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Abstract

This report describes a set of experiments to evaluate qualitatively the effectiveness of Data Struc-

ture Analysis (DSA) in identifying properties of a program’s data structures. We manually inspected

several benchmarks to identify linked data structures and their properties, and compared these against

the results produced by DSA. The properties we considered are those that were the primary goals of

DSA: distinguishing different kinds of data structures, distinct instances of a particular kind, type in-

formation for objects within an LDS, and information about the lifetime of such objects (particularly,

those local to a function rather than global). We define a set of metrics for the DS graphs computed

by DSA that we use to summarize our results concisely for each benchmark. The results of the study

are summarized in the last section.

1 Introduction

The algorithm called Data Structure Analysis (DSA) by Lattner and Adve [4] is designed to identify

and isolate instances of linked data structures (LDS), their lifetimes, and internal structural and type

information, but not to prove shape properties. In particular, our goal has been to develop an algorithm

that is very fast in practice (sacrificing analysis power where necessary) and also is designed to handle

challenging practical issues faced by production compilers, including incomplete and non-type-safe pro-

grams, reuse of data structure manipulation functions for separate LDS instances, and complex features

of C and C++.

Because our algorithm trades off analysis precision for speed in several important ways, it is important

to evaluate specifically how successful the algorithm is in extracting the relevant properties of data

structures. The four major properties of data structures DSA aims to extract include:

• distinct kinds of data structures;

• distinct instances of a particular kind;

• type information for objects within a linked data structure; and
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• the lifetime of such objects (particularly, to distinguish objects that are local to a function rather

than global).

Unfortunately, evaluating quantitatively whether DSA actually identified “logical data structures” in

programs is difficult for two reasons:

• First, the notion of what is a data structure is somewhat subjective. Complex, pointer-based data

structures are hierarchical, e.g., an array of trees of linked-lists. Furthermore, many sub-structures

can be interconnected for incidental reasons that may be best interpreted as separate data structures

if they serve different purposes, e.g., when two unrelated entities like a tree and a hash-table are

pointed to by a common global container structure for programming convenience.

• Second, we do not have an alternative tool that can analyze the relevant properties of data struc-

tures. This makes it difficult to systematically identify the data structures in order to compare how

well the algorithm does.

To evaluate the algorithm, therefore, we have performed a painstaking manual but partially qualitative

experiment. We manually inspected several of our benchmarks to identify linked data structures and

their properties, and compared these against the results produced by DSA. To address the problem of

hierarchical organization above, we separately considered instances of linked data structures and instances

of identifiable sub-data-structures within the larger structures (which we call logical data structures).

These terms are defined concretely in Section 2.3.

This technical report presents the detailed results of this manual experimental study. The next section

describes the goals of the study, the terminology we use to make these goals and our metrics concrete,

and a set of metrics we define to quantify the key data structure properties in which we are interested.

Section 3 describes our experimental methodology and the five benchmarks we use in this work. The

following five sections describe the detailed results for each of these five benchmarks. Finally, Section 10

summarizes the conclusions we arrive at in this work.

2 Goals and Metrics

As noted in the Introduction, the broad goal of our experiments is to evaluate how successful the DSA

algorithm is in extracting the properties of data structures it aims to extract: disjoint instances, lifetime,

and type information.

2.1 Goals of the Study

The questions (corresponding to key data structure properties) we considered in this evaluation include:

1. Was DSA successful at distinguishing linked data structures (LDS) of different kinds (ignoring

distinct instances of a particular kind)? For example, a program that creates two similar linked

lists and three similar binary trees, would DSA distinguish the lists from the trees? A simple

type-based analysis is sufficient in a strongly typed language but not in C. This requires sufficiently

precise memory disambiguation so that objects of different types are not incorrectly aliased, and

2



requires inferring accurate type information from memory operations (e.g., even in the presence of

casts) so that the field-sensitive analysis can capture the internal structure of each kind of data

structure.

2. Was DSA successful at distinguishing disjoint instances of LDS of a particular kind? Interestingly,

this question includes three distinct cases that require different analysis capabilities:

(a) Distinct instances created at two different places in the program, whether in the same function

or different function.

(b) Distinct instances created and used within different invocations of the same function (i.e., local

to a function).

(c) Distinct instances created (typically at one place, within a loop or recursion) and stored into

another aggregate structure (e.g., an array or list of pointers to the instances).

These tend to have different outcomes because the first one requires context-sensitivity, the second

requires accurate lifetime information, and the third requires flow-sensitivity plus some potentially

more sophisticated analysis such as shape analysis (e.g., for a list of disjoint lists), or array dataflow

analysis and dependence analysis (e.g., for an array of disjoint lists).

3. For data structures whose lifetime is local to a function, was DSA successful at proving the lifetime

is local? More broadly, how many data structures were identified as local vs. global? The latter

directly determines the answer to question 2(b) above, by focusing on functions that are potentially

invoked more than once.

4. Was DSA successful at extracting type information for individual DS nodes within the data struc-

tures? This information enables our field-sensitive analysis to track distinct pointer fields and

therefore determines whether DSA is able to extract structural information about each kind of data

structure. For efficiency, DSA is field-sensitive only for DS nodes where all referenced fields of all

objects have compatible types.

2.2 Strengths and Weaknesses of DSA

Understanding the outcomes of these questions requires an understanding of the basic strengths and

weakness of the DSA algorithm. We briefly summarize these as follows; they are explained in more detail

in [6, 4]:

Strengths

1. Type information: Ability to infer type information for sets of objects (DS nodes). Where available,

this information also enables field-sensitive analysis, i.e., tracking of distinct pointer fields.

2. Context-sensitivity : Ability to distinguish heap objects via acyclic call paths. This enables distin-

guishing two or more instances in case 2(a) above, and also makes it more likely in case 2(b). By

allowing more precise memory disambiguation, it can also make it more likely to extract precise

type information or lifetimes.
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3. Escape information: Ability to distinguish lifetimes of sets of objects (DS nodes) via reachability

in the points-to graph. This enables distinguishing two or more instances in case 2(b) above.

Weaknesses

1. Flow-insensitivity : The lack of flow-insensitivity in the basic alias analysis algorithm can lead to

imprecision in all the goals above, especially when a single a pointer is used at different places in

the program to point to different objects with different properties (e.g., local vs. global lifetimes,

different types, or distinct instances). We refer to this as basic flow insensitivity.

Static analysis algorithms for data structures can conceivably have more powerful capabilities that

require flow insensitivity together with additional analysis features. Two important ones we identify

(based partly on our experience in this study) as lacking in DSA are:

• No uniqueness information: We use this term informally to refer to the key “#1” property

exploited by previous shape analysis algorithms [7, 2]. A static representation of a set of

dynamic memory objects (e.g., a DS node) has this property at a program point if every

dynamic memory object is guaranteed to have at most one incoming pointer from any other

memory object at that program point.

• No array dataflow analysis: Any algorithm that can distinguish data structures instances

reached from two distinct array elements (in an array of pointers) would generally require

some form of array dataflow analysis.

2. Unification: DSA may merge two sets of objects if a particular pointer variable or field may point

to objects in either set. Like flow-sensitivity, unification can lead to imprecision in all the goals

above.

3. Limited context sensitivity in recursion: DSA cannot distinguish distinct heap objects created in

different function invocations within a recursive computation if those objects in certain cases. For

example, if objects created in one invocation are passed as arguments to a later recursive invocation

(the incoming arguments to the recursive function would be merged with the outgoing arguments to

the recursive call). This is true with either self-recursion or mutual recursion. On the other hand,

DSA can distinguish heap objects created within an invocation and only used locally or passed to

(or returned from) only callee functions outside the strongly connected component of the call graph.

We will refer to these as recursive argument objects and non-recursive objects respectively.

2.3 Terminology

To make our experiments and metrics concrete, we use the following terms and definitions. The first

two terms are defined with respect to data types and usage within the program and are unrelated to the

analysis.

Data Structure Snapshot (DSS) A set of memory objects at runtime that form nodes of a connected

graph, where an edge is formed by a pointer from one object element to another, and elements of

individual objects can be traversed via structure or array indexing. This gives the key property
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that a DSS must be traversable via sequences of pointer dereferences and indexing operations. One

DSS can contain another; for example, an array of binary trees forms a DSS, and so does each

individual tree (viewed at a particular point in an execution).

Linked Data Structure (LDS) : A maximal subset of user-defined data types in a program such that

there is some DSS in some execution that consists of instances of exactly these types and a pointer

edge from field O1.f1 to O2.f2 in the DSS corresponds to valid fields f1 and f2 for the static types

of O1 and O2.

This gives a precise definition for the static notion of a data structure. Defining it in terms of

dynamic snapshots correctly captures the case of a generic data type (e.g., a list of void* used for

lists of two different kinds of data types). It is also independent of any particular analysis.

Unfortunately, this definition by itself is not very useful in practice because it is common for

many intuitively distinguishable “logical data structures” to be grouped into larger structures for

convenience, as noted in the Introduction. The next term captures these smaller, logical structures,

but it is less precise and identifying them requires some subjective judgement and we do it manually.

Logical Data Structure (Logical DS) : A minimal subset of user-defined data types within an LDS

that intuitively serve a single purpose within the input program.

For example, if a program creates a hash table mapping identifiers to binary trees (and no other

data types point to the hash table or trees), the hash table with the trees would form a linked

DS, while the data types forming the hash table and those forming the tree would be two separate

logical DSs. Note that the tree may contain multiple node types and may still be a single logical

DS.

On the other hand, we often consider a small hierarchy, e.g., an array of trees or a list of lists, as a

single logical DS if the array or the list of lists is the primary focus of the algorithm. Distinguishing

these two kinds of situations is why we consider this step subjective.

Note that the only subjective step here is to identify a set of types that intuitively serve a “single

purpose” within the program. Once that set has been identified, the remaining definitions and metrics

used in the study are precise.

To evaluate the properties of the static analysis, we must be able to refer to sets of instances of LDSs

and logical DSs distinguished by the analysis. For example, a single logical DS consisting of a linked

list data type may be represented by multiple DS nodes (clones of each other) in different functions or

within the same function. Two distinct DS nodes in the same or different functions that are “complete”

represent disjoint lists being created in the program. Each “complete” DS node has also been proved

local, so it proves that distinct dynamic instances of the logical DS are created at run-time in separate

invocations of the function. Both these situations represent multiple instances of a single logical DS. We

refer to each such DS node (in this example) or set of DS nodes as a “static data structure instance” of

the single logical DS.

Static Data Structure Instance (SDSI) : A sub-graph of a function’s DS graph whose nodes rep-

resent instances of the data types in a logical DS, and whose edges correctly capture a superset of
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the points-to properties between those instances, and such that every DS node in the subgraph is

complete (no I flags).

Completeness is important for two reasons: (a) to count an SDSI only once, instead of in every

function to which it is passed or from which it is returned; and (b) to ensure that any potential

collapsing of type information has been considered.

Static Collection : An SDSI containing an Array node (the A flag is set) or a cycle (including a self-

cycle), or a set of SDSI containing a cycle. Any other SDSI reachable from a static collection may

have multiple instances at run-time reachable from a single instance of the collection. This helps

identify case 2(c) of distinct instances discussed earlier, e.g., an array or list or tree of SDSIs.

2.4 Metrics for Data Structure Properties

In order to summarize the results of our study concisely for each benchmark, we use the following metrics:

N ≡ Total number of SDSI in all function DS graphs.

G ≡ Number of SDSI that are global, i.e., some node in the SDSI is reachable from a DS
node marked G.

L ≡ Number of SDSI that are not global. Since nodes in an SDSI are complete, this means
that they are local to a function. By definition, L = N − G.

K ≡ Total number of H nodes in all SDSI.

I ≡ Total number of H nodes in all SDSI that satisfy the following property: there are two
or more H nodes in a function’s DS graph have identical types representing disjoint
instances in the same function and no instance is Collapsed.

O ≡ Number of H nodes in all SDSI that are Collapsed.

C ≡ Number of H nodes in all SDSI that are reached by at least one Collection (which may
be the node itself).

Note that N , G and L refer to static instances of logical DSs (i.e., SDSI), whereas K, I, O and C

refer to DS nodes. An SDSI may contain multiple DS nodes. I identifies occurrences of case 2(a). L

identifies occurrences of case 2(b), and O identifies occurrences of case 2(c).

3 Methodology and Benchmarks

3.1 Benchmarks Used in the Study

Because of the time and effort required, we are only able to do this study for a small number of moderate

size programs (smaller programs usually have few interesting data structures and often only one instance

of each). We chose moderate-size, pointer-intensive programs that do not use custom allocators (except

for parser, discussed below). Three are from SpecInt2000: 175.vpr, 197.parser-b, 300.twolf. The

three other programs are fpgrowth (a small program that has interesting recursive behavior with respect

to creation of data structures, espresso and eon.
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Although 197.parser uses a custom memory allocator, the interface to this allocator is semantically

equivalent to malloc/free, but this cannot be inferred even with “full” context-sensitivity (i.e., they are

not just malloc “wrappers”). In the original program, virtually all interesting heap objects are merged

into a single DS node because of the custom allocator. We changed the allocation routines in 197.parser

to call malloc/free directly (now context-sensitivity is enough!), yielding the 197.parser(b) benchmark.

Because it calls malloc & free, DSA is able to identify many interesting logical data structures.

3.2 Methodology

Briefly, we took the following steps for each of the benchmarks:

1. Run DSA to construct the “Complete Bottom-Up” (CBU) DS graphs. We use the CBU graphs

because these are the most complete “summary” information for the side-effects of a function,

including the side-effects of all its known callees. This graph is the starting point for client queries,

including:

• Alias analysis: The CBU graphs are inlined top-down to construct the TD graph for each

function, which includes aliasing information for all callers. Technically, this top-down inlining

can be performed with either the BU or CBU graphs with identical results, so we actually do

it with the BU graphs. Nevertheless, the conceptual effect is like using the CBU graphs.

• Inter-procedural (IP) Mod/Ref : The CBU graphs of a subset of callees is inlined into the TD

graph of a caller at a particular call site to compute the IP Mod/Ref side-effects for those

callees at that call site.

• Automatic Pool Allocation: This transformation takes the CBU graph as its primary input to

insert pool descriptors and identify their lifetimes [5].

2. We then identified all the “Complete” nodes with ’H’ or ’S’ markers in order to identify nodes that

are potential members of an SDSI.

3. Using these nodes, we examined the data structures in the program source to understand many

properties of these data structures, including their data types, lifetimes (including identifying DSs

with globals pointing to them), and the functions where they were created and used. Although

we studied many such properties, the specific question we had to answer for each function was

which subsets of the above complete DS nodes should be considered a single logical DS? This is the

subjective step mentioned earlier.

4. Identify the DS nodes corresponding to static instances of each such logical DS. This identifies the

SDSI in each function. For example, there are two static instances of the Connector struct logical

DS in Figure 11 and also in Figure 13.

5. Count the SDSI in all functions (N) and the cases of SDSI or SDSI nodes matching the other metrics

listed previously. One key question we must answer in this counting is this: When two SDSI within

a function are identical in structure, do they correspond to disjoint instances of a single logical DS?

And do they require context-sensitivity with heap cloning (they do not if the actual allocation sites
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are distinct for the two SDSI). In all cases, we have encountered, the answer to both these questions

is “Yes”.

4 Results for fpgrowth

4.1 Summary:

This is a specific implementation of fpgrowth algorithm [3], which is one of the most efficient algorithms to

mine frequent-itemset using divide-and-conquer strategy. This algorithm uses many instances of special

tree data structures called FP-tree. This implementation has 634 lines of code, 544 memory instructions

in LLVM representation and 1 strongly connected component in the call graph.

4.2 Data Structures:

Figure 1: Structure of FP-tree data structure (taken from Shengnan Cong

There are two significant kinds of data structures in this implementation - FPtree and large item table.

The structure of the main data structure fptree is shown in Figure 1. It has a root node and a set of

nodes forming a tree structure. The tree structure (shown with solid lines in the figure) is imposed using

three pointer variables. ”Parent” variable points to the parent of the given node, ”first son” variable

points to the first child, ”right brother” points to next sibling. The header table contains pointers to

first node with a particular label. The ”next” pointer in each node forms a linked list of nodes with same

label (shown with dotted arrows in the figure). The large item table data structure contains number of

large items, an array of large items and their count (i.e number of occurrence of each large item).
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One main FPtree is created in build fp tree from transaction function. The main function calls a

recursive function fptree mine. A local FPtree is created in this function and passed as an argument to

the recursive call. Main FPtree is passed to the first call from main function. In this way many local

FPtree data structures are created in fptree mine function. In a similar manner, a large item table is

passed as an argument to the fptree mine function, where many local large item tables are created locally.

Another set of local data structures called conditional table are also created recursively in this function.

But it is not passed on to the recursive call as an argument.

Figure 2: CBU graphs of main data structures in fpgrowth

The part of CBU graph of main function showing the parts corresponding to the important data

structures is shown in Figure 2. Fptree data structure contains tree node structure instances forming

the tree. The figure also shows header array, which forms a linked list of tree node having same label.

This figure also shows the structure of the large item table in main function. These data structures are

local to main. DSA correctly identifies them as local, as evident from the absence of ”G” flag. The

nodes also contain accurate type information without being collapsed. But the DSA is unable to find

disjoint instances of main and local fptree data structures due to limited context sensitivity in recursion.

This is also the case with large item table, as it is also a recursive argument object like FPtree. But

DSA identifies disjoint local conditional table data structures, as they are non-recursive objects (i.e. not

passed as argument to recursive calls).

4.3 Metrics:

The values of the described metrics for fpgrowth are -

N=3

Three SDSI were found in this code. The data structures include one fptree, one large item table and

one conditional table data structure.

G=0

No SDSI was global in this case.

L=3

All data structures were correctly proved to be local by DSA.

K=9
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The main data structures consist of 9 nodes.

I=0

There are no disjoint instances/nodes of same type.

O=0

None of the nodes are collapsed.

C=2

These two nodes form parts of two data structures.

5 Results for espresso

5.1 Summary:

Espresso is an integer benchmark. The goal of espresso benchmark is to minimize boolean functions using

set operations such as union, intersect and difference. The input to the benchmark is a boolean function

and output is a logically equivalent function possibly with fewer terms. The implementation consists of

14959 lines of code and approximately 50 source files.

5.2 Data Structures:

There are two important data structures in this implementation. First, there are disjoint symbolic struct

structures, symbolic label struct structures and disjoint symbolic list struct structures pointed to by

program variables. The part of CBU graph showing some parts of these data structures is shown in

Figure 3. The disjointness is detected by context sensitivity in DSA algorithm. The significant part of

this data structure consists of linked list of linked lists. This data structure is local to main function

and DSA correctly identifies this using the fact that none of nodes marked with ”G” flag point to these

structures. None of the nodes are collapsed and all the nodes have accurate type information.

Another interesting data structure is a sparse matrix representation in do sm minimum cover function.

The part of CBU graph showing the parts of this data structures is shown in Figure 4. the rows and

columns form doubly linked lists in this data structure. All the matrix elements are connected in a

mesh form, where each element has pointers to its four neighbors along the same row and column. DSA

algorithm correctly identifies disjoint arrays of sm col struct structures using context sensitivity. DSA

also finds disjoint local sparse matrix structures using escape analysis. This is correctly identified as a

local data structures as they are not reachable from any node marked ”G”. DSA was able to infer the

correct types for all nodes and none of the nodes got collapsed. For example, DSA incorrectly shows

pointers to sm col struct in stead of sm row struct.

5.3 Metrics:

The values of the described metrics for this benchmark are - N=22

The main data structures found include linked list of symbolic struct, linked list of linked of sym-

bolic list struct and symbolic label struct structures, disjoint pair struct structures, few disjoint sparse

matrices, disjoint set family structures, few disjoint solution struct, sm col struct, sm element struct
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Figure 3: CBU graphs of linked list of linked lists in espresso

structures etc.

G=8

L=14

All local and global nodes were identified correctly

K=148

There were large number of heap nodes in this case

I=67

Many disjoint ”‘H”’ nodes were found, which signifies the large number of disjoint data structures iden-

tified by DSA algorithm.

O=0

None of the nodes were collapsed in this case.

C=47

Large number of nodes are reachable from a collection. This provides a hint on the large number of

non-trivial data structures found by DSA in espresso.

6 Results for 300.twolf

6.1 Summary:

This is a part of the SPEC INT 2000 Benchmark known as TimberWolfSC placement and global routing

package. This benchmark determines the placement and global connections for groups of transistors

which constitute a microchip. The placement problem is a permutation. In stead of a simple brute
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Figure 4: CBU graphs of sparse matrix in espresso

force exploration of the state space, the TimberWolfSC program uses simulated annealing as a heuristic

to find good solutions. This benchmark has 20459 lines of code, 19686 memory instructions in LLVM

representation and 1 non-trivial strongly connected component in the call graph.

6.2 Data Structures:

There are a few important data structures in this implementation. First, there are disjoint arrays of

blockbox structure created in ”configure” function. The part of CBU graph showing the parts corre-

sponding to this data structure is shown in Figure 5. Two pointer variables ”barray” and ”oldbarray”

points to disjoint blockbox arrays in some parts of code, but in the cbu graph they point to same array as

oldbarray points to barray at one place in the code. Flow sensitivity or subset based pointer analysis is

required identify to disjoint nodes in this case. This data structure is global and DSA correctly identifies

this using the fact that the arrays are reachable from nodes marked with ”G” flag. The nodes also contain

accurate type information without being collapsed.

Another interesting data structure involves linked list of ibox and ipbox structures created in buildimp,

build feed imp functions. The part of CBU graph showing the parts corresponding to these data struc-

tures is shown in Figure 6. As can be seen from the figure, this data structure is actually a linked list

of linked list. These are global data structures as they are reachable from nodes marked ”G”. The are

two distinct instances of ipbox structure in build feed imp function. But DSA was unable to detect it

due to unification. Each element of impFeeds array points to distinct ibox linked list and each ibox

instance points to distinct ipbox linked list. DSA is also unable to identify this feature due to lack of flow

sensitivity and array dataflow analysis as mentioned earlier. The nodes also retain their correct types

without being collapsed.
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Figure 5: CBU graphs of blockbox array in twolf

Third interesting data structure is actually a part of a complex data structure involving many struc-

tures. The main component of this data structure consists of linked lists of termbox and netbox. ”carray”

and ”tearray” both points to the linked list of netbox. The CBU graph containing the relevant parts is

shown in Figure 7. These linked lists are also global data structures as they are accessible from global

variables. As before DSA correctly identifies this. Also, all the nodes have been assigned correct types

without any collapsed node.

Another significant data structure is also a part of complex data structure. The interesting aspect of

this data structure involves doubly linked lists of changridbox and densitybox data structure. They also

contain a pointer to each other. Tgrid, Shuffle, aNetSeg all contain pointer to the doubly linked list of

changrdbox. The corresponding CBU graph is shown in Figure 8. DSA correctly detects these as global

data structures. All the nodes also have correct type information except one node, which is collapsed.

6.3 Metrics:

The values of the described metrics for this benchmark are - N=23

The main SDSIs include arrays of blockbox structure, linked list of ibox and ipbox structures, linked

lists of termbox and netbox, doubly linked lists of changridbox and densitybox, array of dimbox, cellbox,

segbox, tgridbox, densitybox, binbox and rowbox structures, a hash table.

G=21

twenty one global nodes were identified.

L=2

Both the local nodes were identified correctly.

K= 97

The code had lots of heap allocated objects.

I=6

Few disjoint ”‘H”’ nodes were found by DSA.

O=7
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Figure 6: CBU graphs of ibox and ipbox linked lists in twolf

Few nodes got collapsed in this case.

C=29

All these nodes form a part of the non-trivial data structures found.

7 Results for 181.mcf

Summary:

The 181.mcf is a part of the SPECInt2000 benchmark. It is a benchmark derived from a program

used for single depot vehicle scheduling problem in public mass transportation. The code is written in C

and uses almost exclusively integer arithmetic.181.mcf has a raw LOC of 2412 with a total of 991 memory

instructions in LLVM representation.

Data Structures:

There are two major data structures created in the benchmark:

i). Network : Models the complete flow network

ii). Basket : Contains the array of sorted edges

Both these data structures are global and have a lifetime throughout the code. The network data

structure is initialized in the function readmin() called from main. The function readmin() reads the
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Figure 7: CBU graphs of termbox and netbox linked lists in twolf

complete network graph from an input file and models this as a data structure.

Figure 9 shows the cbu (complete bottom-up) graph for the main function. The network and basket

data structures are clearly shown with their sub structures in the figure. It also shows all the linkages

that DSA identifies amongst the substructures in the benchmark.

Both the data structures identified were global in nature and were recognised as global by the DSA,

as shown by the presence of G flags in the figure. There were no local data structures in the figure

and rightly DSA did not identify any. This shows DSA’s strength in performing escape analysis for the

different data structures. None of the nodes in this benchmark got collapsed. This again showcases DSA’s

strength to infer type information, i.e. DSA is field sensitive. There were just single instances of the

above mentioned data structures.

Metrics: N=2

N as mentioned earlier is the total no of SDSI found. In the mcf code there are are two global static data

structure instances : one which corresponds to the main data structure network ant the other which acts

like a basket containing the list of arcs. The figure also shows that the ”arc” sub-structure is pointed
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Figure 8: CBU graphs of doubly linked lists of changridbox and densitybox in twolf

to both by the node sub-structure and the network data structure. Though this example shows DSA’s

strength of being field-sensitive it also presents one of its weaknesses. Due to the ”unification” property

of the DSA two distinct instances of the ”arc” structure (net → arcs and net → dummy-arcs) are showed

as one node in the figure.

G=2

Both the SDSIs are correctly depicted as being global.

L=0

No local SDSis found.

K= 5

The network SDSI has 2 nodes whereas the basket SDSI has 3 nodes in it.

I=0

No SDSIs had greater than 1 disjoint instances in the same function.

O=0

No Collapsed nodes.

C= 2

There are two nodes which form a self cycle and hence are a part of two distinct collections. Both the

node and arc structure are linked lists and hence are shown as self loops by the DSA.
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Figure 9: DSA Graph for the main function after complete BU analysis

8 Results for 197.parser-b

Summary:

197.parser is a part of SPEC CPU2000 benchmark. This link grammar parser is a syntactic parser

of English, based on link grammar, an original theory of English syntax. The code is written in ANSI

C. 181.mcf has a raw LOC of 11391 with a total of 10086 memory instructions in LLVM representation.

The parser benchmark used a custom memory allocator to handle its memory operations ( malloc and

free). These custom memory allocators were overridden so that malloc and free get used.

Data Structures:

Some of the important structures in this benchmark:

a). c list struct** : This structure as shown in Figure 10 is an array of pointers to array of c list struct.

The c list struct is also clearly identified in the figure as being a linked list with a pointer to a connec-

tor struct. Again the power that DSA has due to its inherent field sensitivity property helps us to identify

the differnt pointer fields in the structure.

b). Disjunct Struct : This structure as shown in Figure 11 is a simple linked list with pointers to the

Connector Struct. Again DSA’s field sensitivity comes into picture.

c). Match Node struct ** : This structure as shown in Figure 12 is an array of pointers to array of

Match Node struct. The Match Node struct is also clearly identified as a linked list, again due to field

sensitive DSA algorithm.

d) Word File Struct : This is a Global structure and is clearly marked G in the Figure 11.
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Figure 10: CBU graph for one of the functions

As shown in all figures above the DSA algorithm clearly identifies the local and the global data

structures in the benchmark. This benchmark had a good number of both global and local data structures

and DSA comes out true in all the cases identifying the correct scope of all the data structures. This

strength of DSA is due to its strong escape analysis characteristic.

As shown in Figure 11 and Figure 13 the DSA correctly identifies the disjoint instances of the Con-

nector struct. Also we see in Figure 12 disjoint instances of Match Node structure. These all showcase

one of many DSA’s strength. The reason behind DSA identifying these disjoint structures is the context

sensitivity of the DSA algorithm.

Figure 13 is a very good example demonstrating the power of DSA. Not only does it identify the

correct structure hierarchy but it also identifies the distinct instances of the Connector substructure. The

Disjunct structure and its substructure do not escape out of this function, build sentence disjuncts() and

this is correctly depicted by the absence of the ’I’ (Incomplete) flag in the nodes.

197.parser is a very good benchmark to showcase the actual power of DSA. It has many distinct data

structures with varying lifetimes.

Metrics:

DSA has some good results for the 197.parser benchmark, specially because it has large number of

data structures and most of its instances turn out to be disjoint.
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Figure 11: CBU graph for free sentence disjuncts()

N=40

Large number of data structures are present in the code. Some of the data structures were mentioned

above

G=20

All of the global SDSIs were allocated in the main() function.

L=20

Half of the SDSIs were local to the function were they were initialized. All of the data structures allocated

outside main() are local and DSA shows them to be local. Examples of such kind have been discussed

above.

K=105

197.parser had quite a large no of heap allocated nodes.

I= 53

As shown in Fig 5 , there were in total 53 disjoint data structures identified in the code. Some disjoint

instances have been discussed above.

O= 3

Though there were all these good results, DSA could not identify the type of some nodes and finally there

were also 3 collapsed nodes finally. See Figure 14.

C= 55

There a large no of nodes which form a completely connected structure or is a part of self cycle.
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Figure 12: CBU graph for conjunction prune()

9 Results for eon

9.1 Summary:

252.eon is a probabilistic ray tracer, and is part of SPEC Int 2000. A ray tracer is a program which

renders three dimensional images by drawing rays from the ”camera” and computing intersections to find

the specific color to make each given pixel in the image. A probabilistic ray tracer is one in which ray

direction is determined randomly. The implications of this, for this particular benchmark, is that there is

less memory locality because vastly different areas of the scene graph (the structure which organizes the

objects in the scene and provides a space partition to limit the number of computed intersections) may

be accessed near each other temporally. For example in a normal ray tracer it would be common to draw

rays into one particular division of the scene graph multiple times in succession, but with the random

element there is a high likeliness of switching between divisions frequently. Eon consists of 23,653 lines

of C++ code, not including comments or blank lines. There are 166 calls to new and 87 calls to delete.
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Figure 13: Distinct instances of the Connector Struct substructure

9.2 Data Structures:

There is one major data structure in the benchmark, representing the scene graph, class mrScene, which

is wrapped in an eonImageCalculator class. Figure 15 shows what the data structure graph looks like for

an eonImageCalculator at an incomplete stage, before it is collapsed.

We can see in the above figure that there are several binary search trees (BSTNode) in the eonIm-

ageCalculator. The mrScene object is a field of eonImageCalculator and it is the source of all the edges

connecting to the BSTNodes (where the figure says truncated). This data structure is not global per se

(from the program’s perspective), but has lifetime throughout the running of the program because it is

created in main. All of the elements of the scene to be rendered are contained in the mrScene field of the

eonImageCalculator.

9.3 Metrics:

N=1

The only true SDSI is eonImageCalculator, a field of which is a mrScene object.

G=1

eonImageCalculator is global because it is collapsed with global objects.

L=0

The eonImageCalculator is global.

K= 1

The eonImageCalculator SDSI has 1 node, because the individual nodes of the structure are collapsed
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Figure 14: DSA Graph for function read entry() which has a collapsed node

Figure 15: This is part of the graph for the eonImageCalculator constructor, unfortunately there is no graph
marked complete for this data structure, it is collapsed in main. The BSTNode nodes form a recursive tree.

into one node in main.

I=0

There are no disjoint SDSI’s, because there are no disjoint instances of one static data structure in the

program, with the same type. There are a few instances of trees that are disjoint, but they are part of

mrScene, and are templated to different types.

O=1 eonImageCalculator is, unfortunately, collapsed in main.

C= 1

Several collections point to the collapsed node.

10 Conclusions

Briefly, we summarize the conclusions of our study as follows. Please refer to Table 1 for the values of

metrics referred to below:

1. In all but one (eon) of the six programs, DSA successfully distinguished the important kinds of
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Figure 16: This is the collapsed node from main that represents the eonImageCalculator. It actually has around
200 nodes pointing to it, it has been pared down to fit the page.

Static #LDS Individual Nodes

Benchmark N G L K I O C

181.mcf 2 2 0 5 0 0 2
197.parser 40 20 20 105 53 3 55
300.twolf 23 21 2 97 6 7 29
espresso 33 7 26 148 67 0 47
fpgrowth 3 0 3 9 0 0 2
eon 1 1 0 1 0 1 1

Table 1: Observed statistics for linked data structures

data structures we have manually identified as non-trivial, logically distinct data structures in the

codes (column N shows the total number of such data structures). For example, we identified 23

such data structures in twolf. In eon, however, a complex data structure with many sub-structures

became merged with unrelated global arrays (and became collapsed).

2. In a number of cases (column I), DSA identified 2 or more disjoint instances of nodes representing

recursive data structures, requiring a context-sensitive analysis.

3. In a number of other cases (column C), however, a DS node has multiple instances (e.g., a list of

lists) and DSA is unable to distinguish these instances. A powerful, flow-sensitive analysis would

have been required to distinguish most of these cases.

4. Most DS nodes of these data structures (K-O) have accurate type information. The exceptions are

usually minor, except for the collapsed node in eon.

5. DSA accurately identified the lifetimes (local, L, or global, G) of all the data structures we have

examined so far, except an important case in fpgrowth, discussed next.

6. In fpgrowth, a recursive function creates a new tree and a new “item table”, plus three other new

objects on each recursive call. DSA was unable to prove the new tree and item table are local to
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the function (because they are passed to the next recursive call) but is able to do so for the other

three objects (which are not). The recursive polymorphism of Chin et al. [1] may confine the local

tree as well.

Overall, on the positive side, our inspection has shown that DSA is successful at distinguishing different

kinds of data structures, their type and lifetimes, and in many cases, is successful at distinguishing distinct

instances of such structures via context-sensitivity. We found only two significant cases (in mcf and twolf

) where unification caused unrelated data structures to be merged. We consider this a positive result

because unification is a crucial factor in achieving a very fast analysis. We believe this result is achieved

because of our focus on heap-allocated data structures (which are difficult to track precisely with or

without unification) and because context-sensitivity eliminates some of the key weaknesses of unification

(for function parameters).

On the other hand, DSA is unable to distinguish instances within a collection (requiring flow-

sensitivity) or instances requiring context-sensitivity within a recursive computation. We believe lack

of flow-sensitivity is by far the greatest limitation, but also would be a particularly expensive feature to

add to an inter-procedural algorithm like DSA.
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