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Abstract

Modern network processors (NPs) typically resemble a highly-multithreaded multiprocessor-on-

a-chip, supporting a wide variety of mechanisms for on-chipstorage and inter-task communication.

NP applications are themselves composed of many threads that share memory and other resources,

and synchronize and communicate frequently. In contrast, studies of new NP architectures and fea-

tures are often performed by benchmarking a simulation model of the new NP using independent

kernel programs that neither communicate nor share memory.In this paper we present a NP sim-

ulation infrastructure that (i) uses realistic NP applications that are multithreaded, share memory,

synchronize, and communicate; and (ii) automatically mapsthese applications to a variety of NP

architectures and features. We use our infrastructure to evaluate threading and scaling, on-chip

storage and communication, and to suggest future techniques for automated compilation for NPs.
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1 Introduction

With the advent of e-commerce and the spread of broadband fiber-to-the-premises (FTTP) connec-

tivity, the traffic of new IP services is expected to grow by over 100% per year [5] from 2004 to

2006. High speed network links require computers, ornetwork nodes, to share the link capacity

among many clients and to route traffic efficiently. Consequently, the pressure on those network

nodes to process greater packet rates is bound to increase inthe near future.

Until recently, network nodes were exclusively made out of fixed ASICs that were performing

increasingly complex tasks. With the wide range of requirements for network nodes and the speed

at which the needs of Internet users are changing, it is now very expensive for service providers to

develop custom solutions in hardware to cope with each of their customers’ needs. For this reason,

the trend has been to put more and more programmability inside packet processors, even at line

rates of 40-Gbps [13], in order to make the most out of the investment of hardware in network

nodes. This programmability not only allows conforming to new requirements of processing, but

also to develop more input dependent processing. The deployment ofnetwork processors(NPs),

those programmable network nodes, has become increasinglycommon as networking applications

continue to push more processing into the network.

Modern NP architectures are typically organized as a highly-multithreaded multiprocessor-on-a-

chip, supporting a wide variety of mechanisms for on-chip storage and inter-task communication.

In turn, NP applications are typically composed of many threads that share memory and other re-

sources, as well as synchronize and communicate frequently. Furthermore, these applications are

usually programmed in assembly code by hand to ensure the most efficient code possible, and to

fully exploit the wide variety of instructions for synchronization and communication. Because of

the complexity involved, the programmer must typically revert to modifying sample applications

1



1 Introduction

and use library code that takes over pre-determined shared resources on the chip.

1.1 Research Objective: An Integrated Approach to NP

Architecture Simulation

Recently, a wide variety of network processors has emerged, presenting drastically different ar-

chitectures and programming paradigms. Open questions still remain in deciding what should be

the architecture of a programmable packet processor (or network processor) and how it should be

programmed. In “Programming Challenges in Network Processor Deployment” [44], the authors

name three central compilation challenges to the success ofNPs that we address in our work: (i)

partitioning an application in tasks over threads and processors, (ii) scheduling the resulting tasks

and arbitrating the NP resources between them, and (iii) managing the task data transfers. In this

work, we propose an infrastructure to realistically compare various network processor architectures

and to evaluate how we can adapt applications for each of those NPs.

Our goal is to evaluate powerful network processors that canguarantee line rate performance,

while being programmable and configurable. We also want to beable to quantify the headroom for

further software features and the bottlenecks to direct NP development efforts. Our work focuses

on system level exploration to automatically transform realistic network applications and simulate

them accurately on widely-varying realistic NP architectures. In this thesis, we present aNetwork

Processor Infrastructure for Research and Evaluation(NPIRE), which is composed of an integrated

compiler and simulator for a wide design space of network processor architectures.

The influence of our work on NP design is to present that network processors can be programmed

from a high-level language, assuming a certain organization in the application description, as ex-

plained in Chapter 3. We support this proposition by an evaluation of automated compiler trans-

formations to scale the throughput of an application to the underlying hardware. To identify the

performance-limiting factors, we perform a systematic bottleneck identification. Finally, we pro-

vide a methodology and a parametric architectural simulation environment for evaluating NP archi-

tectural features.

2



1 Introduction

1.2 Thesis Organization

This dissertation is organized as follows. Chapter 2 gives a background in network processor ar-

chitecture, and programming/compilation techniques, as well as summarizes the relevant research

fields and research projects. In the next chapter, Chapter 3, we describe a compilation framework

and techniques for transforming high-level NP applications, including managing both memory and

tasks. We explain in more detail the compilation flow from theraw application to the target network

processor in Chapter 4. Chapter 5 describes our simulation infrastructure, and our algorithm for

mapping tasks to processing resources. In Section 6, we evaluate the impact of our compilation

techniques on the scalability of selected NP applications,and we conclude in Section 7.

3



2 Background

ASIC designs for line-cards are protocol and line rate-specific: they have high acquisition and main-

tenance costs and are feature limited to what is provisionedin hardware. Network processors have

emerged as more flexible programmable solutions. However, because of their architecture, they

present several challenges for automated compilation. In this chapter, we first present an overview

of the network processing industry and of network processorarchitectures. We then present differ-

ent published research works that share common compilationobjectives with our study. Next, we

introduce benchmarks that are commonly used to evaluate theperformance of network processor

systems. Finally, we describe a building block of our infrastructure: the Click Modular Router, that

we use to build benchmarks.

2.1 Overview of the Network Processing Industry

Computers connected directly to high speed links have a strategic position to perform packet pro-

cessing tasks. Those tasks are typically at the Network (3rd) and Transport (4th) layers of the Open

System Interconnection (OSI) model. One important function of the network nodes is to check the

integrity of the packets in transit to prevent, in particular, packet headers to be mis-interpreted. In

enterprise-scale networks, certain types of traffic must bere-directed to specific server machines;

other types of traffic may simply be banned. For Internet Service Providers, traffic to and from cer-

tain clients might be prioritized, requiring the enforcement of quality of service policies. Network

nodes will also perform packet accounting to provide billing information proportional to bandwidth

usage. Finally, network nodes may alter every packet to encapsulated them inside another protocol.

In summary, network computers were traditionally performing only low-level and low-complexity

4
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tasks.

With the increased Internet traffic and the diversity of web services, the industry is progressively

taking advantage of the dedicated network nodes to also provide services at the higher layers of the

OSI model: Session, Presentation and Application. For example, it is common now for network

devices tomasqueradeall the traffic of a small or home office under a unique network address,

so that there is only one link required to the Internet Service Provider. Also, there is a lot of

interest in offloading expensive web server machines from handling the connection aspects of packet

transfers (TCP termination) and the encryption of packets for secured transactions. Other network

processing applications include the need to parse/alter the content of web messages to, for example,

hide server-side changes in data layout or to load balance servers: a technique calledURL switching.

Multimedia applications of network nodes includemedia transcodingto, for example, allow a client

with a portable screen and a slow connection to view, in a lower resolution, a large picture file.

Finally, with the spread of viruses causing costly downtimes, it is vital for certain enterprises to

inspect each packet and detect any irregularity in the data coming inside their network.

The architecture of network nodes has evolved considerablyin the recent past. As explained by

Roberts [71], one of the pioneers of Internet, 1997 was a turning point year for the designers of

routers and switches. In 1997, the focus has changed from delay engineering to capacity engineer-

ing, i.e. since 1997, the router technology limits the maximum wire speed. Figure 2.1 shows the

5



2 Background

Table 2.1: Network processor cycle budget assuming a RISC core at 400 Mhz and minimum packet
size of 64B.

Rate Speed Packet Inter- Cycles per Packet
(Gbps) Arrival (ns)

OC-48 2.5 204.8 81
OC-192 10 51.2 20
OC-768 40 12.8 5
OC-3072 160 3.2 1

evolution of the data rate available on the memory bus (also known as the “front side bus”) of a

high-end consumer computer system compared to the evolution of the bit rate of backbone links.

The figure shows that in the mid-2000, those two data rates areclose to meeting. Considering that

a packet buffered in memory must travel twice on the memory bus (in and out), we can clearly see

that the architecture of a conventional computer is unsuited to handle peak network traffic. Another

view of the same reality is depicted in Table 2.1. A moderately clocked RISC processor only has 5

cycles to process a stream of minimum sized packets (the mostdense and hence stressful traffic) at

OC-768. This cycle budget given by conventional processors is truly insufficient.

On an NP, maximum efficiency is required to process packets attheir incoming rate, even if the

complexity is high. If packet losses due to contention in an NP may be acceptable in a distributed

video game, they can only be marginally tolerated in a high-performance network. Network pro-

cessors are data-driven machines that address completely different challenges than traditional com-

puters. The software handling the quasi totality of the packets, or the forwarding software, must

service packets at the line rate, no matter what it is. This aspect makes it very complicated to write

and maintain a tightly written program (or a library) when the requirements change frequently. To

exploit to the maximum the resources on an NP, the programmermust match the application to the

chip architecture while conversely, the NP architecture must be matched to the application.

6



2 Background

2.2 Overview of Network Processor Architectures

Because network processing is a relatively new field, we will first present in this section a reca-

pitulation of the origins of network processors (NPs). Since an understanding of the architectural

features of NPs is needed to evaluate how to program them, we next present the main categories of

network processor organizations. Finally, for each of these categories, we present the state of the

art processors made available by the industry.

2.2.1 A Brief History of Network Processors

The origins of network processors can be traced back to the late 1990s. In 1998, IBM started

its network processor activities at the IBM Research TrianglePark Laboratory. In 1999, Intel’s

acquisition of Level One Communications, Inc., later propelled the IXP1200 network processor to

be one of today’s most well known re-programmable network engines. By releasing a developer’s

tool kit and an academic program (the Intel IXA University Program, created in late 2000), Intel

became a strong supporter of the shift from the ASIC process to programmable architectures. In

2002, the PowerNP from IBM was the first network processor verified to operate at 10 Gbps. A lot of

companies tried to make a name for themselves in the early days of network processors. A short list

of the current survivors includes: Agere, AMCC, Bay Microsystems, Blue Steel, Broadcom, Cisco,

ClearWater, Conexant, Cognigine, Ericsson, EZ-chip, Fast-Chip, Hifn, IBM, IDT, Intel, IP Infusion,

Lucent, Mindspeed, Motorola, Nortel Networks, Pixel fusion, PMC Sierra, Silicon Access, Switch

ON, Vitesse, Xelerated and Xilinx. According to the Worldwide Datacom/Telecom Semiconductor

2004 Vendor Analysis (IDC #33483), AMCC and Intel are leadingthe network processor market.

2.2.2 High-Level NP Architecture

As explained in the PowerNP paper [3], the system architecture of network processors is divided

in two main paradigms: therun-to-completion(RTC) and pipeline models. The RTC label encom-

passes single stage models where a single processor takes care of the bulk of the packet processing.

As shown in Figure 2.2(a), the input stream of packets may be divided upstream among several
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processors working in parallel. The programming model is one of a single thread, with a global

view of all shared resources (for example: hardware co-processors, memory resources and busses).

The alternative, the pipeline model, consists of dividing the processing of a single packet into sev-

eral processor stages, where each processor is specializedto perform a certain task (Figure 2.2(b)).

Often, different processor stages have access to differenthardware resources, such as memory chan-

nels. A key characteristic of this model is that the pipelinewill function at the minimum rate of its

constituting stages. So programming such a processor is usually either complex or heavily con-

strained to partition the work evenly among the pipeline stages. Program maintenance may lead

to serious difficulties for programmers. One the other hand,one advantage of this model is a strict

ordering between operations that facilitates synchronization and arbitration. The pipeline model can

also exist in the form of multiple parallel pipelines, whereeach stage has the same view of on-chip

shared resources.

Figure 2.2(c) presents a third alternative that is the most flexible. The hybrid RTC-pipeline model

exists when packets do not necessarily flow on ordered isolated pipelines: packet processing can

be viewed as distributed on a matrix of processors having a common view of on-chip resources.

However, if the programmer desires it, he can design his application according to the pipelined or

run-to-completion model (with possibly more arbitration required between shared resources).

2.2.2.1 A Brief Survey of Available Commercial NPs

Before listing some of the main features of major network processors, we explain what components

are especially relevant in this presentation.

In general network processing, the greater the difference between the designed service rate and

the peak rate of the network, the more buffering is required.Packets buffers and large routing

tables require external memory storage, a common feature ofnetwork processors. Large buffers are

commonly implemented in DRAM (rather than SRAM) for budgetaryreasons. The wide busses

of DRAMs reduce the number of data transfer cycles but not the latency of accesses, so there is a

tradeoff between latency overhead and granularity overhead. Also relevant to packet processing in

the chips listed below are SRAM buffers both on-chip and off-chip. They have a quick bus turn-
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Figure 2.2: The three main system architectures of network processors.

around (read to write and vice-versa) and have a high frequency of operation. Their low density is

the reason for their higher price. Aside from off-chip memory channels, most of the processors have

means of caching data or at least generating an indexed view of data structures. However, caches

are not common due to the weak temporal and spatial locality of the data touched. In summary, the

organization of memory resources in a network processor is important in deciding how to program

it.

Several processors make use of multi-threading to hide the latency of memory operations by over-

lapping that latency with some computation related to another packet. Also, there is a convergence

on the idea to use many processing elements to exploit as muchparallelism as possible. Hence, the

number of threads of execution in a processor is of interest to us.

In the NPs, mostprocessing elements(PEs) have some internal instruction and data memory.
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The instruction set is a blend of conventional RISC instructions with additional features specifically

tailored for network processing. Several processing elements can also harness the power of a CAM

or a CRC unit. Most PEs also have interfaces to neighbouring PEsand some have access to a shared

bus, where applicable. We do not intend to delve in the details of the organization of processing

elements because their design is somewhat orthogonal to thesystem-level design of the network

processor. We rather intend on outlining the functions thatthey should support.

As we will show, a number of processors have exclusive features: this motivates our work in

finding the key architectural components of NPs. For example, some NPs have on-chip accelerators

often consisting of a variant of a hash unit designed to make alookup based on ann-tuple(a set of

“n” ordered values). We limit the scope of this document to only include those on-chip resources

that are directly relevant in the execution of the application. For this reason, media interfaces that

handle different electrical or optical signaling protocols will not be considered.

We divide our description of the processors between the run-to-completion, pipelined and hybrid

high-level architectures (as defined in section 2.2.2). Some processors have a very short description

since they have little publicly available information.

Run-to-Completion Architectures In this processor model, packets are processed by a single-

stage, ”run-to-completion” program on a single core.

Vitesse IQ2200 This 2.5 Gbps network processor, released in late 2001, has 4, 5-threaded pro-

cessing elements. It has a classification and queue management engine.

AMCC nP7510 Released in 2002, this 10 Gbps network processor is composed of six multi-

threaded processing elements. The chip is equipped with several hardware coprocessors, such as a

search coprocessor, a statistics engine and specialized counters.

Broadcom BCM1480 This chip has four 64-bit MIPS CPUs scalable from 800 MHz to 1.2GHz,

a shared bus, a shared L2 cache, a memory controller, and I/O bridges. Coherence across processing

elements is ensured using a MESI protocol. This NP can handle10 Gbps and it supersedes a similar
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architecture with only 2 CPUs.

Mindspeed M27483 TSP3 The TSP3 architecture is based on two programmable processor

cores tightly coupled with several co-processing engines.The processor itself is clocked at 333MHz

and supports packet rates at up to 2.5 Gbps.

IBM PowerNP NP4GX This network processor, equipped with a PowerPC 400 supervisor pro-

cessor core, can support links up to OC-48. In the PowerNP [3],hard to predict branches are elimi-

nated because all ALU instructions support predicated execution. Its processing elements, shown in

Figure 2.3(a), function at 500 MHz. Each cluster of 4 threadsis equipped with a tree search engine

co-processor.

Pipelined Architectures In this processing model, packets flow in parallel arrays of process-

ing elements.

Cisco Toaster The Cisco Toasters, as seen in Figure 2.3(b), are used in Cisco’s high-end routers,

for which they were specifically designed. In those routers,they can be encountered connected as

a pipeline of 4 chips, thus agglomerating 64 processors (8 rows of 8 processors) running at 154

Mhz. Programming them is challenging because of the pipeline model used: contention on the

column memory is manually avoided by programming with a tight control on the ordering of all the

processors requests. Packets can be re-circulated throughthe pipeline of processors as needed.

EZ-chip NP2 Released in 2004, this processor (Figure 2.3(c)) is an incremental build on its

predecessor, the NP-1c, and uses a simple single-image programming model with no parallel pro-

gramming nor multi-threading. This chip operates at 240MHzand can process packets at 5 Gbps

full-duplex. Synchronization among the processor’s internal resources and maintaining frame or-

dering is performed in hardware and is transparent to the programmer. The programmer only needs

to provide four functions to program the matching replicated pipelined engines.
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Xelerated X10 The X10q family of processors [36] offers a deterministic execution through a

deep pipeline of VLIW processing elements. Figure 2.3(d) shows only a compressed view of the

pipeline. In the X10q, an initial I/O processor is followed by 20 processing elements. The pattern is

repeated 10 times and terminated by an additional I/O processor. With processing elements running

at 200MHz, the chip can support data rates of 20 Gbps full-duplex.

The Xelerated X11, released in 2005, is a 20 Gbps network processor. In the X11 data flow

pipeline, each packet passes through 360 processing engines, leveraging the same architecture as

the X10. The amount of logic gates that can be placed inside a network processor, along with latency

concerns, are the main limitation so far of data flow architectures for NPs.

Agere PayloadPlus APP540 Released in 2003, this processor, not shown, is composed of a

pipeline of a pattern processor for classification and a routing/traffic management processor that

executes VLIW instructions. This last processor is programmed using a functional programming

language in a single-threaded model. Another processor outside of the packet stream collects statis-

tics for traffic management.

Hybrid Architectures In this model, packets are processed successively by different processing

elements that have access to shared resources.

Motorola C-5e This processor [8] can function in 3 modes with hardware support: processing

elements can function independently in single stage run-to-completion mode. They can also work in

a pipeline, while being fed by a single data stream. This allows to harness the maximum processing

power independently of the input rate. The 16 processing elements (Figure 2.3(e)) can finally be

aggregated in four even clusters. In that case, the channel processors in a cluster share their instruc-

tion and local data memories and can work as a parallel group to handle the one physical network

interface, for higher speed interfaces. The C-5 runs at 200MHz and can support rates up to Gigabit

Ethernet (1000 Mbps).

The C-5 is organized around three main busses: a ring bus (for inter-processor communications

with a bounded latency), a global bus (shared, arbitrated bus) and a payload bus (carrying the pay-
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load data and payload descriptors between the engines). TheI/O serial data processors contain small

processor features plus a CAM and a CRC block.

Intel IXP1200 The IXP1200 is the first of Intel’s IXP family of processors [26] that provides a

general interconnection of processing elements that sharememory. Figure 2.3(f) shows an IXP1200,

comprised of a StrongARM processor core and six multithreaded programmable RISC packet pro-

cessing engines. The processing elements of this processorfunction at 232MHz and are designed for

OC-3 to OC-12 applications. Hardware context switching is controlled in software. Next neighbor

register structures allow fast communications across processing elements.

The processing engines share a SRAM and a SDRAM bus. The controllers for these memory

channels do optimizations on the order of the accesses to memory, unless the programmer manually

specifies otherwise in the individual instructions. Large data transfers of up to 64 bytes can be

made in a single reference from the microengines due to largetransfer register spaces. The SRAM

controller is equipped with a CAM that allows it to create synchronization by allowing one context

to access a memory location and putting other requests in a waiting queue. Mutual exclusion can

also be accomplished by passing tokens across threads. One optimization that the programmers can

exploit in that situation is avoiding to write-back a value to external memory until a group of threads

have finished modifying data (this programming strategy is called thread folding). Additionally,

atomic test-and-set operations are provided inside the SRAM.

Intel IXP2400 This processor is an incremental build on the IXP1200. Its processing elements

can function at 600MHz and are designed for OC-48 network access and edge applications. On

each processing element of this processor (Figure 2.3(g)),a 16 entry CAM (Content Addressable

Memory) complements the register structures to act as a distributed cache unit. In fact, a software

controlled cache can be created if a data structure in the local memory is bound to each entry

of the CAM. This artificial cache can be used to minimize the latency associated with external

memory references. All the threads on a processing element share the CAM, so it can also be

used in a coherence scheme, to manage multiple writers to shared data. New features are also

introduced with this processor: a pseudo-random number generation, time stamps, hardware support
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for multiplications and automation for packet byte alignment.

Intel IXP2800/2850 Over the IXP1200, this processor shows a large increase in the number of

hardware contexts (from 64 to 256) and of memory channels (Figure 2.3(h)). Each memory channel

has a push (read data), pull (written data) and command bus attached to it. There is a set of each of

these busses for each cluster of 8 processing engines. The processing elements of this processor [35]

can function at 1.4 GHz and are designed for OC-192 network edge and core applications. The

IXP2850 is similar to the IXP2800 but with on-chip hardware cryptographic engines.

2.2.2.2 Observations on the surveyed processors

The Motorola C-5 and the IBM PowerNP mentioned previously are at the end of their life cycle and

their manufacturers have not released upgrades or direct replacements products. Those processors,

backed by semiconductor leaders, are the ones who offered the most powerful and diverse hardware

features. One reason for their obsolescence is that they traded flexibility and programmer control:

in their system, the programmer had to make a lot more decisions at a global scope versus at a local

(processing element) scope, which makes his work much harder.

Dilemmas between ease of programming and hardware architectural features make it hard for a

designer to choose any one of the platforms when the tradeoffs are not clear. Also, when presented

with a variety of co-processors, it is not clear what are the challenges in programming for perfor-

mance and what is achievable by automated compilation tools. For most of the chips reported above,

it is not possible to compute a cycle budget unless we know theamount of parallelism utilized by the

program. This parallelism can be at the thread, instructionor memory level. The maximum packet

processing rate supported also depends on the physical media connected (half or full duplex), the

number of input ports, and the amount of processing performed on each packets. Interestingly, we

can see that from the IXP1200 to the IXP2800, chips with a similar programming model, the cy-

cle budget for the maximum packet rate has decreased from 182to 67 cycles. So the advertised

maximum bandwidth of the processor is in fact a reflect of the workloads provisioned by the chip

manufacturer.
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In spite of the high degree of parallelism inside the chips, some suppliers have heard and re-

sponded to the need of programmers to write single-threadedprograms. Agere [59] considers that

there is a “huge credibility gap” in network processor programming ease. Indeed, various NPs

will have very different programming models and software development kits offering from bare-

bone assembly to high level abstractions. Software integration is one of the enabling technologies

for network processor wide spread because programming themand maintaining their software is a

large part of their total cost of ownership.

2.3 Overview of Previous Research Infrastructures

In this section, we list the major works in network processorsystems, that is, the ones that evaluate

the performance of an application in the context of network processor architectures.

One of the early works of system research on network processors is from Crowley et al. [15]. In

that paper, the authors show that chip multiprocessors and simultaneous multithreaded processors

out-perform super-scalar and fine-grained multithreaded processors. The chip multiprocessor that

they evaluated had very simple cores each with an instruction issue width of 1. The paper also

shows that an operating system over a chip multiprocessor has a negative impact on performance

because of the architecture’s inability to execute this sequential code in parallel. Their evaluation

was made with microbenchmarks on an architecture with caches, which are not common in modern

NPs (as explained in Section 2.2.2.1).

In our framework, we adhere to the trend of having fast and simple cores: we do not attempt

to extract instruction-level parallelism or simultaneousmultithreading from workloads. Most NPs

have adopted multi-core architectures (for example, Nepal[55]). Benefits are in data locality, less

contention on shared resources that are also typically slower, smaller instruction stores, and more

packet parallelism (thus achieving a better throughput).

Thiele et al. [83] define network processing as a constraint problem where a service curve has to

meet a packet arrival curve. Because of several components inour infrastructure that have arrival

and service rates, our approach has similarities with this analytical modeling. We borrow from their
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exploration that is organized around a double loop: an innerone that maximizes the throughput of

the network processor under given memory and delay constraints, and an outer loop that performs a

design space exploration. However, they do not make architectural conclusions that can be general-

ized: they try to bind a limited set of architectures, with nomemory hierarchy, to applications. We

take the opposite approach by trying first to characterize applications and then trying to derive the

architectural implications.

The three following framework for the evaluation of NP architectures—along with this work—

are based on the Click Modular Router [41]. StepNP [64] uses Click to program individual proces-

sors for the purpose of prototyping multiprocessor systems-on-chip (SoCs). While StepNP facili-

tates a detailed hardware evaluation, it does not easily allow transformation of the input task graph.

Crowley and Baer [14] provide a framework to investigate queueing, synchronization, and packet

rate control on a single general-purpose processor. We willinvestigate similar issues in the context

of network processor architecture. Finally, Nepal [55] offers the possibility of dynamically map-

ping an automated fine task decomposition to processing elements. In their work, only one module

(part of a task) is active at a time and the others execute speculatively while buffering writes and

snooping the memory addresses on the bus, looking for violated dependences. Unlike our study,

their work does not evaluate architectural bottlenecks. Also, Nepal’s centralized support for task

control and speculation makes some assumptions on the hardware that may be considered overly

aggressive with regards to contemporary processors.

Two other environments for NP evaluation rely on a very specific architecture. First, the Intel IXP

SDK and Architecture Tool [26] are targeted at Intel’s IXP family of NPs, and hence provide limited

flexibility in varying the underlying architecture. Nepsim[50], being the open-source version of

the the Intel SDK simulator, has the same drawbacks. Second,the “Design Space Exploration”

paper [27] discusses a low-level particular implementation based on a ’network-on-chip’ design

where processing is very deterministic. It presents mapping, scheduling and identifies sources of

load imbalance. In contrast with their chip that does not support external memory, our high-level

programming model allows widely varying latencies.

NP-Click [75] provides a programming model to help bridge thegap between an application
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description and the low-level use of the capabilities of a specific NP architecture. NP-Click pro-

vides manually-coded Click elements that are targeted to thefeatures of the specific underlying

NP. As opposed to other works using or proposing a new or architecture specific programming

language [25], [10], [22] to simplify the compilation process, we aim for automation and ease of

integration. While the authors of Shangri-La [88] introducea new programming language and try

to exploit several low-level well known instruction optimizations, they make a case for compiler

support for automation, retargettability, and performance. This idea of integrated, profile-driven,

compilation is central in our work, that can be easily extended by additions such as code generation

(such as in Wagner et al. [89]) and custom instructions (Wolf[95]).

Also relevant to network processor characterization, power estimations of an NP system are avail-

able in such work as Luo et al. [51]. While power consumption isalso an interesting computer

challenge, our infrastructure focuses on measuring throughput and latency.

Experience with IXA SDK To further understand network processors, we have studied sample

programs from the Intel IXA Software Development Kit, in particular running on the IXP2800. For

the reader’s benefit, we explain some implementations aspects and challenges encountered that can

be generalized to other processor families.

On the IXP2800 network processor, each processing element has 8 hardware contexts. Each

context has its own register set, program counter, and context specific local registers. Any context

can access the whole register file and context switching is completely under software control. A

processing element is in one of the following states: ready (a signal has arrived and the processing

element is ready to handle it), sleeping (the thread is waiting for an event to occur), executing (or

computing), inactive (or disabled). Event signals indicate to each thread that selected events have

occurred. This is especially useful to react to the completion of memory reads that are non-blocking,

and to detect the arrival of new packets. The programmer mustbe very careful in not modifying the

source (for writes) or destination (for reads) of the memoryoperations until they actually complete.

In the IXP2800, the minimum DRAM physical access length is 16 bytes.

When executing code, the hardware contexts have a thread identifier that allows for thread depen-

dent behaviours. Contexts can implicitly be referred as ’next’ when using inter-thread communica-
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tion. In the SDK, the compiler is in charge of generating codeversions for each hardware context.

This is useful when, for example, using a C-like language, some code requires per-thread memory

allocation. The SDK compiler provides no support for eithera data stack or a subroutine call stack.

The compiler must enforce a hardware requirement that an instruction can only read or write one

register for each of the two register banks, thus occasionally inserting register moves. The on-chip

memory controllers are in charge of distributing the memoryaccesses to the attached memory banks

(also known asstriping) to load balance them.

Intel has recently introduced the concept of structuring applications into ’microblocks’: inde-

pendent pieces of code that allow the developer to build modular applications. However, commu-

nication uniformity and orthogonality are still challenges because of the number of heterogeneous

means of on-chip communication. In fact, library code oftenuses global, shared resources on chip

which is conflicting with the goal of having ’independent’ modules.

2.4 Benchmarks for NPs

Network processing is typically performed at three levels,as explained by Ehliar and Liu [20]: (i)

core routers demand high throughput such that they usually have few features, (ii) network (or ac-

cess) terminals, where the traffic rate is much slower but thetasks to execute are more elaborate,

and (iii) edge routers, which are a middle ground. To accurately estimate the performance of a pro-

cessor, computer architects usually rely on measuring the throughput on representative workloads

for their chip: benchmarks. Finding the right set of applications to compare or evaluate network

processors has been the object of recent research.

Most NP architecture evaluations to date have been based on typical tasks taken individually:

microbenchmarks. NetBench [56], NPBench [48] and CommBench [96] provide test programs

ranging from MD5 message digest to media transcoding. Thosesuites sometimes emulate packets

by simply reading relevant packet fields from a file: their aimis to characterize certain algorithms

that are used in the realm of network processing. While microbenchmarks are useful when designing

an individual PE or examining memory behavior, they are not representative of the orchestration of
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an entire NP application. As explained by Tsai et al. [84], kernels may not expose bottlenecks. One

reason for that is that they do not exploit any form of parallelism.

In this work, we opt for application-level benchmarks and use the Click Modular Router [41] as

a building block (described in section 2.5). Click has been widely used as a base application for

performance evaluation in such works as [14], [64], [75], [73]. However, we are the first to provide

automated compiler analysis and transformations for it. Our work could be generalized to other

router frameworks that are similar in that their applications are a composition of an extensible suite

of modules (examples include VERA [40], PromethOS [72] and Router Plugins [18]).

2.5 The Click Modular Router

Click [41] is a modular software architecture for creating routers. Click is part of the XORP [29]

project that has for mission to develop an extensible routerplatform by addressing the challenges

of making open-APIs for routers and allowing researchers toprototype and deploy experimental

protocols in realistic environments. Click acts as the packet forwarding path: i.e. the software

component that handles the packets. Over other research software for routers, Click was designed

with four major concerns in mind: long feature list, extensibility, performance and robustness. By

design, Click [98] is not limited to be run on commodity PC hardware but could run on a PC

augmented with network processors doing the bulk of the packet processing, or, in the future, in

high-performance traditionally ASIC based, core routers.In the original evaluation of Click [41], it

was shown that Click could compete advantageously against the Linux operating system for routing.

Click is built from fine-grained software components calledelements. These elements have a

common interface allowing for initialization, user interaction and mainly packet handling. Elements

are linked usingconnectionsthat represent possible packet paths. Packet processing ona connection

can be initiated by the source end of the connection (push processing) or by the destination end

(pull processing). The motivation for the pull action is to let an element (forexample, a transmitting

interface) decide when it is ready to receive a packet so thatit is not overflown, and looses the ability

to control the buffering. Each connection end must be used asa push or pull input or output interface
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      −> CheckIPHeader 
      −> IPCompress(LEVEL 1)
      −> SetIPChecksum 
      −> Queue(2048)
      −> ToDevice( DEVICE_B );

c0[0]
      −> Strip(14) 

FromDevice(DEVICE_A, 0)
      −> c0;

      −> Discard;
c0[1]

c0 :: Classifier( 12/0800, −);

(a) Configuration Script

Strip

IPCompress

FromDevice

Discard

Classifier

ToDevice

SetIPChecksum

Queue

CheckIPHeader

(b) Result Task Graph

Figure 2.4: Very simple IP compression application in Click.

exclusively. In Click, any packet transfer routine must return to its caller before another task can

begin. After being processed inside an element, packets must either be handed to the next element,

stored or destroyed. Packets should not be used after being passed along to another element.

Figure 2.4 exemplifies a very simple configuration that compresses valid IP packets. First, we

define aClassifier to distinguish IP packets from the others (IP packets have the pattern 0800

starting at byte offset 12, inside the Ethernet header). NonIP packets are sent to aDiscard el-

ement. Others follow a chain ofCheckIPHeader (that implicitly discards corrupted IP packets),

IPCompress, SetIPChecksum (the checksum has to be recomputed as the payload changes) and

Queue. TheQueue buffers packets for the transmitting interface DEVICEB: queuing is explicit in-

side Click. To simplify experimentation, packets can flow in an out of trace files using the elements

FromDump andToDump (instead ofFromDevice andToDevice).

Click was implemented in order to run efficiently on uni-processor as well as shared memory

systems [11]. For this reason, packet descriptors can only exist on a straight-line, sequential chain of

elements: branches in the task graph require a call to a function that creates a new packet descriptor.
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As well, all packet writes are guarded by a method that uniqueifies the packet buffer (in case more

than one descriptor would share the packet buffer).

2.6 Summary

In this section, we have presented several network processors currently on the market. In most of

them, because of the large number of packets in treatment at the same time, the programmer must

specify, for example, when memory operations need to be ordered, allocate and handle signals and

make use of a plethora of optional tokens in the assembly language, for example, to hint branch

prediction. Because of the complexity involved, the programmer must typically revert to modifying

sample applications and use library code that takes over pre-determined shared resources on the

chip.

The key benefit of programmability is conditional processing: being able to ask a processor to

accomplish unconstrained applications is central to making these multi-processor ASIPs successful.

Our work will illustrate the need for deep application understanding for a correct and efficient

resource and task allocation. To avoid the common pitfall over-biasing application characterization

towards certain architectures, we will select the main characteristics out of the surveyed processors

and ally the flexibility to simulate arbitrary architectures. The architectural components of interest

are both at a fine granularity (for example, non blocking instructions and synchronization) and at a

coarse granularity (for example, processing elements, memory and interconnect). We also showed

in this section that application-level benchmarks are bestto explore compilation in the realm of

network processors. We presented the Click Modular Router that we use as a building block. In the

next chapter, we will describe how we plan to transform our Click benchmarks to execute efficiently

on a network processor.
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As NP architectures become more complex and contain a greater variety of computation and storage

resources, the task of efficiently programming them by hand becomes intractable. This chapter ad-

dresses our aim at making network processors more accessible by making them easier to program.

To make this possible, the programmer should work in a popular high-level language that is auto-

matically transformed to use the low-level intrinsics of NPs. To give a structure to this endeavor, we

use as a starting point a basic programming model that minimizes constraints on the programmer.

Instead of using low-level assembly routines, we would rather the programmer be able to express

the application as agraph of tasks (that can contain branches and cycles), written in a high-level lan-

guage. The compiler infrastructure would then map tasks to processing elements (PEs) and memory

resources in the underlying NP, identifying memory types and increasing the parallelism specified

in the original task graph through transformations. Ideally, the compiler would also automatically

insert all synchronization, signaling, and manage memory,allowing the high-level application to

scale up to the available resources in the NP.

Task graphs are a well accepted way of representing parallelapplications: examples include the

Cilk project [6] for multithreaded applications and the POEMproject [2] targeted at distributed

message passing systems. However, one of the differences with these projects is that our task graph

describes the sequential processing of a packet and the programming model allows us to parallelize

the application using the techniques described in this chapter. We take advantage of the fact that

the Click Modular Router, introduced in Section 2.5, providesa large library of predefined network

processing tasks, called elements, that are meant to be connected in a task graph. This modular

property of Click allows us to create a wide variety of applications on which we can directly apply

the techniques that we present in this work.
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3 Towards a Compilation Infrastructure for NPs

In this chapter, we first consider packet ordering and task dependence issues. Then we describe

in more detail the task transformations that we intend to perform on a task graph and the implemen-

tation techniques involved both in a compiler and in hardware. After this description of concepts

that are more general than our particular implementation, the last part of this chapter will introduce

the actual composition of our infrastructure.

3.1 Packet Processing Order

Before introducing parallelism in sequential tasks, we needto make sure that we are not changing

the behavior of the network processor in a manner that is incompatible with its initial purpose. More

specifically, to ensure that our compilation infrastructure makes viable transformations, we need to

adequately answer the following questions:

1. Must the packet ordering be identical at the input and at the output of the NP?

2. Does the result of a task processing a packet depend on the order that this task has seen the

packets arrive?

As an answer to the first question,RFC 1812 - Requirements for IP Version 4 Routersstates

that the Internet was designed to tolerate packet reordering but that ordering should be preserved

as much as possible. RFC3366 makes the distinction between global packet order and per-flow

packet order. Aflow is a set of packets having the same characteristics, usually, the same origin

and destination. Packets belonging to different flows are often re-ordered when the router performs

some kind of policy-based sharing of a link. On the other hand, intra-flow reordering may incur

retransmission of packets if a network protocol layer interprets that some packets have been lost.

Intra-flow reordering may also increase the amount of buffering required for the clients and will

increase the jitter for real-time applications (for example, voice or video). In fact, packet ordering

requirements mostly depend on the application. For example, in the the IPComp standard packet

compression scheme (RFC3173) the compression task for each packet is independent, i.e. there is

no persistent state across packets. Conversely, there are several applications that benefit from the
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Figure 3.1: Minimal task graph showing (a) the original application diagram with push and pull (b)

the transformed application with push and rate controlled pull.

preservation of packet ordering, such as web client that interprets an hypertext page from the first to

the last line.

To preserve packet ordering while not being overly conservative in the common case, we assume

a mechanism for the application developer to specify that ordering be preserved at a given point

in the task graph. In Click, theQueue element is used to manage buffering by having apush

handler to enqueue packets and apull handler to dequeue packets as shown in Figure 3.1(a). In

our infrastructure, we take the convention that theQueue element can enforce the packet ordering,

in which case, we postpone the ready signal from theEnqueue operation until the next packet in

order is enqueued, as illustrated in Figure 3.1(b). As in most real network processor applications,

our applications precede all their output ports by aQueue element. At the simulation level, we

model a structure similar to a jitter buffer [79] that implements packet ordering with a complexity

of O(1). Sorting packets on a per-output interface basis, while decentralized, is complex because

not all packets entering the NP will be sent to an output interface of the NP, and some may also

be discarded. We implement a “best effort” ordering by inserting signaling in the application code.

Those signals create a sorting place-holder on aQueue as soon that it is determined on which

interface the application will output a packet. Hence, the point from which the order is guaranteed

for a packet is given by simulation feedback of the used pathsin the task graph.

The answer to the second question, pertaining to the requirement of tasks in the NP to process

packets in order or not, is also difficult. Taking for examplea common classification engine, classi-
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fication is typically based on the source and destination addresses of a packet as well as the source

and destination ports. Packets in this case have no dependence on each other. In a Network Ad-

dress Translation application, typically centered arounda classification engine, TCP header fields

of packets are modified according to a per-connection port remapping. A mapping is created for

every flow, every time a new flow identifier is needed to characterize incoming packets. The only

aspect of this application that depends on packet order is that the destruction of a mapping is usually

scheduled a short time after the packets indicating the end of a TCP connection are observed. In

fact, it is common for the application to delay the destruction of per-flow state to ensure that all

packets in the flow have been processed.

Thus, we have observed in our applications that most elements have a behavior independent of

the order of packets processed. Hence, we advocate that as long as sequential task dependences are

respected and application semantics preserved through thespecial meaning of theQueue element,

packet ordering in the processing is not required. Other work simulating packet level parallelism

(such as ILP and SMT studies in Crowley et al. [16]) also assumethat packets can be processed in

parallel usually without regard for their ordering.

At the simulation level, reordering packets may not exactlyreproduce the same sequence of

events that we could observe in the original application: for example, a threshold condition could

be reached on a different packet. Since we process the same number of packets as the original

application, we can assume that the overall performance evaluation is correct as well as the overall

code semantics.

When deciding if parts of the packet processing can be re-ordered, we find in Click’s source code

that this is not always possible because some data can be communicated between tasks in the meta-

data accompanying the packet. We could try using the commutativity test [69] to experimentally

determine if processing tasks out-of-order on packets leads to, for example, the same resulting rout-

ings or packet annotations. However, for this work, we assume that when there is communication

that no re-ordering is allowed.

In this section, we explained how our infrastructure can respect ordering requirements inside and

at the edges of the NP as long as it is specified by the programmer. Preserving the input packet
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gramming model.

ordering at the output of an NP can be beneficial to certain client hosts that have little buffering

capabilities to reorder packets. The tasks that we considerin this work are packet ordering agnostic.

Finally, the order of the tasks that process a packet must be respected where inter-task communica-

tion exists. The next section expands on the types of transformations that can be performed on the

task graphs that we consider and describes the compiler support that enables these optimizations.

3.2 Managing Memory

A complete compilation system for NPs requires automated memory management. In particular, the

compiler must map the different variables and data structures used by the application to the various

types of storage available in the NP architecture. Ennals etal. [23] agree that memory typing eases

parallelization and that automated task optimizations areessential to map an application efficiently

to a specific network processor architecture.

Figure 3.2 illustrates the different types of memory accessed when using a programming model

similar to Click’s, for which we define four categories. First, there are the instructions that comprise

a task, which are typically read-only. Second is theexecution context, the data which is private to a
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Table 3.1: Example storage types available in Intel IXP NPs.

Per PE Chip-Wide

Processor # Contexts Registers Local Mem. # Instructions # PEs Scratch SRAM DRAM

IXP1200 4 512B 0 2K 6 4KB 8MB 256MB

IXP2800 8 2400B 2560B 8K 16 16KB 256MB 2048MB

task such as its execution stack, registers, and any temporary heap storage. Third ispersistent heap

data, which is maintained across instances of a distinct task. Fourth is packet data, including the

actual packet payload as well as any meta-data attached to the packet by tasks. In a programming

model such as Click’s, the only way for two distinct tasks to communicate is through this packet

meta-data.

The challenge is to map each of these types of memory to a memory unit available in the target

NP architecture. Examples of different storage types and capacities for two Intel IXP processors are

given in Table 3.1, of which there is evidently a large variety. The mapping of application storage

to architected storage is described in further detail in Section 6.1. Given this typing of the memory

storage of our applications, we next present two optimizations on packet processing: one intra-task

and one inter-task. We will later refer to both together as the locality transformations.

3.2.1 Improving Locality Through Batching Memory Requests

The idea of improving an application’s locality by limitingthe number of long latency accesses to

memory has been examined in the “Data Filtering” paper [54].In this project, the authors propose

a coprocessor physically adjacent to the off-chip memory interface. This coprocessor offloads PEs

from instructions that access data with low locality (history based), thus limiting the accesses on the

bus between the PEs and the off-chip memory. The authors madetheir experiments with a different

methodology and different goals from ours (they did not haveany memory typing and they were

trying to optimize power) and they were using specialized hardware support. Sherwood et al. [76]

shows the benefits in using wide word memory transfers but perform their evaluation on a novel
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memory controller. This work presents task-level optimizations in an integrated compiler/simulator

context with realistic evaluation on an NP, where our first concern is packet throughput. We next

present in what context limiting the number of memory accesses is useful and how we implement

this technique.

In a typical mapping of a network application to an NP, the packet data is mapped to SDRAM, a

memory with a large latency but high throughput. To help tolerate this latency and to reduce request

traffic, NPs such as the Intel IXP typically support wide memory operations. The programmer is

expected to create large memory requests and accesses data at a finer granularity once the data is

brought closer to the processor. Compiler support for managing memory must be aware of this abil-

ity and automatically target wide memory operations when accessing a large data structure, or when

accessing several small but consecutive memory words. Oncea block of memory is transferred to

local storage, a processing element (PE) can have more fine-grain access to the data. In a way,

batching memory requests implements a form of software-managed prefetching. A good example

where this applies is the IP header (20 bytes on average) thatneeds to be fetched for the checksum

validation, for processors with no CRC hardware support. Tan et al. [81] measure an improvement

of over 50% in throughput for different compression algorithms by manually transforming the code

to issue wide memory requests ( called “memory bursts”).

When implementing batching of memory accesses, we first identify tasks that consistently access

memory locations that are not local to the processing element. Our approach is to group all those

memory locations and send batched requests when the task starts execution. The results of the

batched memory accesses are stored locally to the PE. When thetask later performs fine grained

accesses to the recurrent memory locations, the accesses are remapped to the local storage. Because

persistent heap (data local to a task) should not be accessedoutside of a synchronized section, we

avoid any prefetching of it.

Studies with no memory management nor compiler support would be limited to perform indi-

vidual memory loads. Batching is an automated transformation that makes our simulation more

realistic by using the available NP hardware to issue wide word bursts of memory accesses. Those

transfers are done in a non-blocking fashion. This means that the processor stalls until the whole
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buffer arrives only if the prefetch operation does not complete before a finer access to the buffer is is-

sued. We next present another optimization, enabled by batching, that launches memory operations

earlier in the packet processing.

3.2.2 Memory Forwarding

To further capitalize on batched requests, if two tasks makebatch accesses to the same portions of

a packet’s meta-data or payload then that data can be forwarded directly to the second task from the

first—potentially saving on memory traffic and latency. To save time, the data is forwarded before it

is even requested; otherwise, there is no guarantee that it will stay stored in the processing element

where the data is currently available. If the destination processor cannot be determined because the

next work unit remains to be scheduled, then the data is savedin a shared on-chip memory, also

known as the scratch-pad. We implement batching and forwarding using profiling in the simulator;

more details are given in Section 5.1.5. The process consists of first identifying memory accesses

that can be batched, and second deciding which tasks in sequence make use of that same data.

3.3 Managing Tasks

Because we propose that the NP application be described in a task graph, the program specification

does not present any form of parallelism in its initial format. Giving the illusion of programming

a machine where everything happens in sequential order greatly simplifies the programmer’s work

by removing the need to perform any dependence management. Based on the dependences between

tasks and the memory typing that we present next, it is possible for the compiler to re-organize the

task graph automatically and insert appropriate synchronization to exploit available parallelism in

the network processor. In this section, before giving details on our approach, we first present how it

improves on related studies discussing NP task-level management.
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3.3.1 Contrast with Related Work

One problem we have to address in the management of tasks is the imbalance in latency of different

tasks. This imbalance can create large idle gaps in the task schedule. For example, if a task assigned

to a single processing element (PE) has a disproportionately long latency with respect to the other

tasks, it can hold back the processing of multiple packets. In that case, a limited number of process-

ing elements will appear to be busy when there is contention on a particular task. This contention

can be the result of three factors: the task breakdown, called task partitioning, the dependence man-

agement scheme, and finally, thetask schedulingthat describes the temporal order of execution. We

next give some background on those three concepts and relateit to our work.

3.3.1.1 Task partitioning

Other work targeted at transforming tasks automatically isfound in Weng et al. [92] and Nepal [55].

In both papers, applications written in a high-level programming language are partitioned into mod-

ules, i.e. groups of instructions or basic blocks. Weng at al. present a greedy algorithm to create

modules based on a maximization of the computation over the communication ratio of the applica-

tion instructions. Next, the authors use a trial and error algorithm to assign modules to processing

engines. Only one module is mapped to each PE, meaning that a large number of processing el-

ements can be required. It is questionable how much additional inter-modules communications

overheads an implementation on real hardware of this partitioning would incur. In fact, it is often

not possible to determine statically if there can be a dependence between two memory accesses,

thus limiting the authors to conservative assumptions.

In this work, we favor applications that are derived from realistic network processing applications

such as the ones found in the Packetbench suite [67]. Click’s programming model allows us to have

a realistic breakdown of tasks and accurately model accesses to dynamic data structures. Instead of

approximately reverse-engineering dependences created by the loose usage of global data structures

in an application, often found inC programs, we start from tasks that follow general requirements

(explained in Section 3.2). We exploit this task modularityin the form of Click elements to investi-

gate other task transformations.
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3.3.1.2 Dependence management

There are three known ways to handle dependences between tasks: (i) use speculation and depen-

dence violation detection hardware as in Nepal [55]; (ii) insert synchronization in the task instruc-

tions; and (iii) perform pipelining. Pipelining an arbitrary program, i.e. breaking it into components

that run in isolation, is very restrictive. Figures 4.3 and 4.4 show examples of code where almost

the totality of a task has to be executed in sequence because of required synchronization. This

synchronization constraint greatly limits the pipeliningpossible.

3.3.1.3 Task Scheduling

The problem of scheduling in the presence of variable paths,and possibly heterogenous processing

elements, does not have a lot of theoretical background. An example approach, called “minimum

makespan scheduling” [87], consists of assigning jobs to machines so that the completion time, also

called the makespan, is minimized. Most static scheduling papers, as surveyed by Kwok et al. [45],

consider task graphs having tasks with fixed or predictable latencies and no conditional branching.

Hence, static scheduling usually does not consider task graphs with loops. Authors also usually

rely on the fact that tasks start after their predecessor tasks complete, a requirement known as the

“frame separation property” [80]. Because Click elements cantake dramatically different latencies,

the usual method for schedulability analysis, i.e. approximating a piece of code by its worst case

behavior, does not work. In conclusion, the scheduling of our task graphs is best addressed by

dynamic scheduling, i.e. by scheduling a task as soon as the required data and execution resources

become available.

The CUSP project [73] claims that supporting tasks with non-deterministic durations allows pro-

grammers to focus on functionality rather than complicatedtiming analysis. While supporting vary-

ing task latencies, we will provide measurements allowing to find bottleneck tasks. We limit the

scope of this work to static task assignments to processing elements and a steady distribution of

packets on the task graph (on the paths taken). With the following task transformations, we uncover

a wide solution space where transformations can be combined. Simulation will uncover the differ-

ent performance tradeoffs. We now investigate the implementation of each of these transformations
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in greater detail.

3.3.2 Proposed Transformations

The goal for automated task management in a compiler is to increase parallelism and hence through-

put by (i) improving the potential for tolerating memory latency, and (ii) scaling the task graph to

exploit all available processing and memory resources. Figure 3.3 illustrates four task transforma-

tions for increasing parallelism in the task graph of a network processing application. We first give

a brief overview of the transformations to clarify the difference between them and we describe each

of them in more detail below. Our work has led us to consider other possible task transformations

that we present as future work in Section 7.2.1.
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Figure 3.3(a) represents the normal, sequential executionof three distinct tasksA, B, andC. To

increase parallelism, and to allow a minimal task graph to scale up to a larger number of PEs and

hardware contexts, we employtask replication(Figure 3.3(b)): in this case, tasksA andC each have

a replica. Replication can be used to increase the throughputof a bottleneck task, but can be limited

by intra-task dependences.

We usetask splittingto improve load balance by breaking a large task into smallertasks, allow-

ing the new task splits to be scheduled on multiple PEs. Figure 3.3(c) shows task splitting applied

to taskC. Splitting differs from pipelining because the task splitsexecute in order, with no tem-

poral overlap. Next, we considerearly signaling: when one task is guaranteed to be executed

after another and the tasks have no dependence between them,their execution can be aggressively

overlapped. In Figure 3.3(d), taskC is signaled early by taskA, permitting greater parallel overlap.

Finally, Figure 3.3(e) shows that speculation can be used toschedule tasks with dependences, for

example, two replicas of taskC. Speculation ensures the correct execution of the two replicas by

aborting and re-executing a task that would violate data dependences between the replicas.

Later in this section, we describe several compilation methods for addressing these challenges,

which we later implement and evaluate in the NPIRE infrastructure.

3.3.3 Task Dependences

We now present the vocabulary used to describe different ways of organizing the tasks on the net-

work processors. We also present new kinds of dependences that occur.

The typical NP-specific meaning of intra-packet and inter-packet dependences as well as exam-

ples of shared data are given in Henriksson [31]. Table 3.2 shows the impact of the application

distributing work to processors at different granularities in a network processor. The conclusion is

that extracting more parallelism generally leads to more shared data among threads of execution.

Before we can investigate methods for transforming tasks to increase parallelism, we must first

understand the different forms of dependences between tasks and the memory locations where they

occur, as summarized in Table 3.3. A benefit of using a programming model such as Click is that the

only way for two distinct tasks to communicate is through packet meta-data, or potentially through
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Table 3.2: Breakdown of dependences in a network processor.Source: [31]

Partition
scheme

Shared data Drawback Advantage

Thread-per-
Message

Connection
state

Shared con-
nection state

Flexibility,
good load
balancing

Thread-per-
Connection

None Bad utilization
and saturation

No shared data

Thread-per-
Protocol

Packet Shared packet
data

Specialization
is possible

Thread-per-
Task

Packet and
connection
state

Shared packet
data and con-
nection state

Possible
latency reduc-
tion

Table 3.3: Potential dependences in memory.

Dependence Type Dependence Location
Between distinct tasks packet descriptor

packet payload
Between task replicas persistent heap
Within a task stack
and between temporary heap
task splits persistent heap

packet descriptor
packet payload

With an early-signaled task (none)

a modified packet payload. However, if we attempt to replicate a task, there will be potential depen-

dences between replicas through the persistent heap (for example, if a task increments a persistent

counter for every packet). Hence, at a point in the task graphwhen packet ordering does not matter,

dependences between task replicas areunordered. In other words, the order of execution of the

task replicas does not matter so long as they execute atomically with respect to the shared persistent

heap. This atomic execution can be accomplished through theproper insertion of synchronization,

as described below in section 3.4.1.1.

In contrast, when we attempt tosplit a task, i.e. partition a task into a number of sub-tasks, we
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must preserve any of the original dependences within the task that now cross task-split boundaries.

As shown in Table 3.3, these dependences can exist in any of the storage locations used by a task,

and are therefore much more difficult to manage. Also, these dependences areordered, since the

results of the first split must be forwarded to the second tasksplit as input. Figure 3.4 shows the

dependences that arise from replication and task splitting. Finally, it is possible to re-order tasks that

have no dependences between each other. In summary, the synchronization cases can be categorized

as follows:

• ordered operations require wait and signal;

• unordered operations require lock and unlock.

This classification of dependences based on memory typing determines how task transformations
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can be applied. We next explain our automation through compiler support to exploit parallelism, as

shown in Figure 3.3.

3.4 Implementation of Task Management

In this section, we present the compiler and hardware support, where appropriate, to support the

four task transformations proposed in Section 3.3.2: replication, splitting, early signaling and spec-

ulation.

3.4.1 Task Replication

For a task with only unordered dependences between instances (through persistent data structures),

we can increase parallelism by replicating the task. A task and its replica(s) (i) can occupy two

hardware contexts on the same PE or occupy two separate PEs, (ii) can share an instruction store

(if on the same PE), and (iii) share memory for persistent data structures. The challenge for sup-

porting replication is to automatically insert synchronization for accesses to shared persistent data

structures, so that replication remains transparent to theapplication programmer.

3.4.1.1 Synchronized Sections

When having multiple replicas of a task running at the same time, we have to introduce either

atomic operations or synchronized sections to preserve consistency on shared memory locations.

Every time a task accesses a memory location that is potentially written to at some other point in the

program, the task must acquire a lock to operate in isolationof other tasks. This is a requirement to

preserve correctness of execution. As shown in Table 3.3, the only memory type that may require

synchronization is the data that is local to a task (for example, a counter).

Dependence Identification The problem of identifying the dependences in the code refers to

pinpointing the memory reads and writes that access shared memory locations. One way of proceed-

ing would be to identify at simulation time the memory accesses that lead to dependences and feed
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them back to the compiler. Our approach is to take advantage of the exact memory types of data ac-

cesses that are fed back into the application being compiled. This analysis is hence more exhaustive

because it allows us to see dependences even in code not reached by the particular packet trace(s)

used for simulation. As we will explain, our compiler technique, that we callbuffer shape analysis,

finds all instructions that can access a given data location.Other than identifying potentially alias-

ing memory accesses, we envision that this compiler pass canhave other future applications, such

as directing data layout optimizations. Also, because thiscompiler analysis, as we explain next, is

given the type of memory buffers accessed by instructions and puts the emphasis on understanding

data structures, it is different from pointer analysis [32].

In our compiler pass, we start by discovering data structures that are accessed within a task. This

discovery can be formulated as intra-procedural analysis (see Section 4.3.1.1). To identify pointer

aliases and data access patterns, we attempt to understand the layout of buffers accessed inside

a task. Our analysis discovers data members and pointers to other buffers inside data structures.

Figure 3.5 shows a graph that would be created while analyzing the code of a simple linked list

traversal. As shown in the figure, because this work is performed in the compiler, we have to handle

numerous temporary variables. Pointers that access arraysare distinguished by their index inside

the array. If the index is computed, then we conservatively assume that it may refer to any item

of the array. We also add edges to account for recursive data structures and to showboxing, i.e.

encapsulation of data within other data structures. Our compiler work only needs to consider a

single task at a time. This work is based on the assumption that the top level buffers in the graph

that we build do not alias. This is a valid assumption inside Click: packet buffers are guaranteed to

be unique when they are written to.

In our analysis, the only variables considered are the ones bound to memory accesses to the

“permanent heap” (see Figure 3.2). For each variable read and written to the permanent heap in

a task, there is a possible unordered dependence with a replica of that task. To manage those

dependences, the compiler needs to insert unordered synchronized primitives (lock/unlock), as we

describe next.
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001 struct datum {
002 char∗ start;

003 char test[16];

004 struct datum∗ link;

005 int a;

006 };
007

008 int main(void)

009 {
010 struct datum∗ one, ∗head, ∗crit, ∗prior;
011 prior = new struct datum;

012 prior->link = NULL;

013 one = new struct datum;

014 one->link = prior;

015

016

017 while(one->test[one->a+1] <= 10)

018 {
019 while(one)

020 {
021 one = one->link;

022 }
023 one = head;

024 }
025 printf("int %d\n",one->a);
026

027 return 0;

028 }
029

030

 new() 

one

tmp1_link &a test[-]

tmp2_link

a

member of a data structure

pointer on a data structure

membership relation

data member that is a pointer

recusive data structure (a
linked list, in this example)

pointer aliasing

member aliasing

Legend:

Figure 3.5: Buffer analysis, simple test case.

Placing Synchronization Markers We use simple lock primitives that can be implemented by

traditional atomic instructions. We insert synchronization such that:

1. the task acquires a lock before the first read or write to a given shared location;

2. the task releases the lock after the last read or write to that location;

3. if any critical section partially overlaps with another,both critical sections will be combined

into one.

Because we may need to place a marker in a position that post-dominates all basic blocks, we

need to unify all return paths of the function considered into a single basic block before attempting
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the synchronization placement.

With this scheme, it becomes mandatory at run time to ignore duplicate locks and spurious un-

locks (otherwise we might, for example, lock the holder of a lock). No locking/unlocking pair

should be put inside loops because this would not protect thevariable across loop iterations. Finally,

because a processing element can only hold one lock at any given time, this placement strategy is

deadlock-free.

While more aggressive or more fine-grained locking strategies are possible, this method has the

benefit of avoiding deadlock situations. More advanced approaches might attempt to decrease the

size of the critical section through instruction scheduling [99], implementing thread folding [26],

or possibly converting the code to non-blocking algorithms[57]; all of those three techniques are

however beyond the scope of this work.

3.4.1.2 Context Eviction

Because of a potentially high level of task replication across all processing elements, there may be

several tasks waiting to acquire a lock. All tasks waiting toacquire a lock occupy hardware contexts

without performing any work. The solution we implemented was to preventively evict any context

in a locked state when other packets are waiting to be processed. We save their register space and

restore it upon acquisition of the lock. We impose no constraint on space to save the context’s state

but, in the cases observed, the number saved at any one time isbounded to a reasonable number.

3.4.2 Task Splitting

To improve load balance, we can break a large task into smaller tasks throughtask splitting, allowing

the new task splits to be scheduled on multiple PEs. To split atask requires an analysis of all

dependences between the two task splits, which we will referto as theproducerand theconsumer.

Data values for any true dependences (read-after-write) between the producer and consumer must

be forwarded to the consumer task split. Furthermore, if a replicated task is also split, any locks

held across the split point must also migrate from the producer context to the consumer context.

Splitting is expected to be useful to allow for finer scheduling of tasks. However, we also have
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Figure 3.6: Examples of the compiler-driven positioning oftask splits for two simple control graphs

of basic blocks. The compiler avoids placing splits into loops.

to model the migration time of a task upon a split to the next execution context. This operation

may also involve some latency to find an appropriate next execution context. For now, we imple-

ment communication between subtasks as a non-blocking datatransfer on the same medium that

transports the signal to launch the next split. The compilercomputes the amount of data to be com-

municated as the union of all scalar values that are defined before the split and used after it. To

simplify, we compute this set by looking at the basic blocks of the most frequent basic block trace.

In our implementation, splits are bound to the same subset ofPEs that the initial task can run on

(i.e. the same mapping).

The split compiler operation can be performed iteratively.It is part of the post-simulation com-

piler pass (presented in Section 4.3.2) because it reuses several analyses from it. We have two

algorithms to position the splits: when loops are found in unsplit regions, we split the function at

loop boundaries; otherwise, we try and make three even splits out of an unsplit region. An illustra-

tion of the technique is shown in Figure 3.6; we can see that perfect balancing of work between the
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splits is not always possible.

3.4.2.1 Re-ordering Splits

With task splitting, it becomes possible that a lock migrates from one PE to another. Proper mi-

gration code has been inserted in the simulator to detect this condition. We must ensure that a lock

holder can readily execute on the next PE otherwise all the contexts of the next PE could be occupied

by tasks waiting for the lock, creating a deadlock situation.

Ennals et al. [23] propose a task optimization called “PipeIntro” that is similar to what we call

“splitting”: they break a sequential task into task splits that will be executed in sequence for all

packets. However, task splits from different packets can beinterleaved in time. Ennals et al. also

discuss correctness issues. Correctness is preserved in ourapproach as long as synchronized sec-

tions are preserved upon a split. Our work evaluates task splitting and presents system issues related

to it.

3.4.2.2 Pipelining Splits

A more advanced form of splitting would facilitatetask pipelining—allowing a task split to be

executed in parallel with other splits from the same task. While task pipelining is potentially very

useful, automatically pipelining the potential dependences within a task is complex and hence our

infrastructure does not support it yet.

3.4.3 Signaling a Task Early

Signaling a task early tries to extract inter-task parallelism within the application task graph by

launching multiple tasks processing the same packet as soonas it is determined that their execution

would not violate inter-task dependences.

For each task, we determine the next tasks to be executed. If the task graph contains conditional

branching, the next tasks considered must exist on all successor branches in the task graph. Using

the task graph, we also check if starting the candidate taskswould earlier would incur dependences

on memory locations so that we preserve the correct behaviorof the program. We also take care to
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Figure 3.7: Example of early signaling requiring extra inter-task synchronization. TaskB can start

as early as taskA, however taskD must wait for a resume signal from taskB because of

an ordered dependence between taskB andD.

remove signals that would be redundant when attempting to start a task early from different points

in the task graph.

This transformation requires careful signaling: let us consider the processing chainA→B→C

whereA could signal taskC to begin execution before taskB completes (see early signaling in

Figure 3.3). Care must be taken to determine that the early signaled taskC has no dependence with

B. A would then pass the packet to both tasksB andC upon completion.

Let us now consider the scenario where taskB could be started as early as taskA. Suppose also

that there is a possible dependence betweenB andD, as shown in Figure 3.7. The problem that

arises is thatA is modified to startC upon completion, that in turn startsD. Hence,D could start

executing beforeB has completed, thus violating a dependence. We solve the problem by creating

two additional types of signals: i)D waits for B and ii)B resumesD upon its completion. Tasks must

also be informed of their time to live: in this example, the number of tasksB is allowed to signal

upon completion is nil becauseA takes care of signalingC. In the case whereD exists on another

sequence of tasks where it is not preceded byB, we need another signal so thatD does not wait in

vain forB: a task prior to the execution ofD announcesthatD will have to wait forB.
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There exists cases where the announce/waitfor/resume scenario cannot apply because of the

presence of the same tasks on multiple paths of the task graph. For example, a signal announcing a

wait condition cannot be issued before the early signaled task if, in the unmodified ordering of the

task graph, there is a branch right after the early signaled task. We do not implement early signaling

in those those more complex cases because we believe that thehardware support would require non

already available primitives.

Finally, sink elements (in particular, any task beyond theOutput trigger in Figure 4.6) can never

be signaled early; otherwise the packet could be prematurely set to be sent out of the NP. Also, we

do not launch a task that is a leaf of the control graph becausesome memory deallocation may be

attached to it.

Placement of early signaling in the code is done to make sure the candidate task is started as early

as possible (i.e. not after an expansive memory access). Using our compiler pass, we insert the

signaling code in the appropriate function, right after thestart of a task. We have not implemented

early signaling a task at a different point in a routine in part because of the complexities of placing

the call while taking into account task dependences and control flow in the task itself. The ’resume’

signal is inserted right before the end of the task for reasons just mentioned.

We envision that, in future work, it would be possible to handle write-after-write dependences

in early signaled tasks. We could insert some form of renaming allowing us to discard some write

operations (as in the MLCA project [38]).

Impacts of early signaling on simulation Early signaling requires modifications in the sim-

ulator. Our implementation has to take into account that there is a possibility of deadlock if tasks

occupy executions contexts while waiting for early signaled task to complete. Our solution is to

evict the stalled contexts, as explained in section 3.4.1.2. As well, the simulator must provide sup-

port for the ’resume’ signal to reach the tasks in a ’waitfor’ state, considering that a task can be

mapped to more than one PE. We currently implemented a broadcast algorithm to all the candidate

PEs that could be running the task. Destruction of unused signals occurs in a similar broadcast

fashion.
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3.4.4 Task Speculation

In this work, we parallelize mostly non-loop portions of a program. For this reason, we have not

looked at optimizations such as reduction although this might be beneficial to parallelize payload

processing tasks that contain more tasks with loops. In general, we need to create parallelism where

there is none. So we cannot follow the typical way of making threads by looking at the loop index.

Sequential code usually has a lot of self-contained dependences and it is hard to guarantee that

computations, when executed in parallel, will not access shared resources.

Figure 3.8 shows a piece of code that counts unique IP addresses (in a rather naive fashion).

The concept is used in popular network address translation applications where an entry is created

for each packet flow. If no entry is created, then the internaldata structures of the element do not

get altered and there is no dependence. Melvin and Pratt [53]make some measurements on the

frequency of packets belonging to the same flow given a numberof packets arriving in sequence.

Speculation consists of removing synchronization and monitoring memory accesses for dependence

violations, in which case the tasks that were last to enter the formerly synchronized section are

aborted and restarted. When a task successfully completes, it must commit to the shared memory

all its speculative memory writes buffered locally to the PE.

In the network processing tasks that we consider, we can havemultiple synchronized sections for

one task. Also, a normally synchronized task does not necessarily enter a synchronized section upon

execution. Since we do not know if speculation will happen when the task starts, our implementa-

tion rolls back the task upon failed speculation to the beginning of speculation, as opposed to the

beginning of the task. The order in which speculative tasks can commit is decided by the order in

which they enter the synchronized section (or re-enter, upon violation). Consequently, the processor

state has to be saved when entering a synchronized section and all writes to non temporary storage

must be buffered until the task safely exits speculation.

In our current infrastructure, the compiler takes care of checkpointing the state of an hardware

context at the entry of a synchronized section and restoringthis state upon violation. The compiler

also inserts code to buffer the writes to local storage and commit them to shared storage when the

task completes without violation. Hardware support is however best to detect violations in a manner
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001 class Counter {
002 int known cnt;

003 int∗ known addr[100];

004 }
005

006 void Counter::process(struct packet∗ p)

007 {
008 int i, sum = 0;

009 int addr = p->ip idhr->ip dst;

010

011 bool found = false;

012 for(i=0; i<known cnt && known addr[i] <= addr; i++)

013 if(known addr[i] == addr)

014 { found = true; break; }
015

016 if((!found) && (i < 99))

017 {
018 memmove( &known addr[i+1], &known addr[i], known cnt-i );

019 known addr[i] = addr;

020 known cnt++;

021 }

022 }

024

Figure 3.8: Rare dependences make opportunities for speculation. In this case, a list is modified

every time a new destination IP address is observed in the packets processed. The ac-

tual frequency of the modifications depends on the traffic patterns. For example, on a

short time scale, all packets may belong to the same connection, thus not creating any

dependence between task replicas. The synchronized section, covering most of the task,

is highlighted.
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that does not slow down the PEs. In our simulation, we assume that there is an engine snooping

on the bus connecting the PEs to the persistent heap storage,which is the only memory type where

dependences can occur between task replicas (as seen in Figure 3.3. This engine signals a violation

to the context with an interrupt when an earlier task reads a memory location written to by a later

task or when an earlier task writes to a location read or written to by a later task.

3.5 Managing Threads

Network processors, as surveyed in Section 2.2.2.1, often have processing elements with multi-

ple execution contexts that execute software threads. There exist different flavors of how threads

interact on a single processing element. Ungerer et al. [85]explain and survey those different mech-

anisms. To give an overview of the possible mechanisms and motivate a choice for NP simulation

(Chapter 5), we briefly summarize their study.

There are two categories of multithreading when instructions are issued from a single thread every

cycle, as surveyed by Ungerer et al. [85]. Fine-Grain Multithreading (FGMT) takes an instruction

from each thread in sequence every cycle. One of the advantages of FGMT is to minimize hazards

in the pipeline, thus simplifying and speeding up the processor. The alternative is blocked multi-

threading (BMT): one thread executes until an event occurs and causes a context switching. In some

processors, because of replicated fetch units, the contextswitching time is null. Processors that can

issue instructions from multiple threads at the same time perform what is called Simultaneous mul-

tithreading (SMT).

Context switching means transferring the control between the threads, and hence, only applies

when one thread executes at a time. Context switches can be static, i.e. triggered explicitly or

implicitly by a given set of instructions, or dynamic. Dynamic context switching can occur upon a

signal, for example, an interrupt, a trap or a message. It canalso be triggered in some architectures

by the use of a value that has not been loaded yet because of a pending memory access. Finally,

dynamic context switches can occur based on a conditional instruction that, for example, triggers a

context switch when a register reaches a threshold value.
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Modern NPs typically implement blocked multithreading andprovide very low-latency switching

between hardware contexts within a PE. For example, in Intel’s IXP family, a context switch is trig-

gered by the programmer through an explicit context switch instruction (ctx arb). Alternatively, a

PE can switch contexts based on its current state, reacting to dynamic events. BMT does not require

multiple issue hardware support and allows to execute a taskat the full performance of the PE. In

our implementation, we model dynamic context switching whenever a long-latency stall occurs. In

combination with decoupled, non-blocking loads, this allows the NP programmer to tolerate the

significant latency of memory accesses.

We have identified two opportunities to improve on the threadmanagement. When task repli-

cation is implemented, the thread that has acquired a lock ison the critical path of other threads

waiting for the lock. To minimize this contention, we have added support for the critical thread to

preempt other threads. As well, we have tried to load balancethe requests of the threads on the

shared NP busses so that a particular thread does not congestthe bus and leaves the other threads

waiting. In summary, our thread management strategy is to execute the first thread that is ready to

execute and context switch when that thread can no longer execute. We have implemented some

refinements on this that we evaluate in our simulator.

So far in this chapter, we have presented task transformations that we implement based on under-

lying concepts, namely: packet ordering, memory typing andtask dependences localized to certain

memory types. Our task transformations involve memory management and also affect the interac-

tions between tasks. Our infrastructure also has some notion of managing thread interactions. Next,

we introduce the components of our infrastructure.

3.6 The NPIRE Framework: Overview

Our compilation infrastructure transforms a graph of taskssupplied by the application programmer.

To evaluate the resulting network processor system, we haveto measure and compare the maxi-

mum throughput achievable in a given configuration. We are also interested in understanding the

performance-limiting factors. This section presents the integrated suite of tools that we developed

49



3 Towards a Compilation Infrastructure for NPs

for this purpose, starting with a justification for the main component of this large software task: the

simulator.

3.6.1 Motivation for a New Simulator

In parallel computing systems, Amdahl’s law states that thetotal execution time improves linearly

as we add more processors to take on the parallelizable portion of a program. In its formulation,

Timetotal = Timesequential+
Timeparallelizable
num processors, this law also illustrates the concept of diminishing returns:

as we invest in more processors, the sequential fraction of an application is not reduced and can

dominate the overall latency.

Amdahl’s law does not take into account several forms of contention that we can observe in NP

systems. For example, two tasks running on two hardware contexts in one PE seldom share the

PE so nicely that we can measure a speedup of 2. In reality, onetask will typically be able to

resume execution before the other task relinquishes the processor. A similar contention is likely

to happen whenever shared resources are assigned to tasks. Assuming an infinite availability of

hardware, producer-consumer data dependences between tasks are the only limit to speedup. In real

life however, a system may experience long periods of time when congestion delays the consumer

such that it is not ready to collect the producer’s work. Because contention on shared resources

depends on the actual arrival and departure times in waitingqueues, we have to perform asimulation

of the interactions between all the main NP components; a theoretical approach is not satisfactory.

Our goal is to provide an integrated compilation framework for network processors. To provide

simulation feedback to the compiler, we want our simulator to understand any application we feed

to it in a format that is machine-generated. In order to studythe architecture of a network processor,

we need a simulator flexible enough to do some design space exploration. We need to vary the

amount and the kind of on-chip resources and customize the processor behavior to the different

transformations we attempt on the application. Also, our simulator needs to execute rapidly so that

we have the opportunity to sweep certain design parameter ranges. As presented in section 2.3, no

such software could satisfy our requirements, because the alternatives offer a detailed simulation

too specific to a given architecture and/or because they could not be adapted to accommodate new
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Figure 3.9: Our infrastructure for integrated NP simulation.

behaviors. This justifies the design and implementation of NPIRE, our infrastructure with its own

simulator. After a few generations of relying on open-source components (see section A.3), our now

full-custom simulator uses real network router applications transformed by some compiler passes

of our own.

3.6.2 NPIRE Components

The basic structure of NPIRE, our integrated compilation-simulation environment, is shown in Fig-

ure 3.9. NPIRE uses the Click Modular Router [41] in two ways: first, as a programming model

and second, as a base for more realistic, complete applications. In this study we evaluate NP archi-

tectures using actual Click applications. The NPIRE compilerinfrastructure, built on LLVM [46],

divides Click’s modularelementsinto tasks, inserts synchronization and signaling by analyzing de-

pendences between tasks, and maps tasks to processing resources. It also maps memory to the

different potential storage mechanisms. In the NPIRE simulation model, those mechanisms can be:

local to the processor, shared at the processor level (e.g.,for next-neighbor communication), shared
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chip-wide (e.g., a scratchpad), or shared in external (off-chip) memory. In addition, the NPIRE sim-

ulator allows us to vary the number ofprocessing elements(PEs), the number of hardware contexts

per PE, and the interconnection between the PEs themselves and with the various types of memory.

Finally, the simulator provides feedback that allows the compiler to iteratively mold the application

to the supporting hardware by improving the task partitioning and mapping, emulating the efforts

of programming by hand.

3.7 Summary

In this chapter, we have presented a programming model basedon task graphs and memory type

identification. This programming model confines inter-taskdependences in packet meta-data,

packet buffers and persistent heap. Other memory types include temporary heap, stack and in-

struction storage. We use this dependence characterization in tasks to parallelize and reorder task

execution when dependences are not violated. The NPIRE compiler infrastructure can perform a

locality transformation on memory accesses consisting of memory batching and inter-task forward-

ing. Four task transformations take advantage of the multiple processing elements available on

modern network processors. We introduced the compiler techniques to implement, namely: replica-

tion, splitting, early signaling and speculation. Finally, two refinements, preemption and priorities

on shared busses, improve on our dynamic context switches-based thread management strategy that

minimizes long latencies.

To implement and evaluate the proposed optimizations, the NPIRE framework is made out of

three components that we will present successively in the next chapters: real network processing

applications, a compiler infrastructure and a simulator. We will describe the first two software tools,

followed by our simulator, designed to mimic network processor hardware.
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In this chapter, we describe our software tools that act as anenabling platform to the task transfor-

mations presented in Chapter 3.

4.1 Overview

Figure 4.1 shows the software flow that transforms the application to efficiently exploit the sim-

ulated NP hardware. Our infrastructure has a compilation unit that analyzes the Click elements

and drives the task transformations. The compiler passes generate code allowing us to build our

execution environment for our NP application directly intothe original Click code itself (as ex-

plained in Section 4.3.1.1). As shown in Figure 4.1, the result of this execution is a trace suitable for

simulation on our modeled network processor. We will refer to Figure 4.1 throughout this chapter

while describing the NP applications that we transform and the compilation process that leads to

simulation.

To introduce task graph manipulations, we first give some details on the construction of an ap-

plication in our infrastructure. We then present how our compiler passes transform the application

and generate code suitable for the application’s simulation. We conclude this chapter by explaining

further application transformations that leverage simulation feedback.

4.2 Expressing Packet Processing with Click

We use the Click Modular Router [41] to build applications by connecting Click’s independent

modules, calledelements, as described in section 2.5. In this section, we explain theprocess of
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Figure 4.1: Work-flow of the simulation environment.

creating a new application. We also describe the execution behaviors of the application that are

relevant to simulation and the modifications made to Click to allow tracing of those behaviors.

4.2.1 Creating a new benchmark application

To evaluate the performance of a network processor application inside NPIRE, the user must first

describe the application in Click’s configuration language,as exemplified in Figure 2.4(a). The

result of the application design is a graph oftasks, as illustrated in Figure 4.2, where each task

represents the processing performed by an element on a packet. Each element has customizable

parameters that modify its generic behavior. For example, theLinearIPLookup element requires a

routing table that must be specified in the Click configurationfile. Figure 4.2 also shows that some

elements can be present in multipleinstancesthat have no sharing in their runtime persistent heap,

a data storage type that we defined in section 3.2. For example, we can see in the graph that there

are twoClassifiers.

While we focus the compilation effort on the application’s tasks, there are parts of the Click
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router that we do not analyze. In particular, to be able to execute an application, the Click router

needs to parse the user’s application description and schedule elements upon packet arrival. Those

Click parsing and scheduling components are outside the scope of packet processing on a network

processor so they are not processed by our compiler infrastructure.

4.2.2 NPIRE’s Support for Creating Suitable Packet Traces

In all our applications, we use the elementsFromDump andToDump to respectively read and write

packet traces for the incoming packets and outgoing packetsof the Click router. The user must also

supply one packet trace to be read by Click for each input stream of the application. Those packet

traces should have the appropriate characteristics (for example, destination identifiers and protocol

layers) to exercise the application’s tasks in the same frequency as in their expected real world

deployment. Failure to match the packet trace to the elements behavior can result in, for example,

having all packets discarded because no route is known for them. To help the application writer, our

simulator reports the flow of packets along each edge of the task graph as seen in Figure 4.2.

The coverage of our profiling of the program will only extend to the code that is executed inside

the elements. In turn, this profiling will affect the inter-task and intra-task dependence analysis in

the task transformations we perform. Depending on the application, different packets can stress

different control paths: so the simulation must be long enough to cover a representative mix of

packets. In our measurements, we try to have a roughly equivalent distribution of packets across

all utilized branches in the application’s task graph. Somepackets may trigger exception handling

conditions, which represent worst case latency scenarios:for example, the costly sending of an

Internet Control Message Protocol (ICMP) error packet. Similar to a high speed highway, single

exceptions in an NP can have a significant impact on throughput. For this reason, in our traces, we

keep those normally infrequent behaviors to a negligible fraction of the packets.

We use pre-recorded packet traces to exercise the Click applications. The traces used can be any

of the following:

1. a true LAN trace;
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Figure 4.2: Task graph of a compression application generated after a short simulation. The graph

shows the number of packets that flow between each pair of consecutive elements.
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2. a true LAN trace altered to approximately match the packetmix (size and type) of a reference

trace;

3. a reference trace with payloads borrowed from a true LAN trace injected.

We only employ the third option in the list because it makes use of publicly available refer-

ence traces from the National Laboratory for Applied Network Research (NLANR) [61]. Those

packet traces originate from high speed links (10Gbps) and have been widely used in various other

research, including some workload characterization in network processors [66]. Ethereal [68] al-

lows us to convert NLANR traces from Endace’s Extensible Record Format (ERF) format to tcp-

dump [47] traces, understood by Click. However, the reference traces are distributed with their

payload removed, for privacy reasons. To alleviate this lack of payload, we modify the packet traces

as follows:

1. Packet buffers are padded to make the size described in their header match their actual size.

For the payloads, we use a packet trace recorded on a LAN. We inject into each packet of the

reference trace the content of a LAN packet that resembles the reference packet in protocol

and overall size. If we cannot find a data buffer that is long enough to fully pad the reference

packet, we simply repeat the data buffer selected for padding.

2. A checksum is inserted to all known protocols headers thatrequire one in the reference pack-

ets. This facilitates the handling of the trace with some packet readers and, most importantly,

allows the packets to pass common checks on its IP header.

3. The range of IP addresses of the packets is optionally remapped. The source and destination IP

addresses of the reference packets can also be inverted. This is required to simulate different

networks and to facilitate the creation of routing tables inour applications.

4. Save the resulting modified trace using tcpdump’s API.

NPIRE provides a tool based on libnetdude [42] to do these manipulations on the packet traces.

Although there are timestamps in the reference traces, we donot use them: instead we intend to

stress our simulated network processor with a rate that matches its processing capability.
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4.2.3 Back-End Added to the Click Modular Router

Figure 4.1 illustrates that some code is added to the Click router before we execute our network

processing applications. We refer to this software layer added to Click asClick’s back-end. This

section explains what was inserted in Click to produce the application trace file along with some

statistics about the basic block execution.

4.2.3.1 Support for Tracking Packets

To identify all accesses to packet data, our back-end must recognize packet data structures inside

the Click router. Inside the router, a packet exists as an instance of a classPacket; we refer to it as

packet meta data. This class contains pointers to the actual packet data. Thepacket data, both its

header and payload, is referenced from the memory buffer into which the Click router reads large

segments from the packet trace file. Some elements can also allocate memory and copy into it the

packet data to, for example, extend a packet. On the other hand, the packet meta data is created

using thenew operator inC++. When a packet needs to be sent on multiple paths in the task graph,

a copy of the meta data is created but the same reference to thepacket data is copied over. The

packet data only gets replicated across those new packet meta data if the packet data is written to,

as any writes to the packet data must be guarded by a call to a buffer unification routine. Because of

this efficient memory management inside the Click router, we had to overload thenew anddelete

operators of the packet meta data and insert code in the elements that source and sink packets to

handle respectively the packet data allocation and release.

4.2.3.2 Application Instrumentation Handlers

All the instrumentation calls inserted by the compiler are handled in Click’s back-end, making our

infrastructure modular inside the router. The back-end handlers are used to monitor instruction

count, memory accesses, memory allocation/free, start/end of tasks and signal insertion for task

splitting and early signaling. Also, there is a handler to gather the connectivity graph of the elements

inside Click and another handler to store a pointer to the stack after the initialization. This pointer

will be used to determine if a memory reference belongs to theheap or the stack. In all those
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instrumentation handlers, the back-end contains an interface to create records in the application

trace file.

The back-end also holds a table containing a pointer to all ofthe application’s elements and to

their successors in the task graph. As well, the back-end maintains a data structure at runtime to

keep track of the identity of the element for which a task is being executed. With this element

identifier knowledge, the back-end is able to insert some element specific events in the application

trace, such as signals for the early signaling transformation. This conditional insertion allows us to

have multiple instances of an element sharing the same code inside the Click router, thus reducing

our compiler’s work. For each element in execution, we also use the back-end data structures to get

a reference on the successor element to which the packet being processed will be forwarded. We

use that reference to dispatch the call to the successor element and to insert element transitions in

the application trace.

All memory references that reach the back-end are classifiedby type. The identification is made

by traversing a list of allocated buffers. Finally, some validation is made on the addresses of allo-

cated buffers to ensure that no two buffers are allocated at the same address before one of them has

been freed.

4.2.3.3 Support for Asynchronous Memory Loads

For NPIRE to model asynchronous (also known as non-blocking)memory operations, we must

determine the distance between any load instruction and thecorresponding first use of the value

loaded. We first present two unsatisfactory approaches at measuring this distance that motivate the

third approach that we implemented.

Computing the def-to-use distance of non-blocking loads in astatic analysis in the compiler is not

possible because of branches in the control flow. However, knowing this distance in the compiler

would allow us to break asynchronous loads into their two components: i) the slack time which is

the time between the load and its first use and ii) the stall time which is the time after the slack

spent waiting for the memory hierarchy to return the value. Astatic determination of the def-to-use

distances would allow the compiler to plan the instruction schedule more carefully and to insert
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static context switches to minimize the stall times. An alternative way of getting thosedef-to-use

relations between instructions would be to do some micro-architectural simulation, which could

also be used to introduce different flavors of instruction-level parallelism, such as super-scalar and

VLIW. This technique would require executable parallel code generation and simulation support

that are beyond the scope of this work. Consequently, we decided to opt for an implementation

inside Click’s back-end.

Our back-end support for asynchronous memory loads has the advantage that the def-to-use dis-

tances can be measured and written to the application trace in a single sequential execution of the

application. The back-end has a software component that canbuffer non-blocking operations until

the slack time is decided. This buffering code is part of Click’s back-end module designed to effi-

ciently write the trace. This module handles an instrumentation call on each use of a value loaded,

traverses an indexed list of recent memory accesses to find the original load and sets the use/def

relations. Only the first use of a value defines the use/def relation. Each load has a default slack

time set to infinity in case no use is found. Efficient data structures are critical to generate the trace

in a reasonable amount of time. Because non-blocking memory accesses support is a crucial part of

the back-end code, validation code is in place to detect any potential error.

4.2.3.4 Support for Identifying Memory Types

Memory types, as defined in section 3.2, are used to categorize memory accesses that have different

sharing and dependence characteristics. The back-end is extensible because it can easily accommo-

date the addition of new memory types. This makes it easier tospecialize the processing of a certain

kind of data.

Click’s tasks are declared using a standard interface and comply to certain requirements that make

them easier to run concurrently. The only data passed in an element is a pointer to a packet descriptor

that, in turn, contains a pointer to the packet buffer. Packet descriptors flow in and out of elements:

if a packet is dropped, then the packet descriptor is destroyed. All elements have an associated

configuration and potentially some dynamic data structures. Figure 3.2 presents the memory types

found inside Click: the separation of the memory types is important to model the appropriate storage
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001 struct packet desc {
002 int ip;

003 char∗ packet data; packet data

004 };
005

006 struct ip {
007 int addr;

008 int access cnt;

009 struct ip∗ next;

010 };
011

012 class ip counter {
013 int num uniq ips;

014 struct ip∗ list ip head; persistent static heap

015 public:

016 ip counter();

017 ~ip counter();

018 struct packet desc∗ push1(struct packet desc∗ desc);

019 struct packet desc∗ push2(struct packet desc∗ desc);

020 };
021

022 struct packet desc∗ ip counter::push1(struct packet desc∗ desc)

023 {

024 bool found = false; stack

025 struct ip∗ ptr = list ip head;

026 while(ptr != NULL)

027 {
028 if(ptr->addr ==

028a desc->ip) packet meta data

029 {
030 found = true;

031 break;

032 }
033 ptr = ptr->next;

034 }
035 if(!found)

036 {

037 ptr = new struct ip; temporary dynamic heap

038 ptr->addr = desc->ip;

039 ptr->next = list ip head;

040 list ip head = ptr; transition from temporary to persistent dynamic heap

041 num uniq ips++;

042 }
043 ptr->access cnt++;

044 return desc;

045 }

Figure 4.3: Illustration of memory types in a task (the critical section is highlighted).

for each buffer and to characterize the task dependences, assummarized in Table 3.3.

Figures 4.3 and 4.4 give an example of two implementations ofa fictitious element that counts

the number of accesses to distinct IP addresses. The first implementation is a FIFO linked list

while the second figure shows the use of a sorted linked list ofIP addresses. In both cases, if the

modifications to the variableaccesscnt of the IP record are not atomic, then there is dependence
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046

047 struct packet desc∗ ip counter::push2(struct packet desc∗ desc)

048 {
049 bool found = false;

050 struct ip∗ prev, ∗ptr = list ip head;

051 prev = ptr;

052 while(ptr != NULL)

053 {
054 if(ptr->addr == desc->ip)

055 {
056 found = true;

057 break;

058 }
059 else if(ptr->addr > desc->ip)

060 break;

061 prev = ptr;

062 ptr = ptr->next;

063 }
064 if(!found)

065 {
066 ptr = new struct ip;

067 ptr->addr = desc->ip;

068 if(prev)

069 {
070 ptr->next = prev->next;

071 prev->next = ptr; dynamic persistent heap modified

072 }
073 else

073 list ip head = ptr; static persistent heap modified

074 num uniq ips++;

075 }
076 ptr->access cnt++;

077 return desc;

078 }

Figure 4.4: Illustration of memory types involved in the synchronization of a task (the critical sec-

tion is highlighted).

between replicas of the task. There is also a larger dependence region because of the head of

the linked listlist ip headthat can be modified by the code. Figure 4.3 shows the memory types

involved while Figure 4.4 shows the importance of tracking dynamic heap storage. In Figure 4.4,

we can see that the dynamic heap modification is enclosed by a static heap synchronized section

solely because the head of the list is written to.

The compiler has some code to do a basic identification of memory types, however this has

limitations. For example, it is possible for an instructionaccessing memory to refer to different

memory types in two different accesses. So we prefer using memory types fed back from Click’s

back-end and inserted directly in the trace. We next explainhow the back-end achieves this function.

The back-end tracks the allocation of memory buffers: thesebuffers can either belong to packet
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descriptor storage, packet data or local element storage. Temporary stack and heap storage does

not have associated memory allocation events in the application trace because of the difficulty to

track each of those individual stack and heap allocations. Our work instead assumes very efficient

primitives for memory allocation and release in a thread-safe manner, an example of such is given

by Parson [63]. Temporary heap is distinguished from permanent heap storage by determining if

memory accesses are within buffers that can be reached by pointers in elements’ data structures,

using the elements’ static data structures as starting points for the search. The process has some

similarities with the “mark” heap search performed in some garbage collection systems [94]. We

envision that this reachability analysis could also be usedto determine if locally allocated heap

buffers escape the scope of execution of an element, in orderto potentially convert these heap

accesses to stack accesses as proposed by Gay and Steensgaard [24].

In simulation, when processing packets in parallel, we may reorder all memory accesses and

we need to preserve the fact that accesses to different allocated buffers are independent. Memory

allocation in the operating system Click runs on is likely to hand back to the application a buffer

that has recently been de-allocated. So we need to remap the locations accessed in memory so that

they have no overlap with other unrelated buffers. All non-persistent memory, including the packet

meta-data, packet buffers and the allocated stack, must be remapped to unique memory locations

for each task. However, persistent heap space is never remapped in order to model system-wide

dynamic memory allocations, as opposed to other parallel task infrastructures that only target static

structures, such as the SAFL language [60]. Keeping track ofallocations and releases in the back-

end is required to alter the addresses of memory accesses.

4.2.3.5 Unsupported Behaviors in Packet Handling Routines

Some minor modifications are required for packet handling routines inside a limited number of

Click elements, prior to their compilation in our infrastructure. For example, because we work with

packet traces, we cannot allow for the router to generate a packet to request the hardware address

of another host and wait for the reply, according to the Address Resolution Protocol (ARP) in IP

networks. When this situation happens, we assume the router already knows the information that
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it was about to request. In reality, this is a reasonable assumption because ARP requests occur

in the scale of minutes, hours, or not at all, in a high speed network. In summary, in our current

implementation, any processing based on a future packet reply or a timer escapes our tracing of

the application and must be avoided. This restriction is dueto the fact that, at simulation time, we

rearrange all the application trace events and we have no good way to position a task that is not

bound to an incoming packet event in the modified execution time.

4.2.4 Migration of an Application to the Compiler Infrastructure

After the Click router parses the application file supplied bythe user, the elements are connected

by Click to form the task graph. To import this task graph into the compiler, we need to give to the

compiler the following two files:

• A connectivity graph of the elements in the application. This connectivity graph is taken

from the execution of the Click router: the file is generated after the Click router parses its

configuration file.

• A file describing the binding of elements toC++ classes. This information is obtained by

examining the Click router source files.

A script reads the connectivity graph and generates the second configuration file in the above list,

given the root directory of the source code for all the elements. Because the compiler needs specific

information on the location of an element’s code, we need to identify whether there is inheritance

between elements (for example,StaticIPLookup is derived fromLinearIPLookup) and what

functions are present in the (derived) classes. Care must be taken to find the right function when an

element is derived from another element and does not provideany of the basic element routines.

The entry points for the execution of an element that must be identified by the compiler are one

of the following routines:run task(), push(), pull or simple action. All those functions are

overloaded functions of the primitive implementations in the base classElement. run task() is

a function used primarily by elements that source and sink packets. Those elements are typically

scheduled by Click instead of being called by other elements.This distinction is important: the

64



4 The NPIRE Framework: Software Components

void Element::push(int port, Packet *p)

{

p = simple_action(p);

if (p) output(0).push(p);

}

Packet* Element::pull(int port)

{

Packet *p = input(0).pull();

if (p) p = simple_action(p);

return p;

}

Figure 4.5: Default implementation of thepush() andpull() element entry points.

compiler can connect elements that call each other but lets the simulator handle the elements that

Click schedules upon arrival of a packet in the router.simple action() is a one-parameter version

of the processing and is called in the default implementation of push() andpull() as shown in

Figure 4.5.

4.3 NPIRE’s Compiler Support

The compiler support in NPIRE enables task transformations as well as the insertion of all the

instrumentation calls in the elements’ code that help Click’s back-end generate the application trace

and some execution statistics.

The compiler infrastructure, based on LLVM [46], is currently composed of two passes as il-

lustrated in Figure 4.1. ThePre-Simulationpass modifies each of the application’s elements from

the source code and emits a compiled binary version. Click is compiled with those transformed

elements and executed to generate the application trace. This trace is played through the simula-

tor. The pre-simulation compiler pass and the simulator produce input files for thePost-simulation

pass of the compiler. This second compiler pass transforms the elements’ code for a more efficient

execution of Click on the simulated architecture while leveraging simulation feedback. While sup-
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port for task transformations was presented in Chapter 3, we now describe in more detail the other

components of those two compiler passes.

4.3.1 Pre-Simulation Pass

The goal of the pre-simulation pass is to analyze the memory accesses because we need to know

where to physically send data in a realistic/simulated NP implementation. Another objective of

this pass is to instrument the elements’ code to get the execution frequency of basic blocks when

the application is exercised by a representative packet trace. We next describe these steps in the

compiler pass, starting with the transformations made by the compiler to the original Click code.

4.3.1.1 Code Transformations

An initial run of Click with its back-end creates a connectivity graph of the elements contained in

the application’s task graph. This information is useful toidentify which functions are on the packet

forwarding path of our application. If two elements with different names have the same function

because they both are derived from a common element, we duplicate the code of one of the elements

to avoid any ambiguity in the instrumentation we will insert. The initial compilation phase includes

compiling all of Click’s files through LLVM . We then extract from the voluminous binary only the

functions that belong to the packet forwarding path of the application. In fact, only one function is

extracted for each element except for theQueue, that preserves bothpush() andpull(). When

extracting the functions, we put them in a different module,under a different name to avoid naming

collisions with the original Click.

Our compiler passes assume that only inlined code should be instrumented. Inlining functions

called by elements as much as possible creates long sectionsof straight-lined code which are easier

to optimize. This simplifies the instrumentation by eliminating shared code across elements and

hence shared tags in the instrumentation. The alternative would be to have elaborate tracking abili-

ties in Click’s back-end to distinguish a code execution in different calling contexts. In an actual NP

implementation, inlining would have to be balanced by the corresponding tradeoffs in performance

and instruction storage space. Although inlining reaches deeply inside Click, the compiler passes
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only touch code that is on the packet forwarding path: the initialization/configuration phase of the

router can safely be ignored at simulation time because we are only concerned with the runtime NP

behavior. We assume that the data loaded at Click’s initialization time would be loaded inside the

memory of the modeled NP.

We use the Click router to read and write packet traces but thisoccurs outside the scope of our

instrumentation. Because we do not model any kind of media access controller to act as source and

sink of packets, we consider that the packets are allocated in memory by some kind of direct memory

access. Also, we do not account for fixed sized packet buffers(calledmbufin the Intel IXP NP chips,

andskbufin the Linux operating system). We assume that the packets are transparently accessible

starting at a certain memory location. Because we rely on Clickto load the packets, we use the

packet alignment in memory that is given to us. Since word sized unaligned memory accesses are

allowed on an x86 architecture, we assume that our simulatedimplementation has packets initially

aligned to avoid the overhead of unaligned memory accesses on a simple NP architecture. This

packet alignment assumption is realistic because modern NPs, such as the IXP2800 [35], have

specialized hardware to automate byte alignment.

Click is coded inC++, a high level language that, because of its overheads, is nota traditional

choice for NPs. However, the modularity and encapsulation of this object oriented language make it

a good candidate for parallelization and source-level optimization. We limit the overhead ofC++ by

inlining method calls whenever possible. We have not encountered cases where Click makes calls

to library functions that could not be inlined. Exceptions are the primitivememset() andmemcpy()

that are assumed to be handled by some hardware primitive. Recursive functions as well as function

pointers that could not be inlined for instrumentation are negligible in dynamic instruction count.

As a guideline to NP programmers, we would recommend transforming those routines so that they

could be inlined. We also tried inlining together tasks thatalways occur in sequence. On average

over our experiments, we found that this operation does not save any memory accesses, saves at

best 5 instructions and incurs extra communication betweenthe elements involved. Those poor

instruction count improvements show that little code is reusable to, for example, access boxed data

structures [12], a characteristic overhead of object oriented programs. Inter-element inlining was
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Figure 4.6: Modifying Click’s push and pull queue operation a) the original application using push

and pull; b) the transformed application with push and rate-controlled pull.

also abandoned because it presents several challenges to subsequent compiler passes if we want to

preserve the identity of the separate elements. Finally, weargue that working from a high-level

language description of the elements is acceptable, considering that other real network processor

systems have also some source of overhead while binding tasks at a high level decomposition: for

example, the Netbind project [9] has an overhead that grows linearly with the number of software

tasks.

In our infrastructure, we adopt Click’s programming model [41]: elements are connected bypush

(send a packet to the next element) andpull (request a packet from the previous element) links, as

shown in Figure 4.6(a). The elements that initiate a push or apull without corresponding requests

are scheduled by the Click router. Any scheduled task can trigger an arbitrary sequence of push and

pull requests. Section 2.5 gives more details on the Click Modular Router. In this compiler pass,

we transform transitions between elements in explicit calls to our instrumented methods. This has

the benefit of eliminating virtual calls through various layers of the Click software. Also, this call

transformation along with the above mentioned inlining allows us to build a set of functions that

constitute the totality of the processing for a packet.

In Click, aQueue element has both apush component on the enqueue and apull component on

the dequeue operation. In Figure 4.6(a) the elementOutput that triggers the dequeue (thatpulls)

can by default pull even if no packet is ready to be pulled. In NPIRE, we transformpull operations

by adding a token indicating the readiness of theOutput element so that theDequeue operation does
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not occur before theOutput element is ready. This additional control allows us to modelsorting

packets on the output interface. In NPIRE, we use Click’sQueue element to specify that packet

ordering must be preserved at the point where it is employed.As in most real network processor

applications, our applications therefore precede all of their output ports by aQueue element to

preserve order.

In a separate part of this pre-simulation compiler pass, we reduce allC++ try/catch sequences to

the content of thetry block. We can remove this overhead because, in Click’s code, exceptions are

only for error/debugging purposes. We also automatically remove all trace of debugging information

printed by the elements. As well, Click is compiled with theassert() calls disabled (i.e. they do

not generate any code). After those code alterations, we askLLVM to re-optimize the instrumented

set of functions extracted from the Click source code. LLVM was modified to prevent the unwanted

inlining of element functions, because we want control on where the code for each element is

located.

4.3.1.2 Code Instrumentation

We use LLVM [46] to insert instrumentation on a basic block basis. In this step of the pre-simulation

compiler pass, we insert instrumentation to track instruction counts and memory load and store

instructions. Extra information is also passed to Click’s back-end to record the sequence of basic

blocks executed.

Since our simulation infrastructure does not target yet anyform of micro-architectural evaluation,

we are not interested in the actual instructions behavior, except for instructions that lead to some

form of communication. Our intent is to model a RISC processorcompleting one instruction per

cycle. Similar simplifications are done in such works as the Modeling Framework [14] and the

Intel Architecture tool [26]. The main caveat of this approach is unmodeled pipeline stalls. This

is partially alleviated if we assume that our compiler can hint accurately branch prediction. Also,

multithreaded processors usually have instructions from multiple threads in the pipeline to hide most

stall time. Instruction counts are obtained using a rough conversion factor from the intermediate

representation to RISC instructions: 3.5, according to the LLVM intermediate representation (IR)
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design paper [1]. Interestingly, this number is roughly equivalent to the number of internal decoded

micro operations obtained from an x86 instruction stream: each IR instruction generates 2 or 3 x86

instructions [1] and the rePLay paper [78] indicates a conversion of 1.4 from x86 to micro-ops, thus

2.8 to 4.2 (average 3.5) micro-ops for an IR instruction.

Start and end of task markers are inserted to generate the trace information. Those end of task

markers allow the execution to resume/continue on an element that would launch another element

before its completion (a technique also known as non-blocking dispatch). Note however that Click

disallows processing a packet once it is sent to another element. At this point in the code preparation,

all distinct instances of an element present in an application share the same code in our modified

binary.

4.3.1.3 Code Generation

Once the instrumentation calls have been inserted at the compiler intermediate representation level,

we have a file that contains all the static processing of the elements. Our compiler can optionally

generate different copies of a function shared among different instances of an element, in the case

where the code would be dispatched to different control stores in an actual NP implementation. The

remaining challenge is to incorporate all of the new elementcode inside Click.

We export the intermediate representation from LLVM to an x86 assembly file using the LLVM

infrastructure. We also create an include file containing the information to size static arrays and

per-application file name information for the back-end. Files generated by Click will we be recu-

perated later by our LLVM passes. After compiling Click usingg++, we need to link Click with the

LLVM generated x86 assembly. An issue that arises is global symbol duplication: some global data

structures exist in g++ and LLVM object files. To solve the problem, we first cut all globals from the

generated assembly. We then select the missing globals and append them to the cut assembly file.

Finally, we disassemble theg++ object files from the schedulable elements (i.e. with arun task()

function, as defined in Section 4.2.4) in the original Click. At the entry of these functions, we insert

a bypass to their transformed copies renamed to avoid name collisions. By combining our code

with allows us to reuse the Click skeleton, in particular the initialization and configuration code and
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Click’s scheduler, to trigger our modified elements. All of the above steps are performed automati-

cally by custom made scripts. Next, the LLVM generated assembly file is linked with Click that is

now ready for execution and trace generation.

4.3.2 Post-Simulation Pass

The second compiler pass occurs after the application has been prepared by the pre-simulation

compiler pass and the simulator has made initial measurements on this application. We need some

simulation feedback on the timings for a sequential execution with one element per processing en-

gine using a special execution mode in the simulator, while distinguishing the timing of an element

in each of its instances. This information is relevant in task transformations and is be especially use-

ful when assigning tasks to processing elements in the simulated network processor (as presented

in Section 5.2.2).

The post-simulation stage extracts and summarizes profile information useful to the task trans-

formation passes described in Chapter 3. An important component of the post-simulation pass is to

read information produced by the pre-simulation pass: the compiler needs to know which elements

are connected and in what functions it can find the code for allinstances of an element. We also

read a file containing the execution count for each basic block and a file containing the sequence

of basic blocks executed. Generated by the simulator, we read read-after-write, write-after-read and

write-after-write dependence information matrices for the elements in each memory type as well as

the memory dependence mask that limits the number of elements that can have dependences even if

accessing the same locations (see section 5.1.5). Also fromthe simulator, we get latency statistics

for each element, a summary of paths taken on the task graph and a maximum list of all memory

references (read and write) accessed by an element for all packets and memory types.

In the post-simulation pass, we build control flow and use-to-def structures for the intermediate

representation in a format suited to our analysis. We indicate for each basic block the next most

likely block(s), with the associated probabilities. Transition points across elements are also marked

as such. Then we determine the frequency of occurrence of basic block sequences for each function

and for the complete processing of a packet. Next, we attemptto revert the sequences of basic block
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to sequences of elements. Obviously, because multiple instances of an element can share the same

code, there is an indetermination to which element a trace can belong to. Using a combinatorial

search on the expanded chains, we can solve the problem quickly and identify what chains com-

pletely share code because of identical or different instances of the same element. We found that we

can attain an important reduction of the execution time of further compiler passes by summarizing

the above work in a file what we call atrace cache.

4.4 Summary

In this chapter, we have explained how, once we have an application described in Click’s program-

ming language, very little work is needed for the application writer to import his application into the

NPIRE framework. NPIRE even provides some support to the programmer to tune the packet trace

that will exercise the application. Once the application isin place, a fully automated flow instru-

ments the element’s code, generates executable code, recompiles Click with the modified elements,

runs Click to produce an application trace and collects the results to refine the task optimizations

that the compiler provides. In NPIRE, to facilitate NP designspace exploration, these steps are

performed without knowing the precise details of the targetnetwork processor. The simulator takes

care of finalizing the resource allocation as we will see in the next chapter.
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Architectures

The simulator is the largest component of the NPIRE framework. The purpose of the simulation

is to evaluate our task transformations on parameterized network processor (NP) architectures. To

perform this evaluation, the simulator has to understand the contents of the application trace and

simulate the work of each concurrent thread. In this chapter, we present the devices that our sim-

ulator can model. We also expose the key configuration components required to make simulation

measurements that reflect the maximum performance of the NP under test. Lastly, we give a brief

description of the simulator’s internal organization.

5.1 Simulated Hardware

Network processors are part of an active field of research in computer architecture. We are inter-

ested in studying the compilation of applications on parametric architectures and identify which

architectures respond the best to our compilation techniques. In this section, we give an overview

of the network processors considered and we present a list ofthe major simulated NP hardware

structures modeled by our simulator.

5.1.1 Overview

In network processing, several packets can be processed in parallel to improve the computation

throughput. As seen in the surveyed processors in Section 2.2.2.1, the majority of commercial

network processors try to take advantage of this thread level parallelism. The support for paral-
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Figure 5.1: Generalized architecture of simulated NPs.

lelism exists mainly at two levels: in multiple processing elements (PEs) and in multiple execution

contexts within each PE. Multithreading within each PE limits the number of stalls in each PE by

increasing the number of instructions ready to be issued. When deciding the architecture of the

PEs for our simulation, we identified that the processors surveyed favor in-order single issue PEs,

that we will qualify assimple. Two reasons explain this preference: i) it is possible to put more

PEs on chip because simple cores are more compact that superscalar ones; ii) multithreading leaves

little room for issuing more instructions out-of-order. Recently, simple processor cores have also

been found to outperform superscalar cores inchip multithreaded multiprocessors(CMT) on web

and database transactional workloads [17]. Finally, because simple cores are easier to simulate, we

are following the trend of commercial NPs in favoring the evaluation of simple core multithreaded

multiprocessors. For the high-level organization of the tasks executed on PEs, we adopt the hybrid

model consisting of a network of PEs. As defined in Section 2.2.2, this organization offers the most

flexibility between the run-to-completion and pipelined models.

The overall architecture of the NPs that we can simulate withNPIRE is shown in Figure 5.1.

A given NP has a configurable number of PEs, each with a number of hardware contexts and a

local store for both instructions and data. Contexts providethe architectural support to execute

multiple processes: each context can store its temporary state in a reserved section of the register
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file of its PE. NPIRE does not yet model the micro-architectureof PEs in detail. Instead, assuming a

basic single-cycle-per-instruction model, we focus on instructions that involve communication. This

approximation is also used by Crowley and Baer [14] and in the Intel IXP architecture tool [26]. The

micro-architectural organization of the PEs could be explored further in another study that would

nonetheless require the simulation framework and compilerassisted transformations presented here

to efficiently program the NP. Our simulated NPs are also equipped with a shared on-chip SRAM

and external memory, including SRAM and SDRAM channels similar to the ones found in popular

network processors (as seen in the survey in Section 2.2.2.1). The design of the on-chip interconnect

as well as the number of channels to external memory are both adjustable.

5.1.2 Queues & Scheduler

In our infrastructure, tasks represent the processing performed by an element on a packet, as ex-

plained in Section 4.2.1. Once tasks have been assigned to PEs, there still remains some flexibility

in the scheduling of tasks to the hardware contexts of each PE. We capitalize on the fact that only

heap data is persistent across task instances in a programming model such as Click’s—this gives

us greater flexibility in task scheduling, since a given taskneed not be bound to a certain hardware

context. Instead, as shown in Figure 5.2, an instance of awork unit, consisting of a pointer to a

packet and an identifier for the task to execute, is queued before each PE. A task is executed when

it reaches the head of the queue and a hardware context is freeto execute it. In the case of task

replicas (defined in Section 3.4.1) that are assigned to multiple PEs, we model queuing such that the

replicated tasks may execute on whichever of the target PEs first has a free hardware context (i.e.,

for taskC in Figure 5.2). This model assumes that the code for each taskor task replica has been

loaded into the local instruction store of each potential target PE.

The simulator has several kinds of queues: for example, tasks, signals, and bus requests can be

queued before being executed. We model some cost in terms of cycle counts and bus utilization to

access all the queues. Shared work unit queues are more flexible and their access time proportionally

reflects this complexity. The exact latency values that we select for our experimentations are shown

in Table 6.3.
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Figure 5.2: A model of task queues that allows some tasks (A, B andD) to be pinned to a specific

PE, while a replicated task (C) can be dynamically scheduled onto multiple PEs. The

CtrlUnit is a proposed controller to improve the distribution of taskreplicas to PEs.

With the queue system presented in Figure 5.2, a processing element can request an additional

work unit as soon as it has a vacant hardware context. One optimization that we evaluated to

improve on this ad hoc schedule of tasks to PEs is to interposea small controller between the

work unit queues and the PEs (theCtrlUnit in Figure 5.2). This controller handles the requests

for work units and is free to return a work unit according to a user-defined policy or return nil.

In our implementation, the controller only has the flexibility to supervise task replicas (defined

in Section 3.4.1) that can execute on more than one PE. This limitation is imposed by the fixed

assignment of tasks to PEs, presented in Section 5.2.2. The algorithm that we adopt in the controller

attempts to load-balance the work among PEs that can executethe same task replicas. Consequently,

between the PEs that can execute a given work unit, the PE thatacquires the work unit is the one that

has a lower or equal number of tasks executing on its contexts. Because of the number of requests

for work units that are denied and retried, this proposed controller incurs more traffic on the shared

on-chip bus.
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5.1.3 Processing Elements

The target network processor is made of a parametric number of processing elements each having

a multi-threading capability. Changing processor control from one thread to another is assumed to

have a fixed latency. In our implementation, we do a context switch by transferring the control from

a task as soon as it is unable to execute more instructions on the next processor cycle. The context

that is either ready to execute instructions or the most likely to become ready first is then selected as

the current context of the PE. Evicted tasks on a PE are reloaded before requesting new work units.

Table 5.1 shows the break down of a processing element state.Those states represent the state

of the current hardware context execution in the processingelement. Consequently, the average

time spend in each state by a PE over a simulation allows us to infer the most frequent states of the

contexts, given that contexts with computations to performhave priority over waiting contexts. We

take care of breaking down the latency of the instructions interms of memory access time and bus

usage.

Keeping track of the PE state activity is non-trivial: for example, multiple requests originating

from different contexts can be in flight at the same time, on the bus or in the memory controllers.

This state representation is also extremely helpful while debugging to determine why a PE is not

committing instructions at a certain time. Finally, the processor states breakdown enables us to add

PE behaviors specific to new task transformations. For example, thestalled state in Table 5.1 only

exists when the early signaling transformation is enabled.

For the user’s convenience, the compiler can generate an application trace with the code for all

the different signaling patterns related to our task transformations. The simulator can be configured

to execute any combination of the transformations available.

5.1.4 Interconnect

Our simulation infrastructure must be flexible enough to experiment with different processor organi-

zations. The interconnect is a key component of the NP architecture because it propagates messages

across and off the chip, allowing PEs to communicate with memory devices and other PEs. To

model a wide range or modern NPs, our simulated NP interconnect has four important features: it is
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Table 5.1: Hardware context states tracked by the simulatoron a per-PE basis. The state of the PE

is the state of the context executing on the PE.

State Processing element activity State entry condition

1. inactive unused processing element initial state

2. active executing instructions computing required by a task

3. sleeping waiting for memory opera-

tions to complete

slack of non-blocking memory read expired

and memory access is processed by a memory

device

4. blocked waiting because of a

load/store queue rejection

(too many requests pending)

the memory controller exerts a back-pressure

on a context to prevent the issue of more re-

quests or the maximum of pending reads has

been reached by the context

5. ready has received a signal to exe-

cute a task

the context is ready to handle the signal

6. stalled has to wait for another task to

complete (only in early signal-

ing)

task reaches a compiler inserted wait condi-

tion

7. locked waiting for a lock at the en-

trance of a synchronized sec-

tion

a lock has been requested and is unavailable

or a speculative task waits to commit in order

8. bus waiting because of a bus trans-

fer

a request or waited reply is in transit one of

the NP busses

9. idle no activity task completed
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customizable, scalable, configurable, and modeled synchronously with the simulated time. We next

explain what these concepts mean and how they benefit our experimentations.

The interconnect between memory channels and processing elements is designed to becustomiz-

ableby modeling a network of heterogenous busses that have different latency and bandwidth char-

acteristics. Busses can be connected in a hierarchy to experiment with different bus organizations.

For example, it is possible to implement an interconnect that scales linearly in the number of hops

between processors as presented by Karim et al. [39].

Our interconnect is alsoconfigurablesuch that the compiler can allocate bus segments to carry ex-

clusively specific messages. The interconnect then autonomously decides where to route messages,

such as incoming packets, data from/to external RAM, shared RAM accesses, and synchronization

signals.

Because requests may have to travel in different wires and because data may go through inter-PE

bypasses or may be found in a local storage, we need to handle the interconnection in ascalable

fashion. For this reason, we have a software routing layer that takes care of putting event packets

on the wires. This indirection layer allows for arbitrary wiring scenarios.

In the NPIRE simulator, we model the interconnectsynchronously with the simulated time, i.e.

the state of the NP is changed when requests are processed. Other simulators, such as the out-of-

order Simplescalar simulator [4], can change the state of the memory before any request reaches

the memory device. Our delayed execution allows us to, for example, reorder transactions on a

bus and postpone accordingly a synchronization message between PEs. Our modelization hence

makes it easier to implement extensions or interfaces between simulated hardware modules. There

are two main aspects of simulation that allow us to model accurately bus delays: request sizing

and queue modeling. First, when we add a request on to a bus controller’s queue, we need to

send enough information so that the request can be issued on the serving peripheral and the result

returned to the appropriate entity. In fact, there is enoughinformation encoded with the request

to allow for its proper execution and to have a reasonable appreciation of the size of the transfer

on the interconnect. Second, the simulator handles cases when a request needs to be queued in

several queue units in sequence. For example, for a memory read, the bus controller and memory
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controllers make it impossible for the simulator to predictupon issue when a request will reach its

handler in the future. For context switching purposes, whenthe completion time for an event is not

known in the simulator, it is set to infinity. This completiontime and the processor state (presented

in Section 5.1.3) is updated as the event message becomes in transit on a bus or is being handled.

5.1.5 Modeling Memory Devices

To handle load and store task instructions, our simulation framework models memory units at three

levels of a hierarchy: there exists storage local to PEs, shared on-chip and external. i.e. off-chip,

as illustrated in Figure 5.1. As seen in the network processor surveyed in Section 2.2.2.1, most

NPs do not have hardware caches because of the low locality ofthe data accessed by tasks. Our

work adheres to this absence of cache and lets the software control when the data should be copied

from one memory unit to another. NPIRE’s memory modeling is divided in two parts: first, we

present memory simulation aspects, then we describe the memory access profiling performed in the

simulator.

When considering the timing of the memory devices, modern network processors utilize various

memory technologies, such as SRAM, DDR, RDRAM and RDLRAM, that havedifferent timing

specifications. Also, several memory access optimizationsspecific to DRAM have been published

in the literature. For example, Hasan et al. [30] propose a smart memory controller to exploit

row locality in the context of network processing using SDRAMdevices. Our goal with NPIRE’s

simulator is to make generalizable observations targettedat identifying performance bottlenecks.

We next explain how we can achieve this objective by modelingour memory units in a technology-

independent fashion.

Although our simulator has detailed models of memory devices, we realized that those models

alone do not improve the accuracy of our simulation. As explained in Intel’s discussion on DRAM

performance on an IXP processor [34], the latency of memory operations is relatively constant

for random memory accesses until the memory unit is over-subscribed. After experimenting with

the Intel IXP SDK, we realized that the memory access time on an external memory device only

represents a small fraction of the total latency experienced by the application. Reasons include the
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latency incurred by the communication on system busses and the crossing of the chip boundary.

Consequently, the exact timing of the memory devices need notbe replicated exactly to obtain a

good appreciation of the memory access time.

To be able to simulate timing accurately for adequate bottleneck identification, we realized the

importance of having a parametric breakdown of the latency of memory operations. On network

processors, because of pipelining in the interconnect as well as in the memory units, we have to

model an overall latency, of which a large fraction can be overlapped with other transactions. In

particular, the total latency has apipelined componentand anun-pipelined component. The mem-

ory access latency that is serialized between requests, i.e. unpipelined, is based on the address

(aligned/unaligned), size, storage type and kind (read or write) of an access. The latencies can be

either deterministic or with a random jitter. In our simulator, statistics are collected on all memory

and bus transactions in terms of in their average duration and queue time.

In our simulator, memory reads and writes are always handledin an asynchronous fashion as

explained in Section 4.2.3.3. This is a characteristic of modern network processors such as the Intel

IXP NPs [35]. To keep track of the pending memory loads, each hardware contexts as a limited

number of structures analoguous to ‘miss information/status handling registers” (MSHRs) [43].

Also, to model realistic hardware provision, memory devicecontrollers have limited size queues.

When a memory device can not accommodate an additional request already issued on a memory

bus, the request is dropped and the sender task must re-send its request on the memory bus when

the memory controller signals the task that space is available in the queue. Our memory controllers

do not yet support complex memory operations such as “atomictest-and-set”.

The simulator can have multiple channels of external memory. In fact, this is a requirement to

reproduce popular network processors. When distributing the packets on multiple equivalent exter-

nal memory channels, we need to create an association between a packet and an external memory

device. This association does not change over time and is performed when the packet is first made

available to the application. In our simulation, we save thecompiler-inserted tags of pending mem-

ory access in the devices they get executed on. This can be used to provide feedback to the compiler

to, for example, identify expensive loads from off-chip memory.
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Integrated with the memory modeling, the NPIRE simulator tracks memory accesses as they are

dispatched to different memory devices. This accounting code does not model any structure in the

processor; as we explain next, it generates part of the profiling data fed back to the compiler.

Memory Accounting In the simulator, there is amemory managerthat records all accesses to

each buffer. For the packet data, packet meta data, and heap references, the simulator attempts to

create a set consisting of the union of all references. Obviously, for allocated buffers, like packets,

the references are always aligned to the start of the buffer.For the heap references, we try to merge

consecutive regions of accesses as they get recorded. Thereare sanity checks on memory accesses

that verify that the memory allocation and free are executedin proper sequence with the memory

accesses. As well, we inserted code in the simulator to verify that the packet memory has been freed

after each packet has been processed.

While doing this memory accounting, some information is exchanged with adependence checker.

This dependence checker identifies which tasks access the same memory locations. Another of its

goals is to find locations that are accessed by a task while processing the majority of packets. After

a few packets, the memory classifier tries to establish if there is a recurrent number of memory

references performed by a task. If a consensus is reached on the most frequent memory accesses

between task executions, the selected accesses are regrouped and are used to implement memory

batching (defined in Section 3.2.1).

In collaboration with the memory manager, the dependence checker establishes adependence

maskwhich is a matrix used to determine which elements will neverhave a dependence between

each other. Inter-task dependences are used to identify candidate tasks for early signaling, as ex-

plained in Section 3.4.3.

5.2 Configuration Components

This section describes how our infrastructure binds our benchmark applications to the simulated

network processors by controlling the packet input and output and assigning tasks to processing

elements. All the techniques below rely on an iterative process between a configuration generator,
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or a manual intervention, and a cost evaluation in the simulator.

5.2.1 Rate Control

Packets flow in and out of network processors. The maximum rate at which packets can arrive

and depart is determined by the physical links of the network. For this reason, our simulation

infrastructure must provide abstractions external to the NP under test to control packets.

Input packet buffering Because NP input buffers for incoming packets are typically small, they

can overflow rapidly. To prevent the loss of packets, we prioritize the acceptance of packets over

tasks pending on processing elements on which the packet receiving tasks are mapped.

When packets arrive, work units are created and inserted for the tasks at the input of the task

graph. Another approach,input reordering[49], assumes that a classification of packets could be

applied at the input of the system to dispatch packets to PEs such that the number of dependences

between the tasks on those PEs is minimized. We currently do not have compiler support for the later

in our infrastructure; in fact, the head-of-line classification [19, 77] could very well be described in

a Click element and integrated to the application’s task graph.

Input Packet Rate “Headroom” is defined by the authors of the Netbind paper [9] as the amount

of instructions that can be executed in the critical path beyond the minimum application require-

ments. Although headroom is desirable, to evaluate a processor, we have to stress the application

to a point where the headroom is nil. In such a setting, we can determine reliably what is slowing

down the application most, i.e. thebottleneck. Hence our infrastructure must find the operating

point where the system is saturated.

It has long been understood that self-similarity in real network traffic implies bursty-ness [70].

However, when we try and characterize our system, we are interested in the maximum sustainable

rate and not by the fact that occasional slow inter-arrivalsand packet loss help regulate traffic bursts.

Also, in our case, because we can accommodate variance in task durations by buffering incoming

tasks, we are not concerned with realtime guarantees as are El-Haj-Mahmoud et al. [21]. Further-
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more, since our applications have unpredictable control flow and, in some cases, loops in the task

graph, the worst-case execution time [79] is an inappropriate metric.

The saturation point should be carefully selected because if a large number of work units are

queued, the system appears to have less idle time and has always more work to overlap with system

latencies. In a real system, this is not necessarily the case: in the Nepsim project [50], important

levels of idleness were measured. On the other hand, measuring a system with slack, i.e. not rate

determined by a critical path, does not reflect its actual potential performance.

In kernel benchmarks, packets are often taken one by one at the same rate as they are processed.

Making packets arrive in the system at exactly the time when the previous packet exits is highly

inefficient because it disregards the available task pipelining possible. In our case, the arrival process

models packet arrival on potentially multiple network interfaces.

Because we store tasks to be executed in a queue at the input of aprocessing element, our system

could be modeled as a network of queues. Given a packet input rate, proving the stability of a net-

work of queues where a task can be replicated and modeling thecontention of multiple concurrent

tasks on different shared resources is very complex.

The “maximum loss-free forwarding rate” used by Crowley et al. [14] relies on not exceeding

80% of utilization on any shared resource. This disallows high utilization ratios, that may be desir-

able even at low packet rates if the programmer wants to make the most of his system.

In our simulation infrastructure, the input packet rate canbe bandwidth controlled or controlled

by a packet-per-cycle metric. To find the point where the system operates at saturation, our first

approach was to find the rate at which the number of packets queued in the system was not steadily

increasing over a large period of time. We found that this wasa good method in general but can

run into corner cases due to the discrete nature of the measurements made. We next explain the

approaches used to make our measurements in header-based and payload processing.

For header processing applications, such as routing, a fixedpacket rate with respect to processor

cycles is more appropriate because the size of the packet is irrelevant. Figure 5.3 shows how we

can find the saturation point for a given NP—in this case an NP with 12 PEs, executing a routing

application with replication supported. Since there are two packet input sources, the mean packet
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Figure 5.3: Finding the saturation point. Since there are two packet sources, their mean inter-arrival

time (the liney = x) results in an effective inter-arrival time of half as much.The satu-

ration point is the smallest effective inter-arrival time where the inter-departure time is

equivalent (i.e., the NP can keep up).

inter-arrival time (the liney = x) of each source results in an overall effective packet inter-arrival

time of half as many cycles. Hence the saturation point for that NP is the smallest effective packet

inter-arrival time where the packet inter-departure time is equivalent (i.e., the NP can keep up).

In the figure, we see that the inter-departure time begins to deviate at the effective inter-arrival

time of about 750 cycles, which is the saturation point. NPIREuses this method for finding the

saturation point by running a bisection search on potentialpacket inter-arrival times. Because the

inter-departure has a large per-packet variance, we use statistical hypothesis testing to determine if

we have enough inter-departure samples to make our rate measurements. Our packet inputs sources

are configured in a text file: we insert a time offset between them so that packets do not arrive at

the same time on all interfaces, which would be a worst case because of the bursty demand on the

processing elements.

For payload oriented applications, such as compression andcryptography, byte rate control is
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required because the size of the packets is relevant to the amount of processing. We use the same

approach as for headed-based processing of comparing the output rate with the input rate to deter-

mine the saturation input rate.

Packet Departure Output packet control has been described in Section 3.1. Each output is

preceded by aQueue element. The dequeue operation can take into account the output bit rate per

port. So our output control delays the start of the dequeue operation until the output unit is allowed

to resume.

5.2.2 Task Mapping

To share the load between the different processing elements, parallel tasks have to be dispatched to

processing engines in a careful fashion. Wild et al. [93] explain that finding the best assignment of

tasks to processing elements is an NP-complete problem. Although, we have to map tasks instead of

clusters of basic blocks, we also use an iterative approach involving a cost evaluation at each step.

Plishker et al. [65] formulate mapping as an integer linear program problem where the task in-

structions have to fit in the in the PE control stores which leads them to consider instructions that

can be shared or not between contexts. Because, at the simulation level, we want the application to

drive the architecture, space available for instructions PEs is not considered in out mapping process.

As opposed to Weng et al. [92], we allow to map more than one task per PE.

Each element of the application must be assigned to at least one processing engine. The objec-

tive of mapping is to allocate enough processing resources to each task and maximize the system

throughput by hopefully increasing parallelism at the packet level. In our measurements, this assign-

ment is done only once for the duration of the simulation. Because our simulated network processor

does not have any implicit coherence scheme (such as a MESI protocol), we assign a task to a PE

and other PEs wanting to access its data have to do so remotelyvia an on-chip communication

channel.

Automatically mapping the specified task graph to an NP’s PEsis perhaps the most challeng-

ing problem of all. In such a mapping, there is a strong tension between locality and parallelism.
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Locality is optimized by mapping related tasks to few PEs so that storage and communication are

minimized, while parallelism is improved by mapping tasks to many PEs and exploiting more re-

sources.

Mapping file Our methodology is similar to what Ennals et al. [23] describe as a “new approach”:

we separate the high-level application functionality fromthe architectural details of the NP. We also

have a component related to the other authors’ “Architecture Mapping Script (AMS)” that describes

the mapping of tasks to hardware contexts. Our approach is also to make the code portable and let

the compiler do the bulk of the chip-specific transformations. Contexts can be allocated to elements

so that an element can benefit from a custom number of contexts. For now, we however allocate the

same number of contexts to all PEs.

Our mapping process in NPIRE is iterative, based on feedback from simulation, and proceeds in

the following steps:

1. An initial measurement is made where each task runs on its own PE, assuming an infinite

number of PEs.

2. Using a greedy algorithm, we then re-assign tasks to the actual PEs available while trying to

minimize the expected utilization of each PE.

3. We then try to alleviate the worst bottleneck by replicating the task with the largest queue

time. Replicas can optionally be assigned to the same PE, or todifferent PEs. We repeat this

step until the NP is well utilized.

4. Once the base mapping is decided, we attempt to improve it through simulated annealing

which uses a fast, coarse-grain simulator to provide fast feedback. Given an initial seed, the

fast simulatormakes random modifications in the mapping and commits them according to a

certain probability depending if they improve and worsen the throughput. During this process,

the algorithm avoids moving any task replicas to the same PE.This algorithm was found to

give better results than other algorithms (see the section A.2), and appeared to converge very

rapidly. For this reason, our criteria for termination is a time limit.
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5.2.3 Automated Bottleneck Identification

To iteratively improve the binding of the task to the simulated NP, we need to identify the causes

of bottleneck. To help the process, we identified a list of thesources of bottleneck: Table 5.2 also

reports what we can do to alleviate each of them. The last three sources of bottleneck in the table,

i.e CPU, bus and memory utilization, are strictly architecture-specific. We can see that the objective

of parallelizing the application is balanced by the resulting dependences between task replicas.

Because the synchronization is the only limit to parallelization assuming infinite hardware, our

simulator has code to quantify the overheads of synchronization. Figure 5.4 presents possible de-

pendence situations. The protected accesses can be either reads or writes. By recording the memory

access to persistent heap for each synchronized task, we cantrack the time between dependences.

In the caseA of the figure, we can observe overly conservative synchronization because there is not

enough parallelism to have more than one task accessing shared data at a time. In the caseB, the

access occurs before the last task attempts to enter the synchronized section. In caseC, synchro-

nization is effective in protecting a memory access. The simulator can measure the time distance

between the accesses to shared data when the synchronization primitives stall a task.

5.3 Simulator Internals

To explain how we obtained our results and give an overview ofthe simulator organization, we next

describe some important aspects of the simulator, with a focus on the trace manipulations, the main

loop in the simulator and the iterative simulation flow effect on the simulator configuration.

5.3.1 Loading the Application Trace

Because the application trace (introduced in Section 4.2.3)can be arbitrarily long and its in-memory

representation is even more voluminous, we implemented a streaming mechanism to go through the

trace file. At the beginning of the trace is the connectivity information of the configuration. Next

there are task start markers followed by memory allocation,read, write and free nodes. Each node is

marked with a time stamp: the difference in consecutive record time stamps indicates the number of
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Table 5.2: Sources of bottleneck and our approaches to alleviate them.

Symptoms Remedy techniques available

Load imbalance due to uneven-ness in the

mapping.

Task splitting along with our elaborate map-

ping approach.

Context switching resulting in a low utiliza-

tion of all the contexts available.

Our state tracking of the PEs tries to over-

lap computation with communicating instruc-

tions in the PE.

Signaling overheads. Next-neighbor links, inter-PE bus and broad-

cast techniques can be used. Also, the map-

ping can try an add locality to the task dis-

patching.

Input interface not fast enough. Our saturation process makes sure that pack-

ets arrive fast enough.

Bad partitioning (long tasks and short tasks).We have a software component that requests

splitting of individual tasks when it is found

that load imbalance may be the dominant bot-

tleneck.

Contention on the output ports, a symptom

that the output rate is too slow.

Unavoidable for rate-controlled interfaces.

Output ordering. Can require to adjust the output rate control.

Synchronization limits parallelism. Our task transformations try to expose as

much parallelism as possible.

CPU resources exhaustion, when to be ob-

served on all PEs.

We are able to simulate additional PEs and

contexts.

Shared bus utilization. We are able to add additional interconnect ca-

pacity.

Memory utilization saturation. We are able to add memory bandwidth.
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Figure 5.4: Dependence scenarios.A measures the time distance between dependent memory ac-

cesses.B andC measure the delay imposed by dependences and can be comparedto the

delay imposed by thelock andunlock primitives.

instructions to be executed between records, assuming a single cycle per instruction. Trace entries

loaded in memory are linked in a hierarchical fashion. End oftask markers complicate the reading

because tasks are often called within another. Because time stamps are used to evaluate the latency

between operations, care must be taken to timestamp properly the end of task markers.

The trace loader can be used independently for debugging purposes and to get statistics on the

content of the trace, such as the number of instructions or memory references per element.

As soon as the first section of the trace is loaded, the simulator starts executing it. Because of

memory constraints, the simulator must be able to delete thetrace nodes as it progresses. Memory

deallocation for the loaded segments of the trace is non trivial, and even more so with early signal-

ing, because trace records are can be referenced from multiple locations in the simulator. The use of

the Standard Template Library (STL) structures was found tobe problematic in some cases because

STL has its own pooling mechanisms that does not always favorreuse to allocation.
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5.3.2 Main Simulator Loop

Because interrogating all processing engines on all cycles would be too time consuming, our sim-

ulator is event driven, i.e. it only executes cycles where events happen. The main processor loop

updates all the devices and processor states as events happen. The performance of a simulation can

be estimated by looking at the total number of packets processed and the simulated time required to

do so.

5.3.3 Configuring the Simulator

Our current exploration methodology starts with trying to find a scalable execution context for a

benchmark. First, the time length of the simulation is manually found so that the simulation can be

measured in a steady state. All simulation statistics are reset after a configurable number of cycles to

get rid of the initial NP filling with tasks transient effect.To find a representative configuration for

our benchmark, we need to stress the network processor to thelimit of its capabilities in that given

configuration. Finding the best configuration of a given architecture makes the problem cyclic as

shown in Figure 3.9. Indeed, the incoming rate of packets in the simulator can be made faster when,

by changing the configuration, we also improve the throughput. A criteria to validate our method-

ology is that the throughput of the network processor shouldscale well with a varying number of

PEs.

5.4 Validation of the Simulation Infrastructure

In the interest of validating our infrastructure, we have support to record traces out of an IXP1200

simulator’s benchmarks, Nepsim [50], and replay them on oursystem. We traced this other simula-

tor to extract the main simulation parameters for our experimentations, as shown in Table 6.3 (Sec-

tion 6.3). We used program counter sampling to determine tasks boundaries and recorded packet ar-

rival events. We were unable to recover the NAT benchmark from Nepsim, because busy waiting in

that benchmark blurs our interpretation of the tasks transitions. While simulating the IPfwdr, MD4

and URL benchmarks from Nepsim, we obtained comparable relative packet throughput numbers.
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We also observed scaling with the number of processing elements similar to the numbers presented

in Nepsim’s paper [50]. However, this comparison does not gomuch deeper because we were un-

able to fully reverse-engineer the use-to-def relations ofmemory operations to replicate exactly the

context switching points in our simulator.

NPIRE can also export its applications to the Intel Architecture Tool [26] where we can simulate

them on most recent IXP processors. However, because in thisIntel tool it is uneasy to saturate

the input rate of the application and the utilization of devices is computed using the utilization of

the device arbiters rather than the shared devices themselves, we have not found a solid basis for

comparison.

5.5 Summary

In this section we gave some insight on how the simulator works to shed some light on our ex-

perimental results. We gave an overview of the parametric NParchitecture that we use and of our

simulated hardware structures. We also presented the importance of making measurements when

the NP was working at a saturation input rate and how this rateis obtained experimentally using

a bisection algorithm. Some emphasis was put on the mapping process because it is key to load

balancing, along with task scheduling. We showed the different symptoms of bottleneck that our

simulator could detect and concluded with a high level description of the simulation process. In the

next chapter, we present the results obtained with the conciliated efforts of software tools presented

in Chapter 4 and the simulated NP hardware.
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In this chapter, we evaluate the impact of our task transformations using the NPIRE compilation

infrastructure presented in Chapter 4 and our network processor simulator described in Chapter 5.

Our observations are aimed at evaluating how our application transformations in terms of memory,

thread and task management affect the packet throughput of our simulated NPs. As well, we want

to identify the performance bottlenecks in our applications, i.e. determine if it is the application’s

resource usage or specific NP architectural components thatlimit the packet throughput. After

describing our benchmarks and simulation parameters, we proceed to analyze the data collected.

6.1 Applications

In this chapter, we evaluate our task transformations usingNPIRE’s simulation infrastructure. For

this, we selected a representative set of applications. In selecting benchmark applications, we at-

tempted to fulfill the three important goals of NP benchmarksidentified by Tsai et al. [84] : (i) our

benchmarks model applications that are representative of network processor usage, (ii) they pro-

vide results that are comparable across network processors, and (iii) they provide results that are

indicative of real-world application performance.

Table 6.1 describes the four applications that constitute our benchmark suite. The first two ap-

plications perform IP header processing—i.e., applications for which the packet payload is irrele-

vant. We use a RFC1812-compliant router (ROUTER) and a network address translation application

(NAT, described in Section 3.1), both adapted from those created by Kohleret. al.[41]. Those two

benchmarks are also considered as a reference by Tsai et al. [84].

Our payload processing applications have the same element connectivity as the task graph shown
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Table 6.1: NP applications studied: Router and NAT are header-based processing applications while

LZF and DES are payload-based processing applications.

Num. Instrs per Loads per Stores per Instrs Synch.

Dyn. Tasks Packet Packet Packet per MemRef ratio

Application Avg. +/- Avg. +/- Avg. +/- Avg. +/- Avg. Avg. +/-

ROUTER 16 1.12 2353 258 127 21 24 3 16 0.17 0.07

NAT 12 3.37 4857 2206 234 92 58 39 17 0.32 0.20

DES 10 3.93 564925 326813 23189 13403 2024 1169 22 0.08 0.17

LZF 10 3.93 190026 213897 2138 1672 4215 4581 30 0.11 0.23

Table 6.2: Memory requirements of our benchmark applications, and the storage devices to which

each memory type is mapped. For each memory type, we show the average amount of

data accessed per packet.

Device: External SRAM External DRAM Local storage Registers External SRAM
P

P
P

P
P

P
P

PP
Application

Type Packet Packet Persistent Temporary

Descriptor Payload Heap Stack Heap

ROUTER 42B 23B 5B 0B 44B

NAT 36B 45B 22B 96B 49B

DES 36B 1500B 48B 2100B 20B

LZF 36B 1500B 48B 200B 600B

in Figure 4.2. DES performs packet encryption and decryption and LZF, packet compression and

decompression. The DES cryptographic elements originate from the Click [41] element library.

Encryption is a popular NP application, used in NP benchmarking by Ramaswamy et al. [67] and

Lee et al. [48]. In our other payload processing application, the compression elements are custom

made from the LZF library adapted from the ADOC project [37].The packet related aspects of this

compression are inspired from the IPComp–RFC2393 standard, and the Linux kernel sources. The

compressed packets generated by LZF comply with the IPComp standard and can be decompressed

independently from other packets. We do not support the morerecent LZS (RFC2395) compression

algorithm because its source code was not available to us at the time of writing. NP-based packet

compression is interesting because Jeannot et al. [37] haveshown that host-based compression alone
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could improve the latency of distributed computations by 340%.

For each application, we report in Table 6.1 the average (Avg.) and standard deviation (+/-) across

a large number of packets of the total number of dynamic tasks, number of instructions, loads, and

stores executed per packet, the number of instructions executed per memory reference, and the

fraction of execution time spent on synchronization (synch. ratio). While not shown in the table,

some tasks have a large fraction of dynamic instructions inside a synchronized section, specifically

the TCPRewriter from NAT (83%) and theQueue elements (50%) used in all benchmarks. In

contrast, the IP header checksum task is free of synchronization. Finally, Table 6.2 shows the

average amount of data accessed for each buffer type per packet, as well as the devices to which

each memory type is mapped.

We measure our benchmark applications using modified packettraces (see section 4.2.2) from the

Teragrid-I 10GigE NLANR trace [61]. All of our applicationshave two input and two output packet

streams, as exemplified in Figure 4.2. This choice in the number of packet interfaces, resulting in

an equal number of tasks, is a balance between two organizations of the work in an NP. In some

processors, the same task must process all incoming packets, while on other processors, such as

the Motorola C-5e (introduced in Section 2.2.2.1), processing resources can be allocated to each

input packet stream. As a result of this work organization, in our applications, the two input packet

streams can have non-trivial interactions when they contend for the same elements, for example, the

LinearIPLookup element in Figure 4.2.

6.2 Architectural parameters

With our simulator, we attempt to model resource usage and delay characteristics similar to what

we could observe when executing the same code on a physical network processor. Hence, in this

work, to allow for representative simulations, we use realistic parameters to configure our simulated

chips. As network processors evolve and become equipped with faster processing elements, they

are confronted to the fact that the off-chip memory throughput does not scale as fast as the clock

rate of processing elements, a reality known as the “memory wall” [97]. To show this trend, we

95



6 Evaluting NPs with NPIRE

perform our evaluation on two network processors,NP1 andNP2 respectively modeled after the

IXP1200 and IXP2800 network processors introduced in Section 2.2.2.1. These Intel processors

have respectively 6 and 16 PEs; however we will consider a variable number of PEs to identify

scalability limits. The simulation parameters in Table 6.3were obtained as a result of our validation

experiments with the IXP SDK and Nepsim, presented in Section 5.4.

As shown in Table 6.3, an important difference between the NP1 and the NP2 processors is their

PE clock frequency. The NP2 has a clock rate 4.3 times faster,however, the latency of its memory

and bus operations is between 2 (remote PE access) and 40 times (on-chip shared SRAM bus access)

higher than on the NP1. The NP2 has 3 DRAM and 4 SRAM external memory channels along with

the doubled number of contexts per PE (8, versus 4 for the NP1). The NP1 has one bus for DRAM

and one for SRAM. On the other hand, in the NP2, DRAM transactions transit on 4 busses: 1 bus

for reads and writes for each half of the PEs. The SRAM is also accessed through 4 on-chip busses

that have the same organization as the DRAM busses. This additional supply of hardware on the

NP2 are intended to compensate for the relative increased memory latency by increasing the packet

processing throughput.

Table 6.3 summarizes our simulation parameters, in particular the latencies to access the various

storage types available. Each PE has access to shared on-chip SRAM, external DRAM and SRAM

through separate buses, and certain shared registers on remote PEs through another bus. Usage of

the buses and storage each have both non-pipelined and pipelined components. Each PE also has

faster access to local storage, its own registers, and certain registers of its next-neighbor PEs.

The initialization/configuration phase of our benchmarks can safely be ignored because we are

concerned with the steady state throughput of our applications. After initialization, the simulation is

run for 6 Mcycles for payload-processing applications, and20 Mcycles for the payload processing

application. Those run times were the shortest run times empirically found to give a reliable estimate

of the steady state throughput of the NPs.

96



6 Evaluting NPs with NPIRE

Table 6.3: Simulation parameters. The base total latency toaccess a form of storage is equal to the

sum of all parts. For example, to access external DRAM takes 10+ 2+ 17+ 26 = 55

cycles, 43 of which are pipelined. An additional amount of 1 pipelined cycle is added for

each 4 bytes transfered (to model 32 bits busses).

NP1 NP2

Non-pipelined Pipelined Non-pipelined Pipelined

Storage Type (cycles) (cycles) (cycles) (cycles)

External DRAM access 10 17 12 R 226 / W 0

bus 2 26 4 59

External SRAM access 4 8 5 81

bus 2 10 4 51

On-chip shared SRAM access 1 1 3 R 21 / W 8

bus 0 1 3 37

Remote PE registers access 1 2 1 12

bus 0 1 1 1

Local store 0 1 4 11

Registers 1 0 4 0

Next-neighbor PE registers 1 1 4 4

Other Parameters Value

processing element frequency 232 MHz 1 GHz

hardware contexts per PE 4 8

rollback on failed speculation 15 cycles 40 cycles

queue size for bus and memory controllers 10 40

pending loads allowed per context 3

context switch latency 0 cycle

6.3 Measurements

One of the main metrics that we use to measure the performanceof the simulated NP is the maxi-

mum allowable packet input rate of the processor—that is, the point where it operates at saturation

(as explained in Section 5.2.1). For convenience, we will refer to this metric as theImax rate. We

define the fraction of time that a bus or a memory unit is servicing requests as itsutilization. This

definition applies also to the locks used in synchronization: their utilization is the fraction of time

that they are held by a task. In this section, we define a numberof constant parameters for our
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simulations and present our task transformations implementation results.

6.3.1 Choice of fixed parameters

To present consistent results, we performed some preliminary experiments to fix a number of

simulation parameters. Our preliminary experiments were performed on 2 benchmarks,NAT and

Router and 2 reference systems: NP1 equipped with 6PE, calledREF1, and NP2 with 16PE, called

REF2. This number of PEs corresponds to the resources present on the corresponding IXP1200

and IXP2800 NPs. For those preliminary experiments, replication is enabled for all tasks and tasks

can execute on any context on all PEs so that no mapping is required. In this section, we explain

our settings for packet sorting, the thread management techniques, the scheduling controller in the

queues, our queue timing modeling and our iterative splitting experiments.

We observed that packet sorting on the output of the NP has a very small impact on theImax rate.

However, its support, as presented in Section 3.1, requiresextra communication and complicates

the early signaling transformation because of the task reordering that takes place. To be able to

easily identify to factors impacting throughput, we disabled packet sorting in theQueue elements

(introduced in Section 3.1).

To perform our experiments, we had to select which thread management techniques we would

adopt. Two techniques were proposed in Section 3.5: a priority system allowing threads to have

a balanced utilization of the on-chip busses; and a preemption system that favours tasks inside

synchronized sections. For all simulations, we found that the bus priority system improved the

throughput of our benchmarks on REF1 by 1% and of REF2 by 25%. However, the preemption

system only improved theNAT benchmark on REF1, while either affecting negatively or leaving

unaffected the other benchmarks. The performance improvement was on the order of 4% forNAT on

REF1. Consequently, we decided to enable the priority system and disable the preemption system

in our experiments.

We evaluated the controller in the work unit queues presented in 5.1.2. This controller does not

assign a work unit to a context if assigning the task to a context on another PE would improve the

load balance of PEs. The objective of this controller is hence to tentatively improve on the ad hoc
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scheduling of tasks to PEs. Adding the controller improves the throughput ofNAT by 50% over

both reference network processors but degrades the throughput of Router by 17%. We observed

that making slight input rate variations could change significantly those throughput figures. In

consequence, adding the control unit reduces the noise in our throughput results due to the dynamic

assignment of work units to PEs. We can readily see that scheduling can significantly impact the

results, and future work should target this aspect of the processing. The adverse affect of the control

unit onRouter is due to the fact that, while the control unit improves the load balance, its decisions

add latency to the work unit dispatching. As a result, the controller limits the number of concurrent

packets by 15% onRouter. Nonetheless, because of the gains seen onNAT, we chose to use the

scheduling control unit for all the following experiments.

Our simulation uses queues in a shared on chip storage to distribute tasks to processing elements.

The manipulation of work units (presented in 5.1.2) is achieved by writes and reads to the on-

chip storage to respectively enqueue and dequeue work units. Those memory accesses to shared

memory penalize important large-scale replication by increasing the contention on the shared on-

chip storage. For our other experiments, we do not model those memory and bus accesses due to

the task queues because we want large-scale replication to be a reference best case scenario. This

scenario indeed provides the highest number of PEs for tasksto execute on. Modeling the contention

on work unit queues counters the benefits of replication and complicates the characterization of other

on-chip contention factors impacting the throughput of ourapplications, such as high demand on a

particular memory unit.

For our splitting experiments, we iteratively find theImax for the task graph with one to five

iterations of splitting, and retain the best throughput value. In our test cases, we found that there

was no benefit in doing more than five iterations of splitting.One explanation for this diminishing

return is that each task split incurs inter-split communication overheads. The other explanation is

that, as explained in Section 3.4.2, the task splitting compiler pass is constrained on where it can

insert splits: it does not insert splits in a tight loop inside a task.

99



6 Evaluting NPs with NPIRE

6.3.2 Impact of the Task Transformations on Packet Processing

Throughput

In this section, we evaluate NPIRE’s task transformations ina way that allows our conclusions to

be generalized to a large number of NPs. First, we simulate two NP architectures, NP1 and NP2,

presented in Section 6.2. Second, we measure the impact on packet throughput as the underlying

architecture scales to larger numbers of PEs. These two architectural axes, chip organization and

number of PEs, allow us to evaluate NPs with support for different communication over computation

ratios.

In our graphs, we normalize all our measurements to the application with no transformation

on four PEs, the minimum number of PEs evaluated. This numberis small compared to the other

processors surveyed in Section 2.2.2.1 and it is the minimumnumber allowing us to bind one PE per

input and output interface (we have two input and two output streams as explained in Section 6.1).

6.3.2.1 Replication

In this section, we evaluate four different replication scenarios for the replication task transformation

presented in Section 3.4.1. The simplest scenario has no replication and simply extends the mapping

to the number of available PEs. Next, we present the case where replication of a task is limited to

each PE, meaning that a task can execute on any number of available contexts on a PE. More task

replication leads to the case where one task can execute on any context of a selected set of PEs, as

determined by the mapping process (presented in Section 5.2.2). We call this last replication scheme

subset replication. The final case that we examine is where one task can execute onany context of

any PE: we refer to this model as having aglobal task queue.

Router on NP1 ForRouter on NP1, we can see in Figure 6.1(a) that simply spreading the tasks

of the application with no replication on a greater number ofPEs only improves the throughput by

2.9%. The maximum throughput is reached with 24 PEs: this lowperformance gain with a large

number of PEs underlines the need for efficient replication.The replication limited to a PE and the

global task queue schemes reach their maximum throughput with 8 PEs. The subset replication has
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Figure 6.1: Throughput speedup of Router for several transformations and varying numbers of PEs,

relative to the application with no transformation runningon 4 PEs. The throughput

indicated is a measure of the maximum sustainable input packet rate.rep means repli-

cation,rep on PE means replication where the replicants are limited to execute on a

specific PE.
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Figure 6.2: Throughput speedup of Router for varying numbersof PEs, relative to the application

with no transformation running on 4 PEs. The throughput indicated is a measure of

the maximum sustainable input packet rate. Combinations of idealized executions are

plotted to the right of the graphs:I: infinite number of PE;B: maximum bus pipelining;

M: maximum memory pipelining, i.e. the unpipelined time for arequest is 1 cycle;Z

zero instructions;S: no synchronization.
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a throughput improving up to 10 PEs. It is evident that for thesubset replication, the saturation

throughput does not change smoothly with the number of PEs: this is a result of the mapping

algorithm, which is discrete in nature. Also in Figure 6.1(a), we can see that subset replication can

outperform the global task queue for 14 to 20 PEs. At 16 PEs, subset replication provides 1.5%

more throughput than the application with the global task queue. In this configuration, the two

replication schemes have the same memory utilization: 63.5% utilization for DRAM and 83.3%

utilization for SRAM with the maximum bus utilization being in the SRAM bus with 66%. This

relatively high utilization allows us to hypothesize that the SRAM and its bus are limiting the router

throughput. At 16 PEs, the global task queue processes 18% more packets in parallel than the

subset replication and the lock with the maximum utilization is taken 87.5% of the time. Hence,

another possible limiting factor is synchronization. We can verify those assumptions onRouter’s

bottlenecks in Figure 6.2(a). This figure shows simulationswith global task queue replication on

NP1 having between 4 and 32 PEs. On the right side of the figure,we measure the throughput of

NP1 with an infinite number of PEs available. The figure shows throughput improvements when

the bus pipelining is maximized, i.e. the unpipelined request time of transactions on all busses is

reduced to 1 cycle. This non-realistic parameter allows us to determine the impact of removing

constraints on the NP. Indeed, we have verified that when the bus pipelining is maximized, the

SRAM utilization reaches close to 100%, thus becoming the next bottleneck. It is logical that

the SRAM (bus and memory) accesses dominate the latency ofRouter because this is where the

routing element maintains its routing table in the temporary heap. In Figure 6.2(a), it is evident that

removing the synchronization does not improve the throughput because the synchronization is only

on the critical path for this application after SRAM memory and bus contention are resolved.

Router on NP2 When running on NP2, as seen in Figure 6.1(b), with the global task queue

replication scheme, theRouter application scales asymptotically up to 30 PEs. The PE computing

utilization is progressively reduced because of increasing contention on the external SRAM and

DRAM memory and their associated busses. The maximum throughput obtained on 30 PEs is 27.2

times the throughput of the application with no transformation. In Figure 6.1(b), we can see that

subset replication cannot improve on the task mapping untilthe number of PEs approaches the num-
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ber of active tasks in the application. Subset replication also limits the number of replicas: with 14

PEs, the average number of concurrent packets in the NP is 67%of the average number with the

global task queue. We can also observe that our mapping technique does not perform well with 28

and 32 PEs. Figure 6.2(b) with an infinite number of PEs shows clearly that removing synchro-

nization gives the most speedup to the application. In that configuration, the SRAM bus utilization

reaches over 80% and the DRAM utilization reaches over 60%. Removing the instructions alone

forces memory accesses to be executed one after another, thus putting more pressure on the SRAM

and DRAM busses. As seen in Figure 6.2(b), those busses are less important bottleneck sources for

the application.

ForRouter, we saw that the bottlenecks were different on NP1 and NP2: respectively the SRAM

bus utilization and the synchronization. We observed that replication was effective in taking advan-

tage of the computing power provided by a large number of PEs until architectural bottlenecks limit

the application performance.

NAT on NP1 ForNAT running on NP1, in Figure 6.3(a), we can see that the application without

any transformation runs 7% slower with 10 or more PEs than on 4PEs. An increased contention

on synchronization indicates that the added task parallelism is not sufficient to compensate for the

added latency on the NP busses and memory units. The global task queue scheme reaches its plateau

the fastest and plateaus approximately at the same performance as when replication is limited to a

PE and when subset replication is used.NAT has several synchronized tasks and the lock with the

maximum utilization is taken 63.2% of the time, on average across the replication schemes. The

infinite PE graph in Figure 6.4(a) shows that removing the synchronization improves the throughput.

As well, computations are also on the critical path since removing computations seems to improve

the throughput the most and increases the number of concurrent packets by 7%. However, removing

synchronization increases the number of concurrent packets by a factor 3. Hence synchronization is

a more significant bottleneck forNAT than the computations, which explains the very slow scaling

of throughput with the number of PEs.
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Figure 6.3: Throughput speedup of NAT for several transformations and varying numbers of PEs,

relative to the application with no transformation runningon 4 PEs. The throughput

indicated is a measure of the maximum sustainable input packet rate.rep means repli-

cation,rep on PE means replication where the replicants are limited to execute on a

specific PE.
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Figure 6.4: Throughput speedup of NAT for varying numbers ofPEs, relative to the application

with no transformation running on 4 PEs. The throughput indicated is a measure of

the maximum sustainable input packet rate. Combinations of idealized executions are

plotted to the right of the graphs:I: infinite number of PE;B: maximum bus pipelining;

M: maximum memory pipelining, i.e. the unpipelined time for arequest is 1 cycle;Z

zero instructions;S: no synchronization.
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NAT on NP2 On the NP2 processor, in Figure 6.3(b), the curves of replication limited to a PE

and subset replication no longer overlap. The performance of NAT with the replication limited to a

PE decreases and becomes relatively stable with more than 8 PEs. This performance reduction is

attributed to the reduction in locality when accessing persistent heap mapped to the local storage

in the PEs. Further compiler work could potentially alleviate this problem by replicating read-only

data to the PE’s local storage. In Figure 6.3(b), the subset replication again outperforms in certain

cases the global task queue due to a different task scheduling. In Figure 6.4(b), the performance of

NAT on the NP2 is increased by a factor ranging from 25 to 30 when synchronization is disabled,

thus indicating that synchronization is a significant bottleneck forNAT.

Because replication has shown to be especially useful, we useit in conjunction with the other

task transformations. To show an upper bound of the transformation benefits, we only present the

experiments with the global task queue. For the reader’s convenience, we reproduce the global task

queue curves with no other transformations on the graphs to serve as a comparison point.

6.3.2.2 Locality Transformation

In this section, we present experiments evaluating the locality transformation that consists of both

memory batching and forwarding, as presented in Section 3.2.

Router on NP1 In Figure6.5(a), on the NP1, we can see that the locality transformation with

the global task queue in fact limitsImax to a maximum speedup of 3.45 over the application with

no transformation. The maximum speedup in that configuration without the locality transformation

is 4.89 as seen in the same Figure 6.5(a). Experiments in Figure 6.6(a) show that the locality

transformation improves the throughput of the applicationwithout replication by 20% starting at 8

PEs. Replication limited to a PE benefits from the locality transformation by a 0.8% throughput

increase. This leads us to conclude that the locality transformation has diminishing returns when

there is more computation to overlap with memory accesses. Indeed, the locality transformation

sends bursts of requests on the memory busses at the start of tasks, thus temporarily increasing the

congestion on the busses.
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Figure 6.5: Throughput speedup of Router for several transformations and varying numbers of PEs,

relative to the application with no transformation runningon 4 PEs. The throughput

indicated is a measure of the maximum sustainable input packet rate.rep means repli-

cation.locality, early, split andspeculation refer to the locality, early signaling,

task splitting and speculation transformations.

108



6 Evaluting NPs with NPIRE

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t s

pe
ed

up

Number of PEs

+rep on PE +locality
+rep on PE

+locality
no transformation

(a) Router on NP1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t s

pe
ed

up

Number of PEs

+rep on PE +locality
+rep on PE

+locality
no transformation

(b) Router on NP2

Figure 6.6: Throughput speedup of Router for several transformations and varying numbers of PEs,

relative to the application with no transformation runningon 4 PEs. The throughput

indicated is a measure of the maximum sustainable input packet rate.rep on PE means

replication where the replicants are limited to execute on aspecific PE,locality refers

to the locality transformations.
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Router on NP2 As seen in Figure 6.5(b), the NP2 is able to accommodate the traffic burstiness

of the locality transformation and improveRouter’s throughput when the number of PE is between

10 and 20. The maximum throughput increase is by 3% with 12 PEs. The average fraction of the

time a PE waits for memory is reduced from 1.16% to 0.59% whilethe DRAM utilization is reduced

by 5%. However, the SRAM read busses and the shared on-chip busutilization are increased by

10%, and the DRAM read busses utilization is increased by 3%. This shows that the burstiness

of the locality transform degrades the performance of the busses more than the external memory

units. The explanation for this difference is that there is less pipelining in the interconnect than

in the external memory units, as shown in Table 6.3. On NP2, Figure 6.6(b) reports increased

performance due to the locality transformation with no and PE-limited replication of respectively

23 and 9%. This performance increase is attributed to a reduction in the number of accesses required

to external memory.

NAT on NP1 and NP2 ForNAT on the NP1, shown in Figure 6.7(a), the locality transformation

reduces the maximum throughput by almost 4%. On NP2, in Figure 6.7(b), the throughput is

decreased at 12 PEs because the parallelism does not compensate for the extra contention brought

by the task transformation. This extra contention leads to an increase from 3% to 65% in the fraction

of the time spent in the most utilized critical section.

6.3.2.3 Early Signaling

When performing the early signaling task transformation on our payload processing applications, all

the possible cases of early signaling complied with the announce/waitfor/resume system presented

in Section 3.4.3.Router was able to signal early several small tasks, whileNAT could only signal

early a few tasks of average size.

Router on NP1 and NP2 ForRouter on NP1, in Figure 6.5(a), signaling tasks early limits the

maximum speedup to 4.85, versus 4.88 obtained with the global task queue alone. Nonetheless, we

observed a reduction in the packet processing latency of 42%, averaged over all PE configurations.

The slightImax reduction can be explained by the negative impact of contexteviction when tasks

110



6 Evaluting NPs with NPIRE

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t s

pe
ed

up

Number of PEs

+rep +speculation
+rep

+rep +split
+rep +early

+rep +locality

(a) NAT on NP1 with a global task queue

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t s

pe
ed

up

Number of PEs

+rep +speculation
+rep

+rep +split
+rep +early

+rep +locality

(b) NAT on NP2 with a global task queue

Figure 6.7: Throughput speedup of NAT for several transformations and varying numbers of PEs,

relative to the application with no transformation runningon 4 PEs. The throughput

indicated is a measure of the maximum sustainable input packet rate.rep means repli-

cation.locality, early, split andspeculation refer to the locality, early signaling,
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need to wait for other early signaled tasks. Also,Router’s high contention on the SRAM memory

unit preventsImax improvements, as explained in Section 6.3.2.1. We realizedthat the early signaled

tasks had very low SRAM access requirements, indicating thatthose tasks could execute without

interference on idle contexts of the NP. Also, we observed that the early signaled tasks were mostly

located in the last stages of the processing, thus not allowing tasks with high SRAM demands to

execute according to a different schedule than without early signaling. Consequently, inRouter,

because the packet processing latency is greater than the packet inter-arrival time, reducing the

packet processing latency does not necessarily improve theapplication throughput. On NP2, early

signaling decreased the maximum throughput ofRouter by 1%, as showed in Figure 6.5(b). How-

ever, for the same reasons as mentioned for NP1, we observed areduction in the packet processing

latency of 8%. This smaller latency improvement shows that the early signaled tasks, because of

their low usage of SRAM memory, account for a less important fraction of the processing on NP2

than on NP1. As explained in Section 6.2, the NP2 has processing elements proportionally faster

than the memory compared to the NP1.

NAT on NP1 and NP2 With NAT on NP1 showed in Figure 6.7(a), the maximum throughput

achieved with early signaling is decreased by 1% while on NP2in Figure 6.7(b), the maximum

throughput is increased by 0.1%. ForNAT, we did not see any significant packet processing latency

improvement. Consequently, this application is unable to overlap a significant amount of processing

without any dependence with other tasks of the application.

6.3.2.4 Speculation

Speculation involves optimistically letting tasks cooperate in their dependences as presented in Sec-

tion 3.4.4. We next describe the impact onRouter andNAT of this transformation that also requires

hardware support to detect dependence violations.

Router on NP1 We evaluated the impact of using speculation for our header processing appli-

cations. ForRouter on NP1 (Figure 6.5(a)), speculation has a negative impact onRouter because
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synchronization is not on the critical path for this application and the local buffering along with the

committing of the speculative writes (as presented in Section 3.4.4) simply adds overheads.

Router on NP2 The impact of the transformations is more pronounced whenRouter is executed

on the NP2. We can see that speculation has a negative impact although it does not prevent scaling.

For all PE configurations in Figure 6.5(b), the worse performance is obtained for 8 PEs. In this

configuration, theviolation rate, i.e. the number of total violations over the number of synchronized

task executions, is of 5%. With 32 PEs, the violation rate is 6.5%. This low violation rate indicates

that speculation incurs significant re-execution overheads for Router. The non-smooth scaling of

the performance ofRouter on NP2 is symptomatic of a less deterministic processing time per

packet.

NAT on NP1 and NP2 For NAT on NP1 in Figure6.7(b), speculation improves the maximum

throughput by 96% over the global task queue alone. Hence, speculation allowsNAT to execute

synchronized tasks without dependence violations in the common case. On the NP2, speculation

allows Imax to scale slowly up to 30 PEs, in which caseNAT has a throughput 183% higher than

the global task queue alone. With 12 PEs, we observed that theviolation rate was 1.8%; with 32

PEs, this rate was increased to 2.2%. In consequence, we can see that a greater supply of PEs can

compensate for the re-execution penalties of an increased violation rate.

6.3.2.5 Task Splitting

As it can be seen on Figures 6.5(a), 6.5(b), 6.7(a) and 6.7(b), task splitting (first introduced in

Section 3.4.2) does not significantly impact the throughputof Router andNAT on NP1 and NP2.

In fact, the communication overhead between the task splitslowers the throughput ofNAT on NP2

by 3% (Figure 6.7(b)). Splitting does not increase the parallelism inside an application because

the task splits execute in sequence and have the same mapping, i.e. assignments to PEs, as the

unsplit task. The impact of splitting can best be seen on the scheduling of tasks when replication

is limited. In Figure 6.8, splitting with subset replication improves the throughput with a small

number of PEs withRouter on NP2 (Figure 6.8(b)) and achieves a better load balance because of
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the rescheduling of the splits. We can see that splitting also corrects mapping problems by leveling

the throughput for more than 16 PEs in the same figure. Similarbenefits are observed forRouter

on NP1 in Figure 6.8(a). Consequently, splitting is effective in load-balancing the utilization of PEs

when tasks are not free to execute on any PE.

6.4 Summary

In this section, we presented how our infrastructure can be used to characterize benchmarks and

identify what hardware support and compiler techniques arebest to exploit the resources of a net-

work processor.Router was found to be performance limited by its SRAM accesses whilefor

NAT, synchronization is the bottleneck factor. For this reason, we found that our transformations

had different impacts on these benchmarks. Replication was found to be able to extract the most

parallelism. Our locality transformation increases the utilization of the NP memory busses but can

improve the NP performance when the number of concurrent tasks is low. Early signaling was found

to improve the throughput marginally or not at all. However,early signaling significantly improved

the packet processing latency ofRouter. Speculation was found to be helpful forNAT by removing

its synchronization bottleneck. Finally, splitting helpsload balancing tasks with little replication

by breaking tasks into multiple re-schedulable splits. Splitting gives the most speedups when the

amount of task replication is small. Replication can be limited by the number of hardware contexts,

the task scheduling overheads or the PEs’ instruction storecapacity.

Our experiments have shown that the NPIRE simulator helps uncover architectural bottlenecks

by giving numerous system statistics for the user to analyze. Furthermore, we observed that an ad

hoc schedule of memory accesses and computations between threads leads to an imperfect overlap

of latencies with computations. For this reason, individual utilization metrics do not always reveal

the system bottleneck; the performance limiting factor is often best found when measuring the

benefits of tentatively removing potential bottleneck factors. In conclusion, NPIRE provides a suite

of powerful tools to build a feedback-driven compilation infrastructure for network processors.
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We have presented NPIRE: a simulation infrastructure that compiles a high level description of

packet processing, based on Click, and transforms it to produce a form suitable for code generation

for a network processor. In addition, we presented a programming model based on buffer type

identification and separation that allows the compiler to insert synchronization and perform several

task transformations to increase parallelism. A list of high-level topics that were studied using our

simulator include:

1. mapping tasks to processing engines;

2. task transformations to achieve pipelining inside an application;

3. memory organization;

4. scheduling multiple threads;

5. signaling and synchronization strategies;

6. allocation of resources (in particular, data layout).

NPIRE provides compiler support to transform an application. Using execution feedback, our

infrastructure can compile an application such that its memory access patterns are closer to that of

a finely tuned application. In particular, our support for the combination of the following memory

operations makes our infrastructure more realistic over other related NP studies:

1. memory typing and simulation of a memory hierarchy matching the memory typing;

2. improved on-chip communication;

3. non-blocking memory operations;

4. automated synchronization.

116



7 Conclusions and Future Work

To evaluate and compare different task transformation and mapping techniques and their ability

to effectively scale to many PEs, we devised a method for finding the maximum sustainable packet

input rate of an NP. We selected full-featured network processing applications and measured their

throughput using modern realistic NP architectural parameters. Our analysis extends to a range of

NPs with different ratios of processing versus memory throughput.

Of the automatic compiler transformations proposed, we demonstrated that replication was the

task transformation allowing to extract the most parallelism out of an application. Early signaling

was found to help reduce the packet processing latency whilesplitting was able to load balance tasks

with low replication. Our locality transformations were able to improve the throughput when the

on-chip communication channels were not the bottleneck. Finally, speculation reported dramatic

throughput improvements when the amount of synchronization in the application was important

and the amount of violation dependences low. We showed that transformation pairs such as replica-

tion/locality transformations and replication/splitting are complementary and allow the application

to scale to a greater number of processing elements, resulting in packet throughput that is very close

or exceeds the idealized global task scheduling.

Today, requirements for packet processing range from bare routing to the interpretation of packets

at the application layer. Programming network processors is complex because of their high level

of concurrency. With NPIRE we have shown that the programmer can specify a simple task graph,

and that a compiler can automatically transform the tasks toscale up to the many PEs and hardware

contexts available in a modern network processor.

7.1 Contributions

This dissertation makes the following contributions: (i) it presents the NPIRE infrastructure, an

integrated environment for network processor research; (ii) it describes network processing task

transformations and compilation techniques to automatically scale the throughput of an application

to the underlying NP architecture; (iii) it presents an integrated evaluation of parallel applications

and multi-PE NPs.
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7.2 Future Work

Similarly to other work [50], we have shown that there remains idle periods of time in our task

schedule and that the speedups due to our transformations are far from matching the investment in

the number of PEs, mostly because of contention on SRAM bussesand memory channels. For this

reason, we present further task transformations that couldimprove the packet processing throughput.

Next we present features of our simulation that could be improved upon.

7.2.1 Further Task Transformations

We now present transformations that are not yet (fully) implemented but offer potential throughput

improvements for an application automatically mapped to a network processor.

Task Specialization Because of Click’s modularity, tasks may perform more work than is de-

sired for a specific application. For example, it is possiblethat a classification engine removes the

need for another element downstream in the task graph to consider a certain type of packets. It is

hence possible that large portions of the tasks are revealeddead (unused) code that could be elim-

inated. This elimination could lead to savings in instruction space and further code optimizations.

One common example of code specialization is to replace somevariables by their observed run time

constant value.

Head of Line Processing This transformation assumes that we can build different specialized

versions of tasks that individually process faster different kinds of packets. In order for the packets

to reach the specialized task, we need a way to determine whatcharacterizes the packets that can

benefit from more efficient processing. The earlier we get that information, the earlier the packet

can be handled by a specially tuned task. The approach that weuse is to find points in the task

graph where there are branches. We then look at the code in thebasic blocks that create a transition

between elements. From there, we analyze the conditional statements. The next step would be to

evaluate early those conditions. Slicing the condition code and bubbling it upwards the task graph

poses some significant challenges.
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Out-of-band Tasks In our infrastructure, computations start with the arrivalof a work unit (de-

fined in Section 5.1.2), consisting of a packet and a task identifier. We could extend our simulator

to support tasks that are timer triggered or run continuously to do maintenance.

Re-Partitioning Task repartitioning involves moving task boundaries between consecutive tasks.

Ennals et al. [23] show that this can be achieved by successive task splitting and merging (the authors

refer to those transformations respectively as “PipeIntro” and “PipeElimin”).

Further Speculation In this work, we presented speculation to enter a synchronized section

without waiting for all other tasks to have exited it. Another form of speculation that we could

explore would be to start elements even before they are guaranteed to execute.

Intra-Task Pipelining We could attempt at parallelizing the task splits defined in Section 3.4.2.

Hence, each task split would wait for a synchronization message and would not need to wait for its

predecessor splits to complete.

7.2.2 Improving Simulation

Here is a non exhaustive list of features that can be improved/added in the infrastructure.

7.2.2.1 Improving Mapping

As explained in Section 5.2.2, we wrote afast simulatorto be able to test a large number of map-

pings. It is fast because it only simulates scheduling tasksof the duration measured in the simulator

with no context switching and no architectural simulation.We used this fast simulator to do exten-

sive searches of mappings. Because the number of possible mappings gets very large with respect

to the number of tasks and PEs, we introduced the concept of seeding an initial mapping to the fast

simulator. In that case, our mapping tools only has to place the remaining tasks. To be able to trust

the results of the fast simulator, we compared the throughput of the fast and the real simulators. We

found that the throughput trends were similar between the two simulators and were especially close
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when contention on bus, memory or synchronized resources was not a performance bottleneck in

the detailed simulator. We envision that better mapping results could be attained by improving the

accuracy of the fast simulator.

7.2.2.2 Improving Other Simulation Aspects

Here is a list of approaches that could make our simulation even more realistic:

• Introduce a micro-architectural simulation of the processing elements. Different flavors of

instruction -level parallelism could be examined like in Seamans and Rosenblum’s work [74].

• Model with more accuracy memory allocation of packet memoryand temporary heap. This

memory allocation must be supported for our compiler to generate executable code.

• Implement our techniques on a real NP or an FPGA fabric.
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In this chapter, we present some simulator features that make of it a powerful tool suited for further

system research. We then motivate the current organizationof the NPIRE by giving some informa-

tion on the task mapping techniques that were tried and on howour infrastructure was iteratively

built.

A.1 Simulator features

The goal of the simulator is to mimic the execution of our application’s recorded trace on a para-

metric network processor. The simulator allows to see the performance impacts of the modifications

that we make to the application and to the architecture of thesimulated NP.

Our infrastructure has numerous scripts that automate simulations and the generation of traces

and simulator configurations. The simulator is also equipedwith multiple scripts that make it easy

to change between benchmark environments very quickly. Consequently, the NPIRE simulator

can be deployed and installed rapidly on x86-class machines. Multiple simulations in parallel are

supported: we even ported our simulator to a Condor [82] cluster.

A few data sets collected by the simulator are best represented graphically. The NPIRE simulator

can generate a plot of an application task graph with the edges labeled with their usage count and a

graph of the element mapping. The simulator user can displayand save as a picture file a colored

map of memory references to a buffer, or a memory type, where the color corresponds to the fre-

quency of the accesses. In the simulator, a large number of events occur concurrently. To give a

global view of the NP activity to the user, the simulator can produce, for a limited time interval, a

diagram showing context switching, task signaling and processing elements state. For example, this
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diagram allows the user to see graphically where PEs are waiting because of contention on shared

resources. The simulator can also produce coarser graphs oftasks execution in time and packet

processing in time. This customizable granularity of graphs allows for easier debugging. Finally,

at the end of each run, the simulator prints a block diagram ofthe network processor simulated,

annotated with the most important rate and utilization statistics.

The simulator has support for interactive debugging by being able to report the simulated time

and its full state at any time. The simulator can also print a file containing the size of all element

queues in order to follow the evolution of a potential congestion in the control graph. All statistics

in the simulator are connected to a global reset allowing to start and end measurements at any time.

Some statistics can be set to be periodically re-normalizedat runtime to account for fluctuations in

the processing.

To assist the compiler in identifying frequently executed code, the simulator dynamically builds

a suffix tree of sequences of elements executed on a packet. This data structure was found to be

complex to build considering that multiple packets can be inflight and appending/branching in the

suffix tree. We envision that this monitoring could be used inthe future to provide some simulator

responsiveness to changes in packet flow patterns.

A.2 Mapping

We implemented several strategies for task assignment to processing elements that are still included

in our infrastructure. The following techniques are not used in the results presented in this document

because they provide inferior mapping results on average tothe technique presented in Section 5.2.2.

The quality of a mapping can be measured in terms of load balance between processing elements

utilization and overall system throughput.

One-to-one Tasks are assigned in a round-robin fashion to the availableprocessing engines.

Theoretical This mapping scheme uses a statistical (mathematical) model of queue lengths. This

technique computes the probability of packet loss according to the task latencies and frequency of
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occurrence.

Avoidance based This algorithm compacts elements on the smallest number of PE. The way

we proceed is by recording a window of operation in which all used elements are given a chance

to execute. During this execution, we record all PE activityperiods in a mapping of one task per

PE. We then determine which elements were active at the same time and conclude that they cannot

be mapped on the same PE. We later realized this task compaction on PEs is incorrect. Making

concurrent tasks execute sequentially only hurts performance if this reordering delays the execution

of other tasks on a given PE.

Limit bin packing This algorithm requires a user-defined target number of PEs.Each element

instance has to be assigned at least one PE. For this first placement, we add tasks to a PE as long as

the utilization of the PE does not exceed 100%. At each step, our greedy algorithm selects the PE

on which, when the task is added, has the most remaining idleness (i.e. headroom). We also have

the option to consider placing the most active tasks first. Ifthere is still room in the PEs (determined

by the sum of activity), we replicate the elements that have awaiting time that is over the average

waiting time.

A.3 Early versions of NPIRE

The current NPIRE design is in its third version. In this section, we briefly explain why the earlier

versions had to be modified to motivate the current compiler/simulator organization of our infras-

tructure.

Our first attempt at creating the simulator was using Augmint[62] to instrument all memory

reads and writes inside the disassembled application code.We used a call graph generated by

Doxygen [86] to select the functions to be instrumented. Multiple software threads were declared

in our back-end (presented in Section 4.2.3) and we would execute a tasks on packets on threads

taken from the thread pool. In that case, our network processor simulation was done concurrently

with the Click router execution. This imposed several limitations on the parallelization/reordering
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techniques we could use.

We then evolved the simulator to generating a trace still using Augmint and an instruction count

obtained by converting the Click code to micro-ops using Bochs[7] coupled with rePlay [78].

Using an application trace turned out to be more flexible fromthe simulation point of view but the

binding between the application and the architecture was inexistent. With the compiler support

that we inserted in the current version of the infrastructure, we have some knowledge of what

memory references point to and we have more powerful ways of achieving custom partitioning,

instrumentation, scheduling and resource allocation.

In the early versions of the simulator, we selected the RLDRAM II [58] [33] as the technology

for our first memory device model implementation. On some RLDRAM devices, since the write

operation has a shorter latency than the read, data on the data bus can be reordered (if this doesn’t

incur any violations). We added a small controller to the RLDRAM code to try and improve on

memory transactions batching by looking at the requests queued. We attempted to eliminate redun-

dant accesses and merging corresponding write/read accesses. Those optimizations had very little

returns. Timing of an RLDRAM access is a non trivial problem because we need to account for the

off-chip transition as well as the different clock frequency with respect to the PEs. For example,

in the IXP NPs [35], the latency of a memory access can be 10 to 100 longer in PE cycles that the

number of memory cycles for the operation, although the clock frequencies differ by a factor of

roughly 2. This motivates our current memory timing model presented in Section 5.1.5.
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