
Tailoring Graph-coloring Register Allocation For Runtime Compilation

Keith D. Cooper and Anshuman Dasgupta

Rice University

Houston, TX., USA

{keith, anshuman}@cs.rice.edu

Abstract

Just-in-time compilers are invoked during application

execution and therefore need to ensure fast compilation

times. Consequently, runtime compiler designers are averse

to implementing compile-time intensive optimization algo-

rithms. Instead, they tend to select faster but less effective

transformations. In this paper, we explore this trade-off for

an important optimization – global register allocation. We

present a graph-coloring register allocator that has been

redesigned for runtime compilation. Compared to Chaitin-

Briggs [7], a standard graph-coloring technique, the re-

formulated algorithm requires considerably less allocation

time and produces allocations that are only marginally

worse than those of Chaitin-Briggs. Our experimental re-

sults indicate that the allocator performs better than the

linear-scan and Chaitin-Briggs allocators on most bench-

marks in a runtime compilation environment. By increasing

allocation efficiency and preserving optimization quality,

the presented algorithm increases the suitability and prof-

itability of a graph-coloring register allocation strategy for

a runtime compiler.

1 Introduction

In recent years, platform-independent program represen-

tations have experienced a drastic growth in popularity. The

widely used Java and .Net platforms encode programs in

portable representations that are compiled or interpreted at

runtime. Running programs on these frameworks is a two-

step process: the source-code is first compiled to a machine-

independent representation called bytecode.1 The bytecode

is then transported to the target processor where it is in-

terpreted by a virtual machine (VM). While such portable

1So named because each opcode occupies a single byte. The term byte-

code dates back to the Smalltalk-80 systems [14]; more recently, it has be-

come almost synonymous with Java’s bytecode format. In this document,

we shall use the term bytecode to refer to a portable representation used

for runtime compilation.

representations allow programs to be executed on a wide

variety of environments, the run-anywhere feature of the

code comes with a cost: the interpretation of portable code

is generally slower than the execution of a natively com-

piled version of the program that has been specialized for

the target architecture. Two major factors contribute to the

relative inefficiency of portable code: the overhead of inter-

pretation, and the genericity of the encoding that, by its very

nature, prohibits important machine-specific optimizations.

To alleviate these problems, many virtual machines invoke

a runtime compiler, also popularly known as a just-in-time

compiler (JIT).

The JIT translates the bytecode to architecture-specific

machine code and, in the process, attempts to optimize the

resulting assembly code. A JIT shares many goals with tra-

ditional, offline compilers – it strives to tailor its translation

to emit the most efficient machine code. However, in con-

trast to its offline counterpart, a JIT must be acutely cog-

nizant of compilation time. Since the compiler is invoked at

runtime, it must optimize for the sum of compile time and

runtime. This constraint requires the JIT to strike a fine bal-

ance between conducting strong optimizations that tend to

be computationally expensive and faster, but less-effective

techniques. The decisions taken in choosing these optimiza-

tions have a profound impact on program execution effi-

ciency. Our work will examine and address this critically

important issue.

1.1 Balancing optimization quality and
compilation time

The literature on compilers includes descriptions of nu-

merous optimizations that focus on improving the quality of

compiled code. Many of these transformations rely on in-

tricate mathematical analyses. The resulting optimizations

can be computationally intensive and, consequently, expen-

sive to conduct. In an offline compiler, compilation time has

no direct impact on application efficiency, so a reasonable

increase in compile time can be tolerated for an optimiza-

tion that improves the code. In a JIT environment, where

1



compilation time is added to application runtime, expen-

sive optimizations are feasible only if they provide consis-

tent and large improvements. Thus, JITs typically exclude

most expensive optimization techniques.

This challenge has led JIT authors to focus on the de-

sign and implementation of optimizations that use only

modest amounts of compile time. Often, these faster al-

gorithms use starkly different strategies than traditional

optimizations, thereby sacrificing optimization quality for

compilation speed. This paper focuses on an important

optimization—register allocation—and its implementation

in a JIT environment. Most JITs abandon the traditional,

proven techniques that operate by analogy to graph coloring

in favor of less expensive algorithms that are also less effec-

tive. In this paper, we reformulate graph-coloring register

allocation—a computationally expensive technique popular

in offline compilers—so that it is fast enough to use in a run-

time compiler. Our reformulation sacrifices some optimiza-

tion quality in favor of efficiency, but it preserves the essen-

tial flavor and, consequently, the proficiency of the graph-

coloring allocators. Our approach yields the right balance

between compilation efficiency and optimization efficacy

and makes graph coloring allocation more attractive for use

in a runtime compiler.

2 Register Allocation

Register allocation is the process of mapping values in

the input program to a limited set of machine registers.

Register allocators typically take an intermediate represen-

tation of a program as input. This representation does not

impose any architectural limitations on the number of reg-

isters – values are contained in locations known as virtual

registers. It is the allocator’s responsibility to map the un-

limited set of virtual registers into a finite number of ma-

chine (or, physical) registers. Moreover, while conducting

this mapping, it must maintain the semantics of the pro-

gram. Register allocation is a critically important, and con-

sequently, well-studied transformation. In general, the allo-

cation problem is NP-complete [20] and several heuristic-

based techniques, such as graph coloring, have been de-

signed to conduct allocation on a traditional, offline com-

piler. Most JITs, however, prefer to implement faster al-

location algorithms in an effort to increase allocation ef-

ficiency. In particular, linear-scan algorithms are a popular

choice for runtime compilers [19, 22, 18]. As the name sug-

gests, the runtime behavior of these algorithms tends to be

linear in the size of the input. In practice, the graph color-

ing approach is more proficient at allocating registers than

linear-scan techniques and can improve the performance of

the allocated code [19, 22]. But, in a JIT environment, the

additional compile time required by the algorithm greatly

diminishes the runtime gains achieved by an improved al-

calculate

spill costs

Spill code

coalescebuild simplify select

Figure 1. Overview of the Chaitin-Briggs allo-
cator

location. Thus, the JIT designer is faced with a difficult

tradeoff between compilation proficiency and efficiency. In

this paper, we address this difficult decision by designing an

efficient graph-coloring allocator for a runtime compiler.

3 Background: The Chaitin-Briggs Register

Allocator

We chose to modify a well-known and widely imple-

mented graph coloring technique—the Chaitin-Briggs algo-

rithm [9, 8, 7]. The algorithm consists of six phases, shown

in Figure 1.

1. Build the Interference Graph: The initial phase identi-

fies interferences by constructing live ranges and build-

ing a graph to represent interferences between these

ranges.

2. Coalesce: This phase removes register-to-register

copies if the source and the destination registers do not

interfere. The build and coalesce phases are repeated

in tandem until no more coalescing can be conducted.

3. Calculate Spill costs and Simplify: To make an in-

formed spill decision, the allocator estimates a spill

cost for every node in the interference graph. The Sim-

plify phase consults the spill cost and orders the nodes

by placing them on a stack.

4. Select: The allocator tries to color the graph by repeat-

edly popping a node from the stack, inserting it into the

graph, and attempting to assign it a color. If all colors

have already been exhausted by its neighbors, then the

node is marked for spilling and left uncolored.

5. Spill code insertion: Spill code is inserted for nodes

marked for spilling by the previous phase and the allo-

cator is restarted on the modified program.

Briggs’ allocator makes spill decisions later in the process

than does Chaitin’s. Briggs calls this procedure optimistic

coloring since the algorithm defers spilling a node in the

hope that a color will actually be available for it.



Build

72%

Spill

14%

Coalesce

8%

Simplify

5%

Select

1%

Figure 2. Contribution of phases in Chaitin-

Briggs to the total allocation time. The values
are geometric means over all benchmarks

a

h

g

f

e

d

c
b

Procedure P:
c = ...
b = ...
a = 0
e = load value
d = b + c
f = e + 10
g = f * 50 + a
h = d + g
return h

Figure 3. An interference graph constructed

from a simple procedure

4 Identifying the expensive components of

the algorithm

In order to effectively redesign the Chaitin-Briggs algo-

rithm for a JIT, we profiled its execution to measure the cost

of each of its different phases. For most programs, the inter-

ference graph builder is the most expensive component—its

worst-case asymptotic bound is O(n2), where n is the num-

ber of live ranges in the program. However, since exper-

imental results can sometimes differ from those suggested

by complexity analyses, we conducted a number of experi-

ments to measure the relative performance of the six phases.

Figure 2 presents the results of those experiments. We timed

each of the allocator’s different components and computed

the percentage of time spent in each phase. As displayed

in Figure 2, our results show that, as predicted by the com-

plexity analysis, the interference graph builder is the most

expensive component. On average, it consumes about 72%

of the allocation process. These results show that reducing

the time required by the graph builder should increase al-

location efficiency. Note that the algorithm can revisit the

build phase several times. In particular, if spilling or coa-

lescing occurs, the allocator rebuilds the interference graph.

This observation is crucial to understanding the contribution

of the build phase towards the overall cost of register alloca-

tion. The next few sections describe how we redesigned the

interference graph construction algorithm to increase the al-

locator’s efficiency.

Build_Live_Sets(Procedure P)
Use an worklist algorithm to compute live-in
and live-out sets for each block in P

Build_Interference_Graph(Procedure P)
call Build_Live_Sets(P);
for every block B in P
Current_Live(B) = LiveOut(B)
for every inst. I in reverse order
for every definition D in I
add an interference from D to every
element in Current_Live - {D} creating
nodes if necessary

for every definition D in I
remove D from Current_Live

for every use U in I
add U to Current_Live

Figure 4. Algorithm for constructing the inter-

ference graph in a Chaitin-Briggs allocator

5 Interference Graph building

The Chaitin-Briggs algorithm models allocation as a

graph-coloring problem. It first builds an interference graph

that denotes the safety constraints that the allocator must

respect. These constraints, essential for maintaining the se-

mantics of the program, are called interferences. The inter-

ference graph is an undirected graph that consists of nodes

and edges. Nodes represent the live ranges in the program.

An edge between two nodes indicates that the two corre-

sponding live ranges interfere with each other. Chaitin de-

fines the term interference as: two names interfere if one of

them is live at a definition point of the other2 [9]. If two live

ranges interfere, then they cannot share the same physical

register. Thus, the register allocator must preserve safety by

ensuring that interfering live ranges are allocated to differ-

ent registers. Figure 3 depicts an interference graph con-

structed from a simple procedure. We shall revisit the struc-

ture of the interference graph while describing our modified

allocation algorithm in Section 6.

Figure 4 contains the pseudo-code of the Chaitin-Briggs

interference graph construction algorithm. Recall that two

live ranges interfere if one is live at the other’s definition

point. First, the algorithm calculates liveness information

by using a classic, worklist-driven, data-flow algorithm.

This analysis annotates each block in the procedure with the

set of live-ranges that are live at the block’s beginning and at

its end. Next, the graph constructor iterates over every block

in reverse. At each instruction, the algorithm computes the

set of values that are live at that point in the program incre-

mentally from the previously known set. Live ranges that

are defined in that instruction are deleted from the live set

and live ranges that are used in the instruction are added to

2Chaitin’s “names” are derived from connected components of a virtual

register’s def-use chains and are analogous to live ranges



load T1

R2=R1 op R3 R2=T1 op R3 T2=R1 op R3

store T2

Before Spilling R1 spilled R2 spilled

Figure 5. Spill code insertion

the set. To build the actual graph, the process adds interfer-

ences between a value defined in the current operation and

all values live at the definition.

After the interference graph is built, the graph-coloring

allocator proceeds as shown in Figure 1. Note that during

the allocation process, the interference graph information

might become outdated. As a result, the allocator must re-

build the interference graph. Rebuilding occurs for two rea-

sons: spill code insertion and coalescing. When spill code

is added to the program, new live ranges are created and the

spilled live range disappears. The allocator needs interfer-

ence information for these ranges before it can safely allo-

cate physical registers to them. Therefore, at the end of the

spill phase, the algorithm rebuilds the interference graph,

re-running the algorithm in Figure 4. Coalescing can also

make the interference graph imprecise. Briggs describes

this issue comprehensively in his dissertation [6]: when two

values are coalesced, the allocator constructs an approxi-

mate set of interferences for the combined live range. This

approximation, though safe, may be overly conservative.

Rebuilding the interference graph after coalescing corrects

this problem. Moreover, both coalescing and spilling can

invalidate the live sets. Thus, the interference graph builder

must rebuild live sets before rebuilding the graph.

6 Redesigning the interference graph builder

for a runtime compiler

Our primary goal was to increase the efficiency of the

Chaitin-Briggs allocator. As we will show in the next few

sections, we modified the interference graph construction

component of the algorithm. In doing so, we tried to de-

crease the graph-building time process while preserving the

overall proficiency of the allocator. Our modified alloca-

tor introduces some imprecision in the interference graph

and significantly reduces graph building time. Borrowing

image-compression terminology, we refer to our modified

algorithm as the lossy allocator.

Before we examine the modified algorithm, consider the

spill insertion mechanism in a Chaitin-Briggs allocator. The

modifications change the manner in which the interference

graph is updated after spilling. Figure 5 summarizes the in-

structions inserted for spill loads and stores. In the descrip-

tions of the lossy allocator, we shall use the term temporary

register to refer to the live ranges inserted by the spiller (T1

h

g

e

d

c
b

a

f

Figure 6. Interference graph for the proce-

dure shown in Figure 3, with edges parti-

tioned into definition and use edges. Here,
an arrow from node n1 to node n2 indicates

that < n1, n2 > is a definition edge.

and T2 in our examples). For consistency, we shall use R

to refer to a spilled register and T to refer to a temporary

register.

6.1 The lossy allocator

In designing our lossy algorithm, we wished to construct

the interference graph once and then use incremental meth-

ods to update the graph after spilling and coalescing. To

achieve a substantial decrease in allocation time, we were

willing to accept some loss in allocation proficiency. To

this end, we decided to augment the representation of the

interference graph. The unmodified interference graph is

represented by two major data structures – a bit matrix and

a collection of edge sets. The bit matrix indicates whether

two nodes in the graph interfere. Each node in the graph,

N , holds an edge-set that lists the nodes with which it inter-

feres.

In the lossy allocator, we added additional information to

the edge-sets – each edge originating from a node contains a

tag indicating the type of the edge. We classified every edge

in the graph as a definition edge or use edge. To compre-

hensively define these terms, let us reconsider the algorithm

described in Figure 4. The procedure for building an inter-

ference graph traverses the program, identifies live ranges,

and adds interferences between them. A careful examina-

tion of the algorithm shows that there exist three scenarios

when an interference edge is added. If the algorithm added

an edge between live range L1 and L2, then either:

1. The algorithm discovered that L2 is live at a definition

point of L1, in which case the edge < L1, L2 > gets

classified as a definition edge, or

2. The algorithm discovered that L1 is live at a definition

point of L2, in which case the edge < L2, L1 > gets

classified as a definition edge, or



for every block B in the procedure
iterate through every inst. I in B
if a load is needed for temporary reg. T
locate the last def. in B prior to I
if such a def. D is found
add the edge (T, D) to the graph
set D to its name before renaming
for every def. edge <D, E>
add the edge (T, E) to the graph
if D is a copy inst., add an edge
between the source and T.

else if no such def. exists
for every value L in LiveIn(B)
add edge (T, L) to the graph

if a store is needed for reg. T
let D = the name of T before renaming
for every def. edge <D, E>
add the edge (T, E) to the graph

mark all edges added to T as def. edges
if the load services multiple insts.
add interferences between T and all
defs. till the last use of T

remove spilled nodes from graph

Figure 7. Lossy algorithm for reconstructing
the interference graph after spilling

3. The algorithm discovered that both cases 1 and 2 oc-

curred – L1 was live at L2’s definition point and L2

was live at L1’s definition point. In this case, both

edges are classified as definition edges

A use edge is an edge that has not been classified as a def-

inition edge. The algorithms described in this paper focus

solely on definition edges. In our initial construction of the

interference graph, we used these specifications to catego-

rize the edges. Consider the program that was displayed in

Figure 3. Figure 6 shows the interference graph for the pro-

gram with edges partitioned into the two categories. This

modification is similar to transforming the undirected in-

terference graph into a constrained directed graph.3 This

seemingly minor distinction between edges holds the key

to a faster algorithm. In the next few paragraphs, we shall

use tuple notation to denote edges only when a distinction

between use and definition edges is warranted.

6.1.1 Updating the graph after spilling

Once the enhanced interference graph has been constructed,

the lossy allocator utilizes the additional information em-

bedded in the graph to guide post-spill incremental updates

of the graph. Let a live range R be spilled at an instruction

3Specifically, the directed graph, DG, must maintain the one-one map-

ping between itself and an undirected graph – if < n1, n2 >∈ DG ⇒<

n2, n1 >∈ DG. This is similar in structure to Cooper and Simpson’s

containment graph [10] but encodes very different semantics

I in block B of the program, and a new temporary regis-

ter T created in its place. The allocator must, as before,

compute the interference edges for T . Prior to inserting the

spill instruction, our algorithm iterates backwards through

the block and locates the nearest definition point. Let D be

the live range defined at that location. The allocator adds all

of D’s definition edges as interference edges for T . Further,

it classifies these edges as definition edges for T . If a def-

inition point is not found before the beginning of the block

is encountered, then the algorithm adds all members of the

live-in set of B as definition edges for T . This procedure

results in generating a safe but conservative estimate for the

interference edges of node T . Figure 7 outlines the lossy

spill algorithm.

In the next section, we shall prove two lemmas that con-

firm that our updates are safe for spill stores and loads that

service one instruction. Lemma 1 proves that given a safe

pre-spill interference graph, if a definition point is found

in the block while iterating backwards from P , then the

addition of these edges to T is sufficient to ensure safety.

Lemma 2 proves that if a definition point is not encountered

before the beginning of the block and all edges from the

live-in set is added to T, then the interference graph is safe

after the update. Since the updates occur before register as-

signment, the registers referred to in the lemmas are virtual

registers.

Preliminary definition: An interference graph for a proce-

dure P is considered safe iff the following condition holds:

Given any two live ranges L1 and L2 in P , L1 and L2 inter-

fere → ∃ edge (L1, L2) in the interference graph

Invariant 1: For a node N in the interference graph, the set

of definition edges contains the nodes of all values live at

N ’s definition points. Note that due to the classification of

edges described in Section 6.1, this proposition is true after

the initial construction of the interference graph.

Lemma 1 Given:

(i) a spilled register R renamed to T at instruction I in

basic block B

(ii) I contains the only uses of T before spill code insertion

(iii) a safe interference graph for which Invariant 1 holds

before processing the spill

(iv) D is the first definition of a register in B found by iter-

ating backwards from I

If the edge (T, D) and all of D’s definition edges are added

to T , the resulting node for T contains all interferences

needed to ensure register allocation safety. Further if all

added edges are marked as definition edges originating

from T , Invariant 1 is preserved by this update.

Proof: We shall prove this by contradiction. Let us first

consider what it means for the update not to be safe. The



update is unsafe iff after the edges are added, the graph

does not contain an edge between T and a live range L even

though L and T interfere. This follows from the definition of

safety in an interference graph. Let (T, L) be such an edge

that is not added to the graph after the update.

First, note that L cannot be equal to D since we know

that (T, D) is added to the graph. Further, if L and T inter-

fere, since the definition point of T for both spill loads and

stores is located in the instruction immediately preceding its

only use, it implies that L was live at the definition point of

T . Recall that if a spill store is being inserted, then the def-

inition point of T is I . If, however, a spill load is inserted, a

new instruction defining T will be inserted just before I . In

both cases, remember that our algorithm updates interfer-

ences before inserting the spill instruction.

Since the algorithm adds all the definition edges of D

to T , the absence of (T, L) and Invariant 1 implies the ab-

sence of < D, L > in the graph and that L was not live

at the definition point of D. Therefore, L must have been

killed (i.e. defined) between T ’s and D’s definition points

in B. But, we know that D is the first definition of a register

in block B while iterating backwards from I and that L is

not D. Thus, we reach a contradiction. It also follows that

since Invariant 1 holds before the update and that no reg-

isters are killed between the definition points of T and D,

marking the added edges as definition edges for T preserves

the invariant.

Lemma 2 Given conditions (i) through (iii) from Lemma 1

and:

(iv) there are no register definitions from the beginning of

B till I

If all edges in live-in(B) are added as definition edges origi-

nating from T , then the resulting node for T contains all in-

terferences needed to ensure register allocation safety. Fur-

ther, Invariant 1 is preserved by this update.

Proof: Again, as in Lemma 1, the update is unsafe iff after

the edges are added, the graph does not contain an edge

between T and a live range L even though L and T inter-

fere. Now, if L interferes with T and there are no definitions

between instruction I and the beginning of the block, then

L must be in the live-in set of block B. Thus, adding all

members of the live-in set of B will ensure the presence

of an edge between T and all ranges that interfere with T .

Note that since there are no values killed between the begin-

ning of B and I, marking all values in live-in(B) as definition

edges for T will preserve Invariant 1.

Lemma 1 and Lemma 2 prove that our updates are safe for

spills that service one instruction. We, however, need to

consider the situation when a load services multiple instruc-

tions.

6.1.2 Spill loads servicing multiple instructions

If the allocator decides to spill a live range, it must iterate

through the code and insert spill code—loads before a use

and stores after a definition. 4 The placement of stores is

simple – a store is inserted after every definition of a spilled

range. However, load placement is more intricate. By in-

serting a load, the spiller essentially marks the beginning

of a new live range. In certain situations, multiple uses of

the same live range can be found in separate instructions

that are situated close together without an intervening live-

range death5. In this case, the spiller tries to schedule one

load for those uses. Thus, after spilling, a single load can

service multiple uses of a live range. The lossy algorithm

needs to account for the entire live range of this load when

it updates the interference graph. To achieve this effect, it

first updates the graph as described in the preceding sub-

section. It then iterates forward through the block till the

last use of the loaded value and adds all definitions encoun-

tered as use interferences for the newly created temporary

live range. Since there are no deaths in between the load and

the uses, it only needs to track live range definitions while

iterating. There are no dead live ranges to be removed.

Lemma 3 Given condition (i) from Lemma 1 and:

(ii) T is used (read from) in instruction I and a spill load

is placed immediately preceding instruction I
(iii) T is also used in instruction J that appears after I in

B
(iv) a safe interference graph for which Invariant 1 holds

before processing the spill

We know from Lemmas 1 and 2 that if T was used solely

in I then after we update the interferences for T , the inter-

ference graph will be safe. We need to show that after the

update, if we add all live range definitions between I and

J , then we will end up with a safe interference graph and

Invariant 1 will be preserved.

Proof: Consider an interference caused by the occurrence

of T in J that is not present after the update. This can

only be caused by a live range whose definition point lies in

between I and J . Thus, if the algorithm adds all definition

points in between I and J , we will capture all interferences

caused by the use of T in J . We know from Lemmas 1 and

2 that Invariant 1 is preserved for the updates described in

Section 6.2.1. In this case, there are multiple uses of T .

However, the presence of additional uses of T does affect

the values live at its definition point. Thus Invariant 1 is

preserved as shown in Lemmas 1 and 2. In this lemma, we

do not specify the lack of live range deaths between the uses

4We use Harvey’s suggested modification to Briggs’ algorithm [15] but

the same updates can be conducted on Briggs’ original algorithm.
5the last use of a live range



of T as a pre-condition since it affects strictly the precision,

and not the safety of the updates.

The three preceding lemmas prove that our modifications

of the interference graph do not compromise on the cor-

rectness of register allocation and that the graph contains at

least all the edges required to preserve safety during register

allocation.

6.1.3 Sources of imprecision

Though we have proven that the lossy allocator constructs

safe interference graphs, it may add unnecessary edges to

the graph. There are three sources of imprecision. Firstly,

remember that after spilling the algorithm searches back-

wards for a definition point. It then adds all interferences

for the definition (say D) as interferences for the temporary

live range. But, D might interfere with more registers than

the temporary live range. Specifically, if the death of a live

range occurs between the definition point and the spill in-

struction then D will interfere with that live range while the

temporary live range will not. This situation arises only for

spill loads since for stores, the temporary live range is de-

fined in the instruction. D can also be defined in multiple

locations which may lead to the addition of extraneous in-

terferences. However, JIT instruction selectors are designed

to be fast and typically reserve new virtual registers for each

defined value. Therefore, we do not expect multiple defini-

tions to be a major source of imprecision. In our experi-

ments using LLVM, we encounter this imprecision mainly

for definitions by copy instructions that are generated to

eliminate SSA φ-nodes. Second, if the definition point is

a copy instruction, then the source and the target register

of the copy do not interfere with each other. However, we

are conservative and add an edge between the source and T .

This edge is superfluous if the source dies between the copy

instruction and the spill instruction. Finally, another source

of imprecision arises from adding edges between values in

the live-in set and T . Again, such an edge is extraneous if

the death of the live-in value occurs before the spill instruc-

tion in the block.

6.1.4 Updating live set information after spilling and

coalescing

When a live range is spilled, the lossy allocator follows the

original Chaitin-Briggs algorithm – it replaces the reference

to the original range by a newly created, temporary register

and inserts the appropriate spill instructions. This invali-

dates live set information. In Chaitin-Briggs, live set in-

formation is reconstructed when the interference graph is

rebuilt. Since the lossy allocator does not rebuild the graph

after spilling, it must update the live sets to reflect the post-

spill changes. Thus, after a live range is spilled in block

B, the algorithm erases the live range from the live-in set

of every block in the procedure. Notice that the temporary

live ranges are local to the block they are created in. There-

fore, these values can be ignored by the live-in and live-

out sets. In the coalescing phase, the allocator attempts to

merge live ranges. Combining two live ranges into one can

affect liveness information and we must carefully propagate

these changes to the live sets after a coalescing iteration. To

this end, the lossy allocator updates live information by re-

placing all references of the coalesced live range in the live

sets with the name of the newly merged live range.

7 Experimental methodology and results

In the next few sections, we shall present the results of

our experiments that evaluated the performance of the lossy

allocator. For the experiments we used the LLVM com-

piler infrastructure since it was modular, flexible, and very

well documented [16]. LLVM uses a SSA-based intermedi-

ate representation 6 and provides two types of compilers:

a dynamic, JIT-driven compiler as well as a static com-

piler. The LLVM runtime system uses a compile-only ap-

proach – the JIT compiles a procedure to native code upon

the first invocation of the procedure. We implemented both

the classic Chaitin-Briggs algorithm and our lossy allocator

in LLVM. We compiled and evaluated our benchmarks on

an Intel Pentium 4, 3.2GHz processor with 1 GB of main

memory running Linux. The Pentium 4 has 7 allocatable

integer registers and 8 allocatable floating-point registers.

We evaluated the allocators on benchmarks from the SPEC

CINT2000 suite. We selected these benchmarks since

they perform mostly integer computations. Currently, the

LLVM x86 backend has limited support for global floating-

point register allocation and is generally unable to allocate

floating-point values across basic blocks due to complica-

tions in handling the stack-based floating-point register file.

The reported times are the sum of the system and user times

consumed by a process.

7.1 Performance of the lossy allocator in
an offline compiler

Our first goal was to examine how effectively the lossy

allocator reduced allocation time in contrast to a standard

graph-coloring algorithm for offline compilers. We com-

pared the performance of the new algorithm to the Chaitin-

Briggs allocator. In our first experiment, we statically com-

piled our benchmarks with the two allocators and com-

pared the allocation times. Figure 8 shows the results of

the experiment. As the graph indicates, the lossy algorithm

6The code presented to the register allocator, however, is not in SSA

format due to φ-node elimination and architecture-specific transforma-

tions.



0.65

1.02

0

0.2

0.4

0.6

0.8

1

1.2

gz
ip

vp
r

gc
c

m
cf

cr
af
ty

pa
rs
er

eo
n

ga
p

vo
rt
ex

bz
ip
2

tw
ol
f

G
EO

M
.M

EA
N

Allocation Time
Execution Time

Figure 8. Allocation and execution times us-

ing the lossy allocator in an offline compiler.
Displayed times are relative to the Chaitin-

Briggs allocator

Build

55%

Spill

28%

Coalesce

6%

Simplify

9%
Select

2%

Figure 9. Contribution of phases in the lossy

allocator. The values are geometric means
over all benchmarks.

performed well and conducted allocation much more effi-

ciently than Chaitin-Briggs. On average, the lossy alloca-

tor decreased allocation time by 35%. This is a significant

decrease over the original Chaitin-Briggs algorithm. Since

the lossy algorithm can add superfluous edges to the inter-

ference graph, our next experiment compared the execution

times of programs allocated by the lossy and Chaitin-Briggs

algorithms. The results, also shown in Figure 8, confirm

that the lossy algorithm increases the runtime of the allo-

cated program. However, we were pleased to note that the

runtime only increases by around 2% on average. We will

provide a more thorough measurement of the imprecision

of the lossy allocator that led to this runtime degradation in

the next few sections. Note that these two experiments mea-

sured the performance of the allocator in an offline compi-

lation environment. Our intention in designing these ex-

periments was to understand the potential of the modified

allocator by examining its efficiency and allocation perfor-

mance in isolation. We were heartened by the sharp re-

duction of allocation time and the competitive performance

of the code generated by lossy allocation. However, there

is one major difference between allocation time measure-

ments obtained in a static and runtime compiler. In most

runtime compilers, procedures are compiled on-demand. If

a procedure is not invoked at runtime, then the JIT does not

translate that procedure to native code. The offline com-

piler, in contrast, compiles all procedures oblivious to their

utilization at runtime. Hence, for a particular benchmark,

SPILLS EDGES

LOSSY CB RATIO LOSSY CB RATIO

gzip 1061 1032 1.028 18852 17020 1.108
vpr 6665 6469 1.030 103334 90136 1.147
gcc 61214 58601 1.045 953856 857890 1.111
mcf 378 378 1.000 10098 9056 1.115
crafty 10477 10084 1.039 190942 169614 1.126
parser 4136 3974 1.041 75250 70822 1.063
eon 17559 17368 1.011 218664 202294 1.081
gap 23620 23041 1.025 395012 370348 1.067
vortex 8583 8459 1.015 225194 217736 1.034
bzip2 1264 1204 1.050 16640 15210 1.094
twolf 11627 11204 1.038 183962 166196 1.107

G.MEAN 6636.0 6436.8 1.031 117355.6 106752.7 1.099

Table 1. Extra spills and edges added by
the lossy allocator when compared to the

Chaitin-Briggs (CB) allocator.

we expect to see the register allocator operating on fewer

procedures in a dynamic compiler than suggested by these

results. The measurements in Figure 8 thus provide an up-

per bound on the allocation-time improvements we antici-

pate in a dynamic environment. Figure 9 depicts the run-

ning time of the lossy allocator broken down into its differ-

ent components. When compared to Figure 2, the diagram

demonstrates that the gains in allocation efficiency were due

to a significant reduction in interference graph construction

time.

7.2 Imprecision in the lossy allocator

The lossy allocator, in its bid to increase allocation effi-

ciency, may add more edges to the interference graph than

the Chaitin-Briggs algorithm. Our next set of experiments

examine the imprecision of the lossy allocator. We com-

piled the SPEC integer benchmarks using two allocation al-

gorithms – the Chaitin-Briggs and the lossy allocators – and

compared the interference graphs that were produced for ev-

ery procedure in the benchmark. We tallied the number of

edges that were produced by both allocators. Our results,

as displayed in Table 1, show that the lossy allocator adds a

moderate number of extra edges to the graph. On average,

the allocator added around 10% superfluous edges.

The addition of extra edges by the lossy allocator affects

the colorability of the interference graph. Since some nodes

have more edges than they would if the allocator rebuilt

the graph from scratch (e.g., Chaitin-Briggs), they might

be more difficult to color. Consequently, the lossy alloca-

tor may generate more spill code than Chaitin-Briggs. We

measured the amount of spill code generated by both allo-

cators and present the comparison in Table 1. Compared to

the Chaitin-Briggs allocator, the lossy algorithm generated

around 3% more spills on average. As Table 1 shows, the

relative increase in edges is greater than the relative increase



0.98
0.91

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

gz
ip

vp
r

gc
c

m
cf

cr
af
ty

pa
rs
er

eo
n

ga
p

vo
rt
ex

bz
ip
2

tw
ol
f

G
EO

M
.M

EA
N

Chaitin-Briggs
Linear Scan
Lossy

Figure 10. Observed runtime of benchmarks
in a dynamically compiled environment us-

ing different allocators. Reported times are

shown relative to the Chaitin-Briggs alloca-
tor.

in spills. This occurs primarily because spilled nodes in the

lossy allocator contain a higher number of extraneous edges

as compared to unspilled nodes.

7.3 Performance of the lossy allocator in
a runtime compiler

Since we designed the lossy algorithm for runtime com-

pilation, our most important experiment measures the per-

formance of the allocator in a dynamically compiled en-

vironment. We present a summary of our results in Fig-

ure 10. As can be seen, the lossy allocator outperformed

the Chaitin-Briggs algorithm on all the benchmarks. The

results demonstrate that the significant decrease in compi-

lation time for the lossy allocator more than compensated

for the marginal increase in execution time. Note that, as is

the case with dynamic compilation, not every procedure in

a benchmark was compiled. However, the incremental tech-

niques reduced compilation time considerably. On average,

the lossy allocator reduced observed runtime (compile time

+ execution time) by 9% when compared to the Chaitin-

Briggs allocator.

To gauge how effective the lossy allocator was in com-

parison to a JIT specific algorithm, we compared its per-

formance to the linear-scan algorithm that was bundled

with LLVM. The LLVM linear-scan algorithm extends

[18] by removing the need to reserve spill registers and

adding the ability to propagate spill code into instruc-

tions [13]. In our experiments, the lossy algorithm out-

performed linear-scan on 9 of the 11 SPEC integer bench-

marks. On 2 SPEC benchmarks—eon, and twolf—the al-

locator performed worse than linear-scan. On these bench-

marks, graph-coloring required significantly more compi-

lation time than linear-scan and thus the improved alloca-

tion could not compensate for the substantive compile-time

handicap. Note that on both benchmarks, the lossy allocator

performed better than Chaitin-Briggs. Second, on 4 bench-

marks: vpr, gcc, crafty, and vortex, the lossy al-

locator outperformed linear-scan which, in turn, bested the

Chaitin-Briggs technique. This result emphasizes the suc-

cess of redesigning a strong allocation technique for run-

time compilation. Further, we note that the input data size

plays a major role in the relative performance of the alloca-

tors in a runtime environment. These results were obtained

by running the SPEC benchmarks on large data sets. In the

next section, we will examine the relationship between in-

put data complexity and allocator performance.

7.3.1 Input data size and allocator performance

The results obtained by our experiments highlight a difficult

decision that JIT compiler designers must make. Optimiza-

tions that are expensive to conduct may improve the dy-

namically compiled code for current and future invocations.

However, the additional time consumed by these optimiza-

tions can outweigh the advantages of executing strongly op-

timized code. In general, the longer a program7 continues

to execute, the greater the advantages of expending addi-

tional time to optimize the code. We wished to understand

the impact of program running time on the relative perfor-

mance of our allocators. Therefore, we gradually increased

the input complexity of our benchmarks and measured the

performance of code allocated by the linear-scan, Chaitin-

Briggs, and lossy algorithms on a runtime compilation en-

vironment. Figure 11 shows the results of our experiments

for 3 benchmarks.

The performance of the allocators exhibits an interest-

ing progression. For smaller input sizes, the linear-scan

allocator outperforms all other allocators. For these sizes,

the overhead of graph-coloring register allocation swamps

the benefits afforded by stronger allocation. As the in-

put size increases, procedures in the program are executed

more frequently. Progressively, the more proficiently al-

located code begins to recoup the extra time it ceded dur-

ing optimization. We were pleased to note that, as shown

in Figure 11, the runtime compiler that uses the lossy al-

locator starts outperforming the linear-scan JIT much be-

fore its Chaitin-Briggs counterpart. (The crossover points

are marked on the graph with dotted vertical lines.) We

wish to highlight three key features of these results. First,

the performance curve demonstrates that program runtime

changes the choice of the best allocation algorithm in a run-

time compiler. Second, the lossy allocator considerably re-

duces the switch-over point between the compile-time effi-

cient linear-scan technique and a graph-coloring algorithm.

For instance, as can be seen in the parser graph, the cross-

over point between linear-scan and the lossy allocator is

around 2400 lines of input. In contrast, the program allo-

cated with the Chaitin-Briggs graph-coloring allocator sur-

7or procedure if different optimization algorithms can be selected for

each procedure in the program



parser

0

50

100

150

200

250

801 1601 2401 3201 4001 4801 5601

Input Size (lines)

B
e
n

c
h

m
a
r
k
 r

u
n

ti
m

e
 (

s
)

Linear Scan

Lossy

Chaitin-Briggs

crafty

0

50

100

150

200

250

300

350

400

450

500

50 52 53 55 57 59 77 79 81

Num. of moves

B
e
n

c
h

m
a
r
k
 r

u
n

ti
m

e
 (

s
)

Linear Scan

Lossy

Chaitin Briggs

gzip

0

10

20

30

40

50

60

70

10 20 30 40 50 60 70 80

Input size (MB)

B
e
n

c
h

m
a
r
k
 r

u
n

ti
m

e
 (

s
)

Linear Scan

Lossy

Chaitin-Briggs

Figure 11. Behavior of allocated code in a runtime compiler for 3 benchmarks as the input complexity

increases. Lower y-axis values signify better performance. The dashed vertical lines indicate the
cross-over points for the Chaitin-Briggs and lossy allocators with respect to linear-scan.

passes linear-scan at around 4000 lines of input. As a result,

the lossy allocator can be profitably invoked even on pro-

grams that do not run for an extended period of time. Lastly,

note that for all 3 benchmarks, the lossy allocator maintains

its dominance over Chaitin-Briggs even for larger input sets.

This indicates that the extra spill-code in the lossy allocated

program did not occur in frequently executed regions of the

benchmark. This is partly fortuitous and further extends

the performance benefits of the lossy allocator. However,

as we have discussed in Section 7.2, the lossy allocator in-

serts only a marginal amount of additional spill code. Thus,

we have noticed this same progression in our other bench-

marks.

8 Related Work

Researchers have long explored the merits of optimiz-

ing code at runtime. Early work in this field was motivated

by the optimization opportunities inherent in dynamic lan-

guages. As narrated in [3], runtime compilers have evolved

from their humble beginnings in APL to full-blown and so-

phisticated just-in-time compilers for Java. Several stud-

ies have highlighted the advantages of runtime optimiza-

tion over pure interpretation of bytecode [11, 12, 2]. Im-

portantly, these studies have argued that the runtime system

must be judicious in invoking the dynamic compiler. If the

JIT is called indiscriminately, the overhead of the compiler

swamps the benefit of producing faster native code. There-

fore, many execution systems conduct a cost-benefit analy-

sis before deciding to compile using the JIT. For instance,

the IBM Java JIT is invoked when the number of method

calls crosses a threshold [21]. Similarly, the HotSpot vir-

tual machine interprets the bytecode until it detects a fre-

quently executed region. The VM then triggers the JIT on

that region, thereby compiling it to machine code [17].

Careful JIT-invocation decisions thus impact the runtime

of the program. But, on being triggered, the runtime com-

piler too must contribute to keeping the dynamic compila-

tion costs as low as possible. JITs are generally structured

like conventional compilers – they subject the input to a se-

ries of pre-determined passes. JITs, however, focus more

on reducing compilation time than other compilers. Conse-

quently, JIT developers are more likely to choose optimiza-

tions that are efficient, sacrificing some optimization qual-

ity in the process. This concern with compilation-time is

illustrated by an examination of current-day runtime com-

pilers – literature on the HotSpot, Intel, and the IBM JITs

reveal that they implement several local optimizations, pre-

ferring them over stronger, global techniques [17, 21, 1].

We were motivated by examining this trade-off and wished

to explore whether traditionally expensive algorithms can

be effectively tailored for runtime compilers. In this paper,

we have focused on a crucial JIT optimization – register al-

location – for which many global algorithms are considered

too expensive for indiscriminate use on a JIT.

While register allocation is a critical pass in a com-

piler, optimal register allocation has been proved to be

NP-complete [20]. As a result, allocation is usually per-

formed by a heuristic-driven algorithm. Early allocation ef-

forts consisted of simple, local algorithms. Proficient al-

location of registers assumed increasing importance with

the ever-widening disparity between processor and mem-

ory speeds. To tackle the NP-complete nature of the prob-

lem, some researchers modeled register allocation as a con-

flict graph colored using heuristics. Chaitin et al. presented

the first paper comprehensively describing a graph-coloring

register allocator [9, 8]. Bernstein et al. and Bergner et

al. subsequently added improvements to Chaitin’s tech-

nique [5, 4]. Briggs et al. redesigned the Chaitin allocator to

delay spill decisions until later on in the allocation process.

This change can potentially improve coloring decisions. We

have used the Briggs allocator as our base algorithm. [7].

Most JITs implement simpler register allocation algo-

rithms than those described above. Linear-scan techniques

are particularly popular among JIT developers. Poletto and

Sarkar presented a linear-scan algorithm that was faster than



a graph-coloring allocator [19]. As the name suggests, the

allocation proceeds by making a linear pass over the pro-

gram, scanning live ranges, and mapping these ranges to

registers. Recent research by Traub et al. and Mossenbock

and Pfeiffer has refined this strategy [22, 18]. Since linear-

scan techniques are generally more efficient than graph

coloring, they are attractive to implement on a JIT. How-

ever, as is often the case, the improved compilation speed

comes with a performance penalty. Graph-coloring alloca-

tion tends to outperform linear-scan methods [19, 22]. By

redesigning a strong allocation technique, our work cap-

tured the best elements from both algorithms – reduced

compilation time as well as proficient register allocation.

9 Conclusion

In this paper, we reformulated the Chaitin-Briggs graph-

coloring allocator for a runtime compiler. We presented and

evaluated the lossy algorithm which attempted to preserve

the proficiency of a graph-coloring technique while consid-

erably reducing the required allocation time. We proved

that our algorithm is safe and maintains program semantics.

Further, our experiments show that the lossy allocator was

successful in its goals. While it sacrificed some allocation

efficacy when compared to the Chaitin-Briggs algorithm,

the improved efficiency led to a significant decrease in ap-

plication runtime on a JIT. The allocator outperformed both

Chaitin-Briggs and linear-scan allocators for most bench-

marks in a runtime compilation environment. On average,

it improved application performance by 9% over Chaitin-

Briggs and 7% over linear-scan. JIT designers are neces-

sarily cautious in invoking strong algorithms lest they ad-

versely affect program runtime. The algorithm we pre-

sented addresses this concern by successfully lowering the

threshold for invoking a strong allocation technique. Using

the lossy algorithm, a runtime compiler can reap most of the

benefits of graph-coloring register allocation while avoiding

the prohibitive compilation costs incurred by a traditional

graph-coloring algorithm.

References

[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghu-

loum, V. Menon, B. Murphy, M. Serrano, and T. Shpeis-

man. The StarJIT compiler: A dynamic compiler for man-

aged runtime environments. Intel Technology Journal, 7(1),

2003.

[2] O. Agesen and D. Detlefs. Mixed-mode bytecode execution.

Technical report, Sun Microsystems, 2000. SMLI TR-2000-

87.

[3] J. Aycock. A brief history of just-in-time. ACM Computing

Surveys (CSUR), 35:97–113, Jun 2003.

[4] P. Bergner, P. Dahl, D. Engebretsen, and M. T.O’Keefe.

Spill Code Minimization via Interference Region Spilling.

In SIGPLAN Conference on Programming Language Design

and Implementation, pages 287–295, 1997.
[5] D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk,

Y. Mansour, I. Nahshon, and R. Y. Pinter. Spill Code Min-

imization Techniques for Optimizing Compilers. In SIG-

PLAN Conference on Programming Language Design and

Implementation, pages 258–263, 1989.
[6] P. Briggs. Register allocation via graph coloring. PhD the-

sis, Rice University, Houston, TX, USA, 1992.
[7] P. Briggs, K. D. Cooper, and L. Torczon. Improvements to

Graph Coloring Register Allocation. ACM Transactions on

Programming Languages and Systems, 16(3):428–455, May

1994.
[8] G. Chaitin. Register Allocation and Spilling via Graph Col-

oring. In SIGPLAN82, 1982.
[9] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hop-

kins, and P. Markstein. Register Allocation via Coloring.

Computer Languages, 6:45–57, Jan. 1981.
[10] K. D. Cooper and L. T. Simpson. Live range splitting in a

graph coloring register allocator. In CC ’98: Proceedings of

the 7th International Conference on Compiler Construction,

pages 174–187, London, UK, 1998. Springer-Verlag.
[11] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson,

and M. Wolczko. Compiling Java just in time. IEEE Micro,

17(3):36–43, 1997.
[12] D. Detlefs and O. Agesen. The case for multiple compilers.

In OOPSLA’99, Workshop on Peformance Portability, and

Simplicity in Virtual Machine Design, 1999.
[13] A. Evlogimenos. Improvements to linear scan register al-

location. University of Illinois, Urbana-Champaign, 2004.

Project Report.
[14] A. Goldberg and D. Robson. Smalltalk-80: The Language

and its Implementation. Addison-Wesley, 1983.
[15] T. J. Harvey. Reducing the impact of spill code. Master’s

thesis, Rice University, Houston, TX, USA, 1998.
[16] C. Lattner and V. Adve. LLVM: A Compilation Frame-

work for Lifelong Program Analysis and Transformation. In

Proceedings of the 2004 International Symposium on Code

Generation and Optimization (CGO’04), Mar 2004.
[17] S. Microsystems. The Java hotspot virtual machine. Tech-

nical report, 2002. Technical White Paper v1.4.1, d2.
[18] H. Mossenbock and M. Pfeiffer. Linear scan register allo-

cation in the context of ssa form and register constraints. In

CC ’02: Proceedings of the 11th International Conference

on Compiler Construction, pages 229–246. Springer-Verlag,

2002.
[19] M. Poletto and V. Sarkar. Linear scan register allocation.

ACM Transactions on Programming Languages and Sys-

tems, 21(5):895–913, 1999.
[20] R. Sethi. Complete Register Allocation Problems. In Pro-

ceedings of the fifth annual ACM symposium on Theory of

computing, pages 182–195. ACM, Apr 1973.
[21] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,

M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.

Overview of the IBM Java just-in-time compiler. IBM Syst.

J., 39(1):175–193, 2000.
[22] O. Traub, G. H. Holloway, and M. D. Smith. Quality and

speed in linear-scan register allocation. In SIGPLAN Con-

ference on Programming Language Design and Implemen-

tation, pages 142–151, 1998.


