
Practical Techniques for Performance Estimation of Processors

Abhijit Ray, Thambipillai Srikanthan and Wu Jigang
Centre for High Performance Embedded Systems

Nanyang Technological University, Singapore
Email: {pa8760452, astsrikan, asjgwu}@ntu.edu.sg

Abstract

Performance estimation of processor is important to se-
lect the right processor for an application. Poorly chosen
processors can either under perform very badly or over
perform but with high cost. Most previous work on per-
formance estimation are based on generating the develop-
ment tools, i.e., compilers, assemblers etc from a processor
description file and then additionally generating an instruc-
tion set simulator to get the performance. In this work we
present a simpler strategy for performance estimation. We
propose an estimation technique based on the intermedi-
ate format of an application. The estimation process does
not require the generation of all the development tools as in
the prevalent methods. As a result our method is not only
cheaper but also faster.

1 Introduction

A typical embedded program runs on a processor with
parts of the program running in hardware so that perfor-
mance requirements are met. It is important to select a pro-
cessor whose performance is close to the performance re-
quirements of the application. Selecting a processor which
under-performs by a huge margin means a very large piece
of hardware have to be used to meet the requirements. On
the other hand, an over-performing processor would be very
expensive which would reflect in the higher unit cost of the
product. The current estimating methods rely heavily on
compiling and then executing the application on a instruc-
tion set simulator. This is a time consuming process and
even more so when you have to consider a large number of
processors and have to evaluate their performance. There is
the added cost of the development tools itself.

This paper proposes a simple estimating methodology
which does not require the full compilation of the source
code. The rest of the paper is organized as follows. Section
2 gives a brief description of related work. In section 3 we

describe the methodology in detail. In section 4 we provide
some of our results, followed by the conclusion and future
work in section 5.

2 Related Work

Most of the previous work depend upon generation of the
development tools like compilers, assembler and instruc-
tion set simulators. Their main contribution is a proces-
sor description language which contains enough informa-
tion required to generate compilers, assemblers, debuggers
and instruction set simulators. Using the above tools the
given application is compiled and the executable file is run
through the instruction set simulator to get the performance
estimates. nML is the processor description language de-
scribed in [1], sim-nML in [2–4] and ISDL in [5]. The only
difference in the above methods are the amount of detail
that can be expressed in the respective languages.

In [6], the performance estimation methodology involves
changing the low level code by inserting counters on those
input stream elements that are decisive for the computa-
tional flow within the application. From the data extracted
a complexity profile of the application is generated and the
performance estimate is then obtained by weighing the ex-
ecution frequencies F (i) of core tasks i with the number of
clock cycles C(i) required per task, resulting in an overall
performance figure:

ptotal =
∑

i

F (i) · C(i)

Suzuki et al [7] abstract their application in a form of rep-
resentation called codesign finite state machines(CFSMs).
They use the POLIS framework to partition the CFSMs
to identify the components of design that are candidates
for software implementation. The CFSMs corresponding
to this partition is then mapped into another representa-
tion called a software graph(s-graph), which is then opti-
mized. For software performance estimation the s-graph
represented into C code. The execution time is modeled by
adding the time for entering and exiting each function, the

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

time to initialize the variables and the time spent in execut-
ing the conditional statements. The time required for execu-
tion of different control structures are obtained by running
sample benchmark programs.

3 Estimation Technique

We perform our estimation using an intermediate format
which while being low-level enough is still processor inde-
pendent. For this we have used the Low Level Virtual Ma-
chine (LLVM) format [8]. LLVM was designed for use as a
compilation framework for research into compiler optimiza-
tions across the entire lifetime of a program. The LLVM
virtual instruction set is a low level program representation
using simple RISC-like instruction. The key reason why
we have chosen LLVM instead of a more popular compiler
system like the SUIF is, LLVM intermediate format do not
need to be converted back to high level language like C af-
ter transformation. Also, LLVM incorporates a virtual ma-
chine which can run the LLVM object codes from which
profile data can be easily extracted. The application is first
converted into the LLVM intermediate format and the pro-
gram details are extracted from the intermediate format and
then it’s executed on the virtual machine to generate profile
output. The output of the above two steps is used by the
estimator to provide the performance estimates. Below we
describe in detail the estimation framework.

We assume that the application is provided as a C/C++
program. This does not limit our methodology in any way.
The application is converted into the LLVM format using
the gcc front-end available from the LLVM web page [9].
The front-end converts the input programs in C/C++ into a
bytecode file. From this bytecode file, we extract the inter-
mediate format instructions for it. For this we have written
a small pass, which iterates through all the instructions and
prints out the relevant information, like the number of argu-
ments in a function call.

After the initial intermediate code is passed through pro-
cessor independent optimizations, the resultant intermediate
format instructions is used to make an educated guess of the
final machine code that would be produced. For this many
programming constructs were compiled, both till intermedi-
ate format and right up to the final executable format. The
results were analyzed, and the intermediate code and the the
final object code produced were compared. This helped us
to form an idea of what kind of intermediate format result in
what kind of object code. Right now we have done this only
for the arm processor. Once the methodology is validated
for it, it can be extended to a range of processors.

Following is the logic how we arrive at a object code
guess from the intermediate code in brief. Let’s take the
call instruction. In the LLVM intermediate format we have
the call instruction as

%tmp.6.i15 = call int %fib(int %tmp.i14)

The above intermediate format instruction calls a func-
tion called test which returns an integer and has an integer
argument. The same code in the arm machine code is,

ldr r0, [fp, #-16]
bl fib

Now we can see that a call instruction results in a few
mov instructions (which moves the arguments to the regis-
ters and then a branch instruction which results in the actual
transfer of control to the called subroutine). From this we
speculate that any call instruction will result in a few mov
instructions(the actual number being equal to the number
of arguments) and a branch instruction. So we come up
with the formula for the number of machine instructions for
a call instruction in the intermediate format, which is given
below.

n = num args + 1 (1)

where num args = number of arguments.
This is fine for user defined functions as we have the

source code, which can be compiled to the intermediate for-
mat and estimates obtained. But, that would be a very time
consuming process for the many standard library functions
and moreover you would also need to get the source code
of the whole standard library, which would need to be com-
piled first and then estimated. Hence for obtaining the esti-
mates of standard library functions we have used a simpler
and a more direct technique, which we have explained later.

Similarly different programming constructs were ana-
lyzed, which could possibly give rise to different machine
codes. The results were used to come up with a framework
to guess the code that a compiler will produce.

While this worked for all different intermediate language
instructions, there were problems estimating the code for
standard library functions. For example for a call to the
math library function sqrt(), the intermediate format just
puts in a call to the function. But the performance of a pro-
cessor should also include the estimates for the the standard
library functions. For this one way would be to compile all
the standard library functions with LLVM and then use sim-
ilar technique as described above to obtain estimates. Be-
low we describe the methodology used for estimating the
performance for the standard library functions.

As noted above, one way to get the estimates for all the
standard library functions would be to, compile all of the
standard library functions with the LLVM compiler infras-
tructure and then use the intermediate format to obtain the
estimates using exactly the same process we use to get the
estimates for a normal function. This would obviously be

2

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

a very cumbersome process. Instead we try to make use of
the fact that standard library generally comes as a already
compiled package, which can be executed directly.

For estimation of standard library functions, we wrote
test programs which calls the standard library functions and
then ran the program through an instruction set simulator.
For this we have used the simplescalar [10]. So we exe-
cuted the compiled program on simplescalar and obtained
the count of number of instructions executed. We use the
fast sim-safe/sim-fast etc which runs very fast compared
to the detailed simulator like sim-outorder, but gives some-
what less accurate result than sim-outorder. But since our
estimates from the rest of the code is not as accurate as those
produced by sim-outorder, we don’t really gain any accu-
racy by using a detailed but a very slow simulator. We took
care to write our test programs in such a way that the tar-
geted library function gets called a large number of times.
This is done so that the number of different instructions
getting executed which cannot be attributed to the function
for example the program startup instructions etc, gets amor-
tized and we obtain a more accurate result. After the pro-
gram is executed with the instruction set simulator we get
the result in the number of instructions that got executed
and this we do for other standard library functions.

Even this process looks cumbersome considering that
there are many standard library functions that needs to be
taken care of. But fortunately there are many standard li-
brary functions which we can safely ignore. Some func-
tions like fopen() , fclose(), are generally executed only
once at program start and program end. Similarly functions
like exit() can get executed only once , i.e., when the func-
tion exits. So all these functions have negligible impact on
the overall program performance, and hence can be safely
ignored.

Using the above results, we create a file that describes
how each LLVM intermediate language instruction and the
standard library function expands to the machine instruc-
tions. This we use later to directly obtain the estimates of
the given application. Till now we have only the static pro-
gram estimates, which just tells us what the compiled code
might look like. The actual performance will obviously de-
pend on the input data. For this we need to run the code and
see. To obtain these we have run the program with some in-
put data and obtain the program profile results. This again
we do under the LLVM environment.

This part of the work is simple. LLVM has a pro-
filer,which can run the bytecode file and can give the ex-
ecution count of each basic blocks in the bytecode. After
we have obtained the execution count of basic blocks, we
just use our previous results to obtain the estimates for each
basic blocks and together with the profiler outputs we can
obtain the estimates for the execution of the whole applica-
tion under a given set of inputs.

Table 1. Error in estimates

Benchmark Estimates Actual error(%)
bitcounts(small) 51357580 49670963 -3.40
bitcounts(large) 768948503 743684377 -3.40
basicmath(s) 62609424 65462194 4.36
basicmath(l) 2434075089 2515566670 3.24
qsort(s) 37645656 43608848 13.67
qsort(l) 590027672 737923507 20.04
patricia(s) 79376292 103926829 23.62
patricia(l) 457172451 640423385 28.61
stringsearch(s) 167262 161605 -3.50
stringsearch(l) 3856090 3682798 -4.70

4 Experimental Works

For our experimental work we have used MiBench [11],
a free, commercially representative embedded benchmark
suite, as our application. Some of the benchmarks did not
compile with LLVM due to LLVM not having support for
inline assembly and other reasons. The benchmarks were
compiled using the LLVM compiler and the bytecode file
was obtained. We wrote a small compiler pass, to extract
the application information like the basic blocks in different
functions and the intermediate format instruction in each of
these basic blocks. The codes for each basic block esti-
mated and then the execution count of each basic blocks
were obtained after executing the bytecodes through the
profiler.

The same benchmarks were then compiled for arm by
gcc to produce arm machine codes. The executable was
then executed on the simplescalar tools, to obtain the num-
ber of instructions executed. We compare our estimates
with the simplescalar output. The percentage error was cal-
culated with respect to the simplescalar results.

The experimental results comparing our estimates with
the actual values obtained using a instruction set simulator
is given in table 1. The estimated and the actual values are
in number of instructions executed. For example, for the
benchmark qsort(s), the number of instructions estimated is
167262, while the actual value as obtained by the simulator
is 161605. And the percentage error is 3.50.

As can be seen for some of the benchmarks the percent-
age error is quite high. This is due to the limitations of
our methodology wherein we do not consider the proces-
sor dependent optimization of the compiler and also other
processor characteristics, like the number of registers avail-
able. We are currently in the process of incorporating such
features into our framework.

We also measured the time taken to arrive at the esti-
mates using our method and compared it with the time taken
while using an instruction set simulator. In particular we

3

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

Table 2. Comparisons of time taken

Benchmark Proposed sim-outorder
technique

bitcounts(small) 2 sec > 4 hrs
bitcounts(large) 2 sec > 4 hrs
basicmath(s) 2 sec > 4 hrs
basicmath(l) 2 sec > 4 hrs
qsort(s) 2 sec > 4 hrs
qsort(l) 2 sec > 4 hrs
patricia(s) 2 sec > 4 hrs
patricia(l) 2 sec > 4 hrs
stringsearch(s) 2 sec > 4 hrs
stringsearch(l) 2 sec > 4 hrs

have used the simplescalar tool set. We compare the time
taken using our technique with the time taken for running
the same application on simplescalar and obtaining the per-
formance results. The timing results are tabulated in table 2.

We can see that our method is considerably faster than
using a instruction set simulator. When a lot of processors
have to be considered, this can lead to large amount of time
being used up for executing the application through a simu-
lator.

5 Conclusion

In this paper we have proposed a simple methodology
for performance estimation of processors. The method is
simple and does not require the generation of all the devel-
opment tools as in the case of most of the current methods.
Hence we can do away with compiling and simulation for
every processor. This allows for inclusion of more proces-
sors in the selection process. The estimates obtained can be
helpful in selection of a ideal processor for an application.
The presented methodology is cheaper and faster than what
is used currently.

Overall we can say that our methodology sacrifices ac-
curacy for speed. While the simulator based approach is ac-
curate, the large amount of time it takes may make it unsuit-
able. Our methodology does have a few limitations. We are
however working to bring down the errors in our estimates
by taking into consideration the factors affecting a proces-
sor performance, like the numbers of registers, pipeline etc.

References

[1] A. Fauth, J. V. Praet, and M. Freericks, “Describing
instruction set processors using nml,” in EDTC ’95:
Proceedings of the 1995 European conference on De-
sign and Test. Washington, DC, USA: IEEE Com-
puter Society, 1995, pp. 503–507.

[2] R. Moona, “Processor models for retargetable tools,”
in RSP ’00: Proceedings of the 11th IEEE Interna-
tional Workshop on Rapid System Prototyping (RSP
2000). Washington, DC, USA: IEEE Computer So-
ciety, 2000, pp. 34–39.

[3] V. Rajesh and R. Moona, “Processor modeling for
hardware software codesign,” in VLSID ’99: Proceed-
ings of the 12th International Conference on VLSI De-
sign - ’VLSI for the Information Appliance’. Wash-
ington, DC, USA: IEEE Computer Society, 1999, pp.
132–137.

[4] S. Chandra and R. Moona, “Retargetable functional
simulator using high level processor models.” in VLSI
Design, 2000, pp. 424–429.

[5] G. Hadjiyiannis, S. Hanono, and S. Devadas, “Isdl: an
instruction set description language for retargetabil-
ity,” in DAC ’97: Proceedings of the 34th annual con-
ference on Design automation. New York, NY, USA:
ACM Press, 1997, pp. 299–302.

[6] H.-J. Stolberg, M. Berekovic, and P. Pirsch, “A
platform-independent methodology for performance
estimation of streaming media applications,” in Pro-
ceedings 2002 IEEE International Conference on
Multimedia and EXPO (ICME2002), 2002.

[7] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient
software performance estimation methods for hard-
ware/software codesign,” in DAC ’96: Proceedings
of the 33rd annual conference on Design automation.
New York, NY, USA: ACM Press, 1996, pp. 605–610.

[8] C. Lattner and V. S. Adve, “Llvm: A compilation
framework for lifelong program analysis & transfor-
mation.” in CGO, 2004, pp. 75–88.

[9] “The llvm compiler infrastructure project,” June 2004.
[Online]. Available: http:/llvm.cs.uiuc.edu

[10] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An
infrastructure for computer system modeling,” Com-
puter, vol. 35, no. 2, pp. 59–67, 2002.

[11] “Mibench version 1.0, a free, com-
mercially representative embedded benchmark
suite,” June 2004. [Online]. Available:
http://www.eecs.umich.edu/mibench/index.html

4

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)

1098-8068/05 $20.00 © 2005 IEEE

