
Introduction to the LLVM 
Compiler Infrastructure

Chris Lattner
Apple Computer

clattner@apple.com

Gelato ICE 2006
April 25, 2006



http://llvm.org/

LLVM Talk Overview
• Introducing LLVM
• Building a Static Compiler with LLVM Components
• LLVM Code Representation (IR)
• GCC + LLVM Integration
• Itanium Code Generator Status
• (more) Q&A



http://llvm.org/

What is a Compiler?

• Examples:
– Traditional C compiler (gcc), Java JIT compiler (hotspot), system assembler 

(as), system linker (ld), IDEs (Xcode), refactoring tools, ...
• Intentionally a very broad definition

A tool that inspects and manipulates 
a representation of programs

LLVM is not a compiler



http://llvm.org/

What is a Compiler Infrastructure?
• Provides modular & reusable components for building compilers
• Components are ideally language/target independent

• Reduces the time & cost to construct a particular compiler
• A new compiler = glue code plus any components not available

• Allows components to be shared across different compilers
• Improvements made to one compiler benefits the others

• Allows choice of the right component for the job
• Does not force the use of “one true register allocator” or scheduler

LLVM is a compiler infrastructure
llvm-gcc is a compiler



http://llvm.org/

What is the LLVM Compiler Infrastructure?

• A well-defined Intermediate Representation (IR) for programs
– Language independent, target independent, easy to use

• Many high-quality libraries (components) with clean interfaces!
– Optimizations, analyses, modular code generator, JIT compiler, accurate 

GC, profiling, debugging, X86/PPC/IA64/SPARC/Alpha code generators, 
link time optimization, IPA/IPO…

• Tools built from the libraries:
– Aggressive optimizing C/C++/ObjC compiler, automated compiler 

debugger, compiler driver, modular optimizer, LLVM JIT...

Low Level Virtual Machine

This all exists and works today!



Building a Static Compiler 
with LLVM Components



http://llvm.org/

Example of a Simple Static Compiler
• Standard compiler organization, which uses LLVM as midlevel IR:
– Language specific front-end lowers code to LLVM IR
– Language/target independent optimizers improve code
– Code generator converts LLVM code to target (e.g. IA64) code

Language
Front-end

Mid-Level
Optimizer

Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Many compilers (e.g. GCC) follow this model.



http://llvm.org/

Front-end options for this compiler
• Front-ends are truly separate from optimizer & codegen
– Can use front-end AST’s that are tailored to the source language
– Optimizer & Codegen improvements benefit all front-ends
– Front-ends generate debug info and include it in the IR

Language
Front-end

Mid-Level
Optimizer

Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Retarget or write
parsers for other

languages

Python

JavaScript
. . .

llvm-gcc currently uses the GCC 4.0.1 parsers

GCC
Parsers

C/C++

FORTRAN
Ada Java

...
Key LLVM Feature:

IR is small, simple, easy 
to understand, and is 

well defined



http://llvm.org/

Optimizer options for this compiler
• Optimizer is solely concerned with semantics of LLVM IR
– Optimizer & Codegen only know LLVM, not all source languages
– LLVM includes IP framework and aggressive IP optimizations
– LLVM uses a modern and light-weight (fast) SSA-based optimizer

Language
Front-end

Mid-Level
Optimizer

Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Interprocedural Optzns 
(cross function)

Standard Scalar and 
Loop Optimizations



http://llvm.org/

Mid-Level
Optimizer

LLVM
Linker

Link-Time Optimization
• Link-time is a natural place for interprocedural optimizations
– Cross-module optzn is natural and trivial (no makefile changes)
– All optimizations respect limitations of incomplete programs
– e.g. building an app with missing libraries, building a library, etc...

– LTO has been available since LLVM 1.0!

Code
Gen

Any
Front-end

Mid-Level
Optimizer

LLVM

LLVM
. . .

LLVMAny
Front-end

Mid-Level
Optimizer

LLVM

Any
Front-end

Mid-Level
Optimizer

LLVM

Compile Time

IR in .o 
files

Link Time

Choose from same set 
of optimizations at 

compile and link time



http://llvm.org/

CodeGen options for this compiler
• The LLVM code generator is modern and modular:
– Modern: maintains SSA form until register allocation
– Modular: choose components based on compiler constraints
– e.g. Itanium port uses a PQS, could use more aggressive scheduler

– Fast: Representation is similar to the “compressed RTL” GCC proposal

Code
Generator

LLVM IR machine code

Instruction 
Selection

Prepass 
Scheduling

Register 
Allocation

Late 
Optimization

Code 
Emission

Target Machine InstructionsLLVM IR

Cost-Optimal 
BURS

Peephole 
Emission

Schedule for 
Reg Pressure

Schedule 
for Latency

Graph 
Coloring

Linear Scan 
RegAlloc

Output .o 
or .exe file

Output .s 
file

ILP, Bundling, 
Predication

Code Size 
Optzns



http://llvm.org/

CodeGen choices this compiler
• Portable IR provides flexibility for many different ways to codegen
• Note: IR can have symbols stripped, like machine code
– ... LLVM IR does not suffer from Java/C#’s “easy to decompile” problem

Code
Generator

LLVM IR
.s file

.o file

Traditional Compiler

LLVM-to-C 
Converter

LLVM IR .c file

Portability to New Architectures

LLVM 
Quick JIT

LLVM IR

Fast Developer Debug-
Compile-Run cycle



http://llvm.org/

More Aggressive Applications of LLVM
Dynamic Code Specialization

Good for long-running computations 
with “dynamic constants”.  Use LLVM to 
specialize run-time constants into the 
code, then optimize based on them.

    for (i = 0; i < ARCHnodes; i++)
      for (j = 0; j < 3; j++)
        disp[disptplus][i][j] *= - Exc.dt * Exc.dt;

Run-time code generation
Efficient implementation of mini 
languages:  Dynamically translate 

language to LLVM, then JIT compile.

<script type="text/javascript">
function myfunction() {
    compute(15)
}
</script>

Ship Code
Gen

LLVM IR exe 
file

Vendor provides code generator?

“Old binaries scheduled for new chips”

Install-time Code Generation
Tune apps for the specific architecture 

at the end-user site



The LLVM Code 
Representation (IR)



http://llvm.org/

Requirements on the LLVM IR
• IR must be usable through much of the compiler:
– Produced by front-ends, consumed by code generator

• It must be language- and target-independent:
– Including mixing of source languages within the same LLVM file
– Allows cross-language analysis and optimization
– Can still perform target-specific optimizations on it

• It must host a wide variety of optimizations and analyses:
– Standard scalar optimizations (e.g. common subexpr elimination)
– Loop optimizations (e.g. LICM, unrolling, unswitching, ...)
– Interprocedural (e.g. inlining, arg promotion, IP-SCCP, global var opt)
– Must support both high- and low-level optimization



http://llvm.org/

Design Approach of the LLVM IR

• Design IR as a typed Virtual Instruction Set
– Operations are low-level instructions in CFG
– Language- & target- independent semantics

• IR is designed with three isomorphic formats:
– In memory IR - for the compiler to work on
– On-disk compressed binary IR - Interchange format
– On-disk text - Compiler debugging, inspection

• IR has a clean/simple design:
– Small memory footprint, fast to manipulate
– Easy to understand (and well specified/documented)

%X = load int* %Ptr
%Y = add int %X, 1
%C = setlt int %Y, 10
br %C, label %Dest

http://llvm.org/docs/LangRef.html



http://llvm.org/

LLVM IR Features
• Basic features:
– Light-weight design, efficient and easy to understand
– Scalars values are always in SSA form, memory never is
– IR is fully typed and types are rigorously checked for consistency 
– Explicit array/struct accesses, supports alias/dependence analysis
– Full support for vector/SIMD datatypes and operations
– Full support for GCC-style inline assembly

• Minor features:
– Exceptions are explicit in CFG, not an on-the-side datastructure
– Includes support for Accurate Garbage Collection
– IR is easily extensible with intrinsic functions
– Supports custom calling conventions (required for guaranteed tail calls)



http://llvm.org/

Example LLVM Tool: Bugpoint

• Simple idea: binary search for bug
– Figure out which pass (out of 60+) is causing the problem
– Figure out what (code) input to the pass demonstrates the problem 

• For a compiler crash:
– Binary search pass list.  Run previous passes to get its input. 
– Split up program, eliminate pieces not required for ICE

• For a miscompilation:
– Run program with designated input to determine if it works
– Split program, optimize/codegen half, link together, run.

• Can reduce 100K LOC program to a single basic block in 5 mins

• Simple tool reuses many LLVM libraries, relies on well defined IR

Automatically reduce optimizer/codegen ICEs, miscompilations, and JIT failures

http://llvm.org/docs/Bugpoint.html



LLVM + GCC Integration



http://llvm.org/

LLVM + Apple GCC Integration
• llvm-gcc 4.0 is the 3rd edition of llvm-gcc:
– Based on Apple GCC 4.0.1 branch
– GIMPLE to LLVM translation: ~6000 lines of code
– Tight integration: llvm-gcc links in the LLVM libraries
– GCC front-ends, LLVM optimizers & code generators

• Current status:
– Mostly feature complete: 
– Supports C/C++/ObjC/ObjC++, vector support, debug info, has basic 

inline asm support, most GCC attributes, etc
– Missing features (as of April 25, 2006):
– No linker support for transparent IPO yet (exists in llvm-gcc3)
– C++ Exception Handling (exists in llvm-gcc3)
– long double and other minor features



http://llvm.org/

LLVM + FSF GCC Integration: Design
• Most likely design point: replace tree-ssa with LLVM, keep RTL
– Convert from GENERIC to LLVM in frontend
– Convert from LLVM to RTL in the backend

• Design Advantages:
– GCC gets LLVM LTO support, a light-weight IR and fast optimizer
– LLVM is similar to tree-ssa: tree-ssa expertise should transfer well
– By using the RTL backend, no GCC targets are lost

• Eventually could use native LLVM backends if desired:
– Enables JIT compiler for Java, faster compiles, direct .o file emission, better 

codegen, easier porting to new targets
– ... for the subset of GCC targets that are supported by LLVM

These thoughts are based on my impression of the GCC mailing list discussions, 
details subject to change! 



http://llvm.org/

LLVM + FSF GCC Integration: Progress
• Remaining technical issues to resolve:
– No LLVM to RTL backend implemented yet
– Must forward port from Apple 4.0.1 branch to mainline
– Must implement minor missing features

• Assigning control / Copyright assignment to FSF:
– Ongoing project!
– Progress since November:
– FSF okay’s writing IR to disk, LTO proposal is made
– No more web registration required to download LLVM
– Official LLVM domain changes from llvm.cs.uiuc.edu to llvm.org
– Many missing features implemented in LLVM (vector support, target 

intrinsics, inline asm, debugging, ...)
– Continuing to work with the copyright clerk and related parties to 

complete paperwork



http://llvm.org/

LLVM vs LTO for link-time optimization
• LTO advantages over LLVM:
– LLVM is missing some functionality, has no LLVM-to-RTL backend yet

• LLVM advantages over LTO:
– LLVM has had IPO support since before tree-ssa was started!
– LLVM exists, works great, and can be evaluated today

– LLVM has far more efficient data structures than GCC:
– LLVM can represent 200K LOC in ~50M, GCC requires multi GB
– Many projects to fix GCC’s mem usage have had limited success

– Without major changes, LTO cannot link different languages or flags:
– Langhooks and global flags like -ffast-math are a big problem

– LTO suffers same class of bugs that IMA does:
– Linking “GCC trees” is extremely hard to do 100% correctly
– Cross language linking multiplies the problem many-fold

– Does not try to solve front-end issues with IPA infrastructure!



LLVM Itanium
Code Generator



http://llvm.org/

LLVM Itanium Backend Status
• Itanium backend developed & maintained by Duraid Madina
– Progress has been slow, due to lack of time and other commitments

• Current implementation:
– Basically working, very few miscompilations
– Missing many simple optimizations
– Has trivial stop bit insertion, but no bundle aware hazard recognizer
– No post-pass scheduling, predication, prefetching, modsched, etc
– ~4000 lines of code (.cpp, .h, .td)

• Generated code is about 50-60% the performance of GCC
• When assembled with IAS, LLVM beats GCC on many programs
– IAS is an ‘optimizing assembler’, which does scheduling/bundling

A small investment can go a long way!



http://llvm.org/

LLVM Summary
• LLVM is a modular compiler infrastructure:
– Primary focus is on providing good interfaces & robust components
– LLVM can be used for many things other than simple static compilers!

• LLVM provides language- and target-independent components:
– Does not force use of JIT, GC, or a particular object model
– Code from different languages can be linked together and optimized

• LLVM is well designed and provides aggressive functionality:
– Interprocedural optimization, link-time/install-time optimization today!

• LLVM 1.7 was released last week:
– Huge number of new features, many codegen improvements
– Give it a try: http://llvm.org/releases/

clattner@apple.com


