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Abstract

Modern network processors (NPs) typically resemble a kighlltithreaded multiprocessor-on-
a-chip, supporting a wide variety of mechanisms for on-atgoage and inter-task communication.
NP applications are themselves composed of many threatdsithigle memory and other resources,
and synchronize and communicate frequently. In contrasijess of new NP architectures and fea-
tures are often performed by benchmarking a simulation maofdiéne new NP using independent
kernel programs that neither communicate nor share menhothis paper we present a NP sim-
ulation infrastructure that (i) uses realistic NP applmas$ that are multithreaded, share memory,
synchronize, and communicate; and (ii) automatically ntapse applications to a variety of NP
architectures and features. We use our infrastructure atuate threading and scaling, on-chip

storage and communication, and to suggest future techsiign@automated compilation for NPs.
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1 Introduction

With the advent of e-commerce and the spread of broadbanetéitibe-premises (FTTP) connec-
tivity, the traffic of new IP services is expected to grow byent00% per year [5] from 2004 to
2006. High speed network links require computerspetwork nodesto share the link capacity
among many clients and to route traffic efficiently. Consetjyethe pressure on those network

nodes to process greater packet rates is bound to incretsenear future.

Until recently, network nodes were exclusively made out xédi ASICs that were performing
increasingly complex tasks. With the wide range of requeets for network nodes and the speed
at which the needs of Internet users are changing, it is noywesgpensive for service providers to
develop custom solutions in hardware to cope with each af tustomers’ needs. For this reason,
the trend has been to put more and more programmabilityensatket processors, even at line
rates of 40-Gbps [13], in order to make the most out of thestent of hardware in network
nodes. This programmability not only allows conforming emnrequirements of processing, but
also to develop more input dependent processing. The deglatyof network processoréNPs),
those programmable network nodes, has become increasiogiignon as networking applications

continue to push more processing into the network.

Modern NP architectures are typically organized as a highijtithreaded multiprocessor-on-a-
chip, supporting a wide variety of mechanisms for on-chgrage and inter-task communication.
In turn, NP applications are typically composed of manydldsethat share memory and other re-
sources, as well as synchronize and communicate frequdailyhermore, these applications are
usually programmed in assembly code by hand to ensure theefiimsent code possible, and to
fully exploit the wide variety of instructions for synchri@ation and communication. Because of

the complexity involved, the programmer must typicallyeagvo modifying sample applications
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and use library code that takes over pre-determined shasedirces on the chip.

1.1 Research Objective: An Integrated Approach to NP

Architecture Simulation

Recently, a wide variety of network processors has emergesdepting drastically different ar-
chitectures and programming paradigms. Open questidhsestiain in deciding what should be
the architecture of a programmable packet processor (@ronketprocessor) and how it should be
programmed. In “Programming Challenges in Network ProgeBsployment” [44], the authors
name three central compilation challenges to the succeN$sfthat we address in our work: (i)
partitioning an application in tasks over threads and msoes, (i) scheduling the resulting tasks
and arbitrating the NP resources between them, and (iijagiag the task data transfers. In this
work, we propose an infrastructure to realistically congparious network processor architectures
and to evaluate how we can adapt applications for each o¢ tR&s.

Our goal is to evaluate powerful network processors thatgrarantee line rate performance,
while being programmable and configurable. We also want tabbeto quantify the headroom for
further software features and the bottlenecks to direct BARldpment efforts. Our work focuses
on system level exploration to automatically transformlistia network applications and simulate
them accurately on widely-varying realistic NP architeetu In this thesis, we preseniNg&twork
Processor Infrastructure for Research and Evalua{iNPIRE), which is composed of an integrated
compiler and simulator for a wide design space of network@ssor architectures.

The influence of our work on NP design is to present that nd¢worycessors can be programmed
from a high-level language, assuming a certain organizatidhe application description, as ex-
plained in Chapter 3. We support this proposition by an evanaf automated compiler trans-
formations to scale the throughput of an application to thdeulying hardware. To identify the
performance-limiting factors, we perform a systematidlbaeck identification. Finally, we pro-
vide a methodology and a parametric architectural simutagnvironment for evaluating NP archi-

tectural features.



1 Introduction

1.2 Thesis Organization

This dissertation is organized as follows. Chapter 2 giveackdround in network processor ar-
chitecture, and programming/compilation techniques, @ & summarizes the relevant research
fields and research projects. In the next chapter, Chaptee 8leacribe a compilation framework
and techniques for transforming high-level NP applicationcluding managing both memory and
tasks. We explain in more detail the compilation flow from téw application to the target network
processor in Chapter 4. Chapter 5 describes our simulatioastnficture, and our algorithm for
mapping tasks to processing resources. In Section 6, weateathe impact of our compilation

techniques on the scalability of selected NP applicatiand,we conclude in Section 7.



2 Background

ASIC designs for line-cards are protocol and line rate-gjgethey have high acquisition and main-
tenance costs and are feature limited to what is provisiaomédrdware. Network processors have
emerged as more flexible programmable solutions. Howewmause of their architecture, they
present several challenges for automated compilatiorhisnchapter, we first present an overview
of the network processing industry and of network proceasdrtitectures. We then present differ-
ent published research works that share common compilabgectives with our study. Next, we

introduce benchmarks that are commonly used to evaluatpdtiermance of network processor
systems. Finally, we describe a building block of our intinasture: the Click Modular Router, that

we use to build benchmarks.

2.1 Overview of the Network Processing Industry

Computers connected directly to high speed links have aegiraposition to perform packet pro-
cessing tasks. Those tasks are typically at the Network é8rd Transport (4th) layers of the Open
System Interconnection (OSI) model. One important fumctibthe network nodes is to check the
integrity of the packets in transit to prevent, in particuf@acket headers to be mis-interpreted. In
enterprise-scale networks, certain types of traffic mustebdirected to specific server machines;
other types of traffic may simply be banned. For Internet 8erRroviders, traffic to and from cer-
tain clients might be prioritized, requiring the enforceref quality of service policies. Network
nodes will also perform packet accounting to provide kgllinformation proportional to bandwidth
usage. Finally, network nodes may alter every packet topsutated them inside another protocol.

In summary, network computers were traditionally perfarghonly low-level and low-complexity
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Figure 2.1: Evolution of computer memory data bus and bac&bwtwork link bit rate®ata sources
include [91],[90], [28], [52].

tasks.

With the increased Internet traffic and the diversity of wetvies, the industry is progressively
taking advantage of the dedicated network nodes to alsod@@ervices at the higher layers of the
OSI model: Session, Presentation and Application. For @k&nit is common now for network
devices tomasqueradall the traffic of a small or home office under a unique netwalkrass,
so that there is only one link required to the Internet Senkeovider. Also, there is a lot of
interest in offloading expensive web server machines fromdlag the connection aspects of packet
transfers TCP termination and the encryption of packets for secured transactionser@tetwork
processing applications include the need to parse/akerdhtent of web messages to, for example,
hide server-side changes in data layout or to load balameerse a technique callddRL switching
Multimedia applications of network nodes incluakedia transcodingp, for example, allow a client
with a portable screen and a slow connection to view, in a tawsolution, a large picture file.
Finally, with the spread of viruses causing costly downsmeis vital for certain enterprises to
inspect each packet and detect any irregularity in the datarg inside their network.

The architecture of network nodes has evolved consideralilye recent past. As explained by
Roberts|[71], one of the pioneers of Internet, 1997 was angrpbint year for the designers of
routers and switches. In 1997, the focus has changed fromy éelgineering to capacity engineer-

ing, i.e. since 1997, the router technology limits the maximwire speed. Figure 2.1 shows the
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Table 2.1: Network processor cycle budget assuming a RIS€ataf00 Mhz and minimum packet

size of 64B.
Rate Speed| Packet Inter-{ Cycles per Packet
(Gbps)| Arrival (ns)
0C-48 2.5 204.8 81
0C-192 10 51.2 20
OC-768 40 12.8 5
0OC-3072| 160 3.2 1

evolution of the data rate available on the memory bus (atswk as the “front side bus”) of a
high-end consumer computer system compared to the ewolafithe bit rate of backbone links.
The figure shows that in the mid-2000, those two data rateslase to meeting. Considering that
a packet buffered in memory must travel twice on the memosy(lsuand out), we can clearly see
that the architecture of a conventional computer is undudéandle peak network traffic. Another
view of the same reality is depicted in Table 2.1. A modeyaticked RISC processor only has 5
cycles to process a stream of minimum sized packets (theaeose and hence stressful traffic) at

OC-768. This cycle budget given by conventional processarsily insufficient.

On an NP, maximum efficiency is required to process packetseatincoming rate, even if the
complexity is high. If packet losses due to contention in &ray be acceptable in a distributed
video game, they can only be marginally tolerated in a higtfggmance network. Network pro-
cessors are data-driven machines that address complédtehgut challenges than traditional com-
puters. The software handling the quasi totality of the p&gkor the forwarding software, must
service packets at the line rate, no matter what it is. Thpgetsmakes it very complicated to write
and maintain a tightly written program (or a library) whee tiequirements change frequently. To
exploit to the maximum the resources on an NP, the programmet match the application to the

chip architecture while conversely, the NP architecturstibe matched to the application.
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2.2 Overview of Network Processor Architectures

Because network processing is a relatively new field, we wak foresent in this section a reca-
pitulation of the origins of network processors (NPs). $iao understanding of the architectural
features of NPs is needed to evaluate how to program themewteresent the main categories of
network processor organizations. Finally, for each of ¢hemtegories, we present the state of the

art processors made available by the industry.

2.2.1 A Brief History of Network Processors

The origins of network processors can be traced back to teell@90s. In 1998, IBM started
its network processor activities at the IBM Research TriafRdek Laboratory. In 1999, Intel’s
acquisition of Level One Communications, Inc., later préggethe 1XP1200 network processor to
be one of today’s most well known re-programmable networkrees. By releasing a developer’s
tool kit and an academic program (the Intel IXA Universityofram, created in late 2000), Intel
became a strong supporter of the shift from the ASIC procegsdgrammable architectures. In
2002, the PowerNP from IBM was the first network processofiegrto operate at 10 Gbps. A lot of
companies tried to make a name for themselves in the earlyafayetwork processors. A short list
of the current survivors includes: Agere, AMCC, Bay Microsysse Blue Steel, Broadcom, Cisco,
ClearWater, Conexant, Cognigine, Ericsson, EZ-chip, Fagb;Ghin, IBM, IDT, Intel, IP Infusion,
Lucent, Mindspeed, Motorola, Nortel Networks, Pixel fusi®MC Sierra, Silicon Access, Switch
ON, Vitesse, Xelerated and Xilinx. According to the WorldewiDatacom/Telecom Semiconductor

2004 Vendor Analysis (IDC #33483), AMCC and Intel are leadimg network processor market.

2.2.2 High-Level NP Architecture

As explained in the PowerNP paper [3], the system architeatfinetwork processors is divided
in two main paradigms: theun-to-completioRTC) and pipeline models. The RTC label encom-
passes single stage models where a single processor takes tae bulk of the packet processing.

As shown in Figure 2.2(a), the input stream of packets mayiidet] upstream among several



2 Background

processors working in parallel. The programming model is oha single thread, with a global
view of all shared resources (for example: hardware cogesars, memory resources and busses).

The alternative, the pipeline model, consists of dividimg processing of a single packet into sev-
eral processor stages, where each processor is speci@ipedorm a certain task (Figure 2.2(b)).
Often, different processor stages have access to diffeegdivare resources, such as memory chan-
nels. A key characteristic of this model is that the pipeliwik function at the minimum rate of its
constituting stages. So programming such a processor @lysither complex or heavily con-
strained to partition the work evenly among the pipelinggeta Program maintenance may lead
to serious difficulties for programmers. One the other hane, advantage of this model is a strict
ordering between operations that facilitates synchraizand arbitration. The pipeline model can
also exist in the form of multiple parallel pipelines, wheigch stage has the same view of on-chip
shared resources.

Figure 2.2(c) presents a third alternative that is the mesiifle. The hybrid RTC-pipeline model
exists when packets do not necessarily flow on ordered elaipelines: packet processing can
be viewed as distributed on a matrix of processors havingnanoan view of on-chip resources.
However, if the programmer desires it, he can design hisegdmn according to the pipelined or

run-to-completion model (with possibly more arbitrati@yuired between shared resources).

2.2.2.1 A Brief Survey of Available Commercial NPs

Before listing some of the main features of major network pssors, we explain what components
are especially relevant in this presentation.

In general network processing, the greater the differereteden the designed service rate and
the peak rate of the network, the more buffering is requirBackets buffers and large routing
tables require external memory storage, a common featuretafork processors. Large buffers are
commonly implemented in DRAM (rather than SRAM) for budgeteegsons. The wide busses
of DRAMs reduce the number of data transfer cycles but notdtenty of accesses, so there is a
tradeoff between latency overhead and granularity overh&tso relevant to packet processing in

the chips listed below are SRAM buffers both on-chip and bffsc They have a quick bus turn-
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Figure 2.2: The three main system architectures of netwakgssors.

around (read to write and vice-versa) and have a high frexyuehoperation. Their low density is
the reason for their higher price. Aside from off-chip meyncinannels, most of the processors have
means of caching data or at least generating an indexed Vielata structures. However, caches
are not common due to the weak temporal and spatial locdlitysodata touched. In summary, the
organization of memory resources in a network processonp®rtant in deciding how to program
it.

Several processors make use of multi-threading to hidateady of memory operations by over-
lapping that latency with some computation related to agroplacket. Also, there is a convergence
on the idea to use many processing elements to exploit as paralelism as possible. Hence, the

number of threads of execution in a processor is of intecegst

In the NPs, mosprocessing elemen{®Es) have some internal instruction and data memory.
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The instruction set is a blend of conventional RISC instartiwith additional features specifically
tailored for network processing. Several processing ehltsngan also harness the power of a CAM
or a CRC unit. Most PEs also have interfaces to neighbouringgR&some have access to a shared
bus, where applicable. We do not intend to delve in the detdithe organization of processing
elements because their design is somewhat orthogonal teyttem-level design of the network
processor. We rather intend on outlining the functions tiey should support.

As we will show, a number of processors have exclusive featuthis motivates our work in
finding the key architectural components of NPs. For exangglme NPs have on-chip accelerators
often consisting of a variant of a hash unit designed to mdkelaup based on an-tuple(a set of
“n” ordered values). We limit the scope of this document téyonclude those on-chip resources
that are directly relevant in the execution of the applaatiFor this reason, media interfaces that
handle different electrical or optical signaling protacwlill not be considered.

We divide our description of the processors between thaatoompletion, pipelined and hybrid
high-level architectures (as defined in section 2.2.2). &prmcessors have a very short description

since they have little publicly available information.

Run-to-Completion Architectures In this processor model, packets are processed by a single-

stage, "run-to-completion” program on a single core.

Vitesse 1Q2200 This 2.5 Gbps network processor, released in late 2001, Hashdeaded pro-

cessing elements. It has a classification and queue managenggne.

AMCC nP7510 Released in 2002, this 10 Gbps network processor is compdssr multi-
threaded processing elements. The chip is equipped withradvardware coprocessors, such as a

search coprocessor, a statistics engine and specializeders.

Broadcom BCM1480 This chip has four 64-bit MIPS CPUs scalable from 800 MHz todk#,
a shared bus, a shared L2 cache, a memory controller, andid@eb. Coherence across processing

elements is ensured using a MESI protocol. This NP can haf@d&bps and it supersedes a similar
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architecture with only 2 CPUs.

Mindspeed M27483 TSP3 The TSP3 architecture is based on two programmable pracesso
cores tightly coupled with several co-processing engims.processor itself is clocked at 333MHz

and supports packet rates at up to 2.5 Gbps.

IBM PowerNP NP4GX This network processor, equipped with a PowerPC 400 sugeTpio-

cessor core, can support links up to OC-48. In the PowerNm{B{ to predict branches are elimi-
nated because all ALU instructions support predicatedwi@t Its processing elements, shown in
Figure 2.3(a), function at 500 MHz. Each cluster of 4 thraad=juipped with a tree search engine

CO-processaor.

Pipelined Architectures In this processing model, packets flow in parallel arraysrotess-

ing elements.

Cisco Toaster The Cisco Toasters, as seen in Figure 2.3(b), are used in €lsigh-end routers,
for which they were specifically designed. In those routdrsy can be encountered connected as
a pipeline of 4 chips, thus agglomerating 64 processors\® if 8 processors) running at 154
Mhz. Programming them is challenging because of the pipatmodel used: contention on the
column memory is manually avoided by programming with attgntrol on the ordering of all the

processors requests. Packets can be re-circulated thtloeigipeline of processors as needed.

EZ-chip NP2 Released in 2004, this processor (Figure 2.3(c)) is an ineméath build on its
predecessor, the NP-1c, and uses a simple single-imageaprogng model with no parallel pro-
gramming nor multi-threading. This chip operates at 240MiAd can process packets at 5 Gbps
full-duplex. Synchronization among the processor’s maresources and maintaining frame or-
dering is performed in hardware and is transparent to thgraromer. The programmer only needs

to provide four functions to program the matching replidgt@elined engines.
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Xelerated X10 The X10q family of processors [36] offers a deterministie@xtion through a
deep pipeline of VLIW processing elements. Figure 2.3(awshonly a compressed view of the
pipeline. In the X10q, an initial I/O processor is followeg 20 processing elements. The pattern is
repeated 10 times and terminated by an additional I/O psoce®Vith processing elements running
at 200MHz, the chip can support data rates of 20 Gbps fulledup

The Xelerated X11, released in 2005, is a 20 Gbps networkegem. In the X11 data flow
pipeline, each packet passes through 360 processing sndgneraging the same architecture as
the X10. The amount of logic gates that can be placed insié¢veonk processor, along with latency

concerns, are the main limitation so far of data flow arcitexs for NPs.

Agere PayloadPlus APP540 Released in 2003, this processor, not shown, is composed of a
pipeline of a pattern processor for classification and aimgtitaffic management processor that
executes VLIW instructions. This last processor is progreea using a functional programming
language in a single-threaded model. Another processeideunf the packet stream collects statis-

tics for traffic management.

Hybrid Architectures In this model, packets are processed successively byeliff@rocessing

elements that have access to shared resources.

Motorola C-5e This processor [8] can function in 3 modes with hardware supprocessing
elements can function independently in single stage reeotopletion mode. They can also work in
a pipeline, while being fed by a single data stream. Thisalto harness the maximum processing
power independently of the input rate. The 16 processingetes (Figure 2.3(e)) can finally be
aggregated in four even clusters. In that case, the chanm@gsors in a cluster share their instruc-
tion and local data memories and can work as a parallel gmtjandle the one physical network
interface, for higher speed interfaces. The C-5 runs at 200&Mdl can support rates up to Gigabit
Ethernet (1000 Mbps).

The C-5 is organized around three main busses: a ring busfirrprocessor communications

with a bounded latency), a global bus (shared, arbitrats)l énd a payload bus (carrying the pay-
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load data and payload descriptors between the engines)/QBerial data processors contain small

processor features plus a CAM and a CRC block.

Intel IXP1200 The IXP1200 is the first of Intel's IXP family of processor$]2hat provides a
general interconnection of processing elements that shaneory. Figure 2.3(f) shows an IXP1200,
comprised of a StrongARM processor core and six multithrégmiegrammable RISC packet pro-
cessing engines. The processing elements of this prodesstion at 232MHz and are designed for
OC-3 to OC-12 applications. Hardware context switching isiadled in software. Next neighbor
register structures allow fast communications acrossgasing elements.

The processing engines share a SRAM and a SDRAM bus. The derdr@dr these memory
channels do optimizations on the order of the accesses tmngeamless the programmer manually
specifies otherwise in the individual instructions. Larggadtransfers of up to 64 bytes can be
made in a single reference from the microengines due to teagefer register spaces. The SRAM
controller is equipped with a CAM that allows it to create dyranization by allowing one context
to access a memory location and putting other requests intagvgueue. Mutual exclusion can
also be accomplished by passing tokens across threads.pbmézation that the programmers can
exploit in that situation is avoiding to write-back a valoesikternal memory until a group of threads
have finished modifying data (this programming strategyaied thread folding. Additionally,

atomic test-and-set operations are provided inside the SRAM

Intel IXP2400 This processor is an incremental build on the IXP1200. lee@ssing elements
can function at 600MHz and are designed for OC-48 networksacaad edge applications. On
each processing element of this processor (Figure 2.3d)$ entry CAM (Content Addressable
Memory) complements the register structures to act as aldistd cache unit. In fact, a software
controlled cache can be created if a data structure in thel lnemory is bound to each entry
of the CAM. This artificial cache can be used to minimize theray associated with external
memory references. All the threads on a processing elenmame she CAM, so it can also be
used in a coherence scheme, to manage multiple writers tedhiata. New features are also

introduced with this processor: a pseudo-random numbeargéan, time stamps, hardware support
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for multiplications and automation for packet byte aligmhe

Intel IXP2800/2850 Over the IXP1200, this processor shows a large increaseinumber of
hardware contexts (from 64 to 256) and of memory channetgi(Ei2.3(h)). Each memory channel
has a push (read data), pull (written data) and command tachad to it. There is a set of each of
these busses for each cluster of 8 processing engines. dtesging elements of this processor [35]
can function at 1.4 GHz and are designed for OC-192 networl edgl core applications. The
IXP2850 is similar to the IXP2800 but with on-chip hardwangptographic engines.

2.2.2.2 Observations on the surveyed processors

The Motorola C-5 and the IBM PowerNP mentioned previously atkeaend of their life cycle and
their manufacturers have not released upgrades or dingletcements products. Those processors,
backed by semiconductor leaders, are the ones who offeeeddist powerful and diverse hardware
features. One reason for their obsolescence is that thegdriexibility and programmer control:
in their system, the programmer had to make a lot more dedsiba global scope versus at a local
(processing element) scope, which makes his work much harde

Dilemmas between ease of programming and hardware arthaééeatures make it hard for a
designer to choose any one of the platforms when the traglacéfnot clear. Also, when presented
with a variety of co-processors, it is not clear what are thallenges in programming for perfor-
mance and what is achievable by automated compilation.tBolsmost of the chips reported above,
itis not possible to compute a cycle budget unless we knowrtiaunt of parallelism utilized by the
program. This parallelism can be at the thread, instruatiomemory level. The maximum packet
processing rate supported also depends on the physicaamednected (half or full duplex), the
number of input ports, and the amount of processing perfdromeeach packets. Interestingly, we
can see that from the 1XP1200 to the IXP2800, chips with alamprogramming model, the cy-
cle budget for the maximum packet rate has decreased frontol82 cycles. So the advertised
maximum bandwidth of the processor is in fact a reflect of tlhekiwads provisioned by the chip

manufacturer.
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In spite of the high degree of parallelism inside the chimsne suppliers have heard and re-
sponded to the need of programmers to write single-threpdsgtams. Agere [59] considers that
there is a “huge credibility gap” in network processor peogming ease. Indeed, various NPs
will have very different programming models and softwargedepment kits offering from bare-
bone assembly to high level abstractions. Software integrés one of the enabling technologies
for network processor wide spread because programming amehmaintaining their software is a

large part of their total cost of ownership.

2.3 Overview of Previous Research Infrastructures

In this section, we list the major works in network process@tems, that is, the ones that evaluate
the performance of an application in the context of netwaedcpssor architectures.

One of the early works of system research on network procgssfrom Crowley et al. [15]. In
that paper, the authors show that chip multiprocessors iamadtaneous multithreaded processors
out-perform super-scalar and fine-grained multithreadedgssors. The chip multiprocessor that
they evaluated had very simple cores each with an instnudésisue width of 1. The paper also
shows that an operating system over a chip multiprocessoamgegative impact on performance
because of the architecture’s inability to execute thisieatjal code in parallel. Their evaluation
was made with microbenchmarks on an architecture with caetit@ch are not common in modern
NPs (as explained in Section 2.2.2.1).

In our framework, we adhere to the trend of having fast ancgkmnsores: we do not attempt
to extract instruction-level parallelism or simultaneongltithreading from workloads. Most NPs
have adopted multi-core architectures (for example, NE&). Benefits are in data locality, less
contention on shared resources that are also typicallyes|asmaller instruction stores, and more
packet parallelism (thus achieving a better throughput).

Thiele et al.|[83] define network processing as a constraotilpm where a service curve has to
meet a packet arrival curve. Because of several components imfrastructure that have arrival

and service rates, our approach has similarities with tiédygical modeling. We borrow from their
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exploration that is organized around a double loop: an ienerthat maximizes the throughput of
the network processor under given memory and delay conttraind an outer loop that performs a
design space exploration. However, they do not make anthii@ conclusions that can be general-
ized: they try to bind a limited set of architectures, withmemory hierarchy, to applications. We
take the opposite approach by trying first to characterizdiegtions and then trying to derive the

architectural implications.

The three following framework for the evaluation of NP atebtures—along with this work—
are based on the Click Modular Router [41]. StepNP [64] usek@i@rogram individual proces-
sors for the purpose of prototyping multiprocessor systemship (SoCs). While StepNP facili-
tates a detailed hardware evaluation, it does not easdwatinsformation of the input task graph.
Crowley and Baer [14] provide a framework to investigate quemesynchronization, and packet
rate control on a single general-purpose processor. Wenwéktigate similar issues in the context
of network processor architecture. Finally, Nepal [55fodfthe possibility of dynamically map-
ping an automated fine task decomposition to processingesiesmin their work, only one module
(part of a task) is active at a time and the others executeutde@ly while buffering writes and
snooping the memory addresses on the bus, looking for emldéependences. Unlike our study,
their work does not evaluate architectural bottleneckssoANepal’s centralized support for task
control and speculation makes some assumptions on the agrdiat may be considered overly

aggressive with regards to contemporary processors.

Two other environments for NP evaluation rely on a very dipearchitecture. First, the Intel IXP
SDK and Architecture Tool [26] are targeted at Intel’s IXthfly of NPs, and hence provide limited
flexibility in varying the underlying architecture. Nepsi#&0], being the open-source version of
the the Intel SDK simulator, has the same drawbacks. Sed¢badDesign Space Exploration”
paper [27] discusses a low-level particular implementabased on a 'network-on-chip’ design
where processing is very deterministic. It presents mapmoheduling and identifies sources of
load imbalance. In contrast with their chip that does nopsupexternal memory, our high-level

programming model allows widely varying latencies.

NP-Click [75] provides a programming model to help bridge ¢fag between an application
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description and the low-level use of the capabilities of ecic NP architecture. NP-Click pro-
vides manually-coded Click elements that are targeted tdehtires of the specific underlying
NP. As opposed to other works using or proposing a new or taatire specific programming
language [25], [10], [22] to simplify the compilation pr@s we aim for automation and ease of
integration. While the authors of Shangri-La [88] introd@ceew programming language and try
to exploit several low-level well known instruction optiations, they make a case for compiler
support for automation, retargettability, and perform@an@his idea of integrated, profile-driven,
compilation is central in our work, that can be easily exaghdy additions such as code generation
(such as in Wagner et al. [89]) and custom instructions (\/@&f).

Also relevant to network processor characterization, p@sgmations of an NP system are avail-
able in such work as Luo et al. [51]. While power consumptioal# an interesting computer

challenge, our infrastructure focuses on measuring thmpuigand latency.

Experience with IXA SDK To further understand network processors, we have studimagle
programs from the Intel IXA Software Development Kit, in pamlar running on the IXP2800. For
the reader’s benefit, we explain some implementations &spad challenges encountered that can
be generalized to other processor families.

On the IXP2800 network processor, each processing elenan8tardware contexts. Each
context has its own register set, program counter, and xospecific local registers. Any context
can access the whole register file and context switching nsptetely under software control. A
processing element is in one of the following states: readsignal has arrived and the processing
element is ready to handle it), sleeping (the thread is mgifior an event to occur), executing (or
computing), inactive (or disabled). Event signals indictat each thread that selected events have
occurred. This is especially useful to react to the comgmhedf memory reads that are non-blocking,
and to detect the arrival of new packets. The programmer beugery careful in not modifying the
source (for writes) or destination (for reads) of the menapgrations until they actually complete.
In the IXP2800, the minimum DRAM physical access length is {ie$.

When executing code, the hardware contexts have a thredtfieleithat allows for thread depen-

dent behaviours. Contexts can implicitly be referred ast'nelken using inter-thread communica-
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tion. In the SDK, the compiler is in charge of generating ceelsions for each hardware context.
This is useful when, for example, using a C-like language,esoate requires per-thread memory
allocation. The SDK compiler provides no support for eithelata stack or a subroutine call stack.
The compiler must enforce a hardware requirement that darugten can only read or write one
register for each of the two register banks, thus occadiomaderting register moves. The on-chip
memory controllers are in charge of distributing the menamgesses to the attached memory banks

(also known astriping) to load balance them.

Intel has recently introduced the concept of structuringligptions into 'microblocks’: inde-
pendent pieces of code that allow the developer to build aodypplications. However, commu-
nication uniformity and orthogonality are still challersgieecause of the number of heterogeneous
means of on-chip communication. In fact, library code ofiees global, shared resources on chip

which is conflicting with the goal of having 'independent’ chdes.

2.4 Benchmarks for NPs

Network processing is typically performed at three levatsexplained by Ehliar and Liu [20]: (i)
core routers demand high throughput such that they usuallg few features, (ii) network (or ac-
cess) terminals, where the traffic rate is much slower butabkks to execute are more elaborate,
and (iii) edge routers, which are a middle ground. To acelyastimate the performance of a pro-
cessor, computer architects usually rely on measuringhifteigghput on representative workloads
for their chip: benchmarks. Finding the right set of apglmas to compare or evaluate network
processors has been the object of recent research.

Most NP architecture evaluations to date have been basegparal tasks taken individually:
microbenchmarks NetBench [56], NPBench [48] and CommBench [96] provide tesgms
ranging from MD5 message digest to media transcoding. Thodes sometimes emulate packets
by simply reading relevant packet fields from a file: their @&nto characterize certain algorithms
that are used in the realm of network processing. While mamchmarks are useful when designing

an individual PE or examining memory behavior, they are aptesentative of the orchestration of
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an entire NP application. As explained by Tsai et al. [84inkés may not expose bottlenecks. One
reason for that is that they do not exploit any form of patisihe.

In this work, we opt for application-level benchmarks and tie Click Modular Router [41] as
a building block (described in section 2.5). Click has beedelyi used as a base application for
performance evaluation in such works as [14], [64], [758][However, we are the first to provide
automated compiler analysis and transformations for itr @ark could be generalized to other
router frameworks that are similar in that their applicati@re a composition of an extensible suite

of modules (examples include VERA [40], PromethOS [72] andtBoRlugins [18]).

2.5 The Click Modular Router

Click [41] is a modular software architecture for creatingtass. Click is part of the XORP [29]
project that has for mission to develop an extensible ropiform by addressing the challenges
of making open-APIs for routers and allowing researchergrttotype and deploy experimental
protocols in realistic environments. Click acts as the patievarding path: i.e. the software
component that handles the packets. Over other researwtaseffor routers, Click was designed
with four major concerns in mind: long feature list, extduigly, performance and robustness. By
design, Click [98] is not limited to be run on commodity PC haade but could run on a PC
augmented with network processors doing the bulk of the giagiocessing, or, in the future, in
high-performance traditionally ASIC based, core routérdhe original evaluation of Click [41], it

was shown that Click could compete advantageously agamsitlix operating system for routing.

Click is built from fine-grained software components caleddments These elements have a
common interface allowing for initialization, user intet@n and mainly packet handling. Elements
are linked usingonnectionshat represent possible packet paths. Packet processagamection
can be initiated by the source end of the connectmmsl processingor by the destination end
(pull processing The motivation for the pull action is to let an element @aample, a transmitting
interface) decide when itis ready to receive a packet sattizatot overflown, and looses the ability

to control the buffering. Each connection end must be usegash or pull input or output interface
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Figure 2.4: Very simple IP compression application in Click.

exclusively. In Click, any packet transfer routine must retto its caller before another task can
begin. After being processed inside an element, packetserther be handed to the next element,
stored or destroyed. Packets should not be used after bagsgg along to another element.

Figurel 2.4 exemplifies a very simple configuration that campes valid IP packets. First, we
define aClassifier to distinguish IP packets from the others (IP packets hageg#itern 0800
starting at byte offset 12, inside the Ethernet header). IRopackets are sent tolascard el-
ement. Others follow a chain @heckIPHeader (that implicitly discards corrupted IP packets),
IPCompress, SetIPChecksum (the checksum has to be recomputed as the payload changks) an
Queue. TheQueue buffers packets for the transmitting interface DEVIBGEqueuing is explicit in-
side Click. To simplify experimentation, packets can flowmnoat of trace files using the elements
FromDump andToDump (instead offromDevice andToDevice).

Click was implemented in order to run efficiently on uni-preser as well as shared memory
systems [11]. For this reason, packet descriptors can aigy@n a straight-line, sequential chain of

elements: branches in the task graph require a call to aifumittat creates a new packet descriptor.
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As well, all packet writes are guarded by a method that unigsethe packet buffer (in case more

than one descriptor would share the packet buffer).

2.6 Summary

In this section, we have presented several network processorently on the market. In most of
them, because of the large number of packets in treatmehné aaime time, the programmer must
specify, for example, when memory operations need to beeddallocate and handle signals and
make use of a plethora of optional tokens in the assemblyukzge for example, to hint branch
prediction. Because of the complexity involved, the prograanmust typically revert to modifying
sample applications and use library code that takes ovedgiermined shared resources on the
chip.

The key benefit of programmability is conditional procegsibeing able to ask a processor to
accomplish unconstrained applications is central to nga#tiese multi-processor ASIPs successful.
Our work will illustrate the need for deep application urstanding for a correct and efficient
resource and task allocation. To avoid the common pitfadrdaasing application characterization
towards certain architectures, we will select the main att@ristics out of the surveyed processors
and ally the flexibility to simulate arbitrary architectarelhe architectural components of interest
are both at a fine granularity (for example, non blockingrindions and synchronization) and at a
coarse granularity (for example, processing elements,angand interconnect). We also showed
in this section that application-level benchmarks are bestxplore compilation in the realm of
network processors. We presented the Click Modular Routémtbause as a building block. In the
next chapter, we will describe how we plan to transform ouclCbienchmarks to execute efficiently

on a network processor.
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As NP architectures become more complex and contain a greatety of computation and storage
resources, the task of efficiently programming them by hawbines intractable. This chapter ad-
dresses our aim at making network processors more acaebsilophaking them easier to program.
To make this possible, the programmer should work in a pogutg-level language that is auto-
matically transformed to use the low-level intrinsics ofSNFo give a structure to this endeavor, we

use as a starting point a basic programming model that mzesngonstraints on the programmer.

Instead of using low-level assembly routines, we wouldeathe programmer be able to express
the application asgraph of tasks(that can contain branches and cycles), written in a higaHan-
guage. The compiler infrastructure would then map tasksdogssing elements (PEs) and memory
resources in the underlying NP, identifying memory typed imcreasing the parallelism specified
in the original task graph through transformations. Idedlie compiler would also automatically
insert all synchronization, signaling, and manage menatgwing the high-level application to

scale up to the available resources in the NP.

Task graphs are a well accepted way of representing paaglf@ications: examples include the
Cilk project [6] for multithreaded applications and the PORpkbject [2] targeted at distributed
message passing systems. However, one of the differentiethe@se projects is that our task graph
describes the sequential processing of a packet and theapnagng model allows us to parallelize
the application using the techniques described in thistenapVe take advantage of the fact that
the Click Modular Router, introduced in Section 2.5, providéarge library of predefined network
processing tasks, called elements, that are meant to bec®aohin a task graph. This modular
property of Click allows us to create a wide variety of appgimas on which we can directly apply

the techniques that we present in this work.
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In this chapter, we first consider packet ordering and tagledéence issues. Then we describe
in more detail the task transformations that we intend téoper on a task graph and the implemen-
tation techniques involved both in a compiler and in harawakfter this description of concepts
that are more general than our particular implementattmn|ast part of this chapter will introduce

the actual composition of our infrastructure.

3.1 Packet Processing Order

Before introducing parallelism in sequential tasks, we needake sure that we are not changing
the behavior of the network processor in a manner that ismpedible with its initial purpose. More
specifically, to ensure that our compilation infrastruetorakes viable transformations, we need to

adequately answer the following questions:
1. Must the packet ordering be identical at the input andeabtitput of the NP?

2. Does the result of a task processing a packet depend omdbetbat this task has seen the

packets arrive?

As an answer to the first questioRFC 1812 - Requirements for IP Version 4 Routstiates
that the Internet was designed to tolerate packet reogléxin that ordering should be preserved
as much as possible. RFC3366 makes the distinction betwebalglacket order and per-flow
packet order. Allow is a set of packets having the same characteristics, usttaysame origin
and destination. Packets belonging to different flows atenafe-ordered when the router performs
some kind of policy-based sharing of a link. On the other hamida-flow reordering may incur
retransmission of packets if a network protocol layer intets that some packets have been lost.
Intra-flow reordering may also increase the amount of bimiterequired for the clients and will
increase the jitter for real-time applications (for exaeploice or video). In fact, packet ordering
requirements mostly depend on the application. For exampline the IPComp standard packet
compression scheme (RFC3173) the compression task for eekétpaindependent, i.e. there is

no persistent state across packets. Conversely, there\emlsapplications that benefit from the
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push pull
a) Input 4>‘ Queue Output

ready
Figure 3.1: Minimal task graph showing (a) the original agggion diagram with push and pull (b)

ready

the transformed application with push and rate controligltl p

preservation of packet ordering, such as web client thatpnéts an hypertext page from the first to
the last line.

To preserve packet ordering while not being overly congeeran the common case, we assume
a mechanism for the application developer to specify thdéemng be preserved at a given point
in the task graph. In Click, thQueue element is used to manage buffering by havingush
handler to enqueue packets angudl handler to dequeue packets as shown in Figure 3.1(a). In
our infrastructure, we take the convention that @Qheue element can enforce the packet ordering,
in which case, we postpone the ready signal fromBhgueue operation until the next packet in
order is enqueued, as illustrated in Figure 3.1(b). As intmee network processor applications,
our applications precede all their output ports bgu@aue element. At the simulation level, we
model a structure similar to a jitter buffer [79] that implents packet ordering with a complexity
of O(1). Sorting packets on a per-output interface basislevdecentralized, is complex because
not all packets entering the NP will be sent to an output fater of the NP, and some may also
be discarded. We implement a “best effort” ordering by ihsgrsignaling in the application code.
Those signals create a sorting place-holder dué@ue as soon that it is determined on which
interface the application will output a packet. Hence, thmpfrom which the order is guaranteed
for a packet is given by simulation feedback of the used pathi®e task graph.

The answer to the second question, pertaining to the ragaimeof tasks in the NP to process

packets in order or not, is also difficult. Taking for examaleommon classification engine, classi-
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fication is typically based on the source and destinatiomezdes of a packet as well as the source
and destination ports. Packets in this case have no depsmdeneach other. In a Network Ad-
dress Translation application, typically centered aroaradiassification engine, TCP header fields
of packets are modified according to a per-connection pamapping. A mapping is created for
every flow, every time a new flow identifier is needed to cham@oe incoming packets. The only
aspect of this application that depends on packet ordeaighk destruction of a mapping is usually
scheduled a short time after the packets indicating the &éadT&P connection are observed. In
fact, it is common for the application to delay the destauttof per-flow state to ensure that all

packets in the flow have been processed.

Thus, we have observed in our applications that most elesrieave a behavior independent of
the order of packets processed. Hence, we advocate thatgaassequential task dependences are
respected and application semantics preserved througtptmal meaning of thgueue element,
packet ordering in the processing is not required. Othekwonulating packet level parallelism
(such as ILP and SMT studies in Crowley et al. [16]) also assilmaEpackets can be processed in

parallel usually without regard for their ordering.

At the simulation level, reordering packets may not exao#igroduce the same sequence of
events that we could observe in the original applicatiom:efeample, a threshold condition could
be reached on a different packet. Since we process the samigenwf packets as the original
application, we can assume that the overall performandeai@n is correct as well as the overall

code semantics.

When deciding if parts of the packet processing can be rereddeve find in Click’s source code
that this is not always possible because some data can bewapated between tasks in the meta-
data accompanying the packet. We could try using the contivitjatest [69] to experimentally
determine if processing tasks out-of-order on packetsslemdor example, the same resulting rout-
ings or packet annotations. However, for this work, we asstlmt when there is communication

that no re-ordering is allowed.

In this section, we explained how our infrastructure capeesordering requirements inside and

at the edges of the NP as long as it is specified by the programifmeserving the input packet
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Figure 3.2: Classification and separation of different typlesiemory, assuming a Click-like pro-

gramming model.

ordering at the output of an NP can be beneficial to certaentlhosts that have little buffering

capabilities to reorder packets. The tasks that we considkis work are packet ordering agnostic.
Finally, the order of the tasks that process a packet mustdpected where inter-task communica-
tion exists. The next section expands on the types of tramsfiions that can be performed on the

task graphs that we consider and describes the compilepsttppt enables these optimizations.

3.2 Managing Memory

A complete compilation system for NPs requires automatedong management. In particular, the
compiler must map the different variables and data strestused by the application to the various
types of storage available in the NP architecture. Ennadé 3] agree that memory typing eases
parallelization and that automated task optimizationseasential to map an application efficiently
to a specific network processor architecture.

Figure 3.2 illustrates the different types of memory acedsghen using a programming model
similar to Click’s, for which we define four categories. Fitsiere are the instructions that comprise

a task, which are typically read-only. Second is éixecution contexthe data which is private to a
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Table 3.1: Example storage types available in Intel IXP NPs.

Per PE Chip-Wide

Processor | # Contexts | Registers | Local Mem. | #Instructions | # PEs| Scratch | SRAM | DRAM

IXP1200 4 512B 0 2K 6 4KB 8MB 256MB
IXP2800 8 2400B 2560B 8K 16 16KB | 256MB | 2048MB

task such as its execution stack, registers, and any temydugap storage. Third [gersistent heap
data, which is maintained across instances of a distinct taskirtRas packet data, including the
actual packet payload as well as any meta-data attacheeé fmattket by tasks. In a programming
model such as Click’s, the only way for two distinct tasks tonoaunicate is through this packet
meta-data.

The challenge is to map each of these types of memory to a nyaundravailable in the target
NP architecture. Examples of different storage types apdates for two Intel IXP processors are
given in Table 3.1, of which there is evidently a large vatiethe mapping of application storage
to architected storage is described in further detall irtiSe®&.1. Given this typing of the memory
storage of our applications, we next present two optimiretion packet processing: one intra-task

and one inter-task. We will later refer to both together &ddbality transformations

3.2.1 Improving Locality Through Batching Memory Requests

The idea of improving an application’s locality by limitinhe number of long latency accesses to
memory has been examined in the “Data Filtering” paper [§#}his project, the authors propose
a coprocessor physically adjacent to the off-chip mematgriace. This coprocessor offloads PEs
from instructions that access data with low locality (higtbased), thus limiting the accesses on the
bus between the PEs and the off-chip memory. The authors thanlexperiments with a different
methodology and different goals from ours (they did not hamg memory typing and they were
trying to optimize power) and they were using specializediware support. Sherwood et al. [76]

shows the benefits in using wide word memory transfers bdbpartheir evaluation on a novel
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memory controller. This work presents task-level optiriaaas in an integrated compiler/simulator
context with realistic evaluation on an NP, where our firsiaarn is packet throughput. We next
present in what context limiting the number of memory aceess useful and how we implement

this technique.

In a typical mapping of a network application to an NP, thekgadata is mapped to SDRAM, a
memory with a large latency but high throughput. To helpritie this latency and to reduce request
traffic, NPs such as the Intel IXP typically support wide meynoperations. The programmer is
expected to create large memory requests and accesses ddtaex granularity once the data is
brought closer to the processor. Compiler support for margagiemory must be aware of this abil-
ity and automatically target wide memory operations wheaeasing a large data structure, or when
accessing several small but consecutive memory words. @béack of memory is transferred to
local storage, a processing element (PE) can have more riie-gccess to the data. In a way,
batching memory requests implements a form of softwareageah prefetching. A good example
where this applies is the IP header (20 bytes on averagenéeals to be fetched for the checksum
validation, for processors with no CRC hardware support. Tah §81] measure an improvement
of over 50% in throughput for different compression aldgons by manually transforming the code

to issue wide memory requests ( called “memory bursts”).

When implementing batching of memory accesses, we firstifggasks that consistently access
memory locations that are not local to the processing elen@uar approach is to group all those
memory locations and send batched requests when the tatk estacution. The results of the
batched memory accesses are stored locally to the PE. Wheasthéater performs fine grained
accesses to the recurrent memory locations, the accessesrapped to the local storage. Because
persistent heap (data local to a task) should not be accessgide of a synchronized section, we

avoid any prefetching of it.

Studies with no memory management nor compiler supportdavballimited to perform indi-
vidual memory loads. Batching is an automated transformatat makes our simulation more
realistic by using the available NP hardware to issue wideMvoirsts of memory accesses. Those

transfers are done in a non-blocking fashion. This meartsthieaprocessor stalls until the whole
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buffer arrives only if the prefetch operation does not catebefore a finer access to the buffer is is-
sued. We next present another optimization, enabled byimatcthat launches memory operations

earlier in the packet processing.

3.2.2 Memory Forwarding

To further capitalize on batched requests, if two tasks niakteh accesses to the same portions of
a packet’'s meta-data or payload then that data can be foedaicectly to the second task from the
first—potentially saving on memory traffic and latency. Teesame, the data is forwarded before it
is even requested; otherwise, there is no guarantee thdk stay stored in the processing element
where the data is currently available. If the destinatiascpssor cannot be determined because the
next work unit remains to be scheduled, then the data is savadhared on-chip memory, also
known as the scratch-pad. We implement batching and foimguasing profiling in the simulator;
more details are given in Section 5.1.5. The process censidirst identifying memory accesses

that can be batched, and second deciding which tasks insegjugake use of that same data.

3.3 Managing Tasks

Because we propose that the NP application be described sk gttaph, the program specification
does not present any form of parallelism in its initial fotm&iving the illusion of programming

a machine where everything happens in sequential ordetlygssaplifies the programmer’s work
by removing the need to perform any dependence managemesad Ba the dependences between
tasks and the memory typing that we present next, it is plestbthe compiler to re-organize the
task graph automatically and insert appropriate synchatioin to exploit available parallelism in
the network processor. In this section, before giving d&etm our approach, we first present how it

improves on related studies discussing NP task-level neanagt.
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3.3.1 Contrast with Related Work

One problem we have to address in the management of tasksimlblalance in latency of different
tasks. This imbalance can create large idle gaps in the thgldsle. For example, if a task assigned
to a single processing element (PE) has a disproportignkeq) latency with respect to the other
tasks, it can hold back the processing of multiple packetthdt case, a limited number of process-
ing elements will appear to be busy when there is contentioa particular task. This contention
can be the result of three factors: the task breakdown, itk partitioning the dependence man-
agement scheme, and finally, ttask schedulinghat describes the temporal order of execution. We

next give some background on those three concepts and italataur work.

3.3.1.1 Task partitioning

Other work targeted at transforming tasks automaticallgusd in Weng et al. [92] and Nepal [55].
In both papers, applications written in a high-level prognaing language are partitioned into mod-
ules, i.e. groups of instructions or basic blocks. Weng apeatsent a greedy algorithm to create
modules based on a maximization of the computation overdheunication ratio of the applica-
tion instructions. Next, the authors use a trial and errgoiahm to assign modules to processing
engines. Only one module is mapped to each PE, meaning thagehumber of processing el-
ements can be required. It is questionable how much addltimter-modules communications
overheads an implementation on real hardware of this enititg would incur. In fact, it is often
not possible to determine statically if there can be a depecel between two memory accesses,
thus limiting the authors to conservative assumptions.

In this work, we favor applications that are derived fromlisg& network processing applications
such as the ones found in the Packetbench suite [67]. Clickgramming model allows us to have
a realistic breakdown of tasks and accurately model acs¢ssiynamic data structures. Instead of
approximately reverse-engineering dependences creptbé lbbose usage of global data structures
in an application, often found i@ programs, we start from tasks that follow general requirgme
(explained in Section 3.2). We exploit this task modulairitghe form of Click elements to investi-

gate other task transformations.
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3.3.1.2 Dependence management

There are three known ways to handle dependences betwéen (dsise speculation and depen-
dence violation detection hardware as in Nepal [55]; (i§eirt synchronization in the task instruc-
tions; and (iii) perform pipelining. Pipelining an arbitygprogram, i.e. breaking it into components
that run in isolation, is very restrictive. Figures 4.3 and ghow examples of code where almost
the totality of a task has to be executed in sequence becdusegwred synchronization. This

synchronization constraint greatly limits the pipelinipgssible.

3.3.1.3 Task Scheduling

The problem of scheduling in the presence of variable patis possibly heterogenous processing
elements, does not have a lot of theoretical background. xample approach, called “minimum
makespan scheduling” [87], consists of assigning jobs tohinas so that the completion time, also
called the makespan, is minimized. Most static schedulapeps, as surveyed by Kwok et al. [45],
consider task graphs having tasks with fixed or predictatiknkies and no conditional branching.
Hence, static scheduling usually does not consider tagkhgraith loops. Authors also usually
rely on the fact that tasks start after their predecessé&s teemplete, a requirement known as the
“frame separation property” [80]. Because Click elementstaka dramatically different latencies,
the usual method for schedulability analysis, i.e. apprnating a piece of code by its worst case
behavior, does not work. In conclusion, the scheduling aftagk graphs is best addressed by
dynamic scheduling, i.e. by scheduling a task as soon agtjured data and execution resources
become available.

The CUSP project [73] claims that supporting tasks with netedninistic durations allows pro-
grammers to focus on functionality rather than complicaitethg analysis. While supporting vary-
ing task latencies, we will provide measurements allowmdjrid bottleneck tasks. We limit the
scope of this work to static task assignments to processergents and a steady distribution of
packets on the task graph (on the paths taken). With thedmlptask transformations, we uncover
a wide solution space where transformations can be combBietulation will uncover the differ-

ent performance tradeoffs. We now investigate the impleatem of each of these transformations
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Figure 3.3: Task transformations to increase parallelisra; andC are each distinct tasks.

in greater detail.

3.3.2 Proposed Transformations

The goal for automated task management in a compiler is te@se parallelism and hence through-
put by (i) improving the potential for tolerating memorydaty, and (ii) scaling the task graph to
exploit all available processing and memory resourcesurig.3 illustrates four task transforma-
tions for increasing parallelism in the task graph of a nekwaocessing application. We first give
a brief overview of the transformations to clarify the diface between them and we describe each
of them in more detail below. Our work has led us to consideeopossible task transformations

that we present as future work in Section 7.2.1.
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Figurel 3.3(a) represents the normal, sequential execuofitiiree distinct taskg, B, andC. To
increase parallelism, and to allow a minimal task graph &desap to a larger number of PEs and
hardware contexts, we empltgsk replication(Figure 3.3(b)): in this case, taskandC each have
areplica. Replication can be used to increase the througtpubottleneck task, but can be limited
by intra-task dependences.

We usetask splittingto improve load balance by breaking a large task into smtdkks, allow-
ing the new task splits to be scheduled on multiple PEs. Ei§us(c) shows task splitting applied
to taskC. Splitting differs from pipelining because the task spétsecute in order, with no tem-
poral overlap. Next, we considearly signaling: when one task is guaranteed to be executed
after another and the tasks have no dependence betweenthi®éngxecution can be aggressively
overlapped. In Figure 3.3(d), taskis signaled early by task, permitting greater parallel overlap.
Finally, Figure 3.3(e) shows that speculation can be usetthedule tasks with dependences, for
example, two replicas of task Speculation ensures the correct execution of the twoaaploy
aborting and re-executing a task that would violate dat&déences between the replicas.

Later in this section, we describe several compilation ieshfor addressing these challenges,

which we later implement and evaluate in the NPIRE infrastmec

3.3.3 Task Dependences

We now present the vocabulary used to describe differenswéprganizing the tasks on the net-
work processors. We also present new kinds of dependeretesatur.

The typical NP-specific meaning of intra-packet and intecket dependences as well as exam-
ples of shared data are given in Henriksson [31]. Table 3o@vstthe impact of the application
distributing work to processors at different granulastie a network processor. The conclusion is
that extracting more parallelism generally leads to moeeesthdata among threads of execution.

Before we can investigate methods for transforming taskadrease parallelism, we must first
understand the different forms of dependences betwees &agkthe memory locations where they
occur, as summarized in Table 3.3. A benefit of using a progmagnmodel such as Click is that the

only way for two distinct tasks to communicate is throughksieneta-data, or potentially through
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Table 3.2: Breakdown of dependences in a network processe: [31]

Partition Shared data Drawback Advantage

scheme

Thread-per- Connection Shared con+ Flexibility,

Message state nection state | good load
balancing

Thread-per- | None Bad utilization| No shared data

Connection and saturation

Thread-per- Packet Shared packet Specialization

Protocol data is possible

Thread-per- | Packet and Shared packet Possible

Task connection data and cont latency reduc

state nection state | tion

Table 3.3: Potential dependences in memory.

Dependence Type Dependence L ocation
Between distinct tasks packet descriptor
packet payload
Between task replicas persistent heap
Within a task stack
and between temporary heap
task splits persistent heap
packet descriptor
packet payload
With an early-signaled task (none)

a modified packet payload. However, if we attempt to reptieatask, there will be potential depen-
dences between replicas through the persistent heap @onpg, if a task increments a persistent
counter for every packet). Hence, at a point in the task gvepn packet ordering does not matter,
dependences between task replicaswarerdered In other words, the order of execution of the
task replicas does not matter so long as they execute atilymatn respect to the shared persistent
heap. This atomic execution can be accomplished througprtiger insertion of synchronization,

as described below in section 3.4.1.1.

In contrast, when we attempt &plit a task, i.e. partition a task into a number of sub-tasks, we
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Figure 3.4: Unordered and ordered dependences encountered

must preserve any of the original dependences within thetked now cross task-split boundaries.
As shown in Table 3.3, these dependences can exist in ang stohage locations used by a task,
and are therefore much more difficult to manage. Also, thepedences a@dered since the
results of the first split must be forwarded to the second $pdk as input. Figure 3.4 shows the
dependences that arise from replication and task splitinglly, it is possible to re-order tasks that
have no dependences between each other. In summary, the@yization cases can be categorized

as follows:

e ordered operations require wait and signal;

e unordered operations require lock and unlock.

This classification of dependences based on memory typitegrdmes how task transformations

37



3 Towards a Compilation Infrastructure for NPs

can be applied. We next explain our automation through clemgupport to exploit parallelism, as

shown in Figure 3.3.

3.4 Implementation of Task Management

In this section, we present the compiler and hardware stppbere appropriate, to support the
four task transformations proposed in Section 3.3.2: cafibn, splitting, early signaling and spec-

ulation.

3.4.1 Task Replication

For a task with only unordered dependences between instéiiiceugh persistent data structures),
we can increase parallelism by replicating the task. A taskits replica(s) (i) can occupy two
hardware contexts on the same PE or occupy two separateifEan(share an instruction store
(if on the same PE), and (iii) share memory for persisterd dauctures. The challenge for sup-
porting replication is to automatically insert synchratian for accesses to shared persistent data

structures, so that replication remains transparent tappécation programmer.

3.4.1.1 Synchronized Sections

When having multiple replicas of a task running at the same,time have to introduce either
atomic operations or synchronized sections to preservsistency on shared memory locations.
Every time a task accesses a memory location that is pogntidgtten to at some other point in the

program, the task must acquire a lock to operate in isolatfather tasks. This is a requirement to
preserve correctness of execution. As shown in Table 3e3omfy memory type that may require

synchronization is the data that is local to a task (for eXxengpcounter).

Dependence ldentification The problem of identifying the dependences in the code sdter
pinpointing the memory reads and writes that access shagatbny locations. One way of proceed-

ing would be to identify at simulation time the memory acesshat lead to dependences and feed
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them back to the compiler. Our approach is to take advanthipe @xact memory types of data ac-
cesses that are fed back into the application being compileid analysis is hence more exhaustive
because it allows us to see dependences even in code notddaglhe particular packet trace(s)
used for simulation. As we will explain, our compiler tectpme, that we calbuffer shape analysis
finds all instructions that can access a given data loca@her than identifying potentially alias-
ing memory accesses, we envision that this compiler paskaanother future applications, such
as directing data layout optimizations. Also, becausedbipiler analysis, as we explain next, is
given the type of memory buffers accessed by instructiodspans the emphasis on understanding

data structures, it is different from pointer analysis [32]

In our compiler pass, we start by discovering data strusttirat are accessed within a task. This
discovery can be formulated as intra-procedural analgsis Gection 4.3.1.1). To identify pointer
aliases and data access patterns, we attempt to underbtalybut of buffers accessed inside
a task. Our analysis discovers data members and pointetdeo louffers inside data structures.
Figure| 3.5 shows a graph that would be created while anajythia code of a simple linked list
traversal. As shown in the figure, because this work is peréarin the compiler, we have to handle
numerous temporary variables. Pointers that access araydistinguished by their index inside
the array. If the index is computed, then we conservativeBume that it may refer to any item
of the array. We also add edges to account for recursive tlatetiwres and to showoxing i.e.
encapsulation of data within other data structures. Ourpti@mwork only needs to consider a
single task at a time. This work is based on the assumptidrthbaop level buffers in the graph
that we build do not alias. This is a valid assumption insidelClpacket buffers are guaranteed to

be unique when they are written to.

In our analysis, the only variables considered are the onesdto memory accesses to the
“permanent heap” (see Figure B.2). For each variable reddnaitten to the permanent heap in
a task, there is a possible unordered dependence with @aepflithat task. To manage those
dependences, the compiler needs to insert unordered synpéd primitives (lock/unlock), as we

describe next.
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001 struct datum {

002 charx start;

003 char test[16];

004 struct datums link;
005 int a;

006 1};
007
008 int main(void)

009 {
010 struct datumx one, xhead, *crit, sprior;
011 prior = new struct datum;

012 prior->link = NULL;

013 one = new struct datum;

014 one->link = prior;

015

016

017 while(one->test [one->a+1] <= 10)
018 {

019 while(one)

020 {

021 one = one->link;

022 } a
023 one = head;

024

025  printf("int %d\n",one->a); Legend:

026

027 return O;
028 }

029 O pointer on a data structure
—

member of a data structure

030
data member that is a pointer

membership relation
pointer aliasing

o member aliasing

Q recusive data structure ﬂa
linked list, in this example)

Figure 3.5: Buffer analysis, simple test case.

Placing Synchronization Markers We use simple lock primitives that can be implemented by

traditional atomic instructions. We insert synchroniaatsuch that:

1. the task acquires a lock before the first read or write tovargshared location;
2. the task releases the lock after the last read or writeatiddication;
3. if any critical section partially overlaps with anothkagth critical sections will be combined

into one.

Because we may need to place a marker in a position that postidtes all basic blocks, we

need to unify all return paths of the function considered msingle basic block before attempting
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the synchronization placement.

With this scheme, it becomes mandatory at run time to ignamichte locks and spurious un-
locks (otherwise we might, for example, lock the holder obek). No locking/unlocking pair
should be put inside loops because this would not proteaighable across loop iterations. Finally,
because a processing element can only hold one lock at aeg gime, this placement strategy is
deadlock-free.

While more aggressive or more fine-grained locking strategie possible, this method has the
benefit of avoiding deadlock situations. More advanced @ggres might attempt to decrease the
size of the critical section through instruction scheduljf9], implementing thread folding [26],
or possibly converting the code to non-blocking algoriti&ig]; all of those three techniques are

however beyond the scope of this work.

3.4.1.2 Context Eviction

Because of a potentially high level of task replication asrals processing elements, there may be
several tasks waiting to acquire a lock. All tasks waitingequire a lock occupy hardware contexts
without performing any work. The solution we implementedsw@ preventively evict any context

in a locked state when other packets are waiting to be preded¥e save their register space and
restore it upon acquisition of the lock. We impose no coingti@an space to save the context’s state

but, in the cases observed, the number saved at any one thoansled to a reasonable number.

3.4.2 Task Splitting

To improve load balance, we can break a large task into smasiks througlask splitting allowing

the new task splits to be scheduled on multiple PEs. To spkisk requires an analysis of all
dependences between the two task splits, which we will tefas theproducerand theconsumer
Data values for any true dependences (read-after-writ@)dsa the producer and consumer must
be forwarded to the consumer task split. Furthermore, ifpficated task is also split, any locks
held across the split point must also migrate from the predaontext to the consumer context.

Splitting is expected to be useful to allow for finer schealglof tasks. However, we also have
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Figure 3.6: Examples of the compiler-driven positioningask splits for two simple control graphs

of basic blocks. The compiler avoids placing splits intodso

to model the migration time of a task upon a split to the nexcexion context. This operation
may also involve some latency to find an appropriate nextwgi@t context. For now, we imple-
ment communication between subtasks as a non-blockingtidaisfer on the same medium that
transports the signal to launch the next split. The compibenputes the amount of data to be com-
municated as the union of all scalar values that are defindothe split and used after it. To
simplify, we compute this set by looking at the basic block#he most frequent basic block trace.
In our implementation, splits are bound to the same subsB&gfthat the initial task can run on

(i.e. the same mapping).

The split compiler operation can be performed iterativétlys part of the post-simulation com-
piler pass (presented in Section 4.3.2) because it reusesas@nalyses from it. We have two
algorithms to position the splits: when loops are found isplit regions, we split the function at
loop boundaries; otherwise, we try and make three eversgplitof an unsplit region. An illustra-

tion of the technique is shown in Figure 3.6; we can see thd¢giebalancing of work between the
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splits is not always possible.

3.4.2.1 Re-ordering Splits

With task splitting, it becomes possible that a lock migsdt®em one PE to another. Proper mi-
gration code has been inserted in the simulator to detesctdmdition. We must ensure that a lock
holder can readily execute on the next PE otherwise all theegts of the next PE could be occupied
by tasks waiting for the lock, creating a deadlock situation
Ennals et al. [23] propose a task optimization called “Rifrel’ that is similar to what we call

“splitting”: they break a sequential task into task splhattwill be executed in sequence for all
packets. However, task splits from different packets camteleaved in time. Ennals et al. also
discuss correctness issues. Correctness is preserved apurach as long as synchronized sec-
tions are preserved upon a split. Our work evaluates tagkisgland presents system issues related

to it.

3.4.2.2 Pipelining Splits

A more advanced form of splitting would facilitatask pipelining—allowing a task split to be
executed in parallel with other splits from the same task. [8\aisk pipelining is potentially very
useful, automatically pipelining the potential dependeEnwithin a task is complex and hence our

infrastructure does not support it yet.

3.4.3 Signaling a Task Early

Signaling a task early tries to extract inter-task paraihelwithin the application task graph by
launching multiple tasks processing the same packet asasoibis determined that their execution
would not violate inter-task dependences.

For each task, we determine the next tasks to be executde task graph contains conditional
branching, the next tasks considered must exist on all ssocéranches in the task graph. Using
the task graph, we also check if starting the candidate tasktd earlier would incur dependences

on memory locations so that we preserve the correct behaf/tbe program. We also take care to
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Figure 3.7: Example of early signaling requiring extra irteesk synchronization. Tagkcan start
as early as task, however taslb must wait for a resume signal from taBlbecause of

an ordered dependence between takdD.

remove signals that would be redundant when attemptingato stask early from different points

in the task graph.

This transformation requires careful signaling: let ussider the processing chaim—B—C
where A could signal taslC to begin execution before tagkcompletes (see early signaling in
Figure 3.3). Care must be taken to determine that the earakad taslC has no dependence with
B. A would then pass the packet to both taBkndC upon completion.

Let us now consider the scenario where tastould be started as early as taskSuppose also
that there is a possible dependence betweandD, as shown in Figure 3.7. The problem that
arises is that is modified to starC upon completion, that in turn starbs Hence,D could start
executing befor® has completed, thus violating a dependence. We solve theepndoy creating
two additional types of signals: D) waits for B and ii) B resume® upon its completion. Tasks must
also be informed of their time to live: in this example, thenber of tasks is allowed to signal
upon completion is nil becaugetakes care of signaling. In the case where exists on another
sequence of tasks where it is not preceded®bye need another signal so tltatloes not wait in

vain forB: a task prior to the execution ofannounceshatD will have to wait forB.
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There exists cases where the announce/feaitesume scenario cannot apply because of the
presence of the same tasks on multiple paths of the task.gfaplexample, a signal announcing a
wait condition cannot be issued before the early signalgklifain the unmodified ordering of the
task graph, there is a branch right after the early signalgkl tWe do not implement early signaling
in those those more complex cases because we believe thetrthegare support would require non

already available primitives.

Finally, sink elements (in particular, any task beyondheput trigger in Figure 4.6) can never
be signaled early; otherwise the packet could be prematsetlto be sent out of the NP. Also, we
do not launch a task that is a leaf of the control graph becanise memory deallocation may be

attached to it.

Placement of early signaling in the code is done to make beredndidate task is started as early
as possible (i.e. not after an expansive memory accesspglsir compiler pass, we insert the
signaling code in the appropriate function, right after $keat of a task. We have not implemented
early signaling a task at a different point in a routine intiiecause of the complexities of placing
the call while taking into account task dependences andadidw in the task itself. The resume’
signal is inserted right before the end of the task for reagast mentioned.

We envision that, in future work, it would be possible to handrite-after-write dependences
in early signaled tasks. We could insert some form of rengrallowing us to discard some write

operations (as in the MLCA project [38]).

Impacts of early signaling on simulation Early signaling requires modifications in the sim-
ulator. Our implementation has to take into account thatetihea possibility of deadlock if tasks
occupy executions contexts while waiting for early sigdaigsk to complete. Our solution is to
evict the stalled contexts, as explained in section 3.4As2well, the simulator must provide sup-
port for the 'resume’ signal to reach the tasks in a 'wWait state, considering that a task can be
mapped to more than one PE. We currently implemented a basadfgorithm to all the candidate
PEs that could be running the task. Destruction of unuseshisgoccurs in a similar broadcast

fashion.

45



3 Towards a Compilation Infrastructure for NPs

3.4.4 Task Speculation

In this work, we parallelize mostly non-loop portions of agram. For this reason, we have not
looked at optimizations such as reduction although thishiniigg beneficial to parallelize payload
processing tasks that contain more tasks with loops. Inrgemnvee need to create parallelism where
there is none. So we cannot follow the typical way of makirmgals by looking at the loop index.
Sequential code usually has a lot of self-contained deperedeand it is hard to guarantee that

computations, when executed in parallel, will not accesseshresources.

Figure| 3.8 shows a piece of code that counts unique IP addréss a rather naive fashion).
The concept is used in popular network address translapiplications where an entry is created
for each packet flow. If no entry is created, then the intedadh structures of the element do not
get altered and there is no dependence. Melvin and PratinfaBe some measurements on the
frequency of packets belonging to the same flow given a numbpackets arriving in sequence.
Speculation consists of removing synchronization and tbang memory accesses for dependence
violations, in which case the tasks that were last to enterféhmerly synchronized section are
aborted and restarted. When a task successfully completasist commit to the shared memory

all its speculative memory writes buffered locally to the. PE

In the network processing tasks that we consider, we canrhaltgle synchronized sections for
one task. Also, a normally synchronized task does not nadssnter a synchronized section upon
execution. Since we do not know if speculation will happerewthe task starts, our implementa-
tion rolls back the task upon failed speculation to the beigigp of speculation, as opposed to the
beginning of the task. The order in which speculative tasksa@mmit is decided by the order in
which they enter the synchronized section (or re-entemwpaation). Consequently, the processor
state has to be saved when entering a synchronized secticallawrites to non temporary storage
must be buffered until the task safely exits speculation.

In our current infrastructure, the compiler takes care aagipointing the state of an hardware
context at the entry of a synchronized section and restaohisgstate upon violation. The compiler
also inserts code to buffer the writes to local storage amaneib them to shared storage when the

task completes without violation. Hardware support is h@vd&est to detect violations in a manner
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class Counter {
int known cnt;
int* known_ addr[100];

}

void Counter: :process(struct packetx p)

{
int i, sum = 0;
int addr = p—>ip_idhr->ip_dst;

bool found = false;
for(i=0; i<known cnt && known addr[i] <= addr; i++)

if (known_addr[i] == addr)
{ found = true; break; }
if ((!found) && (i < 99))
{
memmove ( &known addr[i+1], &known addr[i], known cnt-i );
known_addr[i] = addr;
known_cnt++;
}

}

Figure 3.8: Rare dependences make opportunities for spgeeculdn this case, a list is modified

every time a new destination IP address is observed in theemaprocessed. The ac-
tual frequency of the modifications depends on the traffitepas. For example, on a
short time scale, all packets may belong to the same comnedtkius not creating any
dependence between task replicas. The synchronizedrsemigering most of the task,

is highlighted.
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that does not slow down the PEs. In our simulation, we asshaiethere is an engine snooping
on the bus connecting the PEs to the persistent heap stovhg, is the only memory type where
dependences can occur between task replicas (as seenia Bi§uThis engine signals a violation
to the context with an interrupt when an earlier task reademany location written to by a later

task or when an earlier task writes to a location read or evnitb by a later task.

3.5 Managing Threads

Network processors, as surveyed in Section 2.2.2.1, oféer processing elements with multi-
ple execution contexts that execute software threads. eTénast different flavors of how threads
interact on a single processing element. Ungerer et al §8§3Rin and survey those different mech-
anisms. To give an overview of the possible mechanisms aniyat®a choice for NP simulation
(Chapter 5), we briefly summarize their study.

There are two categories of multithreading when instrintiare issued from a single thread every
cycle, as surveyed by Ungerer et al. [85]. Fine-Grain Mulégading (FGMT) takes an instruction
from each thread in sequence every cycle. One of the adwestdd-GMT is to minimize hazards
in the pipeline, thus simplifying and speeding up the preoesThe alternative is blocked multi-
threading (BMT): one thread executes until an event occudsanses a context switching. In some
processors, because of replicated fetch units, the cosnatching time is null. Processors that can
issue instructions from multiple threads at the same tinmopa what is called Simultaneous mul-

tithreading (SMT).

Context switching means transferring the control betweenthiheads, and hence, only applies
when one thread executes at a time. Context switches cantie s&a triggered explicitly or
implicitly by a given set of instructions, or dynamic. Dyn@ncontext switching can occur upon a
signal, for example, an interrupt, a trap or a message. latsmbe triggered in some architectures
by the use of a value that has not been loaded yet because oflamgenemory access. Finally,
dynamic context switches can occur based on a conditiostiliction that, for example, triggers a

context switch when a register reaches a threshold value.
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Modern NPs typically implement blocked multithreading @navide very low-latency switching
between hardware contexts within a PE. For example, in'$rb€P family, a context switch is trig-
gered by the programmer through an explicit context switslruction €tx_arb). Alternatively, a
PE can switch contexts based on its current state, reactithgiamic events. BMT does not require
multiple issue hardware support and allows to execute adtagie full performance of the PE. In
our implementation, we model dynamic context switching méwer a long-latency stall occurs. In
combination with decoupled, non-blocking loads, this\aidhe NP programmer to tolerate the
significant latency of memory accesses.

We have identified two opportunities to improve on the thremthagement. When task repli-
cation is implemented, the thread that has acquired a look ithe critical path of other threads
waiting for the lock. To minimize this contention, we havedad support for the critical thread to
preempt other threads. As well, we have tried to load baldineeequests of the threads on the
shared NP busses so that a particular thread does not cahgédsis and leaves the other threads
waiting. In summary, our thread management strategy iseowdr the first thread that is ready to
execute and context switch when that thread can no longeusxeWe have implemented some
refinements on this that we evaluate in our simulator.

So far in this chapter, we have presented task transfornsti@mt we implement based on under-
lying concepts, namely: packet ordering, memory typing tas#é dependences localized to certain
memory types. Our task transformations involve memory mameent and also affect the interac-
tions between tasks. Our infrastructure also has somemeotimanaging thread interactions. Next,

we introduce the components of our infrastructure.

3.6 The NPIRE Framework: Overview

Our compilation infrastructure transforms a graph of temksplied by the application programmer.
To evaluate the resulting network processor system, we teaweeasure and compare the maxi-
mum throughput achievable in a given configuration. We &ase adterested in understanding the

performance-limiting factors. This section presents ttiegrated suite of tools that we developed
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for this purpose, starting with a justification for the maonmgoonent of this large software task: the

simulator.

3.6.1 Motivation for a New Simulator

In parallel computing systems, Amdahl’s law states thatdt& execution time improves linearly
as we add more processors to take on the parallelizableopastia program. In its formulation,
Tim&otal = TiM&equentiatt mepgfriamsthis law also illustrates the concept of diminishing ragir
as we invest in more processors, the sequential fractiom @palication is not reduced and can
dominate the overall latency.

Amdahl’'s law does not take into account several forms of @atmbn that we can observe in NP
systems. For example, two tasks running on two hardwareegtanin one PE seldom share the
PE so nicely that we can measure a speedup of 2. In realityfaskewill typically be able to
resume execution before the other task relinquishes theepsor. A similar contention is likely
to happen whenever shared resources are assigned to tas&smiAg an infinite availability of
hardware, producer-consumer data dependences betwksiatashe only limit to speedup. In real
life however, a system may experience long periods of timendongestion delays the consumer
such that it is not ready to collect the producer’s work. Bseacontention on shared resources
depends on the actual arrival and departure times in waitiegies, we have to perfornsanulation
of the interactions between all the main NP components;@dieal approach is not satisfactory.

Our goal is to provide an integrated compilation framewarnkrfetwork processors. To provide
simulation feedback to the compiler, we want our simulabonriderstand any application we feed
to itin a format that is machine-generated. In order to sthdyarchitecture of a network processor,
we need a simulator flexible enough to do some design spaderatipn. We need to vary the
amount and the kind of on-chip resources and customize theepsor behavior to the different
transformations we attempt on the application. Also, oomusator needs to execute rapidly so that
we have the opportunity to sweep certain design parameaigesa As presented in section 2.3, no
such software could satisfy our requirements, becauselttrmatives offer a detailed simulation

too specific to a given architecture and/or because theylawtlbe adapted to accommodate new
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Figure 3.9: Our infrastructure for integrated NP simulatio

behaviors. This justifies the design and implementation BRR¥E, our infrastructure with its own
simulator. After a few generations of relying on open-seuwremponents (see section A.3), our now
full-custom simulator uses real network router appliaagioransformed by some compiler passes

of our own.

3.6.2 NPIRE Components

The basic structure of NPIRE, our integrated compilationtgation environment, is shown in Fig-
ure/3.9. NPIRE uses the Click Modular Router [41] in two ways:t,fias a programming model
and second, as a base for more realistic, complete apphsatin this study we evaluate NP archi-
tectures using actual Click applications. The NPIRE compiigrastructure, built on LLVM [46],
divides Click’s modulaelementsnto tasks, inserts synchronization and signaling by amiagyde-
pendences between tasks, and maps tasks to processingcessolt also maps memory to the
different potential storage mechanisms. In the NPIRE sitirarlanodel, those mechanisms can be:

local to the processor, shared at the processor level {ergext-neighbor communication), shared
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chip-wide (e.g., a scratchpad), or shared in externaldoify) memory. In addition, the NPIRE sim-
ulator allows us to vary the number pfocessing elemen{PEs), the number of hardware contexts
per PE, and the interconnection between the PEs themseldasitn the various types of memory.
Finally, the simulator provides feedback that allows theapter to iteratively mold the application
to the supporting hardware by improving the task partiignand mapping, emulating the efforts

of programming by hand.

3.7 Summary

In this chapter, we have presented a programming model aséaksk graphs and memory type
identification. This programming model confines inter-talpendences in packet meta-data,
packet buffers and persistent heap. Other memory typeadademporary heap, stack and in-
struction storage. We use this dependence charactenzattasks to parallelize and reorder task
execution when dependences are not violated. The NPIRE tampirastructure can perform a
locality transformation on memory accesses consistingarhory batching and inter-task forward-
ing. Four task transformations take advantage of the nielfipocessing elements available on
modern network processors. We introduced the compilenigales to implement, namely: replica-
tion, splitting, early signaling and speculation. Finatlyo refinements, preemption and priorities
on shared busses, improve on our dynamic context switchssethread management strategy that
minimizes long latencies.

To implement and evaluate the proposed optimizations, tAERE framework is made out of
three components that we will present successively in tieé cteapters: real network processing
applications, a compiler infrastructure and a simulatoe.Will describe the first two software tools,

followed by our simulator, designed to mimic network pramshardware.
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In this chapter, we describe our software tools that act anabling platform to the task transfor-

mations presented in Chapter 3.

4.1 Overview

Figurel 4.1 shows the software flow that transforms the agiitin to efficiently exploit the sim-
ulated NP hardware. Our infrastructure has a compilatiahthat analyzes the Click elements
and drives the task transformations. The compiler passesrgie code allowing us to build our
execution environment for our NP application directly it original Click code itself (as ex-
plained in Section 4.3.1.1). As shown in Figure/4.1, thelteduhis execution is a trace suitable for
simulation on our modeled network processor. We will refeFigure 4.1 throughout this chapter
while describing the NP applications that we transform dreddompilation process that leads to
simulation.

To introduce task graph manipulations, we first give somaildedn the construction of an ap-
plication in our infrastructure. We then present how our pen passes transform the application
and generate code suitable for the application’s simulatde conclude this chapter by explaining

further application transformations that leverage sirotefeedback.

4.2 Expressing Packet Processing with Click

We use the Click Modular Router [41] to build applications byweecting Click’'s independent

modules, callecklementsas described in section 2.5. In this section, we explainptioeess of
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Figure 4.1: Work-flow of the simulation environment.

creating a new application. We also describe the executtaviors of the application that are

relevant to simulation and the modifications made to Clicklmatracing of those behaviors.

4.2.1 Creating a new benchmark application

To evaluate the performance of a network processor apjlicatside NPIRE, the user must first
describe the application in Click’s configuration languaag,exemplified in Figure 2.4(a). The
result of the application design is a graphtasks as illustrated in Figure 4.2, where each task
represents the processing performed by an element on atpde&eh element has customizable
parameters that modify its generic behavior. For exampéd,inear IPLookup element requires a
routing table that must be specified in the Click configurafiten Figure 4.2 also shows that some
elements can be present in multiphstanceghat have no sharing in their runtime persistent heap,
a data storage type that we defined in section 3.2. For examplean see in the graph that there
are twoClassifiers.

While we focus the compilation effort on the application’sks, there are parts of the Click
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router that we do not analyze. In particular, to be able te@eteean application, the Click router
needs to parse the user’s application description and atthetbments upon packet arrival. Those
Click parsing and scheduling components are outside theesziopacket processing on a network

processor so they are not processed by our compiler inficdste.

4.2.2 NPIRE’s Support for Creating Suitable Packet Traces

In all our applications, we use the elemeRi®mDump and ToDump to respectively read and write
packet traces for the incoming packets and outgoing packéte Click router. The user must also
supply one packet trace to be read by Click for each inputmstigahe application. Those packet
traces should have the appropriate characteristics (fEomple, destination identifiers and protocol
layers) to exercise the application’s tasks in the sameuéegy as in their expected real world
deployment. Failure to match the packet trace to the elesvisttavior can result in, for example,
having all packets discarded because no route is knownéon.tio help the application writer, our
simulator reports the flow of packets along each edge of glegeaph as seen in Figure 4.2.

The coverage of our profiling of the program will only extendlie code that is executed inside
the elements. In turn, this profiling will affect the intexsk and intra-task dependence analysis in
the task transformations we perform. Depending on the egipbin, different packets can stress
different control paths: so the simulation must be long ghoto cover a representative mix of
packets. In our measurements, we try to have a roughly deguivdistribution of packets across
all utilized branches in the application’s task graph. Sqaekets may trigger exception handling
conditions, which represent worst case latency scenafasexample, the costly sending of an
Internet Control Message Protocol (ICMP) error packet. Sintib a high speed highway, single
exceptions in an NP can have a significant impact on throughau this reason, in our traces, we
keep those normally infrequent behaviors to a negligitdetfon of the packets.

We use pre-recorded packet traces to exercise the Clickcafiphs. The traces used can be any

of the following:

1. atrue LAN trace;
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2. atrue LAN trace altered to approximately match the packei(size and type) of a reference

trace;

3. areference trace with payloads borrowed from a true LAlNedrinjected.

We only employ the third option in the list because it makes afpublicly available refer-
ence traces from the National Laboratory for Applied NetwBesearch (NLANR) [61]. Those
packet traces originate from high speed links (10Gbps) and been widely used in various other
research, including some workload characterization imwagk processors [66]. Ethereal [68] al-
lows us to convert NLANR traces from Endace’s Extensible Ré&émrmat (ERF) format to tcp-
dump [47] traces, understood by Click. However, the refezemnaces are distributed with their
payload removed, for privacy reasons. To alleviate thik tdpayload, we modify the packet traces

as follows:

1. Packet buffers are padded to make the size describediirhdeder match their actual size.
For the payloads, we use a packet trace recorded on a LAN. }&&t into each packet of the
reference trace the content of a LAN packet that resembéeseflierence packet in protocol
and overall size. If we cannot find a data buffer that is longugih to fully pad the reference

packet, we simply repeat the data buffer selected for paddin

2. A checksum is inserted to all known protocols headersrdwatire one in the reference pack-
ets. This facilitates the handling of the trace with somekptaiceaders and, most importantly,

allows the packets to pass common checks on its IP header.

3. Therange of IP addresses of the packets is optionallyppeth The source and destination IP
addresses of the reference packets can also be inverteslisTeguired to simulate different

networks and to facilitate the creation of routing tablestun applications.
4. Save the resulting modified trace using tcpdump’s API.

NPIRE provides a tool based on libnetdude [42] to do these podations on the packet traces.
Although there are timestamps in the reference traces, weotdase them: instead we intend to

stress our simulated network processor with a rate thathmatits processing capability.
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4.2.3 Back-End Added to the Click Modular Router

Figure 4.1 illustrates that some code is added to the Clicierdaefore we execute our network
processing applications. We refer to this software layeleddo Click asClick’s back-end This
section explains what was inserted in Click to produce thdiegtn trace file along with some

statistics about the basic block execution.

4.2.3.1 Support for Tracking Packets

To identify all accesses to packet data, our back-end musgreze packet data structures inside
the Click router. Inside the router, a packet exists as aamest of a clasBacket; we refer to it as
packet meta dataThis class contains pointers to the actual packet data.pabket databoth its
header and payload, is referenced from the memory bufferiiich the Click router reads large
segments from the packet trace file. Some elements can &satal memory and copy into it the
packet data to, for example, extend a packet. On the othef, lth@ packet meta data is created
using thenew operator inC++. When a packet needs to be sent on multiple paths in the taph,gra
a copy of the meta data is created but the same reference pathet data is copied over. The
packet data only gets replicated across those new packatdat if the packet data is written to,
as any writes to the packet data must be guarded by a call tthea buification routine. Because of
this efficient memory management inside the Click router, ae o overload theew anddelete
operators of the packet meta data and insert code in the eisrti@at source and sink packets to

handle respectively the packet data allocation and release

4.2.3.2 Application Instrumentation Handlers

All the instrumentation calls inserted by the compiler aaadied in Click’'s back-end, making our
infrastructure modular inside the router. The back-enddles are used to monitor instruction
count, memory accesses, memory allocation/free, stdridénasks and signal insertion for task
splitting and early signaling. Also, there is a handler tthgathe connectivity graph of the elements
inside Click and another handler to store a pointer to theksafter the initialization. This pointer

will be used to determine if a memory reference belongs toheep or the stack. In all those
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instrumentation handlers, the back-end contains an aderfo create records in the application
trace file.

The back-end also holds a table containing a pointer to ah@fapplication’s elements and to
their successors in the task graph. As well, the back-endtaias a data structure at runtime to
keep track of the identity of the element for which a task iswpeexecuted. With this element
identifier knowledge, the back-end is able to insert sommeie specific events in the application
trace, such as signals for the early signaling transfoonafrhis conditional insertion allows us to
have multiple instances of an element sharing the same osdakeithe Click router, thus reducing
our compiler’s work. For each element in execution, we alsothe back-end data structures to get
a reference on the successor element to which the packeg pmoessed will be forwarded. We
use that reference to dispatch the call to the successoerteand to insert element transitions in
the application trace.

All memory references that reach the back-end are clas&ifiegpe. The identification is made
by traversing a list of allocated buffers. Finally, someidation is made on the addresses of allo-
cated buffers to ensure that no two buffers are allocatdueadame address before one of them has

been freed.

4.2.3.3 Support for Asynchronous Memory Loads

For NPIRE to model asynchronous (also known as non-blockimginory operations, we must
determine the distance between any load instruction anddhesponding first use of the value
loaded. We first present two unsatisfactory approaches asumi@g this distance that motivate the
third approach that we implemented.

Computing the def-to-use distance of non-blocking loadsstatic analysis in the compiler is not
possible because of branches in the control flow. Howevenwkiyg this distance in the compiler
would allow us to break asynchronous loads into their two ponents: i) the slack time which is
the time between the load and its first use and ii) the stak twhich is the time after the slack
spent waiting for the memory hierarchy to return the valuetatic determination of the def-to-use

distances would allow the compiler to plan the instructichexlule more carefully and to insert
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static context switches to minimize the stall times. Anral#tive way of getting thosdef-to-use
relations between instructions would be to do some micehitectural simulation, which could
also be used to introduce different flavors of instructievel parallelism, such as super-scalar and
VLIW. This technique would require executable parallel eggneration and simulation support
that are beyond the scope of this work. Consequently, we éédinl opt for an implementation
inside Click’s back-end.

Our back-end support for asynchronous memory loads hagltramtage that the def-to-use dis-
tances can be measured and written to the application nageingle sequential execution of the
application. The back-end has a software component thabuier non-blocking operations until
the slack time is decided. This buffering code is part of Clidlack-end module designed to effi-
ciently write the trace. This module handles an instruntentacall on each use of a value loaded,
traverses an indexed list of recent memory accesses to fndriginal load and sets the use/def
relations. Only the first use of a value defines the use/dafioel. Each load has a default slack
time set to infinity in case no use is found. Efficient datacttices are critical to generate the trace
in a reasonable amount of time. Because non-blocking menoagsaes support is a crucial part of

the back-end code, validation code is in place to detect atengial error.

4.2.3.4 Support for Identifying Memory Types

Memory types, as defined in section 3.2, are used to categmemory accesses that have different
sharing and dependence characteristics. The back-entkissée because it can easily accommo-
date the addition of new memory types. This makes it easipdacialize the processing of a certain
kind of data.

Click’s tasks are declared using a standard interface an@lgdamcertain requirements that make
them easier to run concurrently. The only data passed iremnegit is a pointer to a packet descriptor
that, in turn, contains a pointer to the packet buffer. Padkscriptors flow in and out of elements:
if a packet is dropped, then the packet descriptor is desttoyAll elements have an associated
configuration and potentially some dynamic data structufegure 3.2 presents the memory types

found inside Click: the separation of the memory types is irtgpd to model the appropriate storage
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001 struct packet_desc {

002 int ip;

003 char* packet_data;
004 };

005

006 struct ip {

007 int addr;

008 int access_cnt;
009 struct ip* next;
010 };

011

012 class ip_counter {
013 int num uniq ips;

014  struct ip* list_ip_ head; persistent static heap

015 public:

016  ip_counter();

017  ~“ip_counter();

018 struct packet_desck pushl(struct packet_desck desc);

019 struct packet_desck push2(struct packet_desck desc);

020 };

021

022 struct packet_desck ip_counter::pushl(struct packet_descx desc)
023 {

024 bool found = false;

025 struct ipx ptr = list_ip_head;
026 while(ptr != NULL)

027 {

028 if (ptr->addr ==

028a desc->ip) packet meta data
029 {

030 found = true;

031 break;

032 }

033 ptr = ptr->next;

034 }

035  if(!found)

036 {

037 ptr = new struct ip; |temporary dynamic heap
038 ptr->addr = desc->ip;

039 ptr->next = list_ip_head;

040 list_ip_head = ptr; | transition from temporary to persistent dynamic heap
041 num_uniq_ips++;

042 }

043 ptr->access_cnt++;

044 return desc;
045 }

Figure 4.3: lllustration of memory types in a task (the cstisection is highlighted).

for each buffer and to characterize the task dependencsspasarized in Table 3.3.

Figures 4.3 and 4.4 give an example of two implementatiors fadtitious element that counts
the number of accesses to distinct IP addresses. The firénmeptation is a FIFO linked list
while the second figure shows the use of a sorted linked lif @iddresses. In both cases, if the

modifications to the variablaccesscnt of the IP record are not atomic, then there is dependence
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046

047 struct packet_desck ip_counter::push2(struct packet_descx desc)
048 {

049 bool found = false;

050  struct ip# prev, *ptr = list ip head;

051  prev = ptr;

052  while(ptr != NULL)

053 {

054 if (ptr->addr == desc->ip)

055 {

056 found = true;

057 break;

058

059 else if(ptr->addr > desc->ip)
060 break;

061 prev = ptr;

062 ptr = ptr->next;

063

064  if (!found)

065 {

066 ptr = new struct ip;

067 ptr->addr = desc->ip;

068 if (prev)

069 {

070 ptr->next = prev->next;
071 prev->next = ptr; |dynamic persistent heap modified|
072 }

073 else

073 list_ip head = ptr; |static persistent heap modified|
074 num uniq ips++;

075 }

076 ptr->access_cnt++;

o77 return desc;
078 }

Figure 4.4: lllustration of memory types involved in the slironization of a task (the critical sec-

tion is highlighted).

between replicas of the task. There is also a larger depead@gion because of the head of
the linked listlist_ip_headthat can be modified by the code. Figure 4.3 shows the mempgsty
involved while Figure 4.4 shows the importance of trackiygamic heap storage. In Figure 4.4,
we can see that the dynamic heap modification is enclosed tgtia Beap synchronized section
solely because the head of the list is written to.

The compiler has some code to do a basic identification of mernypes, however this has
limitations. For example, it is possible for an instructiaccessing memory to refer to different
memory types in two different accesses. So we prefer usinganetypes fed back from Click’s
back-end and inserted directly in the trace. We next explamthe back-end achieves this function.

The back-end tracks the allocation of memory buffers: theskers can either belong to packet
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descriptor storage, packet data or local element storagmpdrary stack and heap storage does
not have associated memory allocation events in the apiplicerace because of the difficulty to
track each of those individual stack and heap allocations.v@rk instead assumes very efficient
primitives for memory allocation and release in a threa@-saanner, an example of such is given
by Parson [63]. Temporary heap is distinguished from peentheap storage by determining if
memory accesses are within buffers that can be reached hiepoin elements’ data structures,
using the elements’ static data structures as startingg@n the search. The process has some
similarities with the “mark” heap search performed in soragbgge collection systems [94]. We
envision that this reachability analysis could also be usedetermine if locally allocated heap
buffers escape the scope of execution of an element, in dodpotentially convert these heap
accesses to stack accesses as proposed by Gay and Stek[@&tjaar

In simulation, when processing packets in parallel, we neorder all memory accesses and
we need to preserve the fact that accesses to differenatidduffers are independent. Memory
allocation in the operating system Click runs on is likely Bm back to the application a buffer
that has recently been de-allocated. So we need to remapdiigons accessed in memory so that
they have no overlap with other unrelated buffers. All nansgstent memory, including the packet
meta-data, packet buffers and the allocated stack, mustrbapped to unique memory locations
for each task. However, persistent heap space is never paadap order to model system-wide
dynamic memory allocations, as opposed to other paraB&litdrastructures that only target static
structures, such as the SAFL language [60]. Keeping tracilofations and releases in the back-

end is required to alter the addresses of memory accesses.

4.2.3.5 Unsupported Behaviors in Packet Handling Routines

Some minor modifications are required for packet handlingimes inside a limited number of
Click elements, prior to their compilation in our infrasttuie. For example, because we work with
packet traces, we cannot allow for the router to generateclkep#o request the hardware address
of another host and wait for the reply, according to the Addgie@esolution Protocol (ARP) in IP

networks. When this situation happens, we assume the rduedg knows the information that
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it was about to request. In reality, this is a reasonableraggan because ARP requests occur
in the scale of minutes, hours, or not at all, in a high speadar&. In summary, in our current
implementation, any processing based on a future packBt oe@ timer escapes our tracing of
the application and must be avoided. This restriction istduée fact that, at simulation time, we
rearrange all the application trace events and we have nd gag to position a task that is not

bound to an incoming packet event in the modified executioe.ti

4.2.4 Migration of an Application to the Compiler Infrastructure

After the Click router parses the application file suppliedtiwy user, the elements are connected
by Click to form the task graph. To import this task graph ifite tompiler, we need to give to the

compiler the following two files:

e A connectivity graph of the elements in the application. sTbonnectivity graph is taken
from the execution of the Click router: the file is generatadrathe Click router parses its

configuration file.

e A file describing the binding of elements @+ classes. This information is obtained by

examining the Click router source files.

A script reads the connectivity graph and generates thendezmmfiguration file in the above list,
given the root directory of the source code for all the eletmeBecause the compiler needs specific
information on the location of an element’s code, we needi¢miify whether there is inheritance
between elements (for exampketaticIPLookup iS derived fromLinearIPLookup) and what
functions are present in the (derived) classes. Care musakba to find the right function when an
element is derived from another element and does not prangef the basic element routines.

The entry points for the execution of an element that mustbatified by the compiler are one
of the following routines:run_task (), push(), pull or simple_action. All those functions are
overloaded functions of the primitive implementationshe base clasBlement. run_task() is
a function used primarily by elements that source and sitkgis. Those elements are typically

scheduled by Click instead of being called by other elemeftss distinction is important: the
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void Element::push(int port, Packet *p)
{

p = simple_action(p);

if (p) output(0).push(p);
}

Packet* Element::pull(int port)
{
Packet *p = input(0).pull();
if (p) p = simple_action(p);
return p;

by

Figure 4.5: Default implementation of th@sh () andpull () element entry points.

compiler can connect elements that call each other buthetsitnulator handle the elements that
Click schedules upon arrival of a packet in the routgnple action() iS a one-parameter version
of the processing and is called in the default implementatibpush () andpull () as shown in

Figure 4.5.

4.3 NPIRE’s Compiler Support

The compiler support in NPIRE enables task transformatienwell as the insertion of all the
instrumentation calls in the elements’ code that help Glidddck-end generate the application trace
and some execution statistics.

The compiler infrastructure, based on LLVM [46], is curfgntomposed of two passes as il-
lustrated in Figure 4.1. Thre-Simulationpass modifies each of the application’s elements from
the source code and emits a compiled binary version. Cliclomspiled with those transformed
elements and executed to generate the application trads.trébe is played through the simula-
tor. The pre-simulation compiler pass and the simulatodpece input files for théost-simulation
pass of the compiler. This second compiler pass transfdmmslements’ code for a more efficient

execution of Click on the simulated architecture while leggng simulation feedback. While sup-
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port for task transformations was presented in Chapter 3,amed@scribe in more detail the other

components of those two compiler passes.

4.3.1 Pre-Simulation Pass

The goal of the pre-simulation pass is to analyze the memmgsses because we need to know
where to physically send data in a realistic/simulated Npl@mentation. Another objective of
this pass is to instrument the elements’ code to get the @reciiequency of basic blocks when
the application is exercised by a representative packee.tréVe next describe these steps in the

compiler pass, starting with the transformations made byctimpiler to the original Click code.

4.3.1.1 Code Transformations

An initial run of Click with its back-end creates a connediyvgraph of the elements contained in
the application’s task graph. This information is usefubentify which functions are on the packet
forwarding path of our application. If two elements withfdiient names have the same function
because they both are derived from a common element, wecdtgpthe code of one of the elements
to avoid any ambiguity in the instrumentation we will insérhe initial compilation phase includes
compiling all of Click’s files through LLVM . We then extractdm the voluminous binary only the
functions that belong to the packet forwarding path of thegliaption. In fact, only one function is
extracted for each element except for theeue, that preserves bothush () andpull (). When
extracting the functions, we put them in a different modulejer a different name to avoid naming
collisions with the original Click.

Our compiler passes assume that only inlined code shoulddbeimented. Inlining functions
called by elements as much as possible creates long seofistraight-lined code which are easier
to optimize. This simplifies the instrumentation by elinting shared code across elements and
hence shared tags in the instrumentation. The alternatiwvgdibe to have elaborate tracking abili-
ties in Click’s back-end to distinguish a code execution ffedent calling contexts. In an actual NP
implementation, inlining would have to be balanced by theesponding tradeoffs in performance

and instruction storage space. Although inlining reacteepty inside Click, the compiler passes
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only touch code that is on the packet forwarding path: thiairgation/configuration phase of the
router can safely be ignored at simulation time because @erdy concerned with the runtime NP

memory of the modeled NP.

We use the Click router to read and write packet traces bubtusrs outside the scope of our
instrumentation. Because we do not model any kind of mediessocontroller to act as source and
sink of packets, we consider that the packets are allocate@émory by some kind of direct memory
access. Also, we do not account for fixed sized packet buifatedmbufin the Intel IXP NP chips,
andskbufin the Linux operating system). We assume that the packetsamnsparently accessible
starting at a certain memory location. Because we rely on Gtidkad the packets, we use the
packet alignment in memory that is given to us. Since worddsimaligned memory accesses are
allowed on an x86 architecture, we assume that our simuiatplémentation has packets initially
aligned to avoid the overhead of unaligned memory accessessimple NP architecture. This
packet alignment assumption is realistic because modes) Blizh as the IXP2800 [35], have

specialized hardware to automate byte alignment.

Click is coded inC++, a high level language that, because of its overheads, ia traditional
choice for NPs. However, the modularity and encapsulati@his object oriented language make it
a good candidate for parallelization and source-levehagttion. We limit the overhead @f++ by
inlining method calls whenever possible. We have not entevad cases where Click makes calls
to library functions that could not be inlined. Exceptioms the primitivememset () andmemcpy ()
that are assumed to be handled by some hardware primitivewr§ee functions as well as function
pointers that could not be inlined for instrumentation aegligible in dynamic instruction count.
As a guideline to NP programmers, we would recommend tramsiig those routines so that they
could be inlined. We also tried inlining together tasks thistays occur in sequence. On average
over our experiments, we found that this operation does awg any memory accesses, saves at
best 5 instructions and incurs extra communication betwkerelements involved. Those poor
instruction count improvements show that little code issedale to, for example, access boxed data

structures [12], a characteristic overhead of object ¢eigprograms. Inter-element inlining was
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push pull
a) Input Queue Output

b) [ Input HEnqueu} H——[DequeH Output ]
ready E ready

Figure 4.6: Modifying Click’s push and pull queue operatigrtee original application using push

and pull; b) the transformed application with push and catetrolled pull.

also abandoned because it presents several challengdssemsent compiler passes if we want to
preserve the identity of the separate elements. Finallyargae that working from a high-level
language description of the elements is acceptable, cenmisgdthat other real network processor
systems have also some source of overhead while binding &éaskhigh level decomposition: for
example, the Netbind project [9] has an overhead that grimesilly with the number of software

tasks.

In our infrastructure, we adopt Click’s programming modél][4elements are connected pysh
(send a packet to the next element) and1 (request a packet from the previous element) links, as
shown in Figure 4.6(a). The elements that initiate a pushparllawithout corresponding requests
are scheduled by the Click router. Any scheduled task cagerign arbitrary sequence of push and
pull requests. Section 2.5 gives more details on the Click WerdRouter. In this compiler pass,
we transform transitions between elements in explicitscalour instrumented methods. This has
the benefit of eliminating virtual calls through variouséay of the Click software. Also, this call
transformation along with the above mentioned inliningal us to build a set of functions that

constitute the totality of the processing for a packet.

In Click, aQueue element has bothpush component on the enqueue anpd1 component on
the dequeue operation. In Figure 4.6(a) the elerpenput that triggers the dequeue (thatlls)
can by default pull even if no packet is ready to be pulled. RIRE, we transfornpull operations

by adding a token indicating the readiness ofthieput element so that theequeue operation does
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not occur before th@utput element is ready. This additional control allows us to mateting
packets on the output interface. In NPIRE, we use Cligkisue element to specify that packet
ordering must be preserved at the point where it is employedin most real network processor
applications, our applications therefore precede all efrtbutput ports by d@ueue element to
preserve order.

In a separate part of this pre-simulation compiler passadace alC++ try/catch sequences to
the content of thery block. We can remove this overhead because, in Click’'s codeptions are
only for error/debugging purposes. We also automaticaltyove all trace of debugging information
printed by the elements. As well, Click is compiled with tiesert () calls disabled (i.e. they do
not generate any code). After those code alterations, welAgM to re-optimize the instrumented
set of functions extracted from the Click source code. LLVMswaodified to prevent the unwanted
inlining of element functions, because we want control oresghthe code for each element is

located.

4.3.1.2 Code Instrumentation

We use LLVM [46] to insert instrumentation on a basic blockibaln this step of the pre-simulation
compiler pass, we insert instrumentation to track instomctounts and memory load and store
instructions. Extra information is also passed to Click'sksand to record the sequence of basic
blocks executed.

Since our simulation infrastructure does not target yetfany of micro-architectural evaluation,
we are not interested in the actual instructions behaviaret for instructions that lead to some
form of communication. Our intent is to model a RISC processmnpleting one instruction per
cycle. Similar simplifications are done in such works as thed®ling Framework [14] and the
Intel Architecture tool [26]. The main caveat of this apprieas unmodeled pipeline stalls. This
is partially alleviated if we assume that our compiler cant laiccurately branch prediction. Also,
multithreaded processors usually have instructions frartiple threads in the pipeline to hide most
stall time. Instruction counts are obtained using a roughversion factor from the intermediate

representation to RISC instructions: 3.5, according to théM intermediate representation (IR)
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design paper [1]. Interestingly, this number is roughlyiegjent to the number of internal decoded
micro operations obtained from an x86 instruction streamehdR instruction generates 2 or 3 x86
instructions [1] and the rePLay paper [78] indicates a cwiwa of 1.4 from x86 to micro-ops, thus
2.8 10 4.2 (average 3.5) micro-ops for an IR instruction.

Start and end of task markers are inserted to generate ttesitormation. Those end of task
markers allow the execution to resume/continue on an elethahwould launch another element
before its completion (a technigue also known as non-bhagkispatch). Note however that Click
disallows processing a packet once it is sent to anothereglemt this point in the code preparation,
all distinct instances of an element present in an apptinaghare the same code in our modified

binary.

4.3.1.3 Code Generation

Once the instrumentation calls have been inserted at theiEmmtermediate representation level,
we have a file that contains all the static processing of tamehts. Our compiler can optionally
generate different copies of a function shared among éifteinstances of an element, in the case
where the code would be dispatched to different controkestor an actual NP implementation. The
remaining challenge is to incorporate all of the new elengedte inside Click.

We export the intermediate representation from LLVM to a6 a8sembly file using the LLVM
infrastructure. We also create an include file containirgyittiormation to size static arrays and
per-application file name information for the back-endeg&igenerated by Click will we be recu-
perated later by our LLVM passes. After compiling Click usgyg, we need to link Click with the
LLVM generated x86 assembly. An issue that arises is glopabs| duplication: some global data
structures existin g++ and LLVM object files. To solve thelgemn, we first cut all globals from the
generated assembly. We then select the missing globalspgahd them to the cut assembly file.
Finally, we disassemble thg+ object files from the schedulable elements (i.e. witlua task ()
function, as defined in Section 4.2.4) in the original Click tihe entry of these functions, we insert
a bypass to their transformed copies renamed to avoid naiti€a@ts. By combining our code

with allows us to reuse the Click skeleton, in particular thigalization and configuration code and
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Click’s scheduler, to trigger our modified elements. All of tbove steps are performed automati-
cally by custom made scripts. Next, the LLVM generated asdefile is linked with Click that is

now ready for execution and trace generation.

4.3.2 Post-Simulation Pass

The second compiler pass occurs after the application has peepared by the pre-simulation
compiler pass and the simulator has made initial measurtsmoerthis application. We need some
simulation feedback on the timings for a sequential exeautiith one element per processing en-
gine using a special execution mode in the simulator, whdgrdjuishing the timing of an element
in each of its instances. This information is relevant ik tagnsformations and is be especially use-
ful when assigning tasks to processing elements in the abeaiinetwork processor (as presented
in Section 5.2.2).

The post-simulation stage extracts and summarizes profienation useful to the task trans-
formation passes described in Chapter 3. An important coenttasf the post-simulation pass is to
read information produced by the pre-simulation pass: ¢mepiler needs to know which elements
are connected and in what functions it can find the code fanstances of an element. We also
read a file containing the execution count for each basickbdoal a file containing the sequence
of basic blocks executed. Generated by the simulator, weressad-after-write, write-after-read and
write-after-write dependence information matrices fa& ¢éhements in each memory type as well as
the memory dependence mask that limits the number of elenttesttcan have dependences even if
accessing the same locations (see section'5.1.5). Alsotfrersimulator, we get latency statistics
for each element, a summary of paths taken on the task graph araximum list of all memory
references (read and write) accessed by an element forckiéfsaand memory types.

In the post-simulation pass, we build control flow and usdébstructures for the intermediate
representation in a format suited to our analysis. We intdifar each basic block the next most
likely block(s), with the associated probabilities. Traios points across elements are also marked
as such. Then we determine the frequency of occurrence wftblask sequences for each function

and for the complete processing of a packet. Next, we atteanmptert the sequences of basic block
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to sequences of elements. Obviously, because multiplarioss of an element can share the same
code, there is an indetermination to which element a tranebetong to. Using a combinatorial
search on the expanded chains, we can solve the problemlygaio#t identify what chains com-
pletely share code because of identical or different ircgaiof the same element. We found that we
can attain an important reduction of the execution time ahier compiler passes by summarizing

the above work in a file what we callt&aace cache.

4.4 Summary

In this chapter, we have explained how, once we have an apiplicdescribed in Click’'s program-
ming language, very little work is needed for the applicatiaiter to import his application into the
NPIRE framework. NPIRE even provides some support to the progrer to tune the packet trace
that will exercise the application. Once the applicatiomiplace, a fully automated flow instru-
ments the element’s code, generates executable code,pées@lick with the modified elements,
runs Click to produce an application trace and collects tkaltg to refine the task optimizations
that the compiler provides. In NPIRE, to facilitate NP desgpace exploration, these steps are
performed without knowing the precise details of the targgtvork processor. The simulator takes

care of finalizing the resource allocation as we will see ertaxt chapter.
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Architectures

The simulator is the largest component of the NPIRE framewaditke purpose of the simulation
is to evaluate our task transformations on parameterizedonke processor (NP) architectures. To
perform this evaluation, the simulator has to understaedctintents of the application trace and
simulate the work of each concurrent thread. In this chapterpresent the devices that our sim-
ulator can model. We also expose the key configuration cosmgsmrequired to make simulation
measurements that reflect the maximum performance of thendBruest. Lastly, we give a brief

description of the simulator’s internal organization.

5.1 Simulated Hardware

Network processors are part of an active field of researcloinpaiter architecture. We are inter-
ested in studying the compilation of applications on pataimarchitectures and identify which
architectures respond the best to our compilation teclasiqin this section, we give an overview
of the network processors considered and we present a libieomajor simulated NP hardware

structures modeled by our simulator.

5.1.1 Overview

In network processing, several packets can be processearatigh to improve the computation
throughput. As seen in the surveyed processors in Sectibd.2, the majority of commercial

network processors try to take advantage of this thread fmllelism. The support for paral-
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Figure 5.1: Generalized architecture of simulated NPs.

lelism exists mainly at two levels: in multiple processirgnents (PEs) and in multiple execution
contexts within each PE. Multithreading within each PE ig1the number of stalls in each PE by
increasing the number of instructions ready to be issued. Vdeeiding the architecture of the
PEs for our simulation, we identified that the processorseyad favor in-order single issue PEs,
that we will qualify assimple Two reasons explain this preference: i) it is possible tbrpare
PEs on chip because simple cores are more compact that salpei@nes; i) multithreading leaves
little room for issuing more instructions out-of-order. Raty, simple processor cores have also
been found to outperform superscalar coreship multithreaded multiprocesso(€MT) on web
and database transactional workloads [17]. Finally, beeaimple cores are easier to simulate, we
are following the trend of commercial NPs in favoring thelaa#ion of simple core multithreaded
multiprocessors. For the high-level organization of trek$eexecuted on PEs, we adopt the hybrid
model consisting of a network of PEs. As defined in Sectior22tBis organization offers the most
flexibility between the run-to-completion and pipelineddets.

The overall architecture of the NPs that we can simulate WiHRE is shown in Figure 5.1.
A given NP has a configurable number of PEs, each with a nunfbleardware contexts and a
local store for both instructions and data. Contexts provearchitectural support to execute

multiple processes: each context can store its temporaty st a reserved section of the register
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file of its PE. NPIRE does not yet model the micro-architectifeEs in detail. Instead, assuming a
basic single-cycle-per-instruction model, we focus otrudions that involve communication. This
approximation is also used by Crowley and Baer [14] and in tted IXP architecture tool [26]. The
micro-architectural organization of the PEs could be esgadfurther in another study that would
nonetheless require the simulation framework and comaésisted transformations presented here
to efficiently program the NP. Our simulated NPs are alsomzpd with a shared on-chip SRAM
and external memory, including SRAM and SDRAM channels siniddahe ones found in popular
network processors (as seen in the survey in Section 2)2Thi design of the on-chip interconnect

as well as the number of channels to external memory are bipiltable.

5.1.2 Queues & Scheduler

In our infrastructure, tasks represent the processingppadgd by an element on a packet, as ex-
plained in Section 4.2.1. Once tasks have been assignedstat&te still remains some flexibility
in the scheduling of tasks to the hardware contexts of eachREcapitalize on the fact that only
heap data is persistent across task instances in a progngnmadel such as Click’s—this gives
us greater flexibility in task scheduling, since a given tas&d not be bound to a certain hardware
context. Instead, as shown in Figlre|5.2, an instancewedrk unit consisting of a pointer to a
packet and an identifier for the task to execute, is queuentdefach PE. A task is executed when
it reaches the head of the queue and a hardware context ifofeecute it. In the case of task
replicas (defined in Section 3.4.1) that are assigned tapeiIPEs, we model queuing such that the
replicated tasks may execute on whichever of the target P&Ed#s a free hardware context (i.e.,
for taskC in Figure 5.2). This model assumes that the code for eachotagsk replica has been
loaded into the local instruction store of each potentiaeaPE.

The simulator has several kinds of queues: for examplestas§gfnals, and bus requests can be
gueued before being executed. We model some cost in termylef @ounts and bus utilization to
access all the queues. Shared work unit queues are morddlaribtheir access time proportionally
reflects this complexity. The exact latency values that iecséor our experimentations are shown
in Table 6.3.
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Figure 5.2: A model of task queues that allows some taskB &ndD) to be pinned to a specific
PE, while a replicated taskY can be dynamically scheduled onto multiple PEs. The

CtrlUnit is a proposed controller to improve the distribution of tesglicas to PEs.

With the queue system presented in Figure 5.2, a procesknteat can request an additional
work unit as soon as it has a vacant hardware context. Oneigption that we evaluated to
improve on this ad hoc schedule of tasks to PEs is to interposmall controller between the
work unit queues and the PEs (tberlUnit in Figure 5.2). This controller handles the requests
for work units and is free to return a work unit according tosemrdefined policy or return nil.
In our implementation, the controller only has the flexiyilio supervise task replicas (defined
in Section 3.4.1) that can execute on more than one PE. Thigation is imposed by the fixed
assignment of tasks to PEs, presented in Section 5.2.2.1gtthm that we adopt in the controller
attempts to load-balance the work among PEs that can exteeusame task replicas. Consequently,
between the PEs that can execute a given work unit, the PB¢hatres the work unit is the one that
has a lower or equal number of tasks executing on its cont®dsause of the number of requests
for work units that are denied and retried, this proposedrotier incurs more traffic on the shared

on-chip bus.
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5.1.3 Processing Elements

The target network processor is made of a parametric nunfl@ooessing elements each having
a multi-threading capability. Changing processor contraif one thread to another is assumed to
have a fixed latency. In our implementation, we do a contektivby transferring the control from

a task as soon as it is unable to execute more instructionseomeixt processor cycle. The context
that is either ready to execute instructions or the moshfiteebecome ready first is then selected as
the current context of the PE. Evicted tasks on a PE are retblaefore requesting new work units.

Tablel 5.1 shows the break down of a processing element Statese states represent the state
of the current hardware context execution in the processiament. Consequently, the average
time spend in each state by a PE over a simulation allows ugdothe most frequent states of the
contexts, given that contexts with computations to perfbave priority over waiting contexts. We
take care of breaking down the latency of the instructiorteims of memory access time and bus
usage.

Keeping track of the PE state activity is non-trivial: foraaxple, multiple requests originating
from different contexts can be in flight at the same time, @nlibis or in the memory controllers.
This state representation is also extremely helpful whdbugjging to determine why a PE is not
committing instructions at a certain time. Finally, the ggssor states breakdown enables us to add
PE behaviors specific to new task transformations. For elgriestalled state in Table 5.1 only
exists when the early signaling transformation is enabled.

For the user’s convenience, the compiler can generate dicatpm trace with the code for all
the different signaling patterns related to our task tramsétions. The simulator can be configured

to execute any combination of the transformations avaalabl

5.1.4 Interconnect

Our simulation infrastructure must be flexible enough toegkpent with different processor organi-
zations. The interconnect is a key component of the NP actite because it propagates messages
across and off the chip, allowing PEs to communicate with orgndevices and other PEs. To

model a wide range or modern NPs, our simulated NP interaiiaes four important features: it is
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Table 5.1: Hardware context states tracked by the simutat@ per-PE basis. The state of the PE

is the state of the context executing on the PE.

nory

ure

nas

di-

able

er

of

State Processing element activity | State entry condition

1. inactive | unused processing element | initial state

2. active executing instructions computing required by a task

3. deeping | waiting for memory operat slack of non-blocking memory read expirg
tions to complete and memory access is processed by amen

device

4. blocked | waiting because of athe memory controller exerts a back-press
load/store queue rejectignon a context to prevent the issue of more
(too many requests pending) quests or the maximum of pending reads

been reached by the context

5. ready has received a signal to exgthe context is ready to handle the signal
cute a task

6. stalled | has to wait for another task totask reaches a compiler inserted wait con
complete (only in early signal- tion
ing)

7. locked | waiting for a lock at the ent a lock has been requested and is unavail
trance of a synchronized secer a speculative task waits to commit in ord
tion

8. bus waiting because of a bus transa request or waited reply is in transit one
fer the NP busses

9. idle no activity task completed
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customizable, scalable, configurable, and modeled synolsdy with the simulated time. We next

explain what these concepts mean and how they benefit ouriegrgations.

The interconnect between memory channels and process&ngests is designed to lsestomiz-
ableby modeling a network of heterogenous busses that haveattfeatency and bandwidth char-
acteristics. Busses can be connected in a hierarchy to exgetriwith different bus organizations.
For example, it is possible to implement an interconnedtgbales linearly in the number of hops

between processors as presented by Karim et al. [39].

Our interconnect is alstonfigurablesuch that the compiler can allocate bus segments to carry ex-
clusively specific messages. The interconnect then autousi;mdecides where to route messages,
such as incoming packets, data from/to external RAM, shareldl Bécesses, and synchronization

signals.

Because requests may have to travel in different wires araliseadata may go through inter-PE
bypasses or may be found in a local storage, we need to hdrellaterconnection in acalable
fashion. For this reason, we have a software routing layarttkes care of putting event packets

on the wires. This indirection layer allows for arbitraryring scenarios.

In the NPIRE simulator, we model the interconneghchronously with the simulated timee.
the state of the NP is changed when requests are procesdes. Sdhulators, such as the out-of-
order Simplescalar simulator [4], can change the stateefitemory before any request reaches
the memory device. Our delayed execution allows us to, famgte, reorder transactions on a
bus and postpone accordingly a synchronization message®etPEs. Our modelization hence
makes it easier to implement extensions or interfaces legtwemulated hardware modules. There
are two main aspects of simulation that allow us to model tely bus delays: request sizing
and queue modeling. First, when we add a request on to a busolber's queue, we need to
send enough information so that the request can be issudte@etving peripheral and the result
returned to the appropriate entity. In fact, there is enounfbrmation encoded with the request
to allow for its proper execution and to have a reasonableegpgtion of the size of the transfer
on the interconnect. Second, the simulator handles cases whequest needs to be queued in

several queue units in sequence. For example, for a memady tiee bus controller and memory
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controllers make it impossible for the simulator to predipbn issue when a request will reach its
handler in the future. For context switching purposes, wthercompletion time for an event is not
known in the simulator, it is set to infinity. This completibme and the processor state (presented

in Section 5.1.3) is updated as the event message beconmassit bn a bus or is being handled.

5.1.5 Modeling Memory Devices

To handle load and store task instructions, our simulatiaméwork models memory units at three
levels of a hierarchy: there exists storage local to PEgeshan-chip and external. i.e. off-chip,
as illustrated in Figure 5.1. As seen in the network proaessoveyed in Section 2.2.2.1, most
NPs do not have hardware caches because of the low localityealata accessed by tasks. Our
work adheres to this absence of cache and lets the softwatebtahen the data should be copied
from one memory unit to another. NPIRE’s memory modeling 18dgéid in two parts: first, we
present memory simulation aspects, then we describe themerocess profiling performed in the
simulator.

When considering the timing of the memory devices, moderwardt processors utilize various
memory technologies, such as SRAM, DDR, RDRAM and RDLRAM, that rdifferent timing
specifications. Also, several memory access optimizaspesific to DRAM have been published
in the literature. For example, Hasan et al. [30] propose arsmemory controller to exploit
row locality in the context of network processing using SDRABVices. Our goal with NPIRE’s
simulator is to make generalizable observations targettadentifying performance bottlenecks.
We next explain how we can achieve this objective by modedingmemory units in a technology-
independent fashion.

Although our simulator has detailed models of memory deyieee realized that those models
alone do not improve the accuracy of our simulation. As @rpldin Intel’s discussion on DRAM
performance on an IXP processor [34], the latency of mem@erations is relatively constant
for random memory accesses until the memory unit is oves@uied. After experimenting with
the Intel IXP SDK, we realized that the memory access timeroexdernal memory device only

represents a small fraction of the total latency experiéngethe application. Reasons include the
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latency incurred by the communication on system busseshandrossing of the chip boundary.
Consequently, the exact timing of the memory devices needh@aeplicated exactly to obtain a

good appreciation of the memory access time.

To be able to simulate timing accurately for adequate bw#ttk identification, we realized the
importance of having a parametric breakdown of the lateriap@mory operations. On network
processors, because of pipelining in the interconnect disasweén the memory units, we have to
model an overall latency, of which a large fraction can berlapped with other transactions. In
particular, the total latency haspgpelined componerdand anun-pipelined componenThe mem-
ory access latency that is serialized between requestsunpipelined, is based on the address
(aligned/unaligned), size, storage type and kind (readrde)wf an access. The latencies can be
either deterministic or with a random jitter. In our simwlgtstatistics are collected on all memory

and bus transactions in terms of in their average duratidrgaeue time.

In our simulator, memory reads and writes are always handlesh asynchronous fashion as
explained in Section 4.2.3.3. This is a characteristic oflemn network processors such as the Intel
IXP NPs [35]. To keep track of the pending memory loads, eankare contexts as a limited
number of structures analoguous to ‘miss informationistdtandling registers” (MSHRs) [43].
Also, to model realistic hardware provision, memory degoatrollers have limited size queues.
When a memory device can not accommodate an additional reglueady issued on a memory
bus, the request is dropped and the sender task must retseeduest on the memory bus when
the memory controller signals the task that space is availalihe queue. Our memory controllers

do not yet support complex memory operations such as “attesteand-set”.

The simulator can have multiple channels of external membryact, this is a requirement to
reproduce popular network processors. When distributiagpttkets on multiple equivalent exter-
nal memory channels, we need to create an association betwe&cket and an external memory
device. This association does not change over time andfigrperd when the packet is first made
available to the application. In our simulation, we savedbmpiler-inserted tags of pending mem-
ory access in the devices they get executed on. This can beaipeovide feedback to the compiler

to, for example, identify expensive loads from off-chip nam

81



5 The NPIRE Framework: Simulated NP Architectures

Integrated with the memory modeling, the NPIRE simulatatksamemory accesses as they are
dispatched to different memory devices. This accountirdeatoes not model any structure in the

processor; as we explain next, it generates part of the jpigpfilata fed back to the compiler.

Memory Accounting In the simulator, there is memory managethat records all accesses to
each buffer. For the packet data, packet meta data, and bBeaprices, the simulator attempts to
create a set consisting of the union of all references. Qislypfor allocated buffers, like packets,
the references are always aligned to the start of the bufterthe heap references, we try to merge
consecutive regions of accesses as they get recorded. dieesanity checks on memory accesses
that verify that the memory allocation and free are executgatoper sequence with the memory
accesses. As well, we inserted code in the simulator toyirdt the packet memory has been freed
after each packet has been processed.

While doing this memory accounting, some information is exafed with alependence checker
This dependence checker identifies which tasks accessrieers@mory locations. Another of its
goals is to find locations that are accessed by a task whiteepsing the majority of packets. After
a few packets, the memory classifier tries to establish ifethe a recurrent number of memory
references performed by a task. If a consensus is reachdweandst frequent memory accesses
between task executions, the selected accesses are regrauog are used to implement memory
batching (defined in Section 3.2.1).

In collaboration with the memory manager, the dependeneeken establishes @ependence
maskwhich is a matrix used to determine which elements will ndvaare a dependence between
each other. Inter-task dependences are used to identitiidzga tasks for early signaling, as ex-
plained in Section 3.4.3.

5.2 Configuration Components

This section describes how our infrastructure binds ouccberark applications to the simulated
network processors by controlling the packet input and wugmd assigning tasks to processing

elements. All the techniques below rely on an iterative pssdetween a configuration generator,
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or a manual intervention, and a cost evaluation in the sitoula

5.2.1 Rate Control

Packets flow in and out of network processors. The maximum attvhich packets can arrive
and depart is determined by the physical links of the netwdfkr this reason, our simulation

infrastructure must provide abstractions external to tReuNder test to control packets.

Input packet buffering Because NP input buffers for incoming packets are typicafigl§ they
can overflow rapidly. To prevent the loss of packets, we firterthe acceptance of packets over
tasks pending on processing elements on which the paclavireg tasks are mapped.

When packets arrive, work units are created and insertechéotasks at the input of the task
graph. Another approacimput reordering[49], assumes that a classification of packets could be
applied at the input of the system to dispatch packets to Bé&ls that the number of dependences
between the tasks on those PEs is minimized. We currentlptoave compiler support for the later
in our infrastructure; in fact, the head-of-line classifica [19, 77] could very well be described in

a Click element and integrated to the application’s tasklgrap

Input Packet Rate “Headroom”is defined by the authors of the Netbind paper$3ha amount
of instructions that can be executed in the critical pathobelythe minimum application require-
ments. Although headroom is desirable, to evaluate a psocewe have to stress the application
to a point where the headroom is nil. In such a setting, we ea@rchine reliably what is slowing
down the application most, i.e. thmottleneck Hence our infrastructure must find the operating
point where the system is saturated.

It has long been understood that self-similarity in realvwek traffic implies bursty-ness [70].
However, when we try and characterize our system, we argested in the maximum sustainable
rate and not by the fact that occasional slow inter-arrigal$ packet loss help regulate traffic bursts.
Also, in our case, because we can accommodate variancekiduaations by buffering incoming

tasks, we are not concerned with realtime guarantees ad-&taj-#lahmoud et al. [21]. Further-
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more, since our applications have unpredictable contral 8nd, in some cases, loops in the task

graph, the worst-case execution time [79] is an inapprépnzetric.

The saturation point should be carefully selected becdusdarge number of work units are
gueued, the system appears to have less idle time and hasatvwae work to overlap with system
latencies. In a real system, this is not necessarily the gagbe Nepsim project [50], important
levels of idleness were measured. On the other hand, megsausystem with slack, i.e. not rate

determined by a critical path, does not reflect its actuagpidl performance.

In kernel benchmarks, packets are often taken one by one aathe rate as they are processed.
Making packets arrive in the system at exactly the time winenprrevious packet exits is highly
inefficient because it disregards the available task pipeipossible. In our case, the arrival process

models packet arrival on potentially multiple network nfidees.

Because we store tasks to be executed in a queue at the inpptaxfesssing element, our system
could be modeled as a network of queues. Given a packet iafjtproving the stability of a net-
work of queues where a task can be replicated and modelingpttitention of multiple concurrent

tasks on different shared resources is very complex.

The “maximum loss-free forwarding rate” used by Crowley et[&] relies on not exceeding
80% of utilization on any shared resource. This disallovghhitilization ratios, that may be desir-

able even at low packet rates if the programmer wants to ntekenbst of his system.

In our simulation infrastructure, the input packet rate barbandwidth controlled or controlled
by a packet-per-cycle metric. To find the point where theesysbperates at saturation, our first
approach was to find the rate at which the number of packetsegluia the system was not steadily
increasing over a large period of time. We found that this wa®od method in general but can
run into corner cases due to the discrete nature of the nmezasats made. We next explain the

approaches used to make our measurements in header-bdgeslyoad processing.

For header processing applications, such as routing, aiaekiet rate with respect to processor
cycles is more appropriate because the size of the packetleviant. Figure 5.3 shows how we
can find the saturation point for a given NP—in this case an MR ¥ PEs, executing a routing

application with replication supported. Since there are packet input sources, the mean packet
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Figure 5.3: Finding the saturation point. Since there aregacket sources, their mean inter-arrival
time (the liney = x) results in an effective inter-arrival time of half as mudthe satu-
ration point is the smallest effective inter-arrival timéeave the inter-departure time is

equivalent (i.e., the NP can keep up).

inter-arrival time (the liney = X) of each source results in an overall effective packet {ateval
time of half as many cycles. Hence the saturation point fat NP is the smallest effective packet
inter-arrival time where the packet inter-departure timequivalent (i.e., the NP can keep up).
In the figure, we see that the inter-departure time beginsetaate at the effective inter-arrival
time of about 750 cycles, which is the saturation point. NPLREs this method for finding the
saturation point by running a bisection search on potepaaket inter-arrival times. Because the
inter-departure has a large per-packet variance, we usgtist hypothesis testing to determine if
we have enough inter-departure samples to make our rataune@aents. Our packet inputs sources
are configured in a text file: we insert a time offset betwe@amtlso that packets do not arrive at
the same time on all interfaces, which would be a worst casause of the bursty demand on the

processing elements.

For payload oriented applications, such as compressiorceypdography, byte rate control is
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required because the size of the packets is relevant to tbergrof processing. We use the same
approach as for headed-based processing of comparing tinet oate with the input rate to deter-

mine the saturation input rate.

Packet Departure Output packet control has been described in Section 3.1h Batput is
preceded by Queue element. The dequeue operation can take into account tpetduit rate per
port. So our output control delays the start of the dequeeeatipn until the output unit is allowed

to resume.

5.2.2 Task Mapping

To share the load between the different processing elemaantallel tasks have to be dispatched to
processing engines in a careful fashion. Wild et al. [93]&xpthat finding the best assignment of
tasks to processing elements is an NP-complete problemoudih, we have to map tasks instead of
clusters of basic blocks, we also use an iterative approaaiving a cost evaluation at each step.

Plishker et al. [65] formulate mapping as an integer lingagpam problem where the task in-
structions have to fit in the in the PE control stores whichi¢elnem to consider instructions that
can be shared or not between contexts. Because, at the sanuéatel, we want the application to
drive the architecture, space available for instructios B not considered in out mapping process.
As opposed to Weng et al. [92], we allow to map more than orlegasPE.

Each element of the application must be assigned to at Ieaspmcessing engine. The objec-
tive of mapping is to allocate enough processing resourcesath task and maximize the system
throughput by hopefully increasing parallelism at the gaddvel. In our measurements, this assign-
ment is done only once for the duration of the simulation. Beeaur simulated network processor
does not have any implicit coherence scheme (such as a MBtcpt), we assign a task to a PE
and other PEs wanting to access its data have to do so renvidedn on-chip communication
channel.

Automatically mapping the specified task graph to an NP’s BEserhaps the most challeng-

ing problem of all. In such a mapping, there is a strong tanbietween locality and parallelism.
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Locality is optimized by mapping related tasks to few PEshed storage and communication are
minimized, while parallelism is improved by mapping tasisriany PEs and exploiting more re-

sources.

Mapping file Our methodology is similar to what Ennals et &3] describe as a “new approach”:
we separate the high-level application functionality fribra architectural details of the NP. We also
have a component related to the other authors’ “Architeciliapping Script (AMS)” that describes
the mapping of tasks to hardware contexts. Our approackastalmake the code portable and let
the compiler do the bulk of the chip-specific transformadio@ontexts can be allocated to elements
so that an element can benefit from a custom number of contextsiow, we however allocate the
same number of contexts to all PEs.

Our mapping process in NPIRE is iterative, based on feedbaok $imulation, and proceeds in

the following steps:

1. An initial measurement is made where each task runs omitsRE, assuming an infinite

number of PEs.

2. Using a greedy algorithm, we then re-assign tasks to thmbeEs available while trying to

minimize the expected utilization of each PE.

3. We then try to alleviate the worst bottleneck by replicgtthe task with the largest queue
time. Replicas can optionally be assigned to the same PE,difféoent PEs. We repeat this

step until the NP is well utilized.

4. Once the base mapping is decided, we attempt to improveatgh simulated annealing
which uses a fast, coarse-grain simulator to provide fastldack. Given an initial seed, the
fast simulatormakes random modifications in the mapping and commits thewrding to a
certain probability depending if they improve and worsenttiroughput. During this process,
the algorithm avoids moving any task replicas to the sameTREs. algorithm was found to
give better results than other algorithms (see the secti@j And appeared to converge very

rapidly. For this reason, our criteria for termination israd limit.
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5.2.3 Automated Bottleneck Identification

To iteratively improve the binding of the task to the simathNP, we need to identify the causes
of bottleneck. To help the process, we identified a list ofsberces of bottleneck: Tahle 5.2 also
reports what we can do to alleviate each of them. The last thoerrces of bottleneck in the table,
i.e CPU, bus and memory utilization, are strictly architeetspecific. We can see that the objective
of parallelizing the application is balanced by the resgltilependences between task replicas.
Because the synchronization is the only limit to parallei@aassuming infinite hardware, our
simulator has code to quantify the overheads of synchraaizaFigure 5.4 presents possible de-
pendence situations. The protected accesses can be edlsrar writes. By recording the memory
access to persistent heap for each synchronized task, weackrthe time between dependences.
In the case\ of the figure, we can observe overly conservative synchabioiz because there is not
enough parallelism to have more than one task accessingdsbata at a time. In the caBethe
access occurs before the last task attempts to enter thareyiimed section. In cas® synchro-
nization is effective in protecting a memory access. Theuktor can measure the time distance

between the accesses to shared data when the synchramjzatiutives stall a task.

5.3 Simulator Internals

To explain how we obtained our results and give an overvieth@timulator organization, we next
describe some important aspects of the simulator, with asfoa the trace manipulations, the main

loop in the simulator and the iterative simulation flow effen the simulator configuration.

5.3.1 Loading the Application Trace

Because the application trace (introduced in Section 4cal)e arbitrarily long and its in-memory
representation is even more voluminous, we implementegtarsing mechanism to go through the
trace file. At the beginning of the trace is the connectiuitiprmation of the configuration. Next
there are task start markers followed by memory allocatieawl, write and free nodes. Each node is

marked with a time stamp: the difference in consecutivengtime stamps indicates the number of
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Table 5.2: Sources of bottlene

ck and our approaches taatkethem.

Symptoms

Remedy techniques available

Load imbalance due to uneven-ness in

mapping.

ping approach.

Context switching resulting in a low utiliza

tion of all the contexts available.

-Our state tracking of the PEs tries to ove
lap computation with communicating instru

tions in the PE.

Signaling overheads.

Next-neighbor links, inter-PE bus and broa
cast techniques can be used. Also, the m
ping can try an add locality to the task di
patching.

Input interface not fast enough.

Our saturation process makes sure that pa

ets arrive fast enough.

Bad partitioning (long tasks and short task

S)MWe have a software component that requé
splitting of individual tasks when it is foun
that load imbalance may be the dominant b

tleneck.

Contention on the output ports, a symptc

that the output rate is too slow.

yrdnavoidable for rate-controlled interfaces.

theask splitting along with our elaborate map-

1d-
ap-
S-

ack-

2StS

d

ot-

Output ordering.

Can require to adjust the output rate contrg

DI.

Synchronization limits parallelism.

Our task transformations try to expose

much parallelism as possible.

as

CPU resources exhaustion, when to be

served on all PEs.

plkive are able to simulate additional PEs a

contexts.

ind

Shared bus utilization.

We are able to add additional interconnect

pacity.

Memory utilization saturation.

We are able to add memory bandwidth.
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Figure 5.4: Dependence scenaridgsmeasures the time distance between dependent memory ac-

cessesB andC measure the delay imposed by dependences and can be contptired
delay imposed by th&ock andunlock primitives.

instructions to be executed between records, assumingyk siycle per instruction. Trace entries
loaded in memory are linked in a hierarchical fashion. Enthek markers complicate the reading
because tasks are often called within another. Because tamgs are used to evaluate the latency

between operations, care must be taken to timestamp pydperénd of task markers.

The trace loader can be used independently for debugginmppes and to get statistics on the

content of the trace, such as the number of instructions anangreferences per element.

As soon as the first section of the trace is loaded, the siowiarts executing it. Because of
memory constraints, the simulator must be able to delet&rdélce nodes as it progresses. Memory
deallocation for the loaded segments of the trace is nomlrand even more so with early signal-
ing, because trace records are can be referenced from faddtgations in the simulator. The use of
the Standard Template Library (STL) structures was fourlzbtproblematic in some cases because

STL has its own pooling mechanisms that does not always fawuse to allocation.
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5.3.2 Main Simulator Loop

Because interrogating all processing engines on all cyctagddibe too time consuming, our sim-

ulator is event driven, i.e. it only executes cycles whemnéy happen. The main processor loop
updates all the devices and processor states as eventshdjpeeperformance of a simulation can
be estimated by looking at the total number of packets psszkand the simulated time required to

do so.

5.3.3 Configuring the Simulator

Our current exploration methodology starts with trying tadfia scalable execution context for a
benchmark. First, the time length of the simulation is mdlgdaund so that the simulation can be
measured in a steady state. All simulation statistics aetter a configurable number of cycles to
get rid of the initial NP filling with tasks transient effecio find a representative configuration for
our benchmark, we need to stress the network processor tioibhef its capabilities in that given
configuration. Finding the best configuration of a given aedture makes the problem cyclic as
shown in Figure 3.9. Indeed, the incoming rate of packetserstmulator can be made faster when,
by changing the configuration, we also improve the throughptcriteria to validate our method-
ology is that the throughput of the network processor sheaale well with a varying number of

PEs.

5.4 Validation of the Simulation Infrastructure

In the interest of validating our infrastructure, we havpsart to record traces out of an IXP1200

simulator’'s benchmarks, Nepsim [50], and replay them orsgatem. We traced this other simula-

tor to extract the main simulation parameters for our expenitations, as shown in Table 6.3 (Sec-
tion/6.3). We used program counter sampling to determines tagundaries and recorded packet ar-
rival events. We were unable to recover the NAT benchmairtk fikepsim, because busy waiting in

that benchmark blurs our interpretation of the tasks ttenms. While simulating the IPfwdr, MD4

and URL benchmarks from Nepsim, we obtained comparablavelpacket throughput numbers.
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We also observed scaling with the number of processing elenseémilar to the numbers presented
in Nepsim’s paper [50]. However, this comparison does naingch deeper because we were un-
able to fully reverse-engineer the use-to-def relation®memory operations to replicate exactly the
context switching points in our simulator.

NPIRE can also export its applications to the Intel ArchiteetTool [26] where we can simulate
them on most recent IXP processors. However, because itntieistool it is uneasy to saturate
the input rate of the application and the utilization of de&g is computed using the utilization of
the device arbiters rather than the shared devices theessele have not found a solid basis for

comparison.

5.5 Summary

In this section we gave some insight on how the simulator eéokshed some light on our ex-
perimental results. We gave an overview of the parametri@aidRitecture that we use and of our
simulated hardware structures. We also presented the iamumar of making measurements when
the NP was working at a saturation input rate and how thisisatdtained experimentally using
a bisection algorithm. Some emphasis was put on the mappowess because it is key to load
balancing, along with task scheduling. We showed the diffesymptoms of bottleneck that our
simulator could detect and concluded with a high level dpgon of the simulation process. In the
next chapter, we present the results obtained with the katecl efforts of software tools presented

in Chapter 4 and the simulated NP hardware.
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In this chapter, we evaluate the impact of our task transétions using the NPIRE compilation
infrastructure presented in Chapter 4 and our network psacesmulator described in Chapter 5.
Our observations are aimed at evaluating how our applicatansformations in terms of memory,
thread and task management affect the packet throughputr gimulated NPs. As well, we want
to identify the performance bottlenecks in our applicagiore. determine if it is the application’s
resource usage or specific NP architectural componentdithiatthe packet throughput. After

describing our benchmarks and simulation parameters, aeepd to analyze the data collected.

6.1 Applications

In this chapter, we evaluate our task transformations uSIRtRE’s simulation infrastructure. For
this, we selected a representative set of applicationselbtsng benchmark applications, we at-
tempted to fulfill the three important goals of NP benchmadiestified by Tsai et al. [84] : (i) our
benchmarks model applications that are representativetofank processor usage, (ii) they pro-
vide results that are comparable across network procesawls(iii) they provide results that are
indicative of real-world application performance.

Table 6.1 describes the four applications that constitutebenchmark suite. The first two ap-
plications perform IP header processing—i.e., applicetifmor which the packet payload is irrele-
vant. We use a RFC1812-compliant routep(lR ER) and a network address translation application
(NAT, described in Section 3.1), both adapted from thosaterkby Kohleet. al.[41]. Those two
benchmarks are also considered as a reference by Tsai@&pl. [

Our payload processing applications have the same elemenéctivity as the task graph shown
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LZF and DES are payload-based processing applications.

Table 6.1: NP applications studied: Router and NAT are hebdsed processing applications while

Num. Instrs per L oads per Stores per Instrs Synch.
Dyn. Tasks Packet Packet Packet per MemRef ratio
Application | Avg. +/- Avg. +/- Avg. +/- Avg. +/- Avg. Avg. +/-
ROUTER 16 1.12 2353 258 127 21 24 3 16 0.17 | 0.07
NAT 12 3.37 4857 2206 234 92 58 39 17 0.32 | 0.20
DES 10 | 3.93 | 564925 | 326813 | 23189 | 13403 | 2024 | 1169 22 0.08 | 0.17
LZF 10 3.93 | 190026 | 213897 | 2138 1672 | 4215 | 4581 30 0.11 | 0.23

Table 6.2: Memory requirements of our benchmark applicatiand the storage devices to which

each memory type is mapped. For each memory type, we showdhhage amount of

data accessed per packet.

Device: External SRAM | External DRAM | Local storage| Registers| External SRAM
Type Packet Packet Per sistent Temporary

Application Descriptor Payload Heap Stack Heap

ROUTER 42B 23B 5B 0B 44B

NAT 36B 45B 22B 96B 49B

DES 36B 1500B 48B 2100B 20B

LZF 36B 1500B 48B 200B 600B

in Figure 4.2. DES performs packet encryption and decrypdiod LZF, packet compression and
decompression. The DES cryptographic elements origimata the Click [41] element library.
Encryption is a popular NP application, used in NP benchingrky Ramaswamy et al. [67] and
Lee et al. [48]. In our other payload processing applicattbe compression elements are custom
made from the LZF library adapted from the ADOC project [3IMe packet related aspects of this
compression are inspired from the IPComp—RFC2393 standatdhariLinux kernel sources. The
compressed packets generated by LZF comply with the IPCaampatd and can be decompressed
independently from other packets. We do not support the mement LZS (RFC2395) compression
algorithm because its source code was not available to iedinbe of writing. NP-based packet

compression is interesting because Jeannot et al. [37]dtewen that host-based compression alone
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could improve the latency of distributed computations b§%4

For each application, we reportin Table 6.1 the average.jfgd standard deviation (+/-) across
a large number of packets of the total number of dynamic tasksber of instructions, loads, and
stores executed per packet, the number of instructionsuee@@er memory reference, and the
fraction of execution time spent on synchronization (synettio). While not shown in the table,
some tasks have a large fraction of dynamic instructiondénas synchronized section, specifically
the TCPRewriter from NAT (83%) and theQueue elements (50%) used in all benchmarks. In
contrast, the IP header checksum task is free of synchtomizaFinally, Table 6.2 shows the
average amount of data accessed for each buffer type peetpaskwell as the devices to which
each memory type is mapped.

We measure our benchmark applications using modified paekets (see section 4.2.2) from the
Teragrid-1 10GigE NLANR trace [61]. All of our applicatiofgve two input and two output packet
streams, as exemplified in Figure 4.2. This choice in the rarrobpacket interfaces, resulting in
an equal number of tasks, is a balance between two orgamzatif the work in an NP. In some
processors, the same task must process all incoming paekate on other processors, such as
the Motorola C-5e (introduced in Section 2.2.2.1), processesources can be allocated to each
input packet stream. As a result of this work organizatiargur applications, the two input packet
streams can have non-trivial interactions when they cahfenthe same elements, for example, the

LinearIPLookup element in Figure 4.2,

6.2 Architectural parameters

With our simulator, we attempt to model resource usage atay adaracteristics similar to what
we could observe when executing the same code on a physivabnkeprocessor. Hence, in this
work, to allow for representative simulations, we use gt@liparameters to configure our simulated
chips. As network processors evolve and become equippédfagter processing elements, they
are confronted to the fact that the off-chip memory throudhgoes not scale as fast as the clock

rate of processing elements, a reality known as the “memat{/ y@7]. To show this trend, we
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perform our evaluation on two network processt®1 and NP2 respectively modeled after the
IXP1200 and IXP2800 network processors introduced in 88@i2.2.1. These Intel processors
have respectively 6 and 16 PEs; however we will consider e number of PEs to identify

scalability limits. The simulation parameters in Table We&re obtained as a result of our validation

experiments with the IXP SDK and Nepsim, presented in Se&id.

As shown in Table 6.3, an important difference between th& &l the NP2 processors is their
PE clock frequency. The NP2 has a clock rate 4.3 times fastarever, the latency of its memory
and bus operations is between 2 (remote PE access) and 40 tmehip shared SRAM bus access)
higher than on the NP1. The NP2 has 3 DRAM and 4 SRAM external meamannels along with
the doubled number of contexts per PE (8, versus 4 for the N NP1 has one bus for DRAM
and one for SRAM. On the other hand, in the NP2, DRAM transasticamsit on 4 busses: 1 bus
for reads and writes for each half of the PEs. The SRAM is alsessed through 4 on-chip busses
that have the same organization as the DRAM busses. Thisaddisupply of hardware on the
NP2 are intended to compensate for the relative increasetbnydatency by increasing the packet

processing throughput.

Table 6.3 summarizes our simulation parameters, in paatitiie latencies to access the various
storage types available. Each PE has access to sharedm8RRAM, external DRAM and SRAM
through separate buses, and certain shared registers oter®fas through another bus. Usage of
the buses and storage each have both non-pipelined anéhpgbelbmponents. Each PE also has

faster access to local storage, its own registers, andrceegisters of its next-neighbor PEs.

The initialization/configuration phase of our benchmarés safely be ignored because we are
concerned with the steady state throughput of our appticatiAfter initialization, the simulation is
run for 6 Mcycles for payload-processing applications, 2advicycles for the payload processing
application. Those run times were the shortest run timesreralty found to give a reliable estimate

of the steady state throughput of the NPs.
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Table 6.3: Simulation parameters. The base total latenagtess a form of storage is equal to the
sum of all parts. For example, to access external DRAM takes 26 17+ 26 = 55
cycles, 43 of which are pipelined. An additional amount ofdefined cycle is added for

each 4 bytes transfered (to model 32 bits busses).

NP1 NP2
Non-pipelined | Pipelined | Non-pipelined Pipelined
Storage Type (cycles) (cycles) (cycles) (cycles)
External DRAM access 10 17 12 R226/WO
bus 2 26 4 59
External SRAM access 4 8 5 81
bus 2 10 4 51
On-chip shared SRAM access 1 1 3 R21/W38
bus 0 1 3 37
Remote PE registers access 1 2 1 12
bus 0 1 1 1
Local store 0 1 4 11
Registers 1 0 4 0
Next-neighbor PE registers 1 1 4 4
Other Parameters Value
processing element frequency 232 MHz 1 GHz
hardware contexts per PE 4 8
rollback on failed speculation 15 cycles 40 cycles
queue size for bus and memory controllgrs 10 40
pending loads allowed per context 3
context switch latency 0 cycle

6.3 Measurements

One of the main metrics that we use to measure the perforn@ribe simulated NP is the maxi-
mum allowable packet input rate of the processor—that espthint where it operates at saturation
(as explained in Section 5.2.1). For convenience, we widrr this metric as théyax rate. We
define the fraction of time that a bus or a memory unit is sargicequests as itgtilization. This
definition applies also to the locks used in synchronizattbeir utilization is the fraction of time

that they are held by a task. In this section, we define a numbeonstant parameters for our
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simulations and present our task transformations impléatien results.

6.3.1 Choice of fixed parameters

To present consistent results, we performed some preliniegperiments to fix a number of
simulation parameters. Our preliminary experiments wendopmed on 2 benchmarksAT and
Router and 2 reference systems: NP1 equipped with 6PE, caled, and NP2 with 16PE, called
REF2. This number of PEs corresponds to the resources preseifeorotresponding IXP1200
and IXP2800 NPs. For those preliminary experiments, rapba is enabled for all tasks and tasks
can execute on any context on all PEs so that no mapping igreelgun this section, we explain
our settings for packet sorting, the thread managemennigabs, the scheduling controller in the
gueues, our queue timing modeling and our iterative spjtéxperiments.

We observed that packet sorting on the output of the NP hasyasuall impact on théyax rate.
However, its support, as presented in Section 3.1, reqektra communication and complicates
the early signaling transformation because of the taskdexorg that takes place. To be able to
easily identify to factors impacting throughput, we digabpacket sorting in th@ueue elements
(introduced in Section 3.1).

To perform our experiments, we had to select which threadaggment techniques we would
adopt. Two techniques were proposed in Section 3.5: a pyrisyistem allowing threads to have
a balanced utilization of the on-chip busses; and a preem@ystem that favours tasks inside
synchronized sections. For all simulations, we found thatlus priority system improved the
throughput of our benchmarks on REF1 by 1% and of REF2 by 25%. eiery the preemption
system only improved th8AT benchmark on REF1, while either affecting negatively or ilegv
unaffected the other benchmarks. The performance imprenewas on the order of 4% ftAT on
REF1. Consequently, we decided to enable the priority systehdesable the preemption system
in our experiments.

We evaluated the controller in the work unit queues preseint®.1.2. This controller does not
assign a work unit to a context if assigning the task to a ctrmte another PE would improve the

load balance of PEs. The objective of this controller is leetactentatively improve on the ad hoc
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scheduling of tasks to PEs. Adding the controller improvesthroughput oNAT by 50% over
both reference network processors but degrades the thpatghRouter by 17%. We observed
that making slight input rate variations could change digaitly those throughput figures. In
consequence, adding the control unit reduces the noise ilmughput results due to the dynamic
assignment of work units to PEs. We can readily see that sdéingdcan significantly impact the
results, and future work should target this aspect of thegssing. The adverse affect of the control
unit onRouter is due to the fact that, while the control unit improves theeddalance, its decisions
add latency to the work unit dispatching. As a result, thetrmdler limits the number of concurrent
packets by 15% oRouter. Nonetheless, because of the gains seelAdn we chose to use the

scheduling control unit for all the following experiments.

Our simulation uses queues in a shared on chip storage tidisttasks to processing elements.
The manipulation of work units (presented in 5.1.2) is aehieby writes and reads to the on-
chip storage to respectively enqueue and dequeue work uFfitsse memory accesses to shared
memory penalize important large-scale replication byaasing the contention on the shared on-
chip storage. For our other experiments, we do not modekthwsmory and bus accesses due to
the task queues because we want large-scale replicationdadéference best case scenario. This
scenario indeed provides the highest number of PEs for tagk®cute on. Modeling the contention
on work unit queues counters the benefits of replication antplicates the characterization of other
on-chip contention factors impacting the throughput of @pplications, such as high demand on a

particular memory unit.

For our splitting experiments, we iteratively find thgay for the task graph with one to five
iterations of splitting, and retain the best throughputiealn our test cases, we found that there
was no benefit in doing more than five iterations of splitti@ne explanation for this diminishing
return is that each task split incurs inter-split commutiecaoverheads. The other explanation is
that, as explained in Section 3.4.2, the task splitting d@mpass is constrained on where it can

insert splits: it does not insert splits in a tight loop iresaltask.
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6.3.2 Impact of the Task Transformations on Packet Processing

Throughput

In this section, we evaluate NPIRE’s task transformations way that allows our conclusions to
be generalized to a large number of NPs. First, we simulateN® architectures, NP1 and NP2,
presented in Section 6.2. Second, we measure the impactcketghroughput as the underlying
architecture scales to larger numbers of PEs. These twdterttiral axes, chip organization and
number of PEs, allow us to evaluate NPs with support for téfiecommunication over computation
ratios.
In our graphs, we normalize all our measurements to the @in with no transformation

on four PEs, the minimum number of PEs evaluated. This numslsmnall compared to the other
processors surveyed in Section 2.2.2.1 and it is the minimumber allowing us to bind one PE per

input and output interface (we have two input and two outfetsns as explained in Section6.1).

6.3.2.1 Replication

In this section, we evaluate four different replicationrsaéos for the replication task transformation
presented in Section 3.4.1. The simplest scenario has hoatgn and simply extends the mapping
to the number of available PEs. Next, we present the caseswhplication of a task is limited to
each PE, meaning that a task can execute on any number dldeatbntexts on a PE. More task
replication leads to the case where one task can executeyaroatext of a selected set of PEs, as
determined by the mapping process (presented in Sectid?) 5\Re call this last replication scheme
subset replicationThe final case that we examine is where one task can execuateyarontext of

any PE: we refer to this model as havinglabal task queue

Router on NP1 ForRouter on NP1, we can see in Figure 6.1(a) that simply spreadingsiest

of the application with no replication on a greater numbelPBE only improves the throughput by
2.9%. The maximum throughput is reached with 24 PEs: thisdeviormance gain with a large
number of PEs underlines the need for efficient replicatidre replication limited to a PE and the

global task queue schemes reach their maximum throughpluBMESs. The subset replication has
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Figure 6.1: Throughput speedup of Router for several tramsitions and varying numbers of PEs,
relative to the application with no transformation runnimig 4 PEs. The throughput
indicated is a measure of the maximum sustainable inputgbaake.rep means repli-
cation,rep on PE means replication where the replicants are limited to ebeeon a

specific PE.
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Figure 6.2: Throughput speedup of Router for varying numbéREs, relative to the application
with no transformation running on 4 PEs. The throughputdatid is a measure of
the maximum sustainable input packet rate. Combinationdezlized executions are
plotted to the right of the graphs: infinite number of PEB: maximum bus pipelining;
M: maximum memory pipelining, i.e. the unpipelined time fareguest is 1 cycleZ
zero instructionsS. no synchronization.
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a throughput improving up to 10 PEs. It is evident that for shidset replication, the saturation
throughput does not change smoothly with the number of PHs:i¢ a result of the mapping
algorithm, which is discrete in nature. Also in Figure 6)1(@e can see that subset replication can
outperform the global task queue for 14 to 20 PEs. At 16 PHssetueplication provides 1.5%
more throughput than the application with the global taskuwgu In this configuration, the two
replication schemes have the same memory utilization: %3u8lization for DRAM and 83.3%
utilization for SRAM with the maximum bus utilization being the SRAM bus with 66%. This
relatively high utilization allows us to hypothesize tha¢ SRAM and its bus are limiting the router
throughput. At 16 PEs, the global task queue processes 18 packets in parallel than the
subset replication and the lock with the maximum utilizatis taken 87.5% of the time. Hence,
another possible limiting factor is synchronization. Wa earify those assumptions ®outer’s
bottlenecks in Figure 6.2(a). This figure shows simulatieith global task queue replication on
NP1 having between 4 and 32 PEs. On the right side of the figeeaneasure the throughput of
NP1 with an infinite number of PEs available. The figure shdwsughput improvements when
the bus pipelining is maximized, i.e. the unpipelined refuene of transactions on all busses is
reduced to 1 cycle. This non-realistic parameter allowsoudetermine the impact of removing
constraints on the NP. Indeed, we have verified that when disepipelining is maximized, the
SRAM utilization reaches close to 100%, thus becoming the hettleneck. It is logical that
the SRAM (bus and memory) accesses dominate the latengyuakr because this is where the
routing element maintains its routing table in the temppheap. In Figure 6.2(a), it is evident that
removing the synchronization does not improve the throughpcause the synchronization is only

on the critical path for this application after SRAM memoryldius contention are resolved.

Router on NP2 When running on NP2, as seen in Figure 6.1(b), with the glodek queue
replication scheme, thouter application scales asymptotically up to 30 PEs. The PE cdingpu
utilization is progressively reduced because of increasiontention on the external SRAM and
DRAM memory and their associated busses. The maximum thpuigibtained on 30 PEs is 27.2
times the throughput of the application with no transfoiorat In Figure 6.1(b), we can see that

subset replication cannot improve on the task mapping tretihumber of PEs approaches the num-
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ber of active tasks in the application. Subset replicatisn kmits the number of replicas: with 14
PEs, the average number of concurrent packets in the NP isod7B& average number with the
global task queue. We can also observe that our mappingitpehdoes not perform well with 28
and 32 PEs. Figure 6.2(b) with an infinite number of PEs shdearly that removing synchro-
nization gives the most speedup to the application. In tbafiguration, the SRAM bus utilization
reaches over 80% and the DRAM utilization reaches over 60%. dRem the instructions alone
forces memory accesses to be executed one after anotheputiing more pressure on the SRAM
and DRAM busses. As seen in Figure 6.2(b), those busses arielpsrtant bottleneck sources for

the application.

ForRouter, we saw that the bottlenecks were different on NP1 and NRRpeatively the SRAM
bus utilization and the synchronization. We observed thlication was effective in taking advan-
tage of the computing power provided by a large number of Pikarchitectural bottlenecks limit

the application performance.

NAT on NP1 ForNAT running on NP1, in Figure 6.3(a), we can see that the apicatithout
any transformation runs 7% slower with 10 or more PEs than BiE4d. An increased contention
on synchronization indicates that the added task parsitels not sufficient to compensate for the
added latency on the NP busses and memory units. The glekajt@ue scheme reaches its plateau
the fastest and plateaus approximately at the same perficaras when replication is limited to a
PE and when subset replication is us#idT has several synchronized tasks and the lock with the
maximum utilization is taken 63.2% of the time, on averag®ss the replication schemes. The
infinite PE graph in Figure 6.4(a) shows that removing thebyonization improves the throughput.
As well, computations are also on the critical path sincea@ng computations seems to improve
the throughput the most and increases the number of comtyaiekets by 7%. However, removing
synchronization increases the number of concurrent patked factor 3. Hence synchronization is
a more significant bottleneck foiAT than the computations, which explains the very slow scaling

of throughput with the number of PEs.
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NAT on NP2 On the NP2 processor, in Figure 6.3(b), the curves of rejiicdimited to a PE
and subset replication no longer overlap. The performahdiaDwith the replication limited to a
PE decreases and becomes relatively stable with more th&s.8Fhis performance reduction is
attributed to the reduction in locality when accessing igggat heap mapped to the local storage
in the PEs. Further compiler work could potentially alleégithis problem by replicating read-only
data to the PE’s local storage. In Figure 6.3(b), the sulegication again outperforms in certain
cases the global task queue due to a different task schgdutirrigure 6.4(b), the performance of
NAT on the NP2 is increased by a factor ranging from 25 to 30 whegtswnization is disabled,
thus indicating that synchronization is a significant testéck fonNAT.

Because replication has shown to be especially useful, wét use€onjunction with the other
task transformations. To show an upper bound of the tramsftion benefits, we only present the
experiments with the global task queue. For the readergasoance, we reproduce the global task

gueue curves with no other transformations on the graphert@ &is a comparison point.

6.3.2.2 Locality Transformation

In this section, we present experiments evaluating thditgdeansformation that consists of both

memory batching and forwarding, as presented in Sectian 3.2

Router on NP1 In Figure6.5(a), on the NP1, we can see that the locality transfoomatiith
the global task queue in fact limitgax to a maximum speedup of 3.45 over the application with
no transformation. The maximum speedup in that configuratibhout the locality transformation
is 4.89 as seen in the same Figure 6/5(a). Experiments ird-igi6(a) show that the locality
transformation improves the throughput of the applicatiathout replication by 20% starting at 8
PEs. Replication limited to a PE benefits from the localitymwsfarmation by a 0.8% throughput
increase. This leads us to conclude that the locality tcanstion has diminishing returns when
there is more computation to overlap with memory accesseseeld, the locality transformation
sends bursts of requests on the memory busses at the st@sksf thus temporarily increasing the

congestion on the busses.
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indicated is a measure of the maximum sustainable inputgbaate.rep means repli-
cation.locality, early, split andspeculation refer to the locality, early signaling,

task splitting and speculation transformations.
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replication where the replicants are limited to execute spexific PElocality refers

to the locality transformations.
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Router on NP2 As seen in Figure 6.5(b), the NP2 is able to accommodate dffectburstiness
of the locality transformation and impro®euter’s throughput when the number of PE is between
10 and 20. The maximum throughput increase is by 3% with 12 FEs average fraction of the
time a PE waits for memory is reduced from 1.16% to 0.59% wh#eDRAM utilization is reduced
by 5%. However, the SRAM read busses and the shared on-chiptitimation are increased by
10%, and the DRAM read busses utilization is increased by 3%s 3hows that the burstiness
of the locality transform degrades the performance of thesés more than the external memory
units. The explanation for this difference is that thereeiss| pipelining in the interconnect than
in the external memory units, as shown in Tablel 6.3. On NP@urei 6.6(b) reports increased
performance due to the locality transformation with no aidlithited replication of respectively
23 and 9%. This performance increase is attributed to a tiexiuia the number of accesses required

to external memaory.

NAT on NP1 and NP2 ForNAT on the NP1, shown in Figure 6.7(a), the locality transforamat

reduces the maximum throughput by almost 4%. On NP2, in Eigur(b), the throughput is
decreased at 12 PEs because the parallelism does not catg@arshe extra contention brought
by the task transformation. This extra contention leadsitoerease from 3% to 65% in the fraction

of the time spent in the most utilized critical section.

6.3.2.3 Early Signaling

When performing the early signaling task transformation wnpayload processing applications, all
the possible cases of early signaling complied with the anoe/waitfor/resume system presented
in Section 3.4.3Router was able to signal early several small tasks, whi& could only signal

early a few tasks of average size.

Router on NP1 and NP2 ForRouter on NP1, in Figure 6.5(a), signaling tasks early limits the
maximum speedup to 4.85, versus 4.88 obtained with the glablaqueue alone. Nonetheless, we
observed a reduction in the packet processing latency of 42&6aged over all PE configurations.

The slightlnax reduction can be explained by the negative impact of corgextion when tasks
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task splitting and speculation transformations.
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need to wait for other early signaled tasks. ABouter’s high contention on the SRAM memory
unit preventsdmaximprovements, as explained in Section 6.3.2.1. We reatlzatthe early signaled
tasks had very low SRAM access requirements, indicatingttiteate tasks could execute without
interference on idle contexts of the NP. Also, we observatlitie early signaled tasks were mostly
located in the last stages of the processing, thus not altpwasks with high SRAM demands to
execute according to a different schedule than withoulyesagnaling. Consequently, Router,
because the packet processing latency is greater than tketgater-arrival time, reducing the
packet processing latency does not necessarily improvepplkcation throughput. On NP2, early
signaling decreased the maximum throughpwt@fter by 1%, as showed in Figure 6.5(b). How-
ever, for the same reasons as mentioned for NP1, we obsereedetion in the packet processing
latency of 8%. This smaller latency improvement shows thatdarly signaled tasks, because of
their low usage of SRAM memory, account for a less importaanttion of the processing on NP2
than on NP1. As explained in Section 6.2, the NP2 has prowgssements proportionally faster

than the memory compared to the NP1.

NAT on NP1 and NP2 With NAT on NP1 showed in Figure 6.7(a), the maximum throughput
achieved with early signaling is decreased by 1% while on MPRigure 6.7(b), the maximum
throughput is increased by 0.1%. BT, we did not see any significant packet processing latency
improvement. Consequently, this application is unable &lap a significant amount of processing

without any dependence with other tasks of the application.

6.3.2.4 Speculation

Speculation involves optimistically letting tasks coagterin their dependences as presented in Sec-
tion 3.4.4. We next describe the impactRouter andNAT of this transformation that also requires

hardware support to detect dependence violations.

Router on NP1 We evaluated the impact of using speculation for our headergssing appli-

cations. FoRouter on NP1 (Figure 6.5(a)), speculation has a negative impagbater because
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synchronization is not on the critical path for this appiica and the local buffering along with the

committing of the speculative writes (as presented in 88&i4.4) simply adds overheads.

Router on NP2 The impact of the transformations is more pronounced viReemer is executed
on the NP2. We can see that speculation has a negative iniffaatigh it does not prevent scaling.
For all PE configurations in Figure 6.5(b), the worse perfamoe is obtained for 8 PEs. In this
configuration, theviolation rate i.e. the number of total violations over the number of syonoized
task executions, is of 5%. With 32 PEs, the violation rate /& This low violation rate indicates
that speculation incurs significant re-execution overedatdRouter. The non-smooth scaling of
the performance okouter on NP2 is symptomatic of a less deterministic processing toar

packet.

NAT on NP1 and NP2 ForNAT on NP1 in Figurés.7(b), speculation improves the maximum
throughput by 96% over the global task queue alone. Henasusgtion allowsNAT to execute
synchronized tasks without dependence violations in tmencon case. On the NP2, speculation
allows Imax to scale slowly up to 30 PEs, in which cas&T has a throughput 183% higher than
the global task queue alone. With 12 PEs, we observed thatidkagion rate was 1.8%; with 32
PEs, this rate was increased to 2.2%. In consequence, weeedhat a greater supply of PEs can

compensate for the re-execution penalties of an increaséation rate.

6.3.2.5 Task Splitting

As it can be seen on Figures 6.5(a), 6.5(b), 6.7(a) and 6.7bk splitting (first introduced in
Section 3.4.2) does not significantly impact the throughgftRouter andNAT on NP1 and NP2.
In fact, the communication overhead between the task dplitsrs the throughput afAT on NP2
by 3% (Figure 6.7(b)). Splitting does not increase the s inside an application because
the task splits execute in sequence and have the same mappin@gssignments to PEs, as the
unsplit task. The impact of splitting can best be seen ontheduling of tasks when replication

is limited. In Figure 6.8, splitting with subset replicatiamproves the throughput with a small

number of PEs witlkouter on NP2 (Figure 6.8(b)) and achieves a better load balan@ubef
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the rescheduling of the splits. We can see that splitting etsrects mapping problems by leveling
the throughput for more than 16 PEs in the same figure. Sildaefits are observed fabuter
on NP1 in Figure 6.8(a). Consequently, splitting is effextivioad-balancing the utilization of PEs

when tasks are not free to execute on any PE.

6.4 Summary

In this section, we presented how our infrastructure candeel o characterize benchmarks and
identify what hardware support and compiler techniquesast to exploit the resources of a net-
work processor.Router was found to be performance limited by its SRAM accesses while
NAT, synchronization is the bottleneck factor. For this reases found that our transformations
had different impacts on these benchmarks. Replication wasdfto be able to extract the most
parallelism. Our locality transformation increases thkzattion of the NP memory busses but can
improve the NP performance when the number of concurreks tasow. Early signaling was found
to improve the throughput marginally or not at all. Howewatly signaling significantly improved
the packet processing latencyRafuter. Speculation was found to be helpful ‘T by removing

its synchronization bottleneck. Finally, splitting helpgad balancing tasks with little replication
by breaking tasks into multiple re-schedulable splits.itépd gives the most speedups when the
amount of task replication is small. Replication can be kaiby the number of hardware contexts,
the task scheduling overheads or the PES’ instruction stpacity.

Our experiments have shown that the NPIRE simulator helpswemarchitectural bottlenecks
by giving numerous system statistics for the user to anallfzethermore, we observed that an ad
hoc schedule of memory accesses and computations betweaddHheads to an imperfect overlap
of latencies with computations. For this reason, individugization metrics do not always reveal
the system bottleneck; the performance limiting factor fiero best found when measuring the
benefits of tentatively removing potential bottleneck éast In conclusion, NPIRE provides a suite

of powerful tools to build a feedback-driven compilatiofrastructure for network processors.
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We have presented NPIRE: a simulation infrastructure thatpies a high level description of
packet processing, based on Click, and transforms it to peddorm suitable for code generation
for a network processor. In addition, we presented a prognag model based on buffer type
identification and separation that allows the compiler s synchronization and perform several
task transformations to increase parallelism. A list ofhkigvel topics that were studied using our

simulator include:

mapping tasks to processing engines;

task transformations to achieve pipelining inside arlieation;
memory organization;

scheduling multiple threads;

signaling and synchronization strategies;

2 T o A

allocation of resources (in particular, data layout).

NPIRE provides compiler support to transform an applicatiblsing execution feedback, our
infrastructure can compile an application such that its wm@maccess patterns are closer to that of
a finely tuned application. In particular, our support foe tombination of the following memory

operations makes our infrastructure more realistic oveeratelated NP studies:

1. memory typing and simulation of a memory hierarchy maighhe memory typing;
2. improved on-chip communication;
3. non-blocking memory operations;

4. automated synchronization.
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To evaluate and compare different task transformation aaplping techniques and their ability
to effectively scale to many PEs, we devised a method forrgntie maximum sustainable packet
input rate of an NP. We selected full-featured network pssceg applications and measured their
throughput using modern realistic NP architectural patanse Our analysis extends to a range of

NPs with different ratios of processing versus memory tghmut.

Of the automatic compiler transformations proposed, wealetnated that replication was the
task transformation allowing to extract the most paralhaliout of an application. Early signaling
was found to help reduce the packet processing latency apiiléing was able to load balance tasks
with low replication. Our locality transformations werel@lo improve the throughput when the
on-chip communication channels were not the bottleneckally, speculation reported dramatic
throughput improvements when the amount of synchronimahcthe application was important
and the amount of violation dependences low. We showedrtraformation pairs such as replica-
tion/locality transformations and replication/spliiare complementary and allow the application
to scale to a greater number of processing elements, maguitpacket throughput that is very close

or exceeds the idealized global task scheduling.

Today, requirements for packet processing range from loaiteng to the interpretation of packets
at the application layer. Programming network processoomplex because of their high level
of concurrency. With NPIRE we have shown that the programmaerspecify a simple task graph,
and that a compiler can automatically transform the tasksate up to the many PEs and hardware

contexts available in a modern network processor.

7.1 Contributions

This dissertation makes the following contributions: {ipresents the NPIRE infrastructure, an
integrated environment for network processor researchit @escribes network processing task
transformations and compilation techniques to automiftisaale the throughput of an application
to the underlying NP architecture; (iii) it presents an gntged evaluation of parallel applications
and multi-PE NPs.
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7.2 Future Work

Similarly to other work [50], we have shown that there rersaifie periods of time in our task
schedule and that the speedups due to our transformatierigrdrom matching the investment in
the number of PEs, mostly because of contention on SRAM basgememory channels. For this
reason, we present further task transformations that aoydbve the packet processing throughput.

Next we present features of our simulation that could be avgal upon.

7.2.1 Further Task Transformations

We now present transformations that are not yet (fully) enpénted but offer potential throughput

improvements for an application automatically mapped tetavark processor.

Task Specialization Because of Click’s modularity, tasks may perform more worlkntisade-
sired for a specific application. For example, it is possibbg a classification engine removes the
need for another element downstream in the task graph todssres certain type of packets. It is
hence possible that large portions of the tasks are reveeled (unused) code that could be elim-
inated. This elimination could lead to savings in instroctspace and further code optimizations.
One common example of code specialization is to replace sanmables by their observed run time

constant value.

Head of Line Processing This transformation assumes that we can build differentigpeed
versions of tasks that individually process faster diffiietands of packets. In order for the packets
to reach the specialized task, we need a way to determine chlagacterizes the packets that can
benefit from more efficient processing. The earlier we getitifarmation, the earlier the packet
can be handled by a specially tuned task. The approach thaswés to find points in the task
graph where there are branches. We then look at the code loagheblocks that create a transition
between elements. From there, we analyze the conditioatnsents. The next step would be to
evaluate early those conditions. Slicing the conditionecadd bubbling it upwards the task graph

poses some significant challenges.

118



7 Conclusions and Future Work

Out-of-band Tasks In our infrastructure, computations start with the arrivbh work unit (de-
fined in Section 5.1.2), consisting of a packet and a taskiiikrn We could extend our simulator

to support tasks that are timer triggered or run continyotastio maintenance.

Re-Partitioning Task repartitioning involves moving task boundaries betweonsecutive tasks.
Ennals et al. [23] show that this can be achieved by sucaetask splitting and merging (the authors

refer to those transformations respectively as “Pipelrdaral “PipeElimin”).

Further Speculation In this work, we presented speculation to enter a synchedngection
without waiting for all other tasks to have exited it. Anatherm of speculation that we could

explore would be to start elements even before they are gieg@ to execute.

Intra-Task Pipelining We could attempt at parallelizing the task splits definedant®n 3.4.2.
Hence, each task split would wait for a synchronization mgss&nd would not need to wait for its

predecessor splits to complete.

7.2.2 Improving Simulation

Here is a non exhaustive list of features that can be impradeigd in the infrastructure.

7.2.2.1 Improving Mapping

As explained in Section 5.2.2, we wrotdast simulatorto be able to test a large number of map-
pings. Itis fast because it only simulates scheduling takse duration measured in the simulator
with no context switching and no architectural simulatigve used this fast simulator to do exten-
sive searches of mappings. Because the number of possibl@ngamets very large with respect
to the number of tasks and PEs, we introduced the concepédirsgan initial mapping to the fast

simulator. In that case, our mapping tools only has to plaee¢maining tasks. To be able to trust
the results of the fast simulator, we compared the througbithe fast and the real simulators. We

found that the throughput trends were similar between tleesimulators and were especially close
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when contention on bus, memory or synchronized resourcesnaiaa performance bottleneck in
the detailed simulator. We envision that better mappingltegould be attained by improving the

accuracy of the fast simulator.

7.2.2.2 Improving Other Simulation Aspects

Here is a list of approaches that could make our simulatiem ewore realistic:

e Introduce a micro-architectural simulation of the proaeg®lements. Different flavors of

instruction -level parallelism could be examined like im8&ns and Rosenblum’s work [74].

e Model with more accuracy memory allocation of packet menargt temporary heap. This

memory allocation must be supported for our compiler to geieeexecutable code.

e Implement our techniques on a real NP or an FPGA fabric.
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In this chapter, we present some simulator features tha¢ obik a powerful tool suited for further
system research. We then motivate the current organizatitire NPIRE by giving some informa-
tion on the task mapping techniques that were tried and ondwwinfrastructure was iteratively

built.

A.1 Simulator features

The goal of the simulator is to mimic the execution of our a&milon’s recorded trace on a para-
metric network processor. The simulator allows to see ti®paance impacts of the modifications
that we make to the application and to the architecture o$itmellated NP.

Our infrastructure has numerous scripts that automatelairons and the generation of traces
and simulator configurations. The simulator is also equipitd multiple scripts that make it easy
to change between benchmark environments very quickly. €prently, the NPIRE simulator
can be deployed and installed rapidly on x86-class machiiestiple simulations in parallel are
supported: we even ported our simulator to a Condor [82] etust

A few data sets collected by the simulator are best repredegmnaphically. The NPIRE simulator
can generate a plot of an application task graph with theslddpeled with their usage count and a
graph of the element mapping. The simulator user can displdysave as a picture file a colored
map of memory references to a buffer, or a memory type, whesedlor corresponds to the fre-
guency of the accesses. In the simulator, a large numberest®wccur concurrently. To give a
global view of the NP activity to the user, the simulator caoduce, for a limited time interval, a

diagram showing context switching, task signaling and @ssing elements state. For example, this
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diagram allows the user to see graphically where PEs aréngydiecause of contention on shared
resources. The simulator can also produce coarser graplasks execution in time and packet
processing in time. This customizable granularity of geaptows for easier debugging. Finally,

at the end of each run, the simulator prints a block diagrammh®metwork processor simulated,
annotated with the most important rate and utilizationstias.

The simulator has support for interactive debugging by dpable to report the simulated time
and its full state at any time. The simulator can also printeadbntaining the size of all element
gueues in order to follow the evolution of a potential cottigesin the control graph. All statistics
in the simulator are connected to a global reset allowingad and end measurements at any time.
Some statistics can be set to be periodically re-normabzedntime to account for fluctuations in
the processing.

To assist the compiler in identifying frequently executede, the simulator dynamically builds
a suffix tree of sequences of elements executed on a packet.ddta structure was found to be
complex to build considering that multiple packets can b#igit and appending/branching in the
suffix tree. We envision that this monitoring could be usethmfuture to provide some simulator

responsiveness to changes in packet flow patterns.

A.2 Mapping

We implemented several strategies for task assignmenbtepsing elements that are still included
in our infrastructure. The following techniques are notllisethe results presented in this document
because they provide inferior mapping results on averathettechnique presented in Section 5.2.2.
The quality of a mapping can be measured in terms of load balaatween processing elements

utilization and overall system throughput.
One-to-one Tasks are assigned in a round-robin fashion to the avaifableessing engines.

Theoretical This mapping scheme uses a statistical (mathematical) Inbdaeue lengths. This

technique computes the probability of packet loss accgrtbrthe task latencies and frequency of
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occurrence.

Avoidance based This algorithm compacts elements on the smallest numbeEofTRe way
we proceed is by recording a window of operation in which akdi elements are given a chance
to execute. During this execution, we record all PE actipiyiods in a mapping of one task per
PE. We then determine which elements were active at the sameeahd conclude that they cannot
be mapped on the same PE. We later realized this task compamti PEs is incorrect. Making
concurrent tasks execute sequentially only hurts perfoo@# this reordering delays the execution

of other tasks on a given PE.

Limit bin packing This algorithm requires a user-defined target number of Bash element
instance has to be assigned at least one PE. For this firgtnpéatt, we add tasks to a PE as long as
the utilization of the PE does not exceed 100%. At each stapgeedy algorithm selects the PE
on which, when the task is added, has the most remainingadtefi.e. headroom). We also have
the option to consider placing the most active tasks firghdfe is still room in the PEs (determined
by the sum of activity), we replicate the elements that hawaiting time that is over the average

waiting time.

A.3 Early versions of NPIRE

The current NPIRE design is in its third version. In this sactiwe briefly explain why the earlier
versions had to be modified to motivate the current comgil@dlator organization of our infras-
tructure.

Our first attempt at creating the simulator was using Augrf62{ to instrument all memory
reads and writes inside the disassembled application c¥de.used a call graph generated by
Doxygen [86] to select the functions to be instrumented. tidid software threads were declared
in our back-end (presented in Section 4.2.3) and we wouldwtgea tasks on packets on threads
taken from the thread pool. In that case, our network pracesmulation was done concurrently

with the Click router execution. This imposed several litidtas on the parallelization/reordering
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techniques we could use.

We then evolved the simulator to generating a trace stiigisiugmint and an instruction count
obtained by converting the Click code to micro-ops using Bdafisoupled with rePlay [78].
Using an application trace turned out to be more flexible ftbensimulation point of view but the
binding between the application and the architecture wasistent. With the compiler support
that we inserted in the current version of the infrastruetwe have some knowledge of what
memory references point to and we have more powerful wayslokaing custom partitioning,
instrumentation, scheduling and resource allocation.

In the early versions of the simulator, we selected the RLDRA8] [33] as the technology
for our first memory device model implementation. On some RLDRdevices, since the write
operation has a shorter latency than the read, data on thddsaican be reordered (if this doesn’t
incur any violations). We added a small controller to the RLINRAode to try and improve on
memory transactions batching by looking at the requestsepid/NVe attempted to eliminate redun-
dant accesses and merging corresponding write/read asceBsose optimizations had very little
returns. Timing of an RLDRAM access is a non trivial problemaese we need to account for the
off-chip transition as well as the different clock frequgneith respect to the PEs. For example,
in the IXP NPs|[35], the latency of a memory access can be 10@ddnger in PE cycles that the
number of memory cycles for the operation, although thekcfoequencies differ by a factor of

roughly 2. This motivates our current memory timing modelgemted in Section 5.1.5.
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