
Segment Protection for Embedded Systems Using
Run-time Checks

Matthew Simpson Bhuvan Middha Rajeev Barua
Department of Electrical & Computer Engineering

University of Maryland
College Park, MD 20742, USA

{simpsom, bhuvan, barua}@eng.umd.edu

ABSTRACT
The lack of virtual memory protection is a serious source of un-
reliability in many embedded systems. Without the segment-level
protection it provides, these systems are subject to memory access
violations, stemming from programmer error, whose results can be
dangerous and catastrophic in safety-critical systems. The tradi-
tional method of testing embedded software before its deployment
is an insufficient means of detecting and debugging all software
errors, and the reliance on this practice is a severe gamble when
the reliable performance of the embedded device is critical. Addi-
tionally, the use of safe languages and programming semantic re-
strictions as prevention mechanisms is often infeasible when con-
sidering the adoptability and compatibility of these languages since
most embedded applications are written in C and C++.

This work improves system reliability by providing a completely
automatic software technique for guaranteeing segment protection
for embedded systems lacking virtual memory. This is done by
inserting optimized run-time checks before memory accesses that
detect segmentation violations in cases in which there would oth-
erwise be no error, enabling remedial action before system failure
or corruption. This feature is invaluable for safety-critical embed-
ded systems. Other advantages of our method include its low over-
head, lack of any programming language or semantic restrictions,
and ease of implementation. Our compile-time analysis, known as
intended segment analysis, is a uniquely structured analysis that al-
lows for the realization of optimizations used to reduce the number
of required run-time checks and foster our technique into a truly
viable solution for providing segment protection in embedded sys-
tems lacking virtual memory.

Our experimental results show that these optimizations are ef-
fective at reducing the performance overheads associated with pro-
viding software segment protection to low, and in many cases, neg-
ligible levels. For the eight evaluated embedded benchmarks, the
average increase in run-time is0.72%, the average increase in en-
ergy consumption is0.44%, and the average increase in code size
is 3.60%.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’05,September 24–27, 2005, San Francisco, CA, USA.
Copyright 2005 ACM 1-59593-149-X/05/0009 ...$5.00.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors; D.4.5 [Operating
Systems]: Reliability; D.4.2 [Operating Systems]: Storage Man-
agement; C.4 [Performance of Systems]: Fault Tolerance; C.3
[Special-purpose and Application-based Embedded Systems]:
Real-time and Embedded Systems

General Terms
Languages, Reliability

Keywords
Compilers, Embedded Systems, Memory Safety, MMU, MPU, Re-
liability, Run-time Checks, Safe Languages, Segment Protection,
Segmentation Violations, Virtual Memory

1. INTRODUCTION
Embedded processors are used to control various safety-critical

systems, including automotive, aerospace, industrial, and health-
care applications, where the consequences of a system failure can
be expensive and catastrophic. Software errors arising from incor-
rect programs or from inadequate resources are a significant source
of unreliability in embedded systems. Although compile-time pro-
gram analysis can detect or eliminate some of these errors, others
are inherently run-time dependent, in that they appear only with
certain inputs or control-flow conditions. In desktop systems, vir-
tual memory [19] is typically used to provide protection against
out-of-memory errors and memory access violations. However,
many embedded systems lack virtual memory, and although the vir-
tual memory functionality of providing swap space is not generally
warranted for use in embedded systems, the protection functions of
virtual memory are valuable for their reliable operation. This paper
is concerned with protection against memory access violations.

Virtual memory of two distinct types can be used to detect mem-
ory access violations. First,paging provides memory protection
at the level of fixed-size pages, and a memory access violation is
detected when a process attempts to reference a page belonging to
another process. Second,segmentationoffers memory protection
at the level of variable-size segments within a process, and a vio-
lation is detected when the offset of an address is beyond the valid
range of the specified segment. Some systems make use of a hybrid
technique, known aspaged segmentation, in which a variable-size
segment is composed of an integral number of fixed-size pages.

Unfortunately, and in stark contrast to desktop systems, many
commercially available embedded processors do not have support

for virtual memory of any kind and are, therefore, subject to mem-
ory errors that can be devastating to their reliability. Examples
of such processor families include Motorola’s M68K series; In-
tel’s i960; ARM’s ARM7TDMI, ARM7TDMI-S, and ARM966E-
S; TI’s MSP430; Atmel’s 8051; Analog Devices’ Blackfin; Xil-
inx’s Microblaze; Renesas’ M32R; and NEC’s NEC750; and many
others. Unlike desktop systems where a memory error is often no
more than an annoyance, in embedded systems, memory errors can
lead to a system failure resulting in the loss of functionality of a
controlled system, loss of revenue, industrial accidents, and even
loss of life, depending on the type of embedded system. Moreover,
the lack of hardware virtual memory protection implies that in such
embedded systems, memory errors may not even be detected, caus-
ing incorrect functionality, rather than protection faults, to be their
only observable effects.

If an embedded system had this detection ability, it would be able
to take system-specific remedial actions before a system failure oc-
curred such as the following three; others are possible. First, the
system can be shut down safely. For example, if a controller for
an industrial process encounters a software error, safely shutting
down the assembly line avoids industrial accidents and defective
product assembly. Second, a human operator can be hailed to take
over manual control of the system. For example, in transportation
systems such as aircraft, when a software error occurs in the auto-
pilot or a controller for a critical sub-system, it can save lives if the
failing controller’s tasks are transferred to the pilot. Third, the fail-
ing process can be halted, which may result in the preservation of
the core functionality of the system. In systems without this detec-
tion ability, our work is valuable because it provides, at little cost,
a desirable functionality that would not otherwise be present.

In this paper we focus on the problem of segmentation viola-
tions. A segmentation violation is a memory access error that oc-
curs when memory is accessed with an address whose offset is
beyond the valid range of its associated segment. These types of
memory violations typically occur because of programmer error
and can manifest themselves in production code when certain ex-
ternal inputs that cause the error to arise are missed during testing.
Although several software debugging and profiling packages ex-
ist to aid in testing, the assumption that software errors have been
eliminated through testing is a dangerous gamble, especially con-
sidering that modern embedded systems can contain millions of
lines of code, and the number of required tests can be exponential
in the number of inputs. Albeit rare in production code, segmenta-
tion violations can result in errors whose impact can be catastrophic
for systems lacking virtual memory.

Currently, there exists broad categories of both hardware and
software methods, aside from virtual memory, that aim to pro-
vide differing degrees of memory protection. These techniques in-
clude hardware-based fault or domain protection, the use of Mem-
ory Management Unit (MMU) permissions capabilities without ad-
dress translation, safe languages, source-to-source translation, and
program instrumentation. Hardware methods typically rely on a
portion of virtual memory functionality and are, therefore, subject
to the cost associated with its use. However, vendors have decided
that the cost of MMUs is often too high in resource-constrained
embedded environments [12], noting that the contained segment
or page tables and associated logic are all expensive in area, per-
formance, and energy consumption [25]. Moreover, this trend will
not diminish with time since virtual memory hardware accounts for
a significant portion of a system’s total energy consumption and
Translation Lookaside Buffer (TLB) misses are detrimental to real-
time guarantees. Safe languages usually rely on language restric-
tions, such as strong type enforcement, to prevent memory access

violations. The fault prevention mechanisms these languages fea-
ture are certainly preferable to fault detection when the choice of
programming language in not an issue; unfortunately, most embed-
ded code is written in C and C++ [29,30]. As an alternative, source-
to-source translators and program instrumentation techniques aim
to detect memory safety violations at run-time. However, their per-
formance overheads are typically large, making them infeasible for
use with embedded systems. Although the degree of protection
may differ, our method is distinct from these approaches in that we
provide a memory protection solution at low cost and overhead.

The contribution of this work is a segmentation violation detec-
tion mechanism for embedded systems lacking virtual memory that
is significant for the following five reasons. First, our method is
able to provide segment protection without any programming lan-
guage modifications or semantic restrictions of any kind. Second,
our method is applicable for use with a multitude of programming
languages, especially those that provide no memory safety guar-
antees. Third, our method is able to guarantee segment protec-
tion without sacrificing system performance. Fourth, our method
is completely automatic; the programmer need not even be aware
of its presence. For this reason, our technique applies to recom-
piled legacy code as well. Fifth, our compiler analysis is easily im-
plementable because it is rooted in well-known modern compiler
theory. Our implementation is built on the Static Single Assign-
ment (SSA) [2] intermediate representation and data-flow analysis,
which is widely available in modern compiler infrastructures.

In order to achieve our goal of software-provided segment pro-
tection, run-time checks are inserted before memory accesses to
ensure the referenced address is not outside the bounds of its in-
tended segment. However, this requires a method of determining
to what segment (i.e., code, globals, stack, or heap) a memory ac-
cess is referring. For this purpose, we have devised a unified data-
flow analysis, calledintended segment analysis. While providing a
means for determining the segment a memory access should be ref-
erencing, this analysis is also a powerful framework for recognizing
optimizations that are able to eliminate many of the required run-
time checks. These include thedominated reference optimization,
which eliminates run-time checks for multiple memory accesses
of the same location; thenon-incremental reference optimization,
which eliminates run-time checks for memory accesses that never
occur along control paths involving an arithmetic operation to ob-
tain the referenced address; and themonotonically addressed range
optimization, which hoists run-time checks out of loops.

Experimental results show that our segment protection solution
is able to guarantee segment-level memory safety in all eight tested
benchmarks without sacrificing performance. The average increase
in run-time, energy consumption, and code size were found to be
0.72%, 0.44%, and3.60% respectively for the optimized solution.
However, one of the eight tested benchmarks suffered from a sig-
nificant increase in code size, and as a result, is responsible for
skewing the average. The average code size overhead of the re-
maining seven benchmarks was found to be0.58%. It is also clear
from the results that our optimizations used to reduce the number
of necessary run-time checks are essential in dramatically lower-
ing the performance overheads. In general, our results validate our
claim that software segment protection for embedded systems can
be achieved at low cost.

The rest of this paper is organized as follows. Section 2 com-
pares our work with hardware and other software techniques of
achieving memory protection. Section 3 describes the intuition of
our segment protection solution. Section 4 presents its implemen-
tation and discusses issues relating to external functions, separate
compilation, and alias analysis. Section 5 describes the evaluation

of our technique and presents performance overheads. Section 6
concludes with a summary of our results and suggests possible en-
hancements of our work.

2. RELATED WORK

The broad impact of this work is the reproduction in software
of a portion of the functionality of virtual memory hardware. In
our previous work [4], we addressed the issue of memory over-
flow protection in embedded systems by using run-time checks and
novel techniques for enabling the continued execution of a process
after an out-of-memory error had been detected. While our previ-
ous work dealt with overflow protection, this work has the different
goal of providing segment-level memory protection by detecting
memory access violations resulting from programmer error.

Several hardware and hardware assisted approaches exist to pro-
vide differing degrees of memory protection. The Mondrian Mem-
ory Protection [32] scheme is a hardware approach designed to
provide fine-grained memory protection for systems requiring data
sharing among processes. This is done by dividing a single address
space into multiple domains of protection, with each domain own-
ing a portion of the address space and exporting a set of privileges
to other domains. Similarly, a common method [6] of providing
hardware memory protection for embedded systems involves us-
ing only the permissions capability of the MMU and not virtual-
to-physical address translation, which makes memory protection
more efficient, affordable, and less complex for programmers. This
is not to be confused with software-managed TLBs [28] and soft-
ware address translation [20], which are two techniques used to
give the operating system more control over address translation
and are, therefore, unrelated to the notion of protection. Hardware
techniques such as these are unappealing for use in embedded sys-
tems because, as mentioned earlier, many systems lack the support
for such hardware, and even if they did have such support, the in-
creased CPU, memory system resources, and energy consumption
associated with its functionality would not be as low as they could
be with a software-only solution. Energy consumption is a particu-
lar concern since protection hardware is activated for each data and
instruction memory access. Because of its frequent use, the energy
overhead of hardware memory protection can be considerable com-
pared to an optimizing compiler scheme that expends energy only
on the small percentage of memory accesses that require run-time
checks. Moreover, real-time guarantees are a concern for systems
using TLBs because of the possibility of TLB misses.

Some embedded processors, instead of supporting virtual mem-
ory hardware, are equipped with a coprocessor, known as a Mem-
ory Protection Unit (MPU) [21], dedicated to lightweight memory
access control. The MPU is used to partition the address space into,
at most, eight regions varying in size from 4KB to 4GB. Each re-
gion is associated with individual access permissions, and the MPU
allows access to each region based on the mode (user/privileged)
and type (read/write) of the access. The incoming address is com-
pared in parallel with all enabled regions to determine the appro-
priate access permissions. Despite the MPU’s simplistic design and
narrow functionality, its use results in increased energy consump-
tion as compared to our software-only memory protection solution
since, unlike our method, the MPU is activated for each memory ac-
cess. Additionally, our method handles an arbitrary number of seg-
ments, granting access based on pointer usage, whereas the MPU
is restricted to eight protection regions with limited set of permis-
sions. Finally, since each memory access is made more complex
with the use of additional hardware, the processor’s cycle time may
be increased.

One method of providing software memory protection is through
the use of safe languages. Cyclone [16] and others [5, 15] provide
mechanisms for region-based memory management, allowing for
a means of guaranteeing heap safety. In addition to disallowing
direct deallocation of dynamically allocated objects in memory re-
gions, these safe languages typically prevent memory access vio-
lations through techniques such as language and semantic restric-
tions, type enforcement, and run-time bounds checking of array
accesses. However, a significant hindrance arises when consider-
ing the adoptability and compatibility of safe languages. Nearly all
embedded code is written in C and C++ [29, 30], and although the
prevention capability gained from using a safe language is prefer-
able to detection mechanisms, it is often impractical for industry to
port legacy code to a new language.

Control-C [22] is a similar safe language, but relies heavily on
semantic restrictions to prove memory safety statically through ad-
vanced compiler techniques. These semantic restrictions include,
among others, requirements that programs be strongly typed, casts
to a pointer type never be from a non-pointer type, pointers be
initialized, the address of stack variables never be stored in heap-
allocated objects or global variables, and array accesses be affine.
In cases where certain restrictions cannot be maintained, this work
speculates about the possibility of supplemental safety-checking
run-time checks. Control-C has been extended with automatic pool
allocation [23], a method of region-based memory management
that allows explicit deallocation, in order to provide a mechanism
[11] for preventing memory safety violations that result from a
dereference of a pointer to freed memory. Our software segment
protection scheme is distinct from this work for the following four
reasons. First, our method generally provides memory protection
at a finer granularity. The Control-C work defines a process to be
memory safe if it never references a memory location outside its
allocated address space nor executes instructions outside its code
segment. However, in certain cases (e.g., array accesses), Control-
C is able to reason at the granularity of individual memory objects.
Our method is concerned with determining the segmentswithin the
allocated address space of a process a memory access is supposed
to reference and is able to reason about individual memory objects
of statically known sizes. Second, while having similar goals, our
method does not aim to prove memory safety using exclusively
static means; instead, it uses optimized run-time checks when the
safety of a memory reference depends on run-time conditions. Al-
though their work mentions the possibility of run-time checks, the
exact nature of these checks and their associated overheads are not
presented. Third, our method does not depend on region-based
memory allocation to prevent a dereference of a pointer to freed
memory, and instead, does not optimize run-time checks for point-
ers that alias analysis reveals may reference a freed memory ob-
ject. Fourth, our method requires no semantic restrictions, whereas
Control-C depends on several restrictions that may be a significant
hindrance when programming or porting legacy code.

Software-enforced fault isolation [31] is a memory protection
mechanism for tightly-coupled software modules sharing the same
address space. An application’s virtual address space is divided
into protection domains consisting of two segments (code and data)
aligned so that all virtual addresses within a segment share a unique
set of upper bits, known as the segment identifier. One technique,
known assegment-matchingdetects errors by inserting run-time
checks before memory accesses to compare the segment identifier
of the referenced virtual address with the segment identifier associ-
ated with a process’s valid address range. Alternatively,sandbox-
ing inserts code that, instead of performing checks, actually sets the
segment identifier of the referenced virtual address to be that of the

EXAMPLE ()

1 int array[SIZE], ?p, ?q, ?r, ?s
2 p← array
3 r ← p + c
4 ?r ← var
5 for (indvar ← INIT to BOUND stepSTEP) {
6 s← p + indvar
7 ?s← var
8 }
9 q ← &global var

10 if (?r)
11 p← q
12 ?p← var
13 . . .
14 return

(a)

EXAMPLE BASE SOLUTION ()

1 int array[SIZE], ?p, ?q, ?r, ?s
2 p← array
3 r ← p + c

(i) SBC〈r, SEGarray〉
4 ?r ← var
5 for (indvar ← INIT to BOUND stepSTEP) {
6 s← p + indvar

(ii) SBC〈s, SEGarray〉
7 ?s← var
8 }
9 q ← &global var

(iii) SBC〈r, SEGarray〉
10 if (?r)
11 p← q

(iv) PDC〈p, q〉
(v) PDC〈p, DEF(p)Line2〉

12 ?p← var
13 . . .
14 return

(b)

EXAMPLE OPTIMIZED SOLUTION ()

1 int array[SIZE], ?p, ?q, ?r, ?s
2 p← array
3 r ← p + c

(i) SBC〈r, SEGarray〉 CTBC〈c, SIZE〉
4 ?r ← var

(vi) MARC〈s, SEGarray〉
5 for (indvar ← INIT to BOUND stepSTEP) {
6 s← p + indvar

(ii) SBC〈s, SEGarray〉 replaced with(vi)
7 ?s← var
8 }
9 q ← &global var

(iii) SBC〈r, SEGarray〉 dominated by(i)
10 if (?r)
11 p← q

(iv) PDC〈p, q〉 non-incremental
(v) PDC〈p, DEF(p)Line2〉 non-incremental

12 ?p← var
13 . . .
14 return

(c)

EXAMPLE SSA ()

1 int array[SIZE], ?p, ?q, ?r, ?s
2 p0 ← array
3 r0 ← p0 + c
4 ?r0 ← var Dr0 = {p0}
5 for (indvar ← INIT to BOUND stepSTEP) {
6 s0 ← p0 + indvar
7 ?s0 ← var Ds0 = {p0}
8 }
9 q0 ← &global var

10 if (?r0)
11 p1 ← q0

p2 ← φ(p0, p1)
12 ?p2 ← var Dp2 = {p0, q0}
13 . . .
14 return

(d)

Figure 1: An Example Requiring Run-time Checks. The original code fragment (a) is shown after run-time checks have been inserted
using the intuition of the base solution (b) and with optimizations (c). The code is also shown in SSA form (d) along with the set of
terminating definitions associated with each pointer dereference. Refer to Figures 2 and 3 for a description of each check and Table 1 for the
formulation of each set of terminating definitions.

valid address range. Our method is distinct from these fault isola-
tion techniques for the following three reasons. First, these tech-
niques rely on a virtual address space provided by hardware virtual
memory, the need of which our method aims to preclude. While
one could envision a system employing these techniques without
requiring a virtual address space, it would be inefficient and im-

practical to partition a physical address space because the use of a
fixed number of high-order bits for the segment identifier implies
that the physical segments must all be of equal size. (This is not the
case for virtual segments since the segment table specifies the size
of each segment). The use of equal size physical segments can re-
sult in exceedingly wasteful memory usage since the segments can

SEGMENT BOUNDS CHECK 〈px, SEG〉

1 if (px < SEG LOW or px > SEG HIGH) {
2 SIGNAL SEGMENTATION VIOLATION ()
3 }
4 dereferencepx

(a)

POINTER DISAMBIGUATION CHECK 〈px, py〉

1 if (px == py) {
2 SBC〈px, SEG(py)〉
3 }
4 dereferencepx

(b)

Figure 2: Segmentation Violation Checks for Base Solution.Segment Bounds Check (SBC) (a): A segmentation violation is signaled if
the address refered to bypx is outside the bounds of its intended segmentSEG. Pointer Disambiguation Check (PDC) (b): A segment bounds
check is performed if the addresses refered to bypx andpy are equal. Refer to Figure 3 for checks required by the optimized solution.

COMPILE-TIME BOUNDS CHECK 〈c, SIZE〉

1 if (c < 0 or c > SIZE) {
2 SIGNAL COMPILATION ERROR()
3 }
4 continue compilation

(a)

MONOTONICALLY ADDRESSEDRANGE CHECK 〈px, SEG〉

1 minpx ← px init + LOOP-INVARIANT

2 iterations← d(BOUND− INIT)/STEP)e
3 maxpx ← minpx + iterations× STEP

4 if (minpx < SEG LOW or maxpx > SEG HIGH) {
5 SIGNAL SEGMENTATION VIOLATION ()
6 }
7 for (indvar ← INIT to BOUND stepSTEP)
8 dereferencepx

(b)

Figure 3: Additional Segmentation Violation Checks for Optimized Solution.Compile-time Bounds Check (CTBC) (a): A compilation
error is signaled if constantc is outside the bounds of the memory object whose size is represented bySIZE. Monotonically Addressed Range
Check (MARC) (b): A segmentation violation is signaled if the minimum or maximum addresses refered to bypx within a loop are outside
the bounds of its intended segmentSEG.

have vastly differing space requirements. Second, as mentioned
earlier, our method is concerned with the protection granularity of
segments within a process, whereas these techniques treat the en-
tirety of a process’s data as a single segment. Third, our method
extends the capability of a detection mechanism, such as segment-
matching, by discussing the possibility of remedial action.

CCured [9] and Safe-C [3] are well-established source-to-source
translators that analyze C programs and insert source-expressible
run-time checks to prevent unsafe code from executing. CCured
ensures the type safety of C programs by combining a run-time
type-inferencing algorithm with checks for pointer dereferences
based on their dynamically determined usage type. While being
complimentary to our solution, CCured, and other source-to-source
translators are distinct from our segment protection scheme for the
following three reasons. First, CCured is more restrictive than our
method because its goal is to provide memory protection by guar-
anteeing type safety. Our method is not concerned with types, and
provides memory protection by inserting checks to ensure memory
accesses are within the bounds of their intended segment. Second,
the amount of run-time checks associated with source-to-source
translators is typically enormous, requiring far too much overhead
for use in an embedded system because they lack many sophisti-
cated compiler optimizations used to significantly reduce the num-
ber of checks. In fact, CCured is documented as having a run-time
overhead of as much as 60%, with an average of about 30%. Our
system exploits compiler analyses to eliminate nearly all run-time
checks. Third, CCured cannot perform its translation automatically
for all programs. Indeed, CCured requires user assistance when
it is unable to infer type information, a common occurrence for
medium-sized to large-sized programs.

Valgrind [26], Purify [18], and recently Mudflap [13] are well-
known software debugging tools used for preventing pointer use
errors. Valgrind is a virtual machine that simulates the execution
of unmodified applications, checking the processor operations for
validity. Purify is a proprietary software package that instruments
object files by replacing compiled pointer operations with calls to
a run-time library that ensures the memory safety of these opera-
tions. Similarly, Mudflap maintains a database of every memory
object in the program that is used in conjunction with calls to a
run-time library to verify the validity of potentially unsafe pointer
dereferences. However, in concordance with the typical nature of
software debugging and testing, these tools incur large application
overheads. For example, Mudflap reports an overall application
slowdown of a factor of greater than three for two of three evalu-
ated benchmarks. As such, unlike our method, these tools are not
intended for continued deployment in embedded systems.

3. SEGMENT PROTECTION SOLUTION
In order to provide a segment protection using software, the in-

tended segment a memory reference is supposed to access must be
determined statically or at run-time. It is important to note that
while the termintended segmentis used to denote the supposition
that the segment accessed by a memory reference can be deemed
incorrect, it is distinct from the notion ofprogrammer intent. In-
deed, our method does not aim to discover the will of the pro-
grammer; its goal is to determine the segment that, without relying
on language characteristics or memory organization assumptions, a
memory reference is intended to access as it is defined in the pro-
gram. For example, in ANSI C, no guarantee is provided about the
relative ordering of variables or segments. If pointer arithmetic is

Case Type Dpn = Def(pn) Rpn = RT-Check(pn)

1 pn ← &a {pn} {}
2(a) pn ← &a + c {pn} {}
(b) pn ← &a + var {pn} {SBC〈ptr, SEGa〉}
(c) pn ← &a + ind {pn} {MARC〈ptr, SEGa〉}

3(a) pn ← q DEF(q) RT-CHECK(q)

(b) pn ← qind DEF(qind) {MARC〈ptr, SEG(qind)〉}
4(a) pn ← q + c DEF(q) RT-CHECK(q)

(b) pn ← qind + c DEF(qind) {MARC〈ptr, SEG(qind)〉}
(c) pn ← q + var DEF(q) {SBC〈ptr, SEG(q)〉}

(d) pn ← q + ind DEF(q)


{MARC〈ptr, SEG(q)〉} : |Rq| = 0

RT-CHECK(q) : otherwise

5 pn ← func() DEF(retvar) RT-CHECK(retvar)

6 pn ← malloc() {pn} {}
7 pn ← arg {pn} {SBC〈ptr, SEG(arg)〉}

8 pn ← c {pn}


{} : c is a memory-mapped I/O location
{SBC〈ptr, DATA〉} : otherwise

9 pn ← ?q

[
∀pi(q←&pi)

DEF(pi)


{SBC〈ptr, S〉} : ∃S∀p ∈ Dpn(|Rp| > 0→ SEG(p) = S)
{∀p ∈ Dpn(PDC〈ptr, p〉 | |Rp| > 0)} : otherwise

10 pn ← φ(A)

[
∀pi∈A(pn 6∈Dpi

)

DEF(pi)


{SBC〈ptr, S〉} : ∃S∀p ∈ Dpn(|Rp| > 0→ SEG(p) = s)
{∀p ∈ Dpn(PDC〈ptr, p〉 | |Rp| > 0)} : otherwise

Table 1: Pointer Definition Types and Run-time Checks. Each pointer definition generates two sets:Dpn is the set of terminating
definitions ofpn andRpn is the set of run-time checks required for a safe dereference ofpn. For each definition,p andq are pointers,ptr
represents the dereference address,a andvar are run-time variables,ind is a non-pointer loop induction variable,qind is a pointer loop
induction variable, andc is a compile time constant. For definitions involving functions,malloc() refers to any dynamic memory allocation
function andfunc() refers to every other function returning a pointer value.arg refers to the actual argument of a function, andretvar is
used to denote the returned pointer offunc(), which is defined as theφ-function of the pointers associated with each return statement. For
definitions envolving aφ-function,A is a set containing its arguments.DATA refers to the entire data space allocated to a process,SEGa refers
to the segment in which memory objecta resides, and similarly,SEG(q) refers to the intended segment of pointerq. Refer to Figures 2 and 3
for a description of each check and Table 2 for compile-time checks associated with each definition.

used to reference a memory location, it is clear that the referenced
segment is intended to be the same before and after the arithmetic.

Determining the intended segment of non-pointer accesses is a
trivial task since the intended segment is simply the segment in
which each memory object resides. However, pointer dereferences
prove to be more complicated because each pointer has the poten-
tial to point to several memory locations, each of which possibly
resides in a separate segment. For some of these, it may only be
possible to statically determine asetof memory locations that are
referenced, rather than only one. Although a rare occurrence, the
intended segment of theseambiguous-segmentpointers cannot be
determined statically, and code must be inserted to determine the
segment at run-time. In this way, one segment can be determined
for every memory reference.

For the following discussion of our segment protection solution,
the example code fragments shown in Figure 1 will be frequently
referenced in order to demonstrate the intuition supporting the re-
quired run-time checks and optimizations.

3.1 Base Solution Intuition
In order to guarantee the detection of every possible segmenta-

tion violation, a run-time check is required foreachmemory refer-
ence, including instruction fetches, scalar variable and array refer-

ences, and pointer dereferences, to determine if its effective address
is within the bounds of the segment it is supposed to access. How-
ever, we recognize that checking every memory reference is triv-
ially unnecessary in the following three cases. First, each sequen-
tial instruction access does not need to be checked since, as long as
instruction fetches do not continue past the end of the code, execu-
tion will always remain within the bounds of the segment. Second,
a branch instruction with a PC-relative displacement (i.e., a branch
whose target is the program counter plus a constant operand of the
branch instruction) can be statically determined to be within the
code segment bounds since the displacement value is a compile-
time constant. Third, a scalar variable reference does not require a
run-time check since its address is also a compile-time constant and
can be statically determined to be within the bounds of the segment
in which the variable resides.

Figure 2 describes the run-time checks necessary to achieve our
base solution. Before every memory reference requiring a check,
a segment bounds check(SBC), shown in Figure 2(a), is inserted
to verify that the value of the pointer being dereferenced is within
the bounds of its intended segment. For simplicity, when describ-
ing checks, no distinction will be made between array references
and pointer dereferences since both can be expressed in the same
fashion. In case the dereferenced pointer is an ambiguous-segment

Case Type Dpn = Def(pn) Cpn = CT-Check(pn)

2(a) pn ← &a + c {pn} {CTBC〈c, SIZEa〉}
3(a) pn ← q DEF(q) CT-CHECK(q)

4(a) pn ← q + c DEF(q)

8<: {CTBC〈c + k, S〉} : (Cq = {CTBC〈k, S〉}) ∧ (|Rq| = 0)
{CTBC〈c, SIZE(q)〉} : (|Cq| = 0) ∧ (|Rq| = 0)

{} : otherwise

5 pn ← func() DEF(retvar) CT-CHECK(retvar)

Table 2: Pointer Definition Types and Compile-time Checks.In addition to a set of terminating definitionsDpn and a set of run-time
checksRpn , each pointer definition generates a third setCpn , which is the set of compile-time checks that may be performed.c andk are
both compile-time constants andSIZEa refers to the size of memory objecta in bytes divided by the number of bytes associated with a single
element of the type ofa. Similarly, SIZE(q) refers to theSIZE of the intended memory object ofq. Refer to Figure 3 for a description of the
compile-time check and Table 1 for other terminology and run-time checks associated with each definition. For definition types not listed in
this table, the generated set of compile-time checks is the empty set.

pointer, apointer disambiguation check(PDC), shown in Figure
2(b), is inserted for each definition of the pointer that reaches the
dereference. This run-time check performs a segment bounds check
if the dereferenced pointer value is the same as that of one of its
previous definitions. In this way, for each set of pointer disam-
biguation checks inserted, exactly one will result in the execution
of a segment bounds check.

In the running example, the necessary run-time checks for the
code fragment in Figure 1(a) are presented in Figure 1(b). A seg-
ment bounds check is required before every pointer dereference ex-
cept the dereference ofp on line 12, which requires a pointer dis-
ambiguation check since multiple definitions reach its dereference.
Note that the lines containing checks arenot function calls; they
represent the actual code for the checks as defined in Figure 2.

3.2 Optimizations
Because the large number of run-time checks required to guaran-

tee segment protection by the base solution can induce prohibitively
expensive performance overheads, we have devised the following
three compiler optimizations that can dramatically reduce the num-
ber of required run-time checks needed to guarantee segment pro-
tection. Two of these optimizations rely on additional safety checks,
shown in Figure 3, that are used in place of the original ones.

Dominated Reference Optimization Multiple references to the
same address require a check only for the reference that dominates
the others; subsequent references do not need a check. Well-known
in compiler theory, a referencer1 dominates[2] another reference
r2 if every path from the beginning of the program tor2 includes
r1. Such a case is easily detected at compile-time when the address
expression is a single scalar variable. For more complex address
expressions, the widely available compiler optimization Common
Subexpression Elimination (CSE) [7] reduces the address expres-
sion to a repeated single scalar temporary variable, allowing for the
trivial detection of its repeated use. Figure 1(c) shows the example
code with optimized checks. After this optimization, the derefer-
ence ofr at line 10 is dominated by its dereference at line 4 so
check (iii) is not needed.

Non-incremental Reference Optimization Memory references
that are never reached via a data-flow path involving an arithmetic
operation to obtain the referenced address do not require a check.
For example, if arithmetic is never performed on a pointer, it is
guaranteed to continue to point to the location, and therefore the
segment, of its initial assignment. Additionally, if a memory refer-
ence is reached along a path involving the arithmetic of a compile-
time constant, and the memory object referred to is of a statically

known size, a compile-time check, instead of a run-time check,
can be performed to verify that the referenced address is within
the bounds of the memory object. For example, accesses to fields
of structures that are of a statically known size can be verified at
compile-time to be within the legal bounds of an instance of the
structure. This check is known as acompile-time bounds check
(CTBC) and is shown in Figure 3(a). After applying this optimiza-
tion to the example code, check (i) can be replaced with a compile-
time check sincearray is of a statically known size, andr is de-
fined with a constant offset. Additionally, sincep is never defined
with arithmetic, its dereference at line 12 no longer requires checks
(iv) and (v).

Monotonically Addressed Range Optimization Memory ref-
erences whose address is an induction variable plus or minus a
loop-invariant quantity (e.g., an affine array access within a loop)
that occur within loops whose terminating conditions are also loop-
invariant are said to be monotonically addressed. Here, it is suffi-
cient to verify in the loop preheader that the minimum and max-
imum referenced addresses are within the segment bounds. This
run-time check is known as themonotonically addressed range
check(MARC) and is shown in Figure 3(b). Although array-bounds
check elimination [2] has been the topic of much research, our op-
timization does not require the memory reference to be an affine
array access. Indeed, a dereferenced pointer could itself be an in-
duction variable. In certain cases, though, techniques such as affine
conversion [14] can be used to convert pointer accesses of array
elements into semantically equivalent array representations with
explicit index expressions. Thereafter, the array access would be
subject to bounds check elimination. However, our method does
not rely on such techniques. After applying this optimization to
the example code, check (ii) can be replaced by (vi), verifying the
minimum and maximum values ofs are within the bounds of the
segment in whicharray resides.

4. INTENDED SEGMENT ANALYSIS
Our intended segment analysis algorithm has been implemented

using a framework based on the Static Single Assignment (SSA) [2]
intermediate representation. SSA is a convenient means of repre-
senting our analysis for the following reasons. First, each deref-
erenced pointer has exactly one definition since SSA creates sub-
scripted versions of a variable for each of its assignments. In this
way, use-def chains are explicit and each contains a single element.
Second, because the representation of control flow is inherent in
SSA usingφ-functions, other complicated data-flow analyses are
not required to determine if a particular memory reference war-

FOO () FOO SSA ()

1 int stack var, x, ?p 1 int stack var, x, ?p
2 x← global var 2 x0 ← global var0

3 p← &x 3 p0 ← &x0

4 x← stack var 4 x1 ← stack var0

5 var ← ?p 5 var0 ← ?p0

6 . . . 6 . . .
7 return 7 return

(a)

BAR () BAR SSA ()

1 int stack var, ?p, ? ? q 1 int stack var, ?p, ? ? q
2 p← &global var 2 p0 ← &global var0

3 q ← &p 3 q0 ← &p0

4 p← &stack var 4 p1 ← &stack var0

5 var ← ? ? q 5 var0 ← ? ? q0

6 . . . 6 . . .
7 return 7 return

(b)

Figure 4: Example SSA Forms with Indirection. Functionfoo() (a) is shown in SSA form dereferencing pointerp with a single degree of
indirection. Functionbar() (b) is shown in SSA form dereferencing pointerq with multiple degrees of indirection. Refer to Case 9 in Table
1 for the analysis by which the intended segment ofq and the run-time checks for the dereference ofq are determined.

rants a check. Finally, situations in which our three optimizations
are applicable are easily recognizable, thus making an optimized
segment protection solution obtainable without great effort. More-
over, it provides a framework in which more optimizations may be
easily realized.

4.1 Determining Required Checks
The intended segment of memory references and their required

checks are determined as follows. Each pointer definition is recur-
sively analyzed, generating a set of terminating definitions that de-
termine its intended segment and a set each of run-time and compile-
time checks that must be performed to guarantee the safety of its
dereference. Aterminating definitionis one that does not use an-
other pointer definition, and the set of these definitions for a pointer
p is denotedDp. Similarly, the set of run-time checks required for a
dereference ofp is denotedRp and the set of compile-time checks
is denotedCp. For example, Figure 1(d) shows the original code
from Figure 1(a) in SSA form with the set of terminating definitions
for each dereference explicitly indicated. Note that for the derefer-
ence ofp2, its definition is recursively analyzed backward through
φ-functions to determine the dereferenced value could be either the
value ofp0 or q0. This recursive chaining property eliminatesp1

from the set since it uses the definition of another pointer. In this
way, the cardinality ofDp2 is two, precipitating the need for the
pointer disambiguation checks since the intended segment of each
element of the set is different.

Tables 1 and 2 provide a detailed description of how the termi-
nating definitions and necessary run-time and compile-time checks,
respectively, are determined for a dereference of every pointer def-
inition type; each one will be discussed in turn. The case numbers
are the same in both tables, and each table should be referenced
frequently to better understand each case.

Cases 1 & 2 If a pointer is assigned the address of a scalar vari-
able, as in Case 1, its dereference does not require a check because
of the non-incremental reference optimization. For definitions in-
volving arithmetic, as in Case 2, if the operand is (a) a compile-
time constant, the compile-time bounds check shown in Table 2
can be performed instead of a run-time check. If the operand is (b)
a run-time variable, a segment bounds check is required to verify
the dereferenced addressed is within the variable’s segment, and if
the operand is (c) an induction variable, a monotonically addressed
range check can be performed in the preheader of the loop to ver-
ify the minimum and maximum referenced addresses are within the
variable’s segment. Each definition associated with Cases 1 and 2
is terminating.

Case 3 If a pointer is assigned the value of (a) another pointer,
the set of run-time and compile-time checks required for its deref-
erence are those of the copied pointer. In the event that the copied
pointer is (b) an induction variable, a monotonically addressed range
check can be performed in the preheader of the loop; no compile-
time checks can be performed. The pointer’s set of terminating
definitions is that of the copied pointer.

Case 4 For pointer copies involving arithmetic, if the operand
is (a) a compile-time constant, the necessary run-time checks are
those of the copied pointer. In the event that the definition of the
copied pointer induces no run-time checks, a compile-time bounds
check can be performed if the size of the referenced memory ob-
ject is known statically. If the operand is a compile-time constant
and the copied pointer is (b) an induction variable, a monotoni-
cally addressed range check can be performed for the dereferenced
pointer and its intended segment, but no compile-time check can
be performed. If the operand is (c) a run-time variable, a segment
bounds check must be performed, and if the operand is (d) an in-
duction variable, the monotonically addressed range check can be
performed as long as the definition of the copied pointer induces no
other run-time checks (e.g., an already requiredSBC for the copied
pointer invalidates the ability to perform the optimization in this
case); no compile-time checks are possible for either. For each def-
inition associated with Cases 4, the set of terminating definitions is
that of the copied pointer.

Cases 5, 6 & 7 If a pointer is assigned the return value of a func-
tion, as in Case 5, its set of terminating definitions and run-time and
compile-time checks are those of the returned pointer. If the func-
tion is a dynamic memory allocating function, as in Case 6, the
pointer definition is terminating, no checks are required because of
the non-incremental reference optimization, and the intended seg-
ment of the pointer is known statically to be the heap. Finally, if
the dereferenced pointer is an argument of the function containing
the dereference, as in Case 7, its definition is also terminating, but
a segment bounds check is required to verify that the referenced
address is within the argument’s intended segment. Due to the in-
terprocedural nature of our analysis, the bounds of the argument’s
intended segment are actually maintained as additional arguments
of the function and, in the case of an ambiguous-segment pointer,
defined at each call site of the function.

Case 8 If a pointer is assigned a statically known constant value,
its definition is terminating, and a segment bounds check is required
to verify the dereferenced address is within the bounds of the en-
tire data segment (the actual segment is unknown statically) of the
process; no compile-time check is possible. As a further optimiza-

Benchmark Category Input Input Size (bytes) Lines Description

adpcm telecomm small.pcm 1711080 741 Adaptive Differential Pulse Code Modulation

basicmath automotive none none 84 Basic Mathematical Operations

blowfish security small.asc 311824 1502 SSL Encryption Algorithm

crc32 telecomm large.pcm 1368864 281 Cyclic Redundancy Checksum

dijkstra network input.dat 29144 174 Shortest Path Algorithm

fft telecomm 4× 2048 none 469 Fast Fourier Transform

stringsearch office none none 3216 String Pattern Matching

susan automotive small.pgm 7292 2122 Image Processing and Enhancing

Table 3: Benchmark Programs and Characteristics.For each benchmark listed in the first column, the category to which each benchmark
pertains is given in the second column, the test input and size of the input in bytes is given in the third and forth columns, the size of each
benchmark in lines of code is given in the fifth column, and a description of each benchmark is given in the sixth column.

tion, if the constant value is known to be a memory-mapped I/O
location, no check is required. Case 8 is also used to handle unini-
tialized pointers and pointers assigned the value ofNULL. For the
dereference of these pointers, it is possible to signal a compilation
error when it is statically determined that the dereferenced pointer
canonlybe unassigned orNULL. However, virtual memory provides
no protection beyond the described bounds check for this type of
dereference, and since our goal is the reproduction of its functional-
ity in software, our solution does not signal such an error. It would
be trivial to add this feature even though other production quality
compilers, such as GCC, normally do not report such a warning.

Case 9 If a pointer is assigned the dereferenced value of another
pointer, such is the case involving multiple degrees indirection, the
set of terminating definitions and required checks are as follows.
Consider the example code fragments shown in SSA form in Fig-
ure 4. In Figure 4(a), for the dereference ofp0, its intended segment
is determined to be the segment in whichx0 resides. Although the
dereferenced value is clearly not that ofx0 but ofx1, this is not con-
tentious sincex0 andx1 are guaranteed to be in the same segment.
However, this is not the case for multiple degrees of indirection. In
Figure 4(b) it is incorrect to conclude that, by recursively analyz-
ing pointer definitions, the intended segment ofq0 is the segment
in which global var0 resides (it is actually the stack). Therefore,
the following rules apply. The set of terminating definitions for a
pointerp is the union of the set of terminating definitions of each
subscripted pointer associated with the one of whichp takes the
address. For example, in Figure 4(b),Dq0 contains bothp0 and
p1. For the dereference ofp, a segment bounds check is required
if the intended segment of all the terminating definitions ofp that
require a run-time check are the same. If the intended segments are
different,p is an ambiguous-segment pointer, and a pointer disam-
biguation check must be inserted involvingp and each terminating
definition requiring a run-time check. No compile-time checks can
be performed.

Case 10 If a pointer is assigned the result of aφ-function, its
set of terminating definitions is the union of the set of terminating
definitions of each argument of theφ-function as long as the deref-
erenced pointer is not in the set of terminating definitions of the
argument (e.g., for certain loops, a pointer can be recursively de-
fined in terms of itself withφ-functions). The checks required for
a dereference of this pointer type are identical to those of Case 9.

4.2 Maintaining Segment Bounds
Segment bounds for the code, globals, stack, and heap segments

are maintained at run-time as global variables inserted into the pro-

gram, and determining their values at run-time is a trivial task.
Linker symbols are used to define the base of the code segment,
the base of the globals segment, and the base of the heap segment.
The heap pointer is made known to the program by modifying the
malloc() library function so that its value is available externally.
The stack pointer is a register value, and the base of the stack is
defined at the beginning ofmain() to be a specified offset from the
initial frame pointer, which is also a register value.

4.3 External Functions
When a compiler analysis, such as intended segment analysis, is

required to analyze an entire program, external functions become
an important consideration if separate compilation is to be main-
tained. We have devised the following two-part solution for han-
dling external functions while still allowing separate compilation.

First, our analysis is performed at link-time. The advantage of
link-time analysis is that the entire program is analyzed as a whole
without the loss of any information. The problem with this solu-
tion, however, is that, even though separate compilation is main-
tained, performing a complicated analysis on an entire program at
once can be time consuming; it would be convenient if the cost of
the analysis was distributed evenly among each compilation. As
such, we have adopted link-time analysis for every external func-
tion intrinsic to the particular application and not library functions
it may call. The increase in link-time is tolerable since it need not
be incurred during debugging but only during the final production
compile. In future work we will investigate extending our segment
protection solution to operate in infrastructures lacking a link-time
optimization framework or those where the link-time object code
format lacks the information required by our analysis.

Second, the limited assumption is made that library functions
can be deemedsemi-safe. That is, if a pointer is passed as an argu-
ment to a library function, it is assumed the library will not cause
the intended segment of the pointer at its dereference point inside
the function to differ from its intended segment before the call. If
library functions do not satisfy this property then they are still al-
lowed, but pointer dereferences inside them are not checked. To
prevent a memory violation, it is then necessary to insert a seg-
ment bounds check before the call and before the next dereference
of the pointer after the call returns, in case the pointer may have
been freed. Additionally, if a library function that is not a dynamic
memory allocation function returns a pointer, a segment bounds
check must be inserted before its first dereference to verify the ad-
dress is within the bounds of the entire data section of the process
since the library function is not analyzed to determine the intended
segment of the returned pointer. Using these two techniques, our

segment protection solution is able to safely handle external and li-
brary functions that are compiled using our method and still main-
tain separate compilation.

4.4 Comparison with Alias Analysis
There may be confusion as to how intended segment analysis is

distinct from alias analysis [1, 10, 27]. While not requiring alias
analysis, our method could be implemented in a such way that it
would make use of the resulting information. For example,may-
alias querying could be used to determine the set of memory ob-
jects a pointer could be referencing. The intended segment of the
pointer would then simply be the segment in which each object
resides. However, this method of determining intended segments
makes use of extraneous and unnecessary information. The mem-
ory object referenced by the pointer is unimportant, but the segment
in which it resides is. In that sense, pointer analysis solves a strictly
harder problem than intended segment analysis since the latter rea-
sons at the coarser granularity of segments. Moreover, without
the pointer usage information our SSA implementation maintains
through the recursive analysis of pointer definitions, such as whether
or not a pointer has been incremented, the optimizations essential
for reducing the performance overheads of our base solution would
not be possible.

Often, the complexity of alias analysis is discussed in terms of
flow and context sensitivity. Intended segment analysis is a flow-
sensitive data-flow analysis in as much as the control information
encapsulated in theφ-function of SSA form is flow-sensitive. While
being interprocedural, the need for context-sensitivity is avoided by
passing intended segment bounds as arguments to functions with
pointer arguments. In the case that a pointer argument may be an
ambiguous-segment pointer, run-time checks are inserted at each
call site of the function to perform the disambiguation and set the
appropriate bounds arguments. In this way, context-sensitivity is
not needed because the program is instrumented to discover the in-
tended segment at run-time. Because our implementation analyzes
a set of definitions per pointer dereference without requiring con-
text sensitivity, its algorithm complexity is linear.

5. RESULTS
Our segment protection solution for embedded systems, as pre-

sented, has been implemented in the GCC-based Low Level Vir-
tual Machine (LLVM) [24] research compiler infrastructure and
link-time optimization framework. As mentioned in Section 4.3,
link-time optimization has the benefit of allowing a mechanism
for whole-program interprocedural analysis even when procedures
may be defined externally. Since LLVM currently does not yet fully
support an embedded target, its C code backend was used to gener-
ate optimized source code including our run-time checks, and the
instrumented program was then compiled with no optimizations us-
ing the production-level, public domain GCC cross-compiler [8]
targeting the ARM Version 5 instruction set architecture. The pro-
grams were then simulated with the public domain, cycle accurate
GDB [8] simulator and debugger. For consistency, each of the eight
evaluated benchmarks was compiled using this infrastructure to ob-
tain a base performance before measuring the overheads of our
method. These benchmarks are from the MIBench [17] suite of
embedded benchmarks and presented in Table 3.

The performance overheads of our segment protection solution,
given as a percent increase of each original unmodified benchmark,
are presented in Figure 5. The run-time overheads are shown in
Figure 5(a) and were found to average60.90% for the unoptimized
base solution and0.72% for the optimized solution. Similarly, the
energy consumption overheads are shown in Figure 5(b) and were

 0

 20

 40

 60

 80

 100

 120

 140

 160

AVG.
susan

stringsearch

fftdijkstra

crc32
blowfish

basicmath

adpcm

R
U

N
-T

IM
E

 (%
 in

cr
ea

se
)

60
.90

58
.45

42
.88

0.7
2

Base Solution
+ Dominated Ref. Opt.

+ Non-incremental Ref. Opt.
+ Monotonically Addr. Range Opt.

(a)

 0

 20

 40

 60

 80

 100

 120

AVG.
susan

stringsearch

fftdijkstra

crc32
blowfish

basicmath

adpcm

E
N

E
R

G
Y

 (%
 in

cr
ea

se
)

48
.15

46
.33

36
.81

0.4
4

Base Solution
+ Dominated Ref. Opt.

+ Non-incremental Ref. Opt.
+ Monotonically Addr. Range Opt.

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

AVG.
susan

stringsearch

fftdijkstra

crc32
blowfish

basicmath

adpcm

C
O

D
E

 S
IZ

E
 (%

 in
cr

ea
se

)

6.3
8
6.1

9

5.0
3

3.6
0

Base Solution
+ Dominated Ref. Opt.
+ Non-incremental Ref. Opt.
+ Monotonically Addr. Range Opt.

(c)

Figure 5: Overheads for Run-time Checks.For each benchmark,
the performance is given as a percent increase in run-time (a), en-
ergy consumption (b), and code size (c) as measured against the
original, unmodified benchmark. The last group in each histogram
contains the averages over all the benchmarks.

found to average48.15% for the base solution and0.44% for the
optimized solution. The optimizations provide a dramatic improve-

Benchmark Static Checks by Check Type Static Checks by Dereference Type

Unoptimized Optimized Unoptimized Optimized
SBC MARC PDC SBC MARC PDC POINTER ARRAY STRUCT POINTER ARRAY STRUCT

adpcm 11 0 0 1 8 0 3 8 0 1 8 0

basicmath 9 0 0 2 5 0 2 5 2 2 5 0

blowfish 159 0 0 0 7 0 23 48 88 0 7 0

crc32 3 0 0 0 2 0 2 1 0 1 1 0

dijkstra 25 0 0 1 11 0 4 12 9 0 12 0

fft 34 0 0 0 21 0 34 0 0 21 0 0

stringsearch 13 0 0 0 12 0 4 9 0 4 8 0

susan 937 0 0 587 230 0 594 337 6 579 248 0

Table 4: Number of Statically Inserted Checks.For each benchmark listed in the first column, the number of run-time checks inserted is
given, separated by check type and program dereference type for the unoptimized base solution and the fully optimized solution. Refer to
Figures 2 and 3 for a description of each run-time check.

ment in performance, especially forblowfish, in which the run-time
overhead was decreased by over140%. The code size overheads
are shown in Figure 5(c) and were found to average6.38% for the
base solution and3.60% for the optimized solution. Without in-
cludingsusan, the remaining seven benchmarks average a code size
increase of0.58% for the optimized solution.susanis interesting
because while many run-time checks were inserted to guarantee
segment protection, significantly increasing code size, its run-time
remained low. This is because checks were inserted for memory
references that were rarely or never executed.

As determined from the plots in Figure 5, it is clear that the
monotonically addressed range optimization is the most essential
optimization used in reducing the performance overheads. Embed-
ded benchmarks are largely loop-intensive and spend the majority
of their execution time iterating over the same instructions. Insert-
ing a segment bounds check within a loop is enormously costly in
these situations, and it is reasonable to conclude that hoisting the
check out of the loop would cause such a dramatic decrease in the
performance overheads. The non-incremental reference optimiza-
tion was reasonably effective, and the dominated dereference opti-
mization, only aiming to eliminate checks for repeated memory ref-
erences, provided a significant performance improvement for only
a few benchmarks. Therefore, it can be concluded that the eval-
uated benchmarks rarely sequentially reference the same memory
location, or if they do, existing optimizations, such as allocating
variables to registers or CSE, remove the repeated references.

Finally, the number of statically inserted run-time checks re-
quired to guarantee segment protection are presented in Table 4.
For each benchmark, the number of inserted checks are separated
by the type of check and also by the type of referenced program
constructs (i.e., array, struct, or pointer dereference) requiring a
check. It is important to note that these numbers do not represent
the number of checks that were dynamically executed. In fact, be-
cause the optimized run-time ofsusanis so low, it is likely that only
a few of the many checks remaining were ever executed. For the
optimized solution, there is a strong correlation in the number of
inserted monotonically addressed range checks and array accesses.
It is the case that, for the benchmarks showing this correlation, the
arrays were being traversed within a loop, yielding themselves sub-
ject to the optimization. While it is likely that there were some
dereferenced pointers that could point to more than one memory
object, for each evaluated benchmark, none of these pointers could
refer to more than one segment. Therefore, and in keeping with our
contention that ambiguous-segment pointers are rare occurrences

in embedded applications, none of the benchmarks required the in-
sertion of a pointer disambiguation check.

6. CONCLUSION AND FUTURE WORK
This paper presents a comprehensive segment-level memory pro-

tection solution for embedded systems whose goal it is to improve
system reliability without the addition of virtual memory hardware.
This is done completely automatically by inserting run-time checks
for memory accesses without the need for any programming lan-
guage or semantic restrictions. Known as intended segment analy-
sis, the easily implementable solution is rooted in the widely avail-
able SSA intermediate representation and allows the realization of
three optimizations used to reduce the number of required run-
time checks. These optimizations include the dominated reference
optimization, the non-incremental reference optimization, and the
monotonically addressed range optimization. Results show that
these optimizations are effective at reducing the performance over-
heads associated with providing software segment protection to
low, and in many cases, negligible levels. For eight evaluated em-
bedded benchmarks, the average increase in run-time was0.72%,
the average increase in energy consumption was0.44%, and the
average increase in code size was3.60%. In future work we wish
to extend our current implementation to better handle library and
variadic functions and investigate further optimizations for deeply
nested memory references and recursive functions.

7. REFERENCES
[1] L. O. Andersen.Program Analysis and Specialization for the

C Programming Language. PhD thesis, University of
Copenhagen, May 1994.

[2] A. W. Appel and M. Ginsburg.Modern Compiler
Implementation in C. Cambridge University Press, 1998.

[3] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient
detection of all pointer and array access errors. In
Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), pages 290–301, 1994.

[4] S. Biswas, M. Simpson, and R. Barua. Memory overflow
protection for embedded systems using run-time checks,
reuse and compression. InProceedings of the International
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), pages 280–291, 2004.

[5] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard.
Ownership types for safe region-based memory management

in Real-time Java. InProceedings of the Conference on
Programming Language Design and Implementation (PLDI),
pages 324–337, 2003.

[6] J. Carbone. Efficient memory protection for embedded
systems.RTC Magazine, September 2004.http://www.
rtcmagazine.com/home/article.php?id=100120.

[7] J. Cocke. Global common subexpression elimination. In
Proceedings of a Symposium on Compiler Optimization,
pages 20–24, 1970.

[8] CodeSourcery, LLC.GNU ARM Toolchain.
http://www.codesourcery.com/.

[9] J. Condit, M. Harren, S. McPeak, G. C. Necula, and
W. Weimer. CCured in the real world. InProceedings of the
Conference on Programming Language Design and
Implementation (PLDI), pages 232–244, 2003.

[10] M. Das. Unification-based pointer analysis with directional
assignments. InProceedings of the Conference on
Programming Language Design and Implementation (PLDI),
pages 35–46, 2000.

[11] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without garbage collection for embedded applications.
Transactions on Embedded Computing Systems (TECS),
4(1):73–111, 2005.

[12] M. Durrant. Running Linux on low cost, low power
MMU-less processors, August 2000.http://www.

linuxdevices.com/articles/AT6245686197.html.
[13] F. C. Eigler. Mudflap: Pointer use cheking for C/C++. In

Proceedings of the GCC Developers Summit 2003, pages
57–70, 2003.

[14] B. Franke and M. O’boyle. Array recovery and high-level
transformations for DSP applications.Transactions on
Embedded Computing Systems (TECS), 2(2):132–162, 2003.

[15] D. Gay and A. Aiken. Memory management with explicit
regions. InProceedings of the Conference on Programming
Language Design and Implementation (PLDI), pages
313–323, 1998.

[16] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in Cyclone.
In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), pages 282–293, 2002.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. InProceedings of
the IEEE Workshop on Workload Characterization, 2001.

[18] R. Hastings and B. Joyce. Purify: Fast detection of memory
leaks and access errors. InProceedings of the USENIX
Technical Conference, pages 205–215, 1992.

[19] J. Hennessy and D. Patterson.Computer Architecture: A
Quantitative Approach. Morgan Kaufmann, 2003.

[20] B. L. Jacob and T. N. Mudge. Uniprocessor virtual memory
without TLBs.IEEE Transactions on Computers,
50(5):482–499, May 2001.

[21] D. Jagger and D. Seal.ARM Architecture Reference Manual.
Addison Wesley, 2000.

[22] S. Kowshik, D. Dhurjati, and V. Adve. Ensuring code safety
without runtime checks for real-time control systems. In
Proceedings of the International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES),
pages 288–297, 2002.

[23] C. Lattner and V. Adve. Automatic pool allocation for
disjoint data structures. InProceedings of the Workshop on
Memory System Performance (MSP), pages 13–24, 2002.

[24] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In
Proceedings of the International Symposium on Code
Generation and Optimization (GCO), pages 75–87, 2004.

[25] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert,
E. Brockmeyer, C. Kulkarni, A. Vandercappelle, and P. G.
Kjeldsberg. Data and memory optimization techniques for
embedded systems.Transactions on Design Automation
Electronic Systems, 6(2):149–206, 2001.

[26] J. Seward and N. Nethercote. Using Valgrind to detect
undefined value errors with bit-precision. InProceedings of
the USENIX Technical Conference, pages 17–30, 2005.

[27] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the Symposium on Principles of
Programming Languages, pages 32–41, 1996.

[28] R. Uhlig, D. Nagle, T. Stanley, T. Mudge, S. Sechrest, and
R. Brown. Design tradeoffs for software-managed TLBs.
Transactions on Computer Systems (TOCS), 12(3):175–205,
1994.

[29] Venture Development Corporation.The Embedded Software
Strategic Market Intelligence Program 2002/2003 Volume 2,
2003.http://www.vdc-corp.com/embedded/white/
03/03esdtvol2.pdf.

[30] Venture Development Corporation.The Embedded Software
Strategic Market Intelligence Program 2004 Volume 1, 2004.
http://www.vdc-corp.com/embedded/white/04/

04esdtvol1.pdf.
[31] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.

Efficient software-based fault isolation. InProceedings of the
Symposium on Operating Systems Principles (SOSP), pages
203–216, 1993.

[32] E. Witchel, J. Cates, and K. Asanović. Mondrian memory
protection. InProceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 304–316, 2002.

