For each basic

block in the prologue, the branch must be updated to either branch to the next basic block in the

prologue (or kernel if its the last basic block) or to the corresponding basic block in the epilogue.

The kernel branch is updated to branch to itself or to the first epilogue. Epilogue branches are

changed to unconditional branches to the next basic block in the epilogue or the original loop exit

point. Lastly, the branch to the original loop in our program must be updated to branch to the

prologue.

Once the prologue, epilogue, and kernel have been generated, the loop has been successfully

43

1 maxStage = maximum stage in kernel
2 Prologue = list of prologue basic blocks
3 Epilogue = list of epilogue basic blocks
4 kernelBB = new kernel basic block
5
6 for(i = 0; i <= maxStage; ++i) //Create Prologue
7 BB = new basic block
8 for(j = i; j >= 0; −− j)
9 ∀n instructions in original basic block
10 if (n ∈ kernel at stage j)
11 BB.add(n)
12 if (n defines value used in kernel at later stage)
13 BB.add(copy value instruction)
14 Prologue.add(BB)
15
16 for(i = maxStage − 1; i >= 0; –i) //Create Epilogue
17 BB = new basic block
18 for(j = maxStage; j > i; –j)
19 ∀n instructions in original basic block
20 if (n ∈ kernel at stage j)
21 update n to use correct operand values
22 BB.add(n)
23 Epilogue.add(BB)
24
25 ∀n instructions ∈ kernel //Create Kernel
26 if (n ∈ kernel at stage > 0)
27 update n to use correct operand values
28 if (n defines value used in kernel at later stage)
29 BB.add(copy value instruction)
30
31 ∀b ∈ Prologue //Update Prologue Branches
32 if (b not last ∈ Prologue)
33 update branch to branch to correct bb in the epilogue/prologue
34 else
35 update branch to branch to kernel/epilogue
36
37 ∀b ∈ Epilogue //Update Epilogue Branches
38 if (b not last ∈ Epilogue)
39 change branch to unconditional branch to next basic block
40 else
41 change branch to unconditional branch to original loop exit
42
43 Update kernel branch to branch to kernel/epilogue
44 Update program’s branch to original loop to branch to the prologue

Figure 4.11: Pseudo Code for Loop Reconstruction Algorithm

44

modulo scheduled and the Swing Modulo Scheduling algorithm has completed. SMS is applied to

each single basic block loop in the program.

45

Prologue :
sethi %lm(−1) , % reg (va l 0 x100d0eb20)
sethi %hh(%disp (addr−of−va l A)) , % reg (va l 0 x100d31a90)
add %reg (va l 0 x100bb0200 i . 0 . 0 : PhiCp) , %g0 , % reg (va l 0 x100baf6a0 i . 0 . 0)
sethi %hh(<cp#1>), %reg (va l 0 x100d18060)
or %reg (va l 0 x100d31a90) , %hm(%disp (addr−of−va l A)) , % reg (va l 0 x100d31b30)
sethi %lm(%disp (addr−of−va l A)) , % reg (va l 0 x100d31c70)
or %reg (va l 0 x100d18060) , %hm(<cp#1>), %reg (va l 0 x100d15740)
or %reg (va l 0 x100d0eb20) , % lo (−1) , % reg (va l 0 x100d0ea80)
add %reg (va l 0 x100baf6a0 i . 0 . 0) , % reg (va l 0 x100d0ea80) , % reg (va l 0 x100d0e9e0 maskHi)
sethi %lm(<cp#1>), %reg (va l 0 x100d18100)
s l lx %reg (va l 0 x100d31b30) , 32 , % reg (va l 0 x100d31bd0)
s l lx %reg (va l 0 x100d15740) , 32 , % reg (va l 0 x100d157e0)
or %reg (va l 0 x100d18100) , % reg (va l 0 x100d157e0) , % reg (va l 0 x100d15880)
sethi %hh(%disp (addr−of−va l A)) , % reg (va l 0 x100d12f60)
or %reg (va l 0 x100d31c70) , % reg (va l 0 x100d31bd0) , % reg (va l 0 x100d31d10)
sr l %reg (va l 0 x100d0e9e0 maskHi) , 0 , % reg (va l 0 x100bb9a50 tmp . 8)
or %reg (va l 0 x100d31d10) , % lo (%disp (addr−of−va l A)) , % reg (va l 0 x100d319f0)
s l l %reg (va l 0 x100bb9a50 tmp .8) , 2 , % reg (va l 0 x100d31950)
or %reg (va l 0 x100d15880) , % lo (<cp#1>), %reg (va l 0 x100d12ec0)
or %reg (va l 0 x100d12f60) , %hm(%disp (addr−of−va l A)) , % reg (va l 0 x100d13000)
add %reg (va l 0 x100d319f0) , 0 , % reg (va l 0 x100bb73a0 addrOfGlobal :A2)
ld %reg (va l 0 x100d12ec0) , 0 , % reg (va l 0 x100d17fc0)
fmovs %reg (va l 0 x100d17fc0) , % reg (va l 0 x100d43f20)
s l lx %reg (va l 0 x100d13000) , 32 , % reg (va l 0 x100d10640)
sethi %lm(%disp (addr−of−va l A)) , % reg (va l 0 x100d106e0)
ld %reg (va l 0 x100bb73a0 addrOfGlobal :A2) , % reg (va l 0 x100d31950) , % reg (va l 0 x100bb9bf0 tmp . 1 1)
fmovs %reg (va l 0 x100bb9bf0 tmp.11) , % reg (va l 0 x100d43fc0)
s l l %reg (va l 0 x100baf6a0 i . 0 . 0) , 2 , % reg (va l 0 x100d318b0)
or %reg (va l 0 x100d318b0) , 0 , % reg (va l 0 x100d44060)
or %reg (va l 0 x100d106e0) , % reg (va l 0 x100d10640) , % reg (va l 0 x100d10780)
add %reg (va l 0 x100baf6a0 i . 0 . 0) , 1 , % reg (va l 0 x100cfb200 maskHi)
or %reg (va l 0 x100d10780) , % lo (%disp (addr−of−va l A)) , % reg (va l 0 x100d33d30)
sr l %reg (va l 0 x100cfb200 maskHi) , 0 , % reg (va l 0 x100bb9e40 indvar . next)
add %reg (va l 0 x100bb9e40 indvar . next) , %g0 , % reg (va l 0 x100bb0200 i . 0 . 0 : PhiCp)
add %reg (va l 0 x100d33d30) , 0 , % reg (va l 0 x100bb7460 addrOfGlobal :A1)
or %reg (va l 0 x100bb7460 addrOfGlobal :A1) , 0 , % reg (va l 0 x100d44100)
subcc %reg (va l 0 x100bb9e40 indvar . next) , 500 , % g0 , % ccreg (va l 0 x100d343f0)
or %reg (va l 0 x100d44060) , 0 , % reg (va l 0 x100c f f 6 e0)
fmovs %reg (va l 0 x100d43f20) , % reg (va l 0 x100c f f780)
fmovs %reg (va l 0 x100d43fc0) , % reg (va l 0 x100c f f820)
or %reg (va l 0 x100d44100) , 0 , % reg (va l 0 x100c fce60)
fmovs %reg (va l 0 x100d43fc0) , % reg (va l 0 x100c f c f 00)
fmovs %reg (va l 0 x100d43f20) , % reg (va l 0 x100cf01d0)
or %reg (va l 0 x100d44100) , 0 , % reg (va l 0 x100cf0270)
or %reg (va l 0 x100d44060) , 0 , % reg (va l 0 x100cf0310)
be %ccreg (va l 0 x100d343f0) , % disp (l a b e l Epi logue)
nop

ba %disp (l a b e l Kernel)
nop

Figure 4.12: Modulo Scheduled Loop for our Example Loop (Prologue)

46

Kernel :
or %reg (va l 0 x100c f f 6 e0) , 0 , % reg (va l 0 x100d05750)
fmovs %reg (va l 0 x100c f f780) , % reg (va l 0 x100d44220)
fmovs %reg (va l 0 x100c f f820) , % reg (va l 0 x100d4ace0)
or %reg (va l 0 x100c fce60) , 0 , % reg (va l 0 x100d056b0)
sethi %hh(%disp (addr−of−va l A)) , % reg (va l 0 x100d31a90)
add %reg (va l 0 x100bb0200 i . 0 . 0 : PhiCp) , %g0 , % reg (va l 0 x100baf6a0 i . 0 . 0)
sethi %lm(%disp (addr−of−va l A)) , % reg (va l 0 x100d31c70)
sethi %lm(−1) , % reg (va l 0 x100d0eb20)
or %reg (va l 0 x100d31a90) , %hm(%disp (addr−of−va l A)) , % reg (va l 0 x100d31b30)
or %reg (va l 0 x100d0eb20) , % lo (−1) , % reg (va l 0 x100d0ea80)
s l lx %reg (va l 0 x100d31b30) , 32 , % reg (va l 0 x100d31bd0)
fmuls %reg (va l 0 x100d4ace0) , % reg (va l 0 x100d44220) , % reg (va l 0 x100bb9c70 tmp . 1 2)
add %reg (va l 0 x100baf6a0 i . 0 . 0) , % reg (va l 0 x100d0ea80) , % reg (va l 0 x100d0e9e0 maskHi)
or %reg (va l 0 x100d31c70) , % reg (va l 0 x100d31bd0) , % reg (va l 0 x100d31d10)
sr l %reg (va l 0 x100d0e9e0 maskHi) , 0 , % reg (va l 0 x100bb9a50 tmp . 8)
or %reg (va l 0 x100d31d10) , % lo (%disp (addr−of−va l A)) , % reg (va l 0 x100d319f0)
s l l %reg (va l 0 x100bb9a50 tmp .8) , 2 , % reg (va l 0 x100d31950)
add %reg (va l 0 x100d319f0) , 0 , % reg (va l 0 x100bb73a0 addrOfGlobal :A2)
ld %reg (va l 0 x100bb73a0 addrOfGlobal :A2) , % reg (va l 0 x100d31950) , % reg (va l 0 x100bb9bf0 tmp . 1 1)
fmovs %reg (va l 0 x100bb9bf0 tmp.11) , % reg (va l 0 x100d05610)
st %reg (va l 0 x100bb9c70 tmp.12) , % reg (va l 0 x100d056b0) , % reg (va l 0 x100d05750)
s l l %reg (va l 0 x100baf6a0 i . 0 . 0) , 2 , % reg (va l 0 x100d318b0)
or %reg (va l 0 x100d318b0) , 0 , % reg (va l 0 x100d2c020)
sethi %hh(%disp (addr−of−va l A)) , % reg (va l 0 x100d12f60)
sethi %lm(%disp (addr−of−va l A)) , % reg (va l 0 x100d106e0)
sethi %hh(<cp#1>), %reg (va l 0 x100d18060)
or %reg (va l 0 x100d12f60) , %hm(%disp (addr−of−va l A)) , % reg (va l 0 x100d13000)
or %reg (va l 0 x100d18060) , %hm(<cp#1>), %reg (va l 0 x100d15740)
s l lx %reg (va l 0 x100d13000) , 32 , % reg (va l 0 x100d10640)
sethi %lm(<cp#1>), %reg (va l 0 x100d18100)
s l lx %reg (va l 0 x100d15740) , 32 , % reg (va l 0 x100d157e0)
or %reg (va l 0 x100d18100) , % reg (va l 0 x100d157e0) , % reg (va l 0 x100d15880)
or %reg (va l 0 x100d106e0) , % reg (va l 0 x100d10640) , % reg (va l 0 x100d10780)
or %reg (va l 0 x100d15880) , % lo (<cp#1>), %reg (va l 0 x100d12ec0)
add %reg (va l 0 x100baf6a0 i . 0 . 0) , 1 , % reg (va l 0 x100cfb200 maskHi)
or %reg (va l 0 x100d10780) , % lo (%disp (addr−of−va l A)) , % reg (va l 0 x100d33d30)
ld %reg (va l 0 x100d12ec0) , 0 , % reg (va l 0 x100d17fc0)
fmovs %reg (va l 0 x100d17fc0) , % reg (va l 0 x100d2c0c0)
sr l %reg (va l 0 x100cfb200 maskHi) , 0 , % reg (va l 0 x100bb9e40 indvar . next)
add %reg (va l 0 x100bb9e40 indvar . next) , %g0 , % reg (va l 0 x100bb0200 i . 0 . 0 : PhiCp)
add %reg (va l 0 x100d33d30) , 0 , % reg (va l 0 x100bb7460 addrOfGlobal :A1)
or %reg (va l 0 x100bb7460 addrOfGlobal :A1) , 0 , % reg (va l 0 x100d2c160)
subcc %reg (va l 0 x100bb9e40 indvar . next) , 500 , % g0 , % ccreg (va l 0 x100d343f0)
or %reg (va l 0 x100d2c020) , 0 , % reg (va l 0 x100c f f 6 e0)
fmovs %reg (va l 0 x100d2c0c0) , % reg (va l 0 x100c f f780)
fmovs %reg (va l 0 x100d05610) , % reg (va l 0 x100c f f820)
or %reg (va l 0 x100d2c160) , 0 , % reg (va l 0 x100c fce60)
fmovs %reg (va l 0 x100d05610) , % reg (va l 0 x100c f c f 00)
fmovs %reg (va l 0 x100d2c0c0) , % reg (va l 0 x100cf01d0)
or %reg (va l 0 x100d2c160) , 0 , % reg (va l 0 x100cf0270)
or %reg (va l 0 x100d2c020) , 0 , % reg (va l 0 x100cf0310)
be %ccreg (va l 0 x100d343f0) , % disp (l a b e l Epi logue)
nop

ba %disp (l a b e l Kernel)
nop

Epi logue :
fmovs %reg (va l 0 x100c f c f 00) , % reg (va l 0 x100d2c280)
fmovs %reg (va l 0 x100cf01d0) , % reg (va l 0 x100d2c320)
fmuls %reg (va l 0 x100d2c280) , % reg (va l 0 x100d2c320) , % reg (va l 0 x100bb9c70 tmp . 1 2)
or %reg (va l 0 x100cf0270) , 0 , % reg (va l 0 x100d442c0)
or %reg (va l 0 x100cf0310) , 0 , % reg (va l 0 x100d2c4d0)
st %reg (va l 0 x100bb9c70 tmp.12) , % reg (va l 0 x100d442c0) , % reg (va l 0 x100d2c4d0)
ba %disp (l a b e l l o o p e x i t)
nop

Figure 4.13: Modulo Scheduled Loop for our Example Loop (Kernel and Epilogue)
47

Chapter 5

Extending Swing Modulo Scheduling

for Superblocks

On many programs, Swing Modulo Scheduling is limited by only handling single basic block loops.

The potential for parallelism is increased if instructions can be moved across basic block boundaries,

which means that instructions are moved across conditional branches. However, moving instructions

above or below a conditional branch can alter the programs behavior if not done safely.

Traditional Modulo Scheduling techniques only transform single basic block loops without con-

trol flow, resulting in many missed opportunities for parallelism. However, very few Modulo

Scheduling techniques can handle multiple basic block loops. These techniques, called Global Mod-

ulo Scheduling, were discussed in Section 3.2. All Global Modulo Scheduling algorithms [25, 41]

schedule all paths within the loop, which involves taking resource usage and dependence constraints

for each execution path. However, one execution path may be taken more often than another. In

these situations, Modulo Scheduling should aim to decrease the execution time for the most fre-

quently executed path even though this could increase the execution time of the less frequent path.

Overall, the performance of the program will be increased.

Trace Scheduling is a technique for general instruction scheduling (not Software Pipelining) that

schedules frequently executed paths, called traces. Traces are a sequence of basic blocks that may

have exits out of the middle (called side exits), and transitions from other traces into the middle

(called side entrances). These multiple-entry multiple-exit groups of basic blocks are scheduled

ignoring the side exits and entrances, but extra bookkeeping is done to ensure the program is

correct regardless of which path is taken. This bookkeeping increases the complexity of scheduling.

48

Removing the side entrances forms a superblock, which decreases the scheduling complexity.

We extended Swing Modulo Scheduling to support superblock loops in order to take advantage

of the parallelism of multiple basic block loops. This chapter will discuss the details of what changes

were made to the algorithm described in Chapter 4.

While these extensions were implemented as a static optimization in the SPARC V9 backend

of the LLVM Compiler Infrastructure, it can seamlessly be applied to superblock loops found at

runtime or offline using profile information.

5.1 Overview

We extended Swing Modulo Scheduling to handle superblock loops, which are single-entry, multiple-

exit, multiple basic block loops. These extensions allow instructions to be moved above conditional

branches (upward code motion) or below conditional branches (downward code motion).

Downward code motion occurs when an instruction is moved below a conditional branch. It

is fairly straight forward and only requires that the branch is not dependent upon the instruction

that is being moved. A copy of that instruction is placed in the side exit in the event that the

branch was actually taken, ensuring that the programs behavior is unaltered.

Upward code motion is the process of moving an instruction above a conditional branch. The

execution of this instruction is termed “speculative execution”, because the execution of the in-

struction occurs before it would have (or not have) in original program order. This instruction

originally was executed only if the branch was not taken. Upward code motion is useful for hiding

the latency of load instructions or other high latency instructions. In order for an instruction to

be a candidate for upward code motion, two restrictions must be met [8, 29]:

1. The destination of the instruction must not be used before it is redefined when

the branch is taken (exited from superblock).

2. The instruction must never cause an exception that may halt the programs exe-

cution when the branch is taken.

The first restriction ensures that if an instruction is moved above a branch and that instruction

defines a value, then if the branch is taken, all instructions after the branch will not use that value.

49

By moving the instruction above the branch, we are performing a computation that may not have

been executed in the original program. Therefore, if the branch was miss-predicted, we need to

guarantee that instructions after the branch are using the right value (as in the original program).

Because the LLVM Compiler Infrastructure Intermediate representation and the SPARC V9

backend intermediate representation are in SSA form, there is no risk of any value being defined

twice. However, because Swing Modulo Scheduling is attempting to overlap iterations of the loop,

and loops can redefine dynamic values, it is important to not redefine the value before the outcome

of the side exit is known.

The second restriction guards against exceptions from halting the program due to moving an

instruction above a branch. Because the instruction moved above the branch is being executed

before it would have in the original program it may never have been executed. This exception is

not one that would have occurred if the instruction had not been moved.

The second restriction can be relaxed depending upon which architecture SMS is implemented

for. For some architectures, such as the SPARC V9, a subset of instructions can potential trap or

cause exceptions(such as floating point arithmetic). These instructions can not be moved upward

because the programs execution behavior could be altered (an exception could cause the program

to abnormally halt). If the architecture provides non-trapping versions of these instructions or

general support for predication, those can be used instead and the non-trapping instruction can

safely be moved above the branch. Unfortunately, this is not an option for the SPARC V9.

The best type of hardware support is one that provides Predicated Execution, such as IA64 [20].

Predicated Execution allows instructions to be nullified during their execution in the pipeline. So if

an instruction is speculatively moved above a branch and the branch is taken, even if the instruction

is already in the processor’s pipeline, the instruction can be nullified. Therefore the programs

behavior is not altered and values are not incorrectly redefined.

5.2 Changes to Dependence Graph

In order to successfully Modulo Schedule a superblock loop and maintain correct execution of the

program, some changes need to be made to the Data Dependence Graph. These changes ensure

that the restrictions mention in Section 5.1 for code motion are met.

50

Recall from Section 4.2 that a Data Dependence Graph consists of nodes for each instruction,

and edges represent the dependence between instructions. There are three main changes made to

the Data Dependence Graph:

• A predicate node is introduced to represent the instructions related to the inner branches of

the superblock.

• Edges are created between the predicate node and all trapping instructions.

• Edges are created between the predicate node and all instructions that define values that are

live if a side exit branch is taken.

The first change introduces a new node called the predicate node. This node represents the

instruction that computes the condition (for a conditional branch) and the branch itself. This node

allows those instructions to be treated as one instruction and will be scheduled for the same stage.

Having the condition and branch instructions in the same stage is crucial for proper execution of

the superblock loop.

Data dependences between the predicate node and other instructions are created as described

in Section 4.2, knowing which values the instructions (that the predicate node represents) uses and

defines. Additionally, dependences are created between a predicate node and any other predicate

nodes after it. This is to ensure that the side exits of the superblock are preserved in order.

The second change upholds the second code motion restriction. On the SPARC V9, loads,

stores, integer divide, and all floating point arithmetic potentially trap. Therefore, a dependence

is created between those instructions and the predicate node for the branch that the instruction

would be moved above (if allowed). Because of the dependences between predicate nodes, it is

not necessary to add edges between all trapping instructions and all predicate nodes. It is only

necessary to add them between the trapping instruction and the predicate node for the predecessor

basic block.

Dependences between the predicate node and load instructions can be eliminated if it can be

proven that accessing the memory is safe. This occurs when the load is from global or stack memory

and the index is within the legal bounds of the memory allocated.

51

The last change is to prevent a value from being redefined before it is used. This situation can

occur if the predicate node is scheduled in the kernel from a previous iteration (stage > 0). It is

possible that instructions that are before the branch in the original program, are executed before

the branch is determined to be taken or not. For values that are live if the branch is taken, this

will produce incorrect results. Therefore loop-carried dependences between the predicate node and

all instructions that define values that are live outside the trace must be created. This will ensure

that all the instructions that are live if the side exit is taken are from the same iteration in the

kernel.

1 LiveOutside = Empty list of instructions
2 ∀n instructions ∈ superblock
3 ∀u ∈ uses(n)
4 if (!inSuperBlock(u))
5 LiveOutside.add(n)

Figure 5.1: Pseudo Code for Determining Values Live Outside the Trace

To determine which values are live outside the trace, a simple version of live variable analysis

is performed. Figure 5.1 illustrates the simple approach used by our implementation. The uses of

each instruction are examined. Each using instruction belongs to a basic block (its parent). For

each of the uses of the value, is basic block is tested to see if it belongs to the set of basic blocks

that make up the superblock. If a user is not in the superblock, the value is determine to be live

outside the trace.

5.3 Changes to Loop Reconstruction

Section 4.7 described the steps taken to reconstruct the modulo scheduled loop into a prologue,

kernel, and epilogue. The Swing Modulo Scheduling extensions for superblock loops must also

reconstruct the loop into a prologue, kernel, and epilogue. The main difference between the exten-

sions and the standard algorithm is that the prologue, epilogue, and kernel are all superblocks, and

consist of multiple basic blocks with side exits. Changes must be made to make sure the side exits

are handled properly.

Figure 5.2 shows the loop reconstruction algorithm for superblock loops. Lines 1-30 are iden-

tical to the standard implementation, but the prologue, epilogue, and the kernel are one or more

52

1 maxStage = maximum stage in kernel
2 Prologue = list of prologue superblocks
3 Epilogue = list of epilogue superblocks
4 kernelBB = new kernel superblock
5
6 for(i = 0; i <= maxStage; ++i) //Create Prologue
7 BB = new superblock
8 for(j = i; j >= 0; −− j)
9 ∀n instructions in the superblock
10 if (n ∈ kernel at stage j)
11 BB.add(n)
12 if (n defines value used in kernel at later stage)
13 BB.add(copy value instruction)
14 Prologue.add(BB)
15
16 for(i = maxStage − 1; i >= 0; –i) //Create Epilogue
17 BB = new superblock
18 for(j = maxStage; j > i; –j)
19 ∀n instructions in the superblock
20 if (n ∈ kernel at stage j)
21 update n to use correct operand values
22 BB.add(n)
23 Epilogue.add(BB)
24
25 ∀n instructions ∈ kernel //Create Kernel
26 if (n ∈ kernel at stage > 0)
27 update n to use correct operand values
28 if (n defines value used in kernel at later stage)
29 BB.add(copy value instruction)
30
31 ∀sideExits ∈ the superblock
32 sideExitBlock = new basic block
33 ∀n instructions moved below this side exit
34 if (n ∈ kernel at stage 0)
34 sideExitBlock.add(n)
35 sideEpilogue = clone epilogue
36 update last branch in epilogue to branch to sideExitBlock

37 update sideExitBlock to branch to original loop exit
38
39 ∀b ∈ Prologue //Update Prologue Branches
41 if (b is not a side exit)
42 update branch to correct superblock in cloned epilogue for this side exit
43 else
44 if (b not last ∈ Prologue)
45 update branch to branch to correct superblock in epilogue/prologue
46 else
47 update branch to branch to kernel/epilogue
48
49 ∀b ∈ Epilogue //Update Epilogue Branches
50 if (b not last ∈ Epilogue)
51 change branch to unconditional branch to next superblock in epilogue
52 else
53 change branch to unconditional branch to original loop exit
54
55 Update kernel branch to branch to kernel/epilogue
56 Update program’s branch to original loop to branch to prologue

Figure 5.2: Pseudo Code for Loop Reconstruction Algorithm for Superblocks

53

superblocks. Lines 31-37 are the first steps for handling side exits. For each side exit in the original

superblock, a new Side Exit Block is created. Instructions moved below this side exit are placed

into the new basic block. Because the epilogue finishes any iterations that are in flight, the side

exit block only includes instructions from the current iteration (stage 0). Second, the epilogue is

cloned and the last superblock’s branch in the epilogue is updated to branch to the new side exit

block. An unconditional branch is added to the side exit block to branch to the original loop exit

in the program.

Once the side exit and corresponding side exit epilogues have been created, the prologue

branches must be updated. Lines 39-48, update the side exit branches in the prologue to branch to

the corresponding epilogue for each side exit. The last branch of each superblock in the prologue

either branches to the next superblock in the prologue or the kernel. Other branch updates (Lines

49-56) require no changes from the original algorithm.

Once the superblock loop has been reconstructed, the Swing Modulo Scheduling for superblocks

pass is complete.

5.4 Superblock Loop Example

To understand the changes made to the original Swing Modulo Scheduling algorithm, we detail the

steps for a simple superblock loop example. Figure 5.4 shows the C and LLVM code for a simple

superblock loop. The loop computes and store values for two arrays. It has a side exit in the loop

if one of the previous array values is less than some value. Note that this loop consists of two basic

blocks, a single entry (aside from the back edge), and one side exit. Figure 5.4 shows the LLVM

Machine code for our example superblock loop. Recall that this machine code closely resembles the

SPARC V9 assembly.

The first step is to construct the Data Dependence Graph for the instructions that make up the

body of the loop. Figure 5.5 is the DDG for our example superblock loop. The first thing to notice

is that the conditional branch instructions (n13, n14, n15) have been represented by a PredNode

node for the no exit basic block. The dependences between the instructions it represents and other

instructions in the loop body have been preserved.

While the majority of the dependencies between the instructions are created as normal, a few

54

for (i = 1 ; i < 500; ++ i) {
B[i] = B[i −1] ∗ 3 . 2 f ;
i f (A[i −1] < 4.5 f)
break ;

A[i] = A[i −1] ∗ 3 . 4 f ;
}

(a) C Code

no ex i t :
%indvar = phi uint [0 , % entry] , [% i . 0 . 0 , % end i f]
%i . 0 . 0 = add uint %indvar , 1
%tmp.6 = cast uint % i . 0 . 0 to long

%tmp.7 = getelementptr [5 0 0 x f loat]∗ %TMP2, long 0 , long %tmp .6
%tmp.10 = cast uint %indvar to long

%tmp.11 = getelementptr [5 0 0 x f loat]∗ %TMP2, long 0 , long %tmp.10
%tmp.12 = load f loat ∗ %tmp.11
%tmp.13 = mul f loat %tmp.12 , %FPVAL2
store f loat %tmp . 1 3 , f loat ∗ %tmp .7
%tmp.17 = getelementptr [5 0 0 x f loat]∗ %TMP, long 0 , long %tmp.10
%tmp.18 = load f loat ∗ %tmp.17
%tmp.19 = set l t f loat %tmp.18 , %FPVAL3
br bool %tmp . 1 9 , label %loopex i t , label %end i f

end i f :
%tmp.23 = getelementptr [5 0 0 x f loat]∗ %TMP, long 0 , long %tmp .6
%tmp.29 = mul f loat %tmp.18 , %FPVAL
store f loat %tmp . 2 9 , f loat ∗ %tmp.23
%inc = add uint %indvar , 2
%tmp.3 = set l t uint %inc , 5 0 0
br bool %tmp . 3 , label %no ex i t , label %loopex i t

(b) LLVM Code

Figure 5.3: Simple Superblock Loop Example

are added to control upward and downward code motion. Because there are no instructions that

are live when the side exit is taken, no loop-carried dependencies between the PredNode and those

instructions are created. Second, you will notice that there are dependencies created between the

PredNode and the store (n22), and the PredNode and the fmuls (n19). Those two instructions

could potentially cause an exception and alter the original behavior of the program. Therefore, the

dependencies are created to prevent the instructions from being moved above the branch (upward

code motion).

Once the DDG has been created, the MII value must be determined by computing the ResMII

and RecMII as described in Section 4.3. For our superblock loop example there are four recurrences,

with the highest RecMII value of 8. This is from the recurrence consisting of the st (n11), ld (n7),

and fmuls (n10) and also from the recurrence consisting of PredNode, ld (n12), fmuls (n19), and st

(n22). Because these recurrences have the same RecMII, it does not matter which one is chosen as

the highest RecMII. Each recurrence has a total latency of 8 and a distance of 1, which results in

a RecMII of 8. Table 5.1 shows the latencies for each instruction. Please note that the PredNode

has a latency of 3 because that is the total latency of all the instructions is represents.

The resource usage is totaled for all instructions in the loop body. The most heavily used

55

no ex i t :
(n1) add %reg (va l 0 x100c4eae0 indvar : PhiCp) , %g0 , % reg (va l 0 x100c4df10 indvar)
(n2) add %reg (va l 0 x100c4df10 indvar) , 1 , % reg (va l 0 x100dd7480 maskHi)
(n3) add %g0 , % reg (va l 0 x100c4df10 indvar) , % reg (va l 0 x100c585b0 tmp . 1 0)
(n4) s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100d9a020)
(n5) s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100dd75c0)
(n6) sr l %reg (va l 0 x100dd7480 maskHi) , 0 , % reg (va l 0 x100c58ab0 i . 0 . 0)
(n7) ld %reg (va l 0 x100c547e0 TMP2) , % reg (va l 0 x100dd75c0) , % reg (va l 0 x100c58dc0 tmp . 1 2)
(n8) add %g0 , % reg (va l 0 x100c58ab0 i . 0 . 0) , % reg (va l 0 x100c58b50 tmp . 6)
(n9) s l l %reg (va l 0 x100c58b50 tmp .6) , 2 , % reg (va l 0 x100dd7520)
(n10) fmuls %reg (va l 0 x100c58dc0 tmp.12) , % reg (va l 0 x100c586b0 FPVAL2) , % reg (va l 0 x100c58e40 tmp . 1 3)
(n11) st %reg (va l 0 x100c58e40 tmp.13) , % reg (va l 0 x100c547e0 TMP2) , % reg (va l 0 x100dd7520)
(n12) ld %reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100d9a020) , % reg (va l 0 x100c591a0 tmp . 1 8)
(n13) % ccreg (va l 0 x100dd7c90) = fcmps %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100c58730 FPVAL3)
(n14) f b l %ccreg (va l 0 x100dd7c90) , % disp (l a b e l l o o p e x i t)
(n15) ba %disp (l a b e l end i f)

end i f
(n16) add %reg (va l 0 x100c58ab0 i . 0 . 0) , % g0 , % reg (va l 0 x100c4eae0 indvar : PhiCp)
(n17) s l l %reg (va l 0 x100c58b50 tmp .6) , 2 , % reg (va l 0 x100dd7d30)
(n18) add %reg (va l 0 x100c4df10 indvar) , 2 , % reg (va l 0 x100d9a0c0 maskHi)
(n19) fmuls %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100c58630 FPVAL) , % reg (va l 0 x100c59490 tmp . 2 9)
(n20) sr l %reg (va l 0 x100d9a0c0 maskHi) , 0 , % reg (va l 0 x100c595d0 inc)
(n21) subcc %reg (va l 0 x100c595d0 inc) , 500 , % g0 , % ccreg (va l 0 x100dd7dd0)
(n22) st %reg (va l 0 x100c59490 tmp.29) , % reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100dd7d30)
(n23) bcs %ccreg (va l 0 x100dd7dd0) , % disp (l a b e l no ex i t)
(n24) ba %disp (l a b e l l o o p e x i t)

Figure 5.4: LLVM Machine Code for a Superblock Loop

resource is the integer unit (15 uses). Because there are two of this resource, the ResMII is computed

to be 8. The maximum of ResMII (8) and RecMII (8) is used for MII, which means that MII is set

to 8.

The next phase of the extended Modulo Scheduling algorithm is to calculate the various proper-

ties for each node. These properties are used to order the nodes for scheduling. The ASAP, ALAP,

MOB, Height, and Depth (described in Section 4.3) are computed for each node in the DDG. For

these calculations one back edge (doesn’t matter which one) is ignored in order to avoid endlessly

cycling in the graph. Table 5.2 shows the node attributes for this example. The PredNode is

treated like any other node for these calculations.

Node Latency Node Latency

PredNode (no exit) 1 add (n3) 3
sll (n4) 1 sll (n5) 1
ld (n7) 3 add (n8) 1
sll (n9) 1 fmuls (n10) 4
st (n11) 1 ld (n12) 3
sll (n17) 1 fmuls (n19) 4
st (n22) 1

Table 5.1: Node Latencies for Simple Loop Example

56

Dependence Graph

add (n8)

True(IteDiff: 0) True(IteDiff: 0)

sll (n9)

True(IteDiff: 0)

sll (n17)

True(IteDiff: 0)

st (n11)

Anti(IteDiff: 1) Anti(IteDiff: 1)

st (n22)

Anti(IteDiff: 1)

add (n3)

True(IteDiff: 0) True(IteDiff: 0)

sll (n4)

True(IteDiff: 0)

sll (n5)

True(IteDiff: 0)

ld (n12)

True(IteDiff: 0) True(IteDiff: 0)

ld (n7)

True(IteDiff: 0)

fmuls (n10)

True(IteDiff: 0)

Pred Node (no_exit)

Pred(IteDiff: 0) Pred(IteDiff: 0)

fmuls (n19)

True(IteDiff: 0)

Figure 5.5: Dependence Graph After Dependence Analysis

Node ASAP ALAP MOB Depth Height Latency

PredNode (no exit) 5 5 0 5 7 3
add (n3) 0 0 0 0 12 1
sll (n4) 1 1 0 1 11 1
sll (n5) 1 4 3 1 8 1
ld (n7) 2 5 3 2 7 3
add (n8) 0 10 10 0 2 1
sll (n9) 1 11 10 1 1 1
fmuls (n10) 5 8 3 5 4 4
st (n11) 9 12 3 9 0 1
ld (n12) 2 2 0 2 10 3
sll (n17) 1 11 10 1 1 1
fmuls (n19) 8 8 0 8 4 4
st (n22) 12 12 0 12 0 1

Table 5.2: Node Attributes for Simple Loop Example

57

Our extended Swing Modulo Scheduling algorithm performs node ordering exactly as the orig-

inal algorithm. Using the node attributes and the DDG, it determines the best ordering possible

in order to achieve the most optimal schedule. It begins by determining the partial order which is

a list of sets of nodes. Figure 5.6 shows the partial order for our example. Recall from Section 4.5

that the partial order lists the recurrences from the highest RecMII to the lowest, with the remain-

ing sets consisting of the other connected components of the graph. Since we have two recurrences

with the same RecMII, those two occur first in the partial order (Set #1 and Set #2). Sets #3

and #4 represent the remaining two connected components of the DDG once the two recurrences

are removed.

Set #1: PredNode (no_exit), ld (n12), fmuls (n19), st (n22)

Set #2: ld (n7), fmuls (n10), st (n11)

Set #3: add (n3), sll (n4), sll (n5)

Set #4: add (n8), sll (n9), sll (n17)

Figure 5.6: Superblock Loop Example Partial Order

Using this partial order, the next phase of our extended SMS algorithm (like the original) is

to determine the final node ordering. The final node ordering algorithm (described in Figure 4.9)

traverses each subgraph that each set represents in the partial order. It begins with Set #1 and

determines that the st (n22) is the most critical node and places it first on the final order list. Each

ancestor to the st (n22) is visited according to their depth and added to the final node order. This

means that fmuls (n19) with a depth of 8 (greatest depth out of Set #1) is added first, followed

by PredNode, and finally the ld (n12). This process is repeated for each set in the partial order

(traversing bottom-up or top-down) until all nodes have been added to the final order. The list

below is the final node ordering for our example:

O = { st (n22), fmuls (n19), PredNode (no exit), ld (n12), st(n11), fmuls (n10), ld (n7), sll

(n4), sll (n5), add (n3), sll (n9), sll (n17), add (n8) }

Using the final node ordering, each instruction is placed in the final schedule. Table 5.3 shows

the schedule for a single iteration of our superblock loop example. The SPARC IIIi architecture can

issue 4 instructions per cycle. The combination of instructions that can be issued depends on what

resources each instruction uses during each stage of the pipeline. This information is acquired using

the SchedInfo API discussed in Section 4.1.1. For simplicity the schedule show in Table 5.3 only

58

Cycle Issue1 Issue2 Issue3 Issue4

0 add(n3)

1 sll(n5)

2 ld(n7)

3

4 sll(n4)

5 ld(n12)

6

7

8 fmuls(n10) PredNode(no exit)

9

10 add(n8)

11 sll(n9) fmuls(n19)

12 st(n11)

13

14 sll(n17)

15 st(n22)

Table 5.3: Schedule for a Single Iteration of the Loop Example

shows the issue slots, but the scheduling algorithm checks that both an issue slot and all resources

are available.

Our achieved II value for this example was 10 cycles, which is greater than our calculated MII

(8 cycles). This means that all instructions from cycle 0 to cycle 10 are from the current iteration

in the kernel, and all instructions scheduled after cycle 10 belong to another stage in the kernel.

Table 5.4 shows the kernel for our Modulo Scheduled loop.

Cycle Issue1 Issue2 Issue3 Issue4

0 add(n3) sll(n9)[1] fmuls(n19)[1]

1 sll(n5) st(n11[1])

2 ld(n7)

3 sll(n17)[1]

4 sll(n4) st(n22)[1]

5 ld(n12)

6

7

8 fmuls(n10) PredNode(no exit)

9

10 add(n8)

Table 5.4: Kernel for Loop Example

Because we have instructions in the kernel that are from a stage greater than zero (which means

that they complete a previous iteration), we will have a prologue and an epilogue. This is identical

to the original Swing Modulo Scheduling algorithm, however we must handle side exits properly.

The new reconstructed algorithm described in Figure 5.2 transforms our superblock loop into a

59

prologue, kernel, epilogue, side exit, and side epilogue. Figure 5.7, Figure 5.8 and Figure 5.9 show

the final LLVM machine code after the reconstruction. The key difference to note is that the side

exit in the prologue and kernel both branch to a side epilogue (to complete the iterations in flight)

and than to a side exit (to execute any instructions moved below the conditional branch) before

exiting the loop.

60

PROLOGUE:
add %reg (va l 0 x100c4eae0 indvar : PhiCp) , %g0 , % reg (va l 0 x100c4df10 indvar)
add %reg (va l 0 x100c4df10 indvar) , 1 , % reg (va l 0 x100dd7480 maskHi)
add %g0 , % reg (va l 0 x100c4df10 indvar) , % reg (va l 0 x100c585b0 tmp . 1 0)
s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100d9a020)
s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100dd75c0)
sr l %reg (va l 0 x100dd7480 maskHi) , 0 , % reg (va l 0 x100c58ab0 i . 0 . 0)
ld %reg (va l 0 x100c547e0 TMP2) , % reg (va l 0 x100dd75c0) , % reg (va l 0 x100c58dc0 tmp . 1 2)
add %g0 , % reg (va l 0 x100c58ab0 i . 0 . 0) , % reg (va l 0 x100c58b50 tmp . 6)
or %reg (va l 0 x100c58b50 tmp .6) , 0 , % reg (va l 0 x100ddeb10)
fmuls %reg (va l 0 x100c58dc0 tmp.12) , % reg (va l 0 x100c586b0 FPVAL2) , % reg (va l 0 x100c58e40 tmp.13)<

def>
fmovs %reg (va l 0 x100c58e40 tmp.13) , % reg (va l 0 x100ddcba0)
ld %reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100d9a020) , % reg (va l 0 x100c591a0 tmp . 1 8)
fmovs %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100ddcc40)
%ccreg (va l 0 x100dd7c90) = fcmps %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100c58730 FPVAL3)
fmovs %reg (va l 0 x100ddcc40) , % reg (va l 0 x100dcf940)
fmovs %reg (va l 0 x100ddcba0) , % reg (va l 0 x100dcf9e0)
or %reg (va l 0 x100ddeb10) , 0 , % reg (va l 0 x100dcfa80)
or %reg (va l 0 x100ddeb10) , 0 , % reg (va l 0 x100dcfb20)
fmovs %reg (va l 0 x100ddcba0) , % reg (va l 0 x100ddbe70)
or %reg (va l 0 x100ddeb10) , 0 , % reg (va l 0 x100ddbfa0)
fmovs %reg (va l 0 x100ddcc40) , % reg (va l 0 x100ddc040)
f b l %ccreg (va l 0 x100dd7c90) , % disp (l a b e l S ideEpi logue)
nop

ba %disp (l a b e l PROLOGUE2)
nop

PROLOGUE2
add %reg (va l 0 x100c58ab0 i . 0 . 0) , % g0 , % reg (va l 0 x100c4eae0 indvar : PhiCp)
add %reg (va l 0 x100c4df10 indvar) , 2 , % reg (va l 0 x100d9a0c0 maskHi)
sr l %reg (va l 0 x100d9a0c0 maskHi) , 0 , % reg (va l 0 x100c595d0 inc)
subcc %reg (va l 0 x100c595d0 inc) , 500 , % g0 , % ccreg (va l 0 x100dd7dd0)
bcs %ccreg (va l 0 x100dd7dd0) , % disp (l a b e l Kernel)
nop

ba %disp (l a b e l EPILOGUE)
nop

Figure 5.7: Modulo Scheduled Loop for our Superblock Loop (Prologue)

61

Kernel :
fmovs %reg (va l 0 x100dcf940) , % reg (va l 0 x100ddcf00)
fmovs %reg (va l 0 x100dcf9e0) , % reg (va l 0 x100ddcfa0)
or %reg (va l 0 x100dcfa80) , 0 , % reg (va l 0 x100ddce60)
add %reg (va l 0 x100c4eae0 indvar : PhiCp) , %g0 , % reg (va l 0 x100c4df10 indvar)
add %reg (va l 0 x100c4df10 indvar) , 1 , % reg (va l 0 x100dd7480 maskHi)
add %g0 , % reg (va l 0 x100c4df10 indvar) , % reg (va l 0 x100c585b0 tmp . 1 0)
s l l %reg (va l 0 x100ddce60) , 2 , % reg (va l 0 x100dd7520)
fmuls %reg (va l 0 x100ddcf00) , % reg (va l 0 x100c58630 FPVAL) , % reg (va l 0 x100c59490 tmp . 2 9)
s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100dd75c0)
st %reg (va l 0 x100ddcfa0) , % reg (va l 0 x100c547e0 TMP2) , % reg (va l 0 x100dd7520)
sr l %reg (va l 0 x100dd7480 maskHi) , 0 , % reg (va l 0 x100c58ab0 i . 0 . 0)
ld %reg (va l 0 x100c547e0 TMP2) , % reg (va l 0 x100dd75c0) , % reg (va l 0 x100c58dc0 tmp . 1 2)
s l l %reg (va l 0 x100ddce60) , 2 , % reg (va l 0 x100dd7d30)
s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100d9a020)
st %reg (va l 0 x100c59490 tmp.29) , % reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100dd7d30)
ld %reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100d9a020) , % reg (va l 0 x100c591a0 tmp . 1 8)
fmovs %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100ddd040)
fmuls %reg (va l 0 x100c58dc0 tmp.12) , % reg (va l 0 x100c586b0 FPVAL2) , % reg (va l 0 x100c58e40 tmp . 1 3)
fmovs %reg (va l 0 x100c58e40 tmp.13) , % reg (va l 0 x100ddd0e0)
%ccreg (va l 0 x100dd7c90) = fcmps %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100c58730 FPVAL3)
fmovs %reg (va l 0 x100ddd040) , % reg (va l 0 x100dcf940)
fmovs %reg (va l 0 x100ddd0e0) , % reg (va l 0 x100dcf9e0)
fmovs %reg (va l 0 x100ddd0e0) , % reg (va l 0 x100ddbe70)
fmovs %reg (va l 0 x100ddd040) , % reg (va l 0 x100ddc040)
f b l %ccreg (va l 0 x100dd7c90) , % disp (l a b e l S ideEpi logue)
nop

ba %disp (l a b e l Kernel2)
nop

Kernel2 :
add %g0 , % reg (va l 0 x100c58ab0 i . 0 . 0) , % reg (va l 0 x100c58b50 tmp . 6)
or %reg (va l 0 x100c58b50 tmp .6) , 0 , % reg (va l 0 x100ddd180)
add %reg (va l 0 x100c58ab0 i . 0 . 0) , % g0 , % reg (va l 0 x100c4eae0 indvar : PhiCp)
add %reg (va l 0 x100c4df10 indvar) , 2 , % reg (va l 0 x100d9a0c0 maskHi)
sr l %reg (va l 0 x100d9a0c0 maskHi) , 0 , % reg (va l 0 x100c595d0 inc)
subcc %reg (va l 0 x100c595d0 inc) , 500 , % g0 , % ccreg (va l 0 x100dd7dd0)
or %reg (va l 0 x100ddd180) , 0 , % reg (va l 0 x100dcfa80)
or %reg (va l 0 x100ddd180) , 0 , % reg (va l 0 x100dcfb20)
or %reg (va l 0 x100ddd180) , 0 , % reg (va l 0 x100ddbfa0)
bcs %ccreg (va l 0 x100dd7dd0) , % disp (l a b e l Kernel)
nop

ba %disp (l a b e l EPILOGUE)
nop

Figure 5.8: Modulo Scheduled Loop for our Example Loop (Kernel and Epilogue)

62

SideExit :
add %reg (va l 0 x100c4eae0 indvar : PhiCp) , %g0 , % reg (va l 0 x100c4df10 indvar)
add %reg (va l 0 x100c4df10 indvar) , 1 , % reg (va l 0 x100dd7480 maskHi)
add %g0 , % reg (va l 0 x100c4df10 indvar) , % reg (va l 0 x100c585b0 tmp . 1 0)
s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100dd75c0)
sr l %reg (va l 0 x100dd7480 maskHi) , 0 , % reg (va l 0 x100c58ab0 i . 0 . 0)
ld %reg (va l 0 x100c547e0 TMP2) , % reg (va l 0 x100dd75c0) , % reg (va l 0 x100c58dc0 tmp . 1 2)
s l l %reg (va l 0 x100c585b0 tmp .10) , 2 , % reg (va l 0 x100d9a020)
ld %reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100d9a020) , % reg (va l 0 x100c591a0 tmp . 1 8)
fmuls %reg (va l 0 x100c58dc0 tmp.12) , % reg (va l 0 x100c586b0 FPVAL2) , % reg (va l 0 x100c58e40 tmp . 1 3)
%ccreg (va l 0 x100dd7c90) = fcmps %reg (va l 0 x100c591a0 tmp.18) , % reg (va l 0 x100c58730 FPVAL3)
add %g0 , % reg (va l 0 x100c58ab0 i . 0 . 0) , % reg (va l 0 x100c58b50 tmp . 6)
ba %disp (l a b e l l o o p e x i t)
nop

SideEpi logue :
or %reg (va l 0 x100ddbfa0) , 0 , % reg (va l 0 x100ddc760)
s l l %reg (va l 0 x100ddc760) , 2 , % reg (va l 0 x100dd7d30)
fmovs %reg (va l 0 x100ddc040) , % reg (va l 0 x100ddc800)
fmuls %reg (va l 0 x100ddc800) , % reg (va l 0 x100c58630 FPVAL) , % reg (va l 0 x100c59490 tmp . 2 9)
st %reg (va l 0 x100c59490 tmp.29) , % reg (va l 0 x100c58530 TMP) , % reg (va l 0 x100dd7d30)
ba %disp (l a b e l S ideExit)
nop

Figure 5.9: Modulo Scheduled Loop for our Example Loop (Side Exit and Side Epilogue)

63

Chapter 6

Results

In this chapter, the Swing Modulo Scheduling algorithm and the extensions for superblock loops

are evaluated on the following key issues: efficiency in terms of compile time, how close to optimal

the achieved schedule is, and the overall performance impacts of the transformation taking into

consideration register spills and execution time.

First, we provide some background information about the SPARC Architecture in Section 6.1,

then the results for the SMS algorithm are discussed in Section 6.2 and finally, the results for the

superblock extensions are discussed in Section 6.3.

6.1 Ultra SPARC IIIi Architecture

We implemented Swing Modulo Scheduling in the LLVM Compiler Infrastructure [26] as a static

optimization in the SPARC V9 backend (Section 4.1). We wrote a scheduling description, described

in Section 4.1.1, for the Ultra SPARC IIIi to describe the resources and other scheduling restrictions

imposed by the architecture.

The Ultra SPARC IIIi processor, developed by Sun Microsystems, is 4-way super-scalar proces-

sor with a 14 stage pipeline. It implements the 64-bit SPARC V9 architecture and can issue up to

4 instructions per clock cycle (given the right mix of instructions).

The scheduling description for the Ultra SPARC IIIi processor describes for each instruction

the latency (in cycles), blocking properties, pipeline resource usages, and the grouping rules. The

execution units described below give a broad overview of the latencies for each type of instruction

based upon the execution unit utilized. Full latency details are available in the Ultra SPARC IIIi

64

manual [1].

Blocking is when the processor halts the dispatch of another group of instructions for a set

number of cycles. Instructions such as floating point divide, integer divide, integer multiply, and

floating point square root block anywhere from 5-70 cycles. Some instructions, such as floating point

divide, only block other floating point operations from dispatching for some number of cycles. This

blocking property limits the amount of instruction level parallelism that Swing Modulo Scheduling

can take advantage of.

The Ultra SPARC IIIi has 6 parallel execution pipelines, referred to here as resources:

• 2 integer Arithmetic and Logic Units (ALU) pipelines: Handles all integer addition, subtrac-

tion, logic operations, and shifts. Each operation takes 1 cycle.

• 1 Branch pipeline: Handles all branch instructions, resolving one branch per cycle.

• 1 Load/Store pipeline: Handles load and store instructions. Loads take between 2 and 3

cycles (on an L1 hit) and stores utilize a store buffer and have an effective latency of 0 cycles.

Additionally this pipeline handles integer multiplication and division. Integer multiplication

has a latency of 6 to 9 cycle (depending upon value of the operands), and integer division has

a latency of 40 to 70 cycles.

• 1 Floating-Point Multiply pipeline: Handles floating point multiplication in single or double

precision. It has 4 cycles of latency, but is fully pipelined. Floating point division is iterative

(not pipelined) and can take between 17 (single precision) and 20 (double precision) cycles.

• 1 Floating-Point Addition pipeline: Handles all floating point addition operations. It is fully

pipelined and has 4 cycles of latency.

The mix of instructions that can be dispatched is controlled by the resources used by each

instruction. For example, 2 SHIFTs and a floating point ADD can be issued together because

there are 2 ALU units and 1 floating point addition pipeline, but 2 SHIFTs and 1 integer ADD

instruction can not be issued together because this group needs 3 ALUs when only 2 are available.

Instruction grouping rules restrict which instructions may be issued together. Grouping rules

are used so that instructions are maintained in execution order, each pipeline only runs a subset

65

of instructions, and because some multi-cycle instructions require helpers (NOPs) to maintain the

pipelines. Instructions, depending upon their type, may abide by one of the following grouping

rules:

• Break Group After: The instruction must be the last in the group.

• Break Group Before: The instruction must be the first in the group.

• Single Issue Group: The instruction must be issued by itself.

It is important to abide by an instruction’s grouping rules when constructing the schedule

otherwise instructions will be unnecessarily stalled.

As discussed in Section 5.1, the SPARC V9 architecture does not have alternative instructions

for those that cause exceptions, or support for speculative execution. The SPARC V9 architecture

does have an instruction which can fetch up to 2KB of data which can potentially reduce load

misses in the cache. This does not help with speculative execution of code for Global Swing

Modulo Scheduling, but it potentially reduces the number of load misses in the cache. However

in our implementation, the scheduling description uses a higher latency for loads, which places the

load at a higher priority in the scheduler. This latency padding increases the changes that the load

will complete (if missed in the cache or not) before instructions use the result,reducing the amount

of time the processor is stalled.

6.2 Swing Modulo Scheduling Results

This section presents an evaluation of our implementation of the Swing Modulo Scheduling algo-

rithm for the SPARC V9 architecture.

6.2.1 Methodology and Benchmarks

Swing Modulo Scheduling was implemented as a static optimization in the SPARC V9 backend

of the LLVM Compiler Infrastructure. Each benchmark is compiled using llvmgcc, all the normal

LLVM optimizations are run, instructions are selected, local scheduling occurs, and SMS is applied.

After SMS, register allocation is done and SPARC V9 assembly code is generated. GCC 3.4.2 is

66

used to assemble and link the executable. Each executable is run three times, and the minimum

time (user+system) is used as the final execution time.

All benchmarks were compiled and executed on an 1GHz Ultra SPARC IIIi processor system.

For this work, we selected benchmarks with a large number of single basic block loops from the

SPECINT 2000, SPECFP 2000, SPECINT 95, and SPECFP 95 benchmarks, the PtrDist suite [5],

the FreeBench suite [35], and the Prolangs-C suite. Additionally, some miscellaneous programs

such as fpgrowth [19], sgefa, make dparser, hexxagon, optimizer-eval, and bigfib were included.

Benchmarks elided from these results were excluded because of a lack of single basic blocks loops

or minor bugs in the implementation.

6.2.2 Loop Statistics

Swing Modulo Scheduling (SMS) transforms single basic block (SBB) loops without control flow

into a prologue, kernel, and epilogue. Table 6.1 shows the loop statistics for a variety of benchmarks.

The columns of the table are as follows:

• Program: Name of the benchmark.

• LOC: Number of lines of code in the benchmark.

• SBB Loops: Total number of single basic block loops.

• Calls: Number of SBB loops that have calls.

• Cond Mov: Number of SBB loops that have conditional move instructions. In the SPARC

V9 backend conditional move instructions violate SSA, and thus can not be handled by our

SMS implementation.

• Large: Number of SBB loops with more than 100 instructions.

• Invalid: Number of SBB loops that are invalid for reasons such as the loop’s trip count is not

loop invariant.

• Valid: The number of SBB loops that can be scheduled by SMS.

• Percentage: The percentage of SBB loops that are valid.

67

Program LOC SBB Loops Calls Cond Mov Large Invalid Valid Percentage

175.vpr 17728 122 36 2 0 9 57 46.72
197.parser 11391 283 102 6 3 65 42 14.84

171.swim 435 16 2 0 8 0 6 37.5
172.mgrid 489 29 7 0 4 2 16 55.17
168.wupwise 2184 138 9 0 0 0 129 93.48

130.li 7598 79 46 0 0 1 3 3.80

102.swim 429 15 1 0 8 0 6 40.0
101.tomcatv 190 7 1 0 2 0 4 57.14
107.mgrid 484 27 6 0 4 2 15 55.55
104.hydro2d 4292 68 2 0 10 0 56 82.35

fpgrowth 634 19 5 0 0 2 11 57.89
sgefa 1220 19 5 0 0 2 11 57.89
make dparser 19114 78 24 0 0 4 10 12.82
hexxagon 1867 95 3 0 0 9 13 13.68
optimizer-eval 1641 60 17 0 0 11 26 43.33

anagram 650 6 2 0 0 1 3 50.0
bc 7297 97 13 13 1 2 14 14.43
ft 1803 7 2 0 0 1 4 57.14
ks 782 13 3 0 0 6 4 30.76

pcompress2 903 22 2 0 0 0 13 59.09
analyzer 923 11 3 0 0 0 6 54.54
neural 785 9 0 4 0 0 5 66.67

agrep 3968 175 21 3 0 18 80 45.71
football 2258 29 6 0 1 0 9 31.03
simulator 4476 41 0 0 0 0 25 60.98

toast 6031 33 1 0 0 1 13 39.39
mpeg2decode 9832 56 24 4 1 0 23 41.07

bigfib 311 96 1 0 0 8 14 14.58

Table 6.1: Loop Statistics for the Benchmarks

The loop statistics give an idea of the opportunities that are available for the SMS transfor-

mation. The number of single basic blocks in the benchmarks range from 175 in agrep to 7 in

101.tomcatv and ft. Table 6.1 shows that a large number of loops are rejected due to function

calls. In 197.parser and 130.li over half of the loops are rejected because they contain a call.

Unfortunately, handling calls is not something any Modulo Scheduling algorithm supports and is

not a problem unique to Swing Modulo Scheduling.

There are very few loops that contain conditional moves. The most are found in bc and

104.hydro2d. The reason loops with conditional moves can not be handled is because a value

is redefined in the SPARC V9 backend and SSA is violated. Our implementation assumes that

the basic blocks are in SSA form, and it is not a limitation of SMS that loops with this property

can not be scheduled. With enough time, the correct changes to our implementation of the SMS

algorithm and the LLVM SPARC V9 backend could be made to allow loops with conditional moves

68

to be processed.

The Large column denotes loops that contain over 100 instructions. Because Modulo Scheduling

can significantly increase register pressure, loops with many instructions have a higher potential

for a large number of live values regardless of the heuristics used to schedule instructions. Swing

Modulo Scheduling, as discussed in Chapter 3 performs well at keeping register pressure low, but

it can not prevent spills from happening. In many production compilers, if Modulo Scheduling

generates spills, the original loop is used instead of the modulo scheduled loop. Because SMS is

run before register allocation and no live variable analysis is available, there is no way to predict or

know when spills have been generated until after the SMS pass has completed. At that point, it is

very difficult to undo Modulo Scheduling. Based upon our experiments, we have found that loops

with greater than 100 instructions are extremely likely to generate spills and degrade performance

substantially. Therefore, our implementation rejects any loop that has greater than 100 instructions.

This actually occurs infrequently in practice as shown in Table 6.1. The most large loops rejected

is 10 from 104.hydro2d, 171.swim and 102.swim are close behind with 8. Most benchmarks

reject at most one large loop.

The Invalid column represents loops that are rejected for other reasons, but by far the most

common is that the loop’s trip count is not loop invariant. This means that the number of times

the loop executes is dependent upon some value that is being computed in the loop. Swing Modulo

Scheduling, as well as all Modulo Scheduling algorithms, must know the number of times the loop

iterates, or must prove at compile time that the loop iterates based upon some value computed

before the loop is entered. Because instructions are reordered with the kernel, and can exist from

previous iterations, the number of times the loop executes must not be dependent upon some value

one of those instructions computes.

Table 6.1 shows that most benchmarks have loops in the correct form, while programs such as

197.parser, hexxagon, optimizer-eval, and agrep have a large number of loops that are not in

the correct form. Most likely these loops are while loops in the original program.

The last two columns in Table 6.1 show the number of single basic block loops that are valid (no

calls, conditional moves, are small, and have a loop-invariant induction variable) and the percentage

of loops that are valid. This ranges anywhere from 93.48% for 168.wupwise to 3.8% for 130.li. A

69

larger number of valid loops does not guarantee that a benchmark will have increased performance.

6.2.3 Compile Time

Swing Modulo Scheduling differentiates itself from other Modulo Scheduling techniques because it

never backtracks when scheduling instructions. Because of this, Swing Modulo Scheduling is very

efficient in the amount of time it takes to compute a schedule.

Table 6.2 shows the breakdown of compile time for Swing Modulo Scheduling for programs that

range from 190-19114 lines of code, where each column is the following:

• Program: Name of benchmark.

• Valid: The number of SBB valid loops that are available to be modulo scheduled.

• MII: Time to calculate the RecMII and ResMII values for all SBB loops.

• NodeAttr: Time to compute all the node attributes for all SBB loops.

• Order: Time to order the nodes for all SBB loops.

• Sched: Time to compute the schedule and kernel for all SBB loops.

• Recon: Time to construct the loop into a prologue, epilogue, kernel, and stitch it back into

the original program for all SBB loops.

• SMS: Total time for the Swing Modulo Scheduling algorithm to process all SBB loops.

• Total: Total time to compile the benchmark.

• Ratio: Ratio of the total compile time spent on Modulo Scheduling all the SBB loops to the

total compile time.

On average, Swing Modulo Scheduling has a very low compile time percentage of 1% for most

programs, with all but one under 14%. There is one program that drastically increased compile

time. 175.vpr has a 37% compile time percentage, and most of that is from the time to calculate

the RecMII and ResMII. This increase in time is primarily due to the circuit finding algorithm.

Figure 6.1 shows the break down of the compile times of the phases of SMS as a bar chart.

70

Program Valid MII NodeAttr Order Sched Recon SMS Total Ratio

175.vpr 57 94.5799 0.0600 7.2100 0.2200 0.0300 103.6000 278.7899 0.37
197.parser 42 0.0898 0.0100 0.0299 0.0399 0.0099 0.3199 90.3099 0.00

171.swim 6 0.0500 0.0299 0.0398 0.0999 0.0400 0.2999 8.2200 0.04
172.mgrid 16 0.1700 0.0399 0.0399 0.2599 0.0399 0.5799 11.4699 0.05
168.wupwise 129 2.9199 0.4599 0.6099 4.9300 0.1099 9.5400 66.3700 0.14

130.li 3 0.0099 0.0000 0.0000 0.0000 0.0000 0.1099 48.5400 0.00

102.swim 6 0.0699 0.0500 0.0500 0.2099 0.0299 0.4299 9.3500 0.05
101.tomcatv 4 0.0298 0.0300 0.0300 0.0400 0.0199 0.1500 3.5800 0.04
107.mgrid 15 0.1100 0.0399 0.0498 0.1799 0.0300 0.4700 11.1300 0.04
104.hydro2d 56 1.4199 0.1899 0.2799 0.5700 0.1000 2.6899 44.3499 0.06

fpgrowth 11 0.3199 0.0000 0.0700 0.0199 0.0000 0.4199 4.3800 0.10
sgefa 11 0.0099 0.0000 0.0000 0.0399 0.0300 0.1100 5.7500 0.02
make dparser 10 0.0499 0.0100 0.0100 0.0000 0.0000 0.1699 119.8199 0.00
hexxagon 13 0.0300 0.0100 0.0100 0.0500 0.0099 0.1900 81.1600 0.00
optimizer-eval 26 0.0299 0.0099 0.0099 0.0199 0.0100 0.1599 10.0900 0.02

anagram 3 0.0199 0.0000 0.0000 0.0299 0.0000 0.0599 3.0299 0.02
bc 14 0.0399 0.0100 0.0100 0.0400 0.0300 0.1599 68.5599 0.00
ft 4 0.0000 0.0000 0.0099 0.0100 0.0000 0.0199 3.3000 0.01
ks 4 0.0099 0.0000 0.0000 0.0199 0.0000 0.0399 5.3400 0.01

pcompress2 13 0.0399 0.0099 0.0198 0.0599 0.0100 0.1699 4.9700 0.03
analyzer 6 0.0299 0.0100 0.0100 0.0099 0.0000 0.0600 4.0300 0.01
neural 5 0.0200 0.0099 0.0099 0.0200 0.0000 0.0600 3.2899 0.02

agrep 80 0.1998 0.0199 0.0199 0.1899 0.0800 0.7000 48.5600 0.01
football 9 0.0799 0.0300 0.0499 0.0500 0.0199 0.2399 47.7299 0.01
simulator 25 0.0798 0.0100 0.0199 0.0199 0.0400 0.2000 30.8499 0.01

toast 13 0.0499 0.0099 0.0099 0.0499 0.0700 0.2199 47.1699 0.00
mpeg2decode 23 0.0899 0.0000 0.0200 0.0600 0.0300 0.2499 53.4700 0.00

bigfib 14 0.0499 0.0100 0.0100 0.2100 0.0000 0.3599 78.7400 0.00

Table 6.2: Compile Time Breakdown for Benchmarks

For graphs with strongly connect components (SCCs) with many edges (almost N2 edges), the

exponential nature of the circuit finding algorithm explodes. A solution is to use the SCC as the

recurrence in the graph for SCCs with an excessive number of edges. This does not impact the

correctness of SMS, but may not estimate the minimal RecMII. If an SCC is used, it represents all

the recurrences within it. The RecMII for this SCC is calculated by dividing the total latency of

all the nodes in the SCC by the sum of all the dependence distances.

Our experiments have shown that SCCs with more than 100 edges cause the circuit finding

algorithm to exhibit exponential behavior. Therefore, for our experiments SCCs were used instead

of finding all recurrences when the number of edges exceeded 100. However, 175.vpr may need to

have a lower threshold and a more sophisticated heuristic is needed.

71

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0

0
%

175.vpr

197.parser

171.swim

172.mgrid

168.wupwise

130.li

102.swim

101.tomcatv

107.mgrid

104.hydro2d

fpgrowth

sgefa

make_dparser

hexxagon

optimizer-eval

anagram

bc

ft

ks

pcompress2

analyzer

neural

agrep

football

simulator

toast

mpeg2decode

bigfib

L
o
o
p
 R

e
c
o
n

S
c
h
e
d
u
lin

g

O
rd

e
ri
n
g

N
o
d
e
 A

tt
r

M
II

F
ig

u
re

6
.1

:
C

o
m

p
il
e

T
im

es
fo

r
th

e
P

h
a
se

s
o
f
S
M

S

7
2

6.2.4 Static Measurements

Traditionally, Modulo Scheduling algorithms have been evaluated on how close to theoretical Initia-

tion Interval (MII) the actual schedule achieves. Minimum II (MII) is the maximum of the resource

and recurrence II values. In theory, this value represents the maximum number of cycles need to

schedule all the instructions.

Program Valid-Loops Sched-Loops Stage0 RecCon ResCon MII-Sum II-Sum II-Ratio

175.vpr 57 16 7 0 57 166 171 0.97
197.parser 42 22 18 0 42 218 218 1.00

171.swim 6 6 1 0 6 193 193 1.00
172.mgrid 16 13 3 0 16 189 253 0.75
168.wupwise 129 25 0 0 129 570 570 1.00

130.li 3 2 1 0 3 21 21 1.00

102.swim 6 6 1 0 6 334 334 1.00
101.tomcatv 4 4 0 0 4 107 107 1.00
107.mgrid 15 12 3 0 15 177 218 0.81
104.hydro2d 56 46 10 0 56 788 815 0.97

fpgrowth 11 1 1 0 10 8 8 1.00
sgefa 11 10 0 0 11 67 104 0.64
make dparser 10 3 0 0 10 35 35 1.00
hexxagon 13 5 2 0 13 41 41 1.00

optimizer-eval 26 2 0 0 26 16 16 1.00
anagram 3 2 1 0 3 20 20 1.00
bc 14 7 0 0 14 205 205 1.00
ft 4 1 1 0 4 9 9 1.00
ks 4 3 2 0 4 21 22 0.95

pcompress2 13 9 4 0 13 120 120 1.00
analyzer 6 3 1 0 6 48 48 1.00
neural 5 2 0 0 5 15 19 0.95

agrep 80 49 18 0 80 577 577 1.00
football 9 4 2 0 9 70 70 1.00
simulator 25 24 19 0 25 290 290 1.00

toast 13 11 0 0 13 170 172 0.99
mpeg2decode 23 13 1 0 23 139 139 1.00

bigfib 14 3 1 0 14 27 27 1.00

Table 6.3: Static Measurements for the Benchmarks

Table 6.3 shows the static measurements for the loops that were scheduled. Each column lists

the following:

• Program: Benchmark name.

• Valid-Loops: The number of valid single basic block loops.

• Sched-Loops: The number of loops successfully scheduled.

• Stage0: The number of loops whose schedule does not overlap iterations.

73

• RecCon: The number of loops whose MII is constrained by recurrences.

• ResCon: The number of loops whose MII is constrained by resources.

• MII-Sum: The sum of MII for all loops.

• II-Sum: The sum of achieved II for all loops.

• II-Ratio: The ratio of actual II to theoretical II .

The Sched-Loops column shows the number of loops that were successfully scheduled. This

means that Swing Modulo Scheduling was able to compute a schedule without any resource or

recurrence conflicts which a length (in cycles) less than the total latency of all instructions in the

loop. It is possible for a loop to not be scheduled if there are not enough machine resources to

be able to schedule instructions without stalling the processor. Once Swing Modulo Scheduling

reaches the maximum allowable value for II, the algorithm gives up and the loop is left unchanged.

Swing Modulo Scheduling attempts to overlap iterations of the loop. However, if there are

insufficient resources or too many loop-carried dependencies, it may be impossible for any ILP to

be exposed. Therefore, schedules may be obtained that have a maximum stage of 0, which means

that no iterations were overlapped. While this situation is not ideal, the schedule may still be

optimal and be executed in less cycles than the original schedule. This is because instructions are

scheduled to avoid processor stalls caused by resource or dependence conflicts and are scheduled

close to the predecessors and successors reducing register pressure. Our experiments actually show

register spills to decrease for some benchmarks and is discussed in the next section.

The RecCon and ResCon columns show how many loops are constrained by resources and which

are constrained by dependences. From our description of the SPARC V9 architecture in Section 6.1

it is no surprise that all the benchmarks are constrained by resources. This is because the SPARC

has very strict grouping rules and blocking properties for many of its instructions. This means that

while on some architectures Swing Modulo Scheduling can execute other instructions while long

latency instructions (such as integer divide) are executing, the SPARC blocks all instructions from

issuing. This reduces the possibility of using ILP. There are very few instructions with long latency

that do not block instructions. This is the primary reason that the benchmark’s MII is constrained

by resources.

74

Figure 6.2: Theoretical II to Achieved II Ratio

75

The last three columns in Table 6.3 list the theoretical II and actual II values achieved, and

their ratio. The goal of Swing Modulo Scheduling is to achieve an optimal schedule with an II as

close to MII as possible.

Figure 6.2 charts the II ratio for each benchmark. Almost all benchmarks have a ratio of 1.0,

meaning theoretical II was achieved. Achieving theoretical II indicates that SMS found the most

optimal schedule possible given resource and recurrence constraints. For 172.mgrid, sgefa, and

neural the actual II achieved is 25-55% higher. This can be attributed to two sources. The first

is that the ordering of the nodes may not be optimal. The order of the instructions affects the

window of time that the instruction may be scheduled. Recall in Section 4.6 that instructions

scan the schedule from some starting cycle to some end cycle which is determined by what nodes

are already in the partial schedule. The second thing that can affect the actual II is how RecMII

is calculated. In the previous section we mentioned that in some cases where the circuit finding

algorithm takes exponential time, so the SCC is used to approximate RecMII. This approximate

may be drastically different than what the scheduler can actually achieve.

Overall, SMS performs very well at finding optimal schedules for almost all benchmarks.

6.2.5 Performance Results

Performance gains for Swing Modulo Scheduled programs are very dependent upon the architecture

targeted and the dynamic loop iteration counts. There can be a significant performance cost for

restructuring the loop into a prologue (ramp up), kernel (steady state), and epilogue (ramp down).

For loops that do not execute for a long period of time, this cost can actually reduce performance.

Additionally, the architecture has a key role in how much ILP can be achieved as found in the

previous section. Increasing register spills can also reduce performance.

Table 6.4 shows some statistics for the performance results of our benchmarks, with the columns

as follows:

• Program: Name of benchmark.

• LOC: Lines of code in the original benchmark.

• Sched-Loops: Number of scheduled loops.

76

Program LOC Sched-Loops Spills MS Time No-MS Time Runtime Ratio

175.vpr 17728 16 -27 38.57 36.26 1.06
197.parser 11391 22 -48 24.80 24.81 1.00

171.swim 435 6 62 60.63 60.50 1.00
172.mgrid 489 13 50 136.61 141.33 0.97
168.wupwise 2184 25 35 141.66 147.69 0.96

130.li 7598 2 1 0.40 0.39 1.03

102.swim 429 6 100 2.48 2.47 1.00
101.tomcatv 190 4 12 24.94 24.45 1.02
107.mgrid 484 12 67 30.38 39.77 0.76
104.hydro2d 4292 46 31 31.14 29.88 1.04

fpgrowth 634 1 -7 67.25 71.19 0.95
sgefa 1220 10 10 37.39 34.80 1.07
make dparser 19114 3 -38 0.29 0.32 0.91
hexxagon 1867 5 -2 65.95 63.23 1.04
optimizer-eval 1641 2 -7 104.35 100.03 1.04

anagram 650 2 0 8.06 8.05 1.00
bc 7297 7 -7 6.64 6.41 1.04
ft 1803 1 0 3.50 3.49 1.00
ks 782 3 0 13.97 10.57 1.32

pcompress2 903 9 12 1.09 1.07 1.02
analyzer 923 3 9 1.13 1.12 1.01
neural 785 2 -1 2.76 2.61 1.06

agrep 3968 49 159 0.03 0.04 0.75
football 2258 4 -35 0.01 0.01 1.00
simulator 4476 24 8 0.01 0.01 1.00

toast 6031 11 141 0.39 0.34 1.15
mpeg2decode 9832 13 48 0.24 0.23 1.04

bigfib 311 3 110 7.44 8.58 0.87

Table 6.4: Performance Results for the Benchmarks

• Spills: The net gain/loss of register spills after Modulo Scheduling.

• MS Time: Execution time of the program transformed by SMS.

• No-MS Time: Execution time of the program without SMS.

• Runtime Ratio: The runtime ratio of the benchmark.

Because Swing Modulo Scheduling aims to reduces register pressure, on many cases the number

of register spills is actually decreased by performing SMS. For example,175.vpr, 197.parser,

fpgrowth, make dparser, hexxagon, optimizer-eval, bc, neural, and football have up to

48 spills eliminated. However, SMS can also increase register pressure, which is demonstrated by

the fair number of benchmarks that have more register spills. This increase in register spills can

slow down the program.

Figure 6.3 charts the runtime ratio results of Swing Modulo Scheduling. Overall, most bench-

77

Figure 6.3: Runtime Ratio Results

78

marks have no significant performance gains or losses from Modulo Scheduling. Most likely, this is

because there was virtually no ILP available due to resource constraints imposed by the architec-

ture (no benchmarks were constrained by recurrences). Another issue is that while some loops may

be sped up by SMS, other shorter loops are offsetting the speedup by their performance cost from

the prologue and epilogues. Ideally, heuristics, such as iteration count threshold, need to be used

to determine which loops to Modulo Schedule and which to not. This can be easily done for loops

whose iteration counts are known at compile time, but we did not experiment with this heuristic in

our implementation. Overall, we feel that the architecture’s resource constraints played the biggest

role in the lack of performance gains.

There are a couple of benchmarks that show significant performance gains (10-33%), 107.mgrid,

bigfib, and make dparser, while a few others, 172.mgrid, 168.wupwise, fpgrowth, show

small speedups (1-9%). agrep runs for such a short amount of time its execution time is likely

to be noise. 107.mgrid speeds up by 33%, despite increasing the number of register spills by 50

and schedules a modest number of loops. Its speedup can be attributed to long running loops

that overcome the startup cost of all the modulo scheduled loops. In addition, several of the loops

scheduled in 107.mgrid have floating point instructions that do not block other instructions from

issuing. These are 4-7 cycle latency instructions which provide a small amount of potential ILP.

While the performance results are not uniformly positive, it does give some indication that

given a different architecture, Swing Modulo Scheduling would have more freedom to schedule

instructions, overlap latencies, and ultimately decrease execution times.

6.3 Superblock Swing Modulo Scheduling Results

This section presents an evaluation of our implementation of Swing Modulo Scheduling for Su-

perblocks for the SPARC V9 architecture.

6.3.1 Methodology and Benchmarks

The extensions to the Swing Modulo Scheduling algorithm for superblocks was implemented as

a static optimization in the SPARC V9 backend of the LLVM Compiler Infrastructure. Each

benchmark is compiled with llvmgcc, all the normal LLVM optimizations are applied, instructions

79

are selected, local scheduling is performed, and finally SMS for superblocks is applied. Superblocks

are found using the LLVM Loop Analysis, where each loop is checked to see if it meets the criteria

of a superblock (single entry, multiple exit). After SMS for superblocks has completed, registers

are allocated, and SPARC V9 assembly code is generated. GCC 3.4.2 is used to assembly and link

the executable. For the final execution time, the executable is run three times and the minimum

(user + system) is used as the result.

All benchmarks were compiled and executed on a 1 GHz Ultra SPARC IIIi processor system.

Benchmarks with superblock loops were selected from the PtrDist suite [5], the MediaBench suite,

MallocBench suite, the Prolangs-C suite, the Prolangs-C++ suite, and the Shootout-C++ suite.

Additionally, some miscellaneous programs such as make dparser, hexxagon, and spiff were in-

cluded. Benchmarks elided from these results were primarily because of a lack of superblock loops

and a few due to bugs in the implementation.

6.3.2 Superblock Statistics

Swing Modulo Scheduling for superblocks transforms superblock loops without control flow into

a prologue, kernel, epilogue, side epilogues, and side exits. Table 6.5 shows the superblock loop

statistics for the benchmarks selected. The columns of the table are as follows:

• Program: Name of the benchmark.

• LOC: Number of lines of code in the benchmark1.

• Loops: Total number of loops.

• SB: Total number of superblock loops.

• Calls: Number of superblock loops that have calls.

• CondMov: Number of superblock loops that have conditional move instructions. In the

SPARC V9 backend conditional move instructions violate SSA, and thus can not be handled

by our extended SMS implementation.

1The number of lines of code do not include libraries. Therefore, it is not unusual to see a large number of loops
for a small programs because they are found in the libraries.

80

Program LOC Loops SB Calls CondMov Invalid Valid Percentage

make dparser 19111 206 17 4 1 1 11 64.71
hexxagon 1867 146 9 4 0 1 4 44.44
spiff 5441 185 4 1 0 0 3 75.00

anagram 650 10 2 1 0 0 1 50.00
bc 7297 77 3 1 0 0 2 66.67

gs 23423 177 8 4 0 0 4 50.00

timberwolfmc 24951 428 4 1 0 0 3 75.00
assembler 3177 67 2 0 0 0 2 100.00
unix-tbl 2829 50 4 0 1 1 2 50.00

city 923 124 4 0 0 1 3 75.00
deriv1 195 119 4 0 0 1 3 75.00
employ 1024 119 4 0 0 1 3 75.00
office 215 117 4 0 0 1 3 75.00
shapes 245 120 4 0 0 1 3 75.00

encode 1578 10 2 0 0 0 2 100.00

ackermann 17 121 4 0 0 1 3 75.00
ary 23 121 4 0 0 1 3 75.00
ary2 43 121 4 0 0 1 3 75.00
ary3 26 123 4 0 0 1 3 75.00
except 69 118 4 0 0 1 3 75.00
fibo 22 118 7 3 0 1 3 42.85
hash 36 123 5 1 0 1 3 60.00
hash2 35 125 5 1 0 1 3 60.00
heapsort 72 117 4 0 0 1 3 75.00
hello 12 117 4 0 0 1 3 75.00
lists 58 116 4 0 0 1 3 75.00
lists1 80 132 8 0 0 1 7 87.50
matrix 66 124 4 0 0 1 3 75.00
methcall 65 119 4 0 0 1 3 75.00
moments 86 9 1 0 0 0 1 100.00
nestedloop 24 116 4 0 0 1 3 75.00
objinst 67 119 4 0 0 1 3 75.00
random 33 116 4 0 0 1 3 75.00
reversefile 26 122 4 0 0 1 3 75.00
sieve 44 119 4 0 0 1 3 75.00
spellcheck 52 133 10 6 0 1 3 30.00
strcat 29 113 4 0 0 1 3 75.00
sumcol 25 116 4 0 0 1 3 75.00
wc 40 118 4 0 0 1 3 75.00
wordfreq 98 24 3 2 0 0 1 33.33

Table 6.5: Superblock Loop Statistics for the Benchmarks

81

• Invalid: Number of superblock loops that are invalid for reasons such as the loop’s trip count

is not loop invariant.

• Valid: The number of superblock loops that can be scheduled by our extended SMS algorithm.

• Percentage: The percentage of superblock loops that are valid.

The superblock loop statistics represent the opportunities that are available for our extended

SMS algorithm. The number of superblock loops in the benchmarks range from 17 in make dparser

to 1 in moments. The reason these numbers are low is because superblocks are not commonly

found in typical programs and more likely formed by using profile information. However, the goal

of this thesis is to prove the potential of the extensions, despite the reduced number of superblocks.

Table 6.5 shows that the majority of the superblock loops are rejected because they contain

calls. spellcheck is at the top with 6 superblock loops rejected, followed closely by make dparser,

hexxagon, and gs with 4, fibo with 3, wordfreq with 2, and a few other benchmarks with 1

superblock loop rejected. As mentioned previously, all Modulo Scheduling algorithms (including

Swing Modulo Scheduling) can not handle loops with calls, and our extensions to SMS do not

change that restriction.

There are very few superblock loops that contain conditional moves. The most are 1 in

make dparser and unix-tbl. The reason that superblock loops with conditional moves can not

be transformed is because SSA is violated by the SPARC V9 backend and our implementation

assumes that the loop is in SSA form. The invalid column represents the number of superblock

loops that were rejected for other reasons such as the loop’s trip count is not loop invariant. This

was explained in the previous section (Section 6.2.2). Several benchmarks have superblock loops

rejected for this reason.

The last two columns in Table 6.5 show the number of superblock loops that are valid (no calls,

no conditional moves, and have loop-invariant induction variable) and the percentage of loops that

are valid. This ranges anywhere from 100% (such as assembler, encode, and moments) to 30%

(spellcheck).

82

6.3.3 Compile Time

As mentioned previously, Swing Modulo Scheduling is more efficient than many Modulo Scheduling

algorithms because it never backtracks when scheduling instructions. Our extensions to SMS for

superblocks does not change this property, and only adds slightly more complexity to the recon-

struction phase to handle side exits.

Program Valid MII NodeAttr Order Sched Recon SMS Total Total Ratio

make dparser 11 0.0199 0.0100 0.0000 0.0100 0.0300 0.1100 120.7599 0.0009
hexxagon 4 0.0000 0.0000 0.0099 0.0200 0.0099 0.0700 81.0399 0.0009
spiff 3 0.0100 0.0000 0.0000 0.0199 0.0000 0.0499 33.6899 0.0015

anagram 1 0.0100 0.0000 0.0000 0.0200 0.0000 0.04 2.9299 0.0133
bc 2 0.0000 0.0000 0.0000 0.0000 0.0099 0.0299 67.8800 0.0004

gs 8 0.0798 0.0000 0.0100 0.0300 0.0100 0.11 120.8199 0.0018

timberwolfmc 3 0.0000 0.0000 0.0000 0.0299 0.0000 0.0299 282.4299 0.0004
assembler 2 0.0000 0.0000 0.0000 0.0000 0.0099 0.0499 14.4400 0.0020
unix-tbl 2 0.0099 0.0000 0.0000 0.0099 0.0000 0.0399 54.6600 0.0009

city 3 0.0000 0.0000 0.0000 0.0000 0.0300 0.07 77.7499 0.0005
deriv1 3 0.0099 0.0000 0.0000 0.0000 0.0200 0.05 71.0300 0.0010
employ 3 0.0200 0.0000 0.0000 0.0000 0.0000 0.0399 65.8900 0.0006
office 3 0.0000 0.0000 0.0100 0.0199 0.0000 0.0199 70.1399 0.0007
shapes 3 0.0099 0.0000 0.0000 0.0099 0.0000 0.7999 62.6199 0.0006

encode 2 0.0000 0.0000 0.0000 0.0000 0.0099 0.0199 4.2699 0.0047

ackermann 3 0.7399 0.0000 0.0198 0.0000 0.0000 0.7999 71.9099 0.0111
ary 3 0.0100 0.0000 0.0000 0.0000 0.0000 0.0700 70.8699 0.0010
ary2 3 0.0000 0.0000 0.0000 0.0199 0.0000 0.0499 70.5399 0.0007
ary3 3 0.0064 0.0007 0.0015 0.0047 0.0072 0.0700 71.3900 0.0010
except 3 0.0099 0.0000 0.0099 0.0000 0.0099 0.0799 71.1899 0.0011
fibo 3 0.0000 0.0099 0.0000 0.0100 0.0000 0.0700 69.5499 0.0010
hash 3 0.0000 0.0000 0.0099 0.0099 0.0000 0.0499 71.0399 0.0007
hash2 3 0.0199 0.0000 0.0000 0.0000 0.0100 0.0900 72.6099 0.0012
heapsort 3 0.0000 0.0000 0.0000 0.0099 0.0000 0.0400 68.5900 0.0006
hello 3 0.0199 0.0000 0.0100 0.0000 0.0000 0.0700 69.7400 0.0010
lists 3 0.0099 0.0000 0.0000 0.0099 0.0000 0.0600 70.8599 0.0008
lists1 7 0.0299 0.0000 0.0000 0.0000 0.0000 0.0900 73.7599 0.0012
matrix 3 0.0000 0.0000 0.0100 0.0099 0.0000 0.0599 71.4600 0.0008
methcall 3 0.0099 0.0000 0.0000 0.0099 0.0099 0.0499 70.1699 0.0007
moments 1 0.0000 0.0000 0.0000 0.0099 0.0000 0.0199 4.5699 0.0044
nestedloop 3 0.0000 0.0000 0.0000 0.0000 0.0200 0.0600 70.2000 0.0009
objinst 3 0.0099 0.0000 0.0000 0.0000 0.0099 0.0399 70.5699 0.0006
random 3 0.0000 0.0000 0.0000 0.0099 0.0099 0.0499 69.9299 0.0007
reversefile 3 0.0199 0.0000 0.0000 0.0000 0.0099 0.0500 72.5100 0.0007
sieve 3 0.0099 0.0000 0.0000 0.0000 0.0099 0.0599 71.1399 0.0008
spellcheck 3 0.3500 0.0099 0.0000 0.0000 0.0099 0.4000 70.4400 0.0057
strcat 3 0.0000 0.0000 0.0000 0.0000 0.0099 0.0799 68.9199 0.0012
sumcol 3 0.0199 0.0000 0.0000 0.0000 0.0000 0.0600 72.0800 0.0008
wc 3 0.0099 0.0000 0.0000 0.0000 0.0099 0.0699 71.0900 0.0010
wordfreq 1 0.0099 0.0000 0.0000 0.0000 0.0000 0.0099 6.2700 0.0016

Table 6.6: Compile Time Breakdown for Benchmarks

Table 6.6 shows the breakdown of compile time for our extended Swing Modulo Scheduling

83

algorithm for superblocks on benchmarks that range from 12-24951 lines of code, where each column

is the following:

• Program: Name of benchmark.

• Valid Loops: The number of valid superblock loops that are available to be modulo scheduled.

• MII: Time to calculate the RecMII and ResMII values for all superblock loops.

• NodeAttr: Time to compute all the node attributes for all superblock loops.

• Order: Time to order the nodes for all superblock loops.

• Sched: Time to compute the schedule and kernel for all superblock loops.

• Recon: Time to construct the loop into a prologue, epilogue, kernel, side epilogues, side exits,

and stitch it back into the original program for all superblock loops.

• SMS Total: Total time for the Swing Modulo Scheduling algorithm to process all superblock

loops.

• Total: Total time to compile the benchmark.

• Ratio: Ratio of the total compile time spent on Modulo Scheduling all the superblock loops

to the total compile time.

Overall, our extended Swing Modulo Scheduling algorithm has a very low compile time of less

than 1% of the total compile time and some are faster than we can measure due to the resolution

of our timer. Even make dparser which has the most superblock loops with 11 has a very low

compile time percentage of 0.01%. While the number of superblock loops per benchmark is small,

these numbers provide a solid basis for the conclusion that our extensions to the Swing Modulo

Scheduling algorithm for superblocks has not drastically increased the time complexity.

Figure 6.4 shows the break down of compile times as a bar chart. This chart illustrates that

there is not one phase that is dominant in regards to the greatest compile time. It varies depending

upon the benchmark. For example, wordfreq and ary spend almost all their time calculating

MII, while encode and objinst spend all their time reconstructing the loop. Without benchmarks

84

Figure 6.4: Compile Times for the Phases of Extended SMS

85

with a large number of superblocks, its not clear which phase dominates the others. However, we

can speculate that given our extensions to the Swing Modulo Scheduling algorithm, the majority

of compile time will still be spent calculating MII (due to the circuit finding algorithm and the

increase in dependences).

6.3.4 Static Measurement Results

Modulo Scheduling algorithms traditionally are evaluated on how close the schedule is to achieving

the theoretical Initiation Interval (MII). Minimum II (MII) is the maximum of the resource and

recurrence II values. This value represents the theoretical maximum number of cycles needed to

complete one iteration of the loop.

Table 6.7 shows the static measurements for the superblock loops that were scheduled. Each

column is the following:

• Program: Benchmark name.

• Valid: The number of valid superblock loops.

• Sched: The number of superblock loops successfully scheduled.

• Stage0: The number of superblock loops whose schedule does not overlap iterations.

• RecCon: The number of superblock loops whose MII is constrained by recurrences.

• ResCon: The number of superblock loops whose MII is constrained by resources.

• MII-Sum: The sum of MII for all superblock loops.

• II-Sum: The sum of achieved II for all superblock loops.

• II-Ratio: The ratio of actual II to theoretical II

The number of superblock loops successfully scheduled is denoted by the Sched-Loops column.

This means that the loops were scheduled without any resource or recurrence conflicts with a

length (in cycles) less than the total latency of all instructions in the loop. Just as the original

SMS algorithm, it is possible for no schedule without conflicts to be found. This means that no

86

Program Valid Sched Stage0 RecCon ResCon MII-Sum II-Sum II-Ratio

make dparser 11 9 3 0 9 69 69 1.00
hexxagon 4 4 1 0 4 30 30 1.00
spiff 3 3 0 0 3 25 25 1.00

anagram 1 1 0 0 1 26 26 1.00
bc 2 2 2 0 2 12 12 1.00

gs 8 5 5 0 8 54 54 1.00

timberwolfmc 3 1 1 0 3 7 7 1.00
assembler 2 2 0 0 2 12 12 1.00
unix-tbl 2 2 1 0 2 36 36 1.00

city 3 3 1 0 3 21 21 1.00
deriv1 3 3 1 0 3 21 21 1.00
employ 3 3 1 0 3 21 21 1.00
office 3 3 1 0 3 21 21 1.00
shapes 3 3 1 0 3 21 21 1.00

encode 2 2 2 0 2 22 22 1.00

ackermann 3 3 1 0 3 21 21 1.00
ary 3 3 1 0 3 21 21 1.00
ary2 3 3 1 0 3 21 21 1.00
ary3 3 3 1 0 3 21 21 1.00
except 3 3 1 0 3 21 21 1.00
fibo 3 3 1 0 3 21 21 1.00
hash 3 3 1 0 3 21 21 1.00
hash2 3 3 1 0 3 21 21 1.00
heapsort 3 3 1 0 3 21 21 1.00
hello 3 3 1 0 3 21 21 1.00
lists 3 3 1 0 3 21 21 1.00
lists1 7 5 1 0 5 30 30 1.00
matrix 3 3 1 0 3 21 21 1.00
methcall 3 3 1 0 3 21 21 1.00
moments 1 1 1 0 1 6 6 1.00
nestedloop 3 3 1 0 3 21 21 1.00
random 3 3 1 0 3 21 21 1.00
reversefile 3 3 1 0 3 21 21 1.00
sieve 3 3 1 0 3 21 21 1.00
spellcheck 3 3 1 0 3 21 21 1.00
strcat 3 3 1 0 3 21 21 1.00
sumcol 3 3 1 0 3 21 21 1.00
wc 3 3 1 0 3 21 21 1.00
wordfreq 1 1 1 0 1 6 6 1.00

Table 6.7: Static Measurements for the Benchmarks

87

schedule could be created that did not stall the processor. Our extensions to the SMS algorithm

gives up on scheduling once the length of the proposed schedule is longer than the total latency of

all instructions in the loop.

Insufficient resources or a large number of loop-carried dependences can make it impossible to

overlap iterations of the loop. Therefore, schedules may be created that have a maximum stage of

zero which means that no iterations were overlapped. While this situation is not ideal, the schedule

may still be optimal and execute in less cycles than the original schedule. In particular, because

we are moving instructions above or below conditional branches, this may have a positive effect

on overall performance despite not exploiting ILP. Additionally, reordering instructions may also

reduce register pressure, and our experiments have shown the number of register spills do decrease

after extended SMS was applied.

The RecCon and ResCon columns show how many superblock loops were constrained by recur-

rences and resources. Similar to the original SMS algorithm, all our benchmarks are constrained by

resources. This is due to the SPARC V9 architecture’s strict grouping rules and blocking properties

of many instructions. Because there are very few instructions with long latencies that do not block

other instructions from executing, the amount of ILP is extremely limited. This is the primary

reason that all the benchmarks are constrained by resources.

Surprisingly all the benchmarks selected achieve theoretical II. This means that given the MII

value, a schedule of length MII was successfully created. This can be attributed to the original

SMS algorithm’s consistency of achieving MII, and the relatively low number of superblocks found.

As the number of superblocks increase, we should see more variation in the achieved II value.

6.3.5 Performance Results

The performance gains for our extended Swing Modulo Scheduling algorithm are directly tied to

the architecture targeted and the dynamic loop iteration counts. Restructuring the superblock loop

into a prologue (ramp up), kernel (steady state), and epilogue (ramp down) can have a significant

performance cost if the loop does not execute for a long period of time. In addition, the architecture

directly controls how much ILP can be achieved. Because the SPARC V9 IIIi architecture does not

support speculative execution (Section 5.2), and most long latency instruction block all others from

88

executing, the architecture is limiting what instructions can be moved above a conditional branch,

and overlapped with other instructions. Increasing register spills can also reduce performance.

Program LOC Sched-Loops Spills MS Time No-MS Time Runtime Ratio

make dparser 19111 9 112 0.31 0.32 0.97
hexxagon 1867 4 -24 67.96 72.68 0.94
spiff 5441 3 9 0.01 0.01 1.00

anagram 650 1 0 8.17 8.13 1.00
bc 7297 2 -77 6.48 6.34 1.02

gs 23423 5 27 0.01 0.01 1.00

timberwolfmc 24951 1 164 0.01 0.01 1.00
assembler 3177 2 19 0.01 0.01 1.00
unix-tbl 2829 2 4 0.01 0.01 1.00

city 923 3 -17 0.10 0.09 1.11
deriv1 195 3 -9 0.01 0.00 1.00
employ 1024 3 -63 0.01 0.00 1.00
office 215 3 17 0.01 0.02 0.50
shapes 245 3 63 0.02 0.02 1.00

encode 1578 2 -2 0.59 0.58 1.02

ackermann 17 3 23 326.83 325.06 1.01
ary 23 3 92 0.73 0.73 1.00
ary2 43 3 -64 0.68 0.69 0.99
ary3 26 3 20 67.06 66.52 1.01
except 69 3 61 0.07 0.08 0.88
fibo 22 3 -37 15.45 15.46 1.00
hash 36 3 52 4.05 4.00 1.01
hash2 35 3 30 29.15 31.48 0.93
heapsort 72 3 19 19.84 20.16 0.99
hello 12 3 31 0.01 0.01 1.00
lists 58 3 -38 27.43 27.28 1.01
lists1 80 5 -23 1.89 1.93 0.98
matrix 66 3 56 69.27 66.73 1.04
methcall 65 3 -14 85.96 87.96 0.98
moments 86 1 0 1.51 1.51 1.00
nestedloop 24 3 -42 42.31 51.76 0.82
objinst 67 3 65 41.62 41.91 0.99
random 33 3 -4 35.65 36.00 0.99
reversefile 26 3 40 0.01 0.01 1.00
sieve 44 3 -63 24.28 24.54 0.99
spellcheck 52 3 -184 0.01 0.01 1.00
strcat 29 3 -143 1.76 1.70 1.04
sumcol 25 3 -59 0.01 0.01 1.00
wc 40 3 18 0.01 0.01 1.00
wordfreq 98 1 -11 0.01 0.01 1.00

Table 6.8: Performance Results for the Benchmarks

Table 6.8 shows the performance statistics for our selected benchmarks, where the columns are

as follows:

• Program: Name of benchmark.

• LOC: Lines of code in the original benchmark.

89

• Sched-Loops: Number of scheduled superblock loops.

• Spills: The net gain/loss of static register spills after our extended SMS.

• MS Time: Execution time of the program transformed by our extended SMS.

• No-MS Time: Execution time of the program without our extended SMS.

• Runtime Ratio: The runtime ratio of the benchmark.

Our extensions to the Swing Modulo Scheduling algorithm for superblock loops do not alter the

original algorithm’s goal of keeping register pressure low. In many cases, the number of register

spills actually decreased by performing SMS on the superblock loops. For example, spellcheck has

a reduction of 184 spills, strct removes 143 spills, and bc eliminates 77 spills. However, in many

cases the number of register spills are increased. timberwolfmc adds 164 spills, make dparser

increases spills by 112, and ary adds 92 spills. Despite the increase in spills, many of the benchmarks

still see performance gains.

Figure 6.5 charts the runtime ratio results of our extensions to the Swing Modulo Scheduling

algorithm2. Overall, most benchmarks have no significant performance gains or losses from Modulo

Scheduling the superblock loops. This is most likely because of increased register spills offsetting

the optimal schedule and because there was not much ILP due to resource constraints imposed by

the architecture (no benchmarks were constrained by recurrences).

There are a few benchmarks that show significant performance gains (7-22%), hexxagon,

hash2, except, nestedloop, while many others, make dparser, ary2, heapsort, lists1, meth-

call, objinst, random, and sieve show smaller speedups (1-3%). Please note that the benchmarks

that have a 2 times speedup are attributed to noise and were only included in this chart for con-

sistency reasons.

nestedloop has the largest speedup of 22% which can attributed to a reduction in 42 spills,

and successfully Modulo Scheduling 3 superblock loops (all but one with overlapped iterations).

Following close behind with a 14% speedup is except which Modulo Schedules 3 superblock loops,

and actually increases register spills by 61. The speedup is attributed to the long loop iterations of

2Runtime ratio was compared to the original program execution time without the original SMS transformation.

90

Figure 6.5: Runtime Ratio Results

91

the superblocks that were Modulo Scheduled and took advantage of ILP (2 out of the 3). For all

the benchmarks that had a 1% speedup, this is attributed to superblock loops found in the C++

library that are being Modulo Scheduled and have overlapped iterations.

Given an architecture with speculative execution and with less strict grouping and blocking

properties, these performance gains from applying Swing Modulo Scheduling for superblock loops

can only get better.

92

Chapter 7

Conclusion

This thesis describes our implementation of the Swing Modulo Scheduling algorithm and our ex-

tensions to support superblock loops. We have described in detail the steps of each algorithm,

and provided results to support our claim that SMS and our extended SMS algorithm is effective

in terms of code generation and efficient in regards to compile time. For the original algorithm,

benchmarks were transformed to have performance gains of 10-33%, and SMS only adds 1% of

compile time on average. The extended SMS algorithm increased benchmark performance from

7-22% and adds relatively little time to the total compile time (0.01% on average).

While we have accomplished our research goals, there are still many areas left to investigate.

We would like to implement Swing Modulo Scheduling for other architectures, in particular IA64.

IA64 is an ideal platform because it has a large number of registers (reducing the worry of in-

creasing register spills), many long latency instructions (that do not block other instructions from

dispatching), and has speculative execution (for our extended SMS algorithm to reduce the number

of added dependencies). Using this type of architecture would allow SMS to have more freedom to

exploit ILP and most likely achieve better performance gains.

We also would like to explore using our extended Swing Modulo Scheduling algorithm for

superblock loops as a runtime or profile guided optimization. Ideally, superblocks would be formed

using dynamic feedback to find the most executed path in a loop. This would increase the number

of superblocks available to be Modulo Scheduled and increase the probability of performance gains

since the loop only contains the most frequently executed path. Additionally, we have proven that

Swing Modulo Scheduling requires very little compile time on average, which makes it cost effective

to be performed at runtime.

93

In conclusion, the Swing Modulo Scheduling algorithm has been shown to be a valuable opti-

mization. We feel that its unique ordering technique, and sophisticated heuristics put it among the

best of the Modulo Scheduling techniques.

94

References

[1] UltraSPARC IIIi Processor User’s Manual. Sun Microsystems, June 2003.

[2] Alexander Aiken and Alexandru Nicolau. Optimal loop parallelization. In PLDI ’88: Proceed-

ings of the ACM SIGPLAN 1988 Conference on Programming Language Design and Imple-

mentation, pages 308–317, New York, NY, USA, 1988. ACM Press.

[3] J. R. Allen, Ken Kennedy, Carrie Porterfield, and Joe Warren. Conversion of control depen-

dence to data dependence. In POPL ’83: Proceedings of the 10th ACM SIGACT-SIGPLAN

Symposium on Principles of Programming Languages, pages 177–189, New York, NY, USA,

1983. ACM Press.

[4] Erik R. Altman and Guang R. Gao. Optimal modulo scheduling through enumeration. Inter-

national Journal of Parallel Programming, 26(3):313–344, 1998.

[5] Todd Austin, et al. The Pointer-intensive Benchmark Suite.

www.cs.wisc.edu/~austin/ptr-dist.html, Sept 1995.

[6] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. Chains of recurrences-a method to ex-

pedite the evaluation of closed-form functions. In ISSAC ’94: Proceedings of the International

Symposium on Symbolic and Algebraic Computation, pages 242–249, New York, NY, USA,

1994. ACM Press.

[7] Johnnie L. Birch. Using the chains of recurrences algebra for data dependence testing and

induction variable substitution. Master’s thesis, Florida State University, 2002.

[8] Pohua P. Chang, Nancy J. Water, Scott A. Mahlke, William Y. Chen, and Wen mei W. Hwu.

Three superblock scheduling models for superscalar and superpipelined processors. Technical

report, University of Illinois at Urbana-Champaign, 1991.

95

[9] Alan Charlesworth. An approach to scientific array processing: The architectural design of

the ap120b/fps-164 family. In Computer, volume 14, pages 18–27, 1981.

[10] Josep M. Codina, Josep Llosa, and Antonio González. A comparative study of modulo schedul-

ing techniques. In ICS ’02: Proceedings of the 16th International Conference on Supercomput-

ing, pages 97–106, New York, NY, USA, 2002. ACM Press.

[11] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.

Efficiently computing static single assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems, pages 13(4):451–490, October 1991.

[12] Amod K. Dani. Register-sensitive software pipelining. In IPPS ’98: Proceedings of the 12th

International Parallel Processing Symposium, page 194, Washington, DC, USA, 1998. IEEE

Computer Society.

[13] James C. Dehnert, Peter Y.-T. Hsu, and Joseph P. Bratt. Overlapped loop support in the

cydra 5. In ASPLOS-III: Proceedings of the Third International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 26–38, New York, NY,

USA, 1989. ACM Press.

[14] K. Ebcioǵlu and Toshio Nakatani. A new compilation technique for parallelizing loops with

unpredictable branches on a vliw architecture. In Selected Papers of the Second Workshop

on Languages and Compilers for Parallel Computing, pages 213–229, London, UK, UK, 1990.

Pitman Publishing.

[15] K. Ebcioǵlu and Toshio Nakatani. A new compilation technique for parallelizing loops with

unpredictable branches on a vliw architecture. In Selected Papers of the Second Workshop

on Languages and Compilers for Parallel Computing, pages 213–229, London, UK, UK, 1990.

Pitman Publishing.

[16] Kemal Ebcioǵlu. A compilation technique for software pipelining of loops with conditional

jumps. In MICRO 20: Proceedings of the 20th Annual Workshop on Microprogramming, pages

69–79, 1987.

96

[17] Alexandre E. Eichenberger and Edward S. Davidson. Stage scheduling: A technique to reduce

the register requirements of a modulo schedule. In MICRO 28: Proceedings of the 28th Annual

International Symposium on Microarchitecture, pages 338–349, Los Alamitos, CA, USA, 1995.

IEEE Computer Society Press.

[18] Mostafa Hagog. Swing modulo scheduling for gcc. In Proceedings of the GCC Developer’s

Summit, pages 55–65, Ottawa, Ontario, Canada, 2004. GCC.

[19] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation.

pages 1–12, 2000.

[20] Jerry Huck, Dale Morris, Jonathan Ross, Allan Knies, Hans Mulder, and Rumi Zahir. Intro-

ducing the ia-64 architecture. IEEE Micro, 20(5):12–23, 2000.

[21] Richard A. Huff. Lifetime-sensitive modulo scheduling. In PLDI ’93: Proceedings of the ACM

SIGPLAN 1993 Conference on Programming Language Design and Implementation, pages

258–267, New York, NY, USA, 1993. ACM Press.

[22] Suneel Jain. Circular scheduling: A new technique to perform software pipelining. In PLDI

’91: Proceedings of the ACM SIGPLAN 1991 Conference on Programming language Design

and Implementation, pages 219–228, New York, NY, USA, 1991. ACM Press.

[23] Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM Journal on

Computing, 4(1):77–84, March 1975.

[24] Rakesh Krishnaiyer, Dattatraya Kulkarni, Daniel Lavery, Wei Li, Chu cheow Lim, John Ng,

and David Sehr. An advanced optimizer for the ia-64 architecture. IEEE Micro, 20(6):60–68,

2000.

[25] Monica Lam. Software pipelining: An effective scheduling technique for vliw machines. In

PLDI ’88: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language

Design and Implementation, pages 318–328, New York, NY, USA, 1988. ACM Press.

[26] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program

97

Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code

Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[27] Josep Llosa. Swing modulo scheduling: A lifetime-sensitive approach. In PACT ’96: Proceed-

ings of the 1996 Conference on Parallel Architectures and Compilation Techniques, page 80,

Washington, DC, USA, 1996. IEEE Computer Society.

[28] Josep Llosa, Mateo Valero, Eduard Ayguade, and Antonio González. Hypernode reduction

modulo scheduling. In MICRO 28: Proceedings of the 28th Annual International Symposium

on Microarchitecture, pages 350–360, Los Alamitos, CA, USA, 1995. IEEE Computer Society

Press.

[29] Wen mei W. Hwu, Scott A. Mahlke, William Y. Chen, Pohua P. Chang, Nancy J. Warter,

Roger A. Bringman, Roland G. Ouellette, Richard E. Hank, Tokuzo Kiyohara, Grant E. Haab,

John G. Holm, and Daniel M. Lavery. The superblock: An effective technique for vliw and

superscalar compilation. Journal of Supercomputing, pages 229–248, 1993.

[30] Soo-Mook Moon and Kemal Ebcioǵlu. An efficient resource-constrained global scheduling

technique for superscalar and vliw processors. In MICRO 25: Proceedings of the 25th Annual

International Symposium on Microarchitecture, pages 55–71, Los Alamitos, CA, USA, 1992.

IEEE Computer Society Press.

[31] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers,

Inc., San Francisco, CA, 1997.

[32] J. C. H. Park and M. Schlansker. On predicated execution. In Tech. Rep. HPL-91-58. Hewlett

Packard Software Systems Laboratory, 1991.

[33] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for software pipelining loops.

In MICRO 27: Proceedings of the 27th Annual International Symposium on Microarchitecture,

pages 63–74, New York, NY, USA, 1994. ACM Press.

[34] B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towie. The cydra 5 departmental

supercomputer: Design philosophies, decisions, and trade-offs. Computer, 22(1):12–26, 28–30,

32–35, 1989.

98

[35] Peter Rundberg and Fredrik Warg. The FreeBench v1.0 Benchmark Suite.

http://www.freebench.org, Jan 2002.

[36] Y. N. Srikant and Priti Shankar, editors. The Compiler Design Handbook: Optimizations and

Machine Code Generation. CRC Press, 2002.

[37] Eric Stotzer and Ernst Leiss. Modulo scheduling for the tms320c6x vliw dsp architecture. In

LCTES ’99: Proceedings of the ACM SIGPLAN 1999 Workshop on Languages, Compilers,

and Tools for Embedded Systems, pages 28–34, New York, NY, USA, 1999. ACM Press.

[38] Bogong Su and Jian Wang. Gurpr*: A new global software pipelining algorithm. In MICRO 24:

Proceedings of the 24th Annual International Symposium on Microarchitecture, pages 212–216,

New York, NY, USA, 1991. ACM Press.

[39] R. van Engelen. Symbolic evaluation of chains of recurrences for loop optimization, 2000.

[40] Robert van Engelen. Efficient symbolic analysis for optimizing compilers. In CC ’01: Proceed-

ings of the 10th International Conference on Compiler Construction, pages 118–132, London,

UK, 2001. Springer-Verlag.

[41] Nancy J. Warter, Grant E. Haab, Krishna Subramanian, and John W. Bockhaus. Enhanced

modulo scheduling for loops with conditional branches. In MICRO 25: Proceedings of the

25th Annual International Symposium on Microarchitecture, pages 170–179, Los Alamitos,

CA, USA, 1992. IEEE Computer Society Press.

[42] Graham Wood. Global optimization of microprograms through modular control constructs.

In MICRO 12: Proceedings of the 12th Annual Workshop on Microprogramming, pages 1–6,

Piscataway, NJ, USA, 1979. IEEE Press.

[43] Eugene V. Zima. On computational properties of chains of recurrences. In ISSAC ’01: Pro-

ceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, page

345, New York, NY, USA, 2001. ACM Press.

99

