sy

Introduction to the LLVM
Compiler Infrastructure

Chris Lattner
Apple Computer
clattner@apple.com

Gelato ICE 2006
April 25,2006

LLVM Talk Overview

» Introducing LLVM

- Building a Static Compiler with LLVM Components
» LLVM Code Representation (IR)

- GCC + LLVM Integration

» Itanium Code Generator Status

* (more) Q&A

http://llvm.org/

What is a Compiler?

A tool that inspects and manipulates

a representation of programs

+ Examples:

— Traditional C compiler (gcc), Java JIT compiler (hotspot), system assembler
(as), system linker (Id), IDEs (Xcode), refactoring tools, ...

- Intentionally a very broad definition

LLVM is not a compiler
http://llvm.org/

What is a Compiler Infrastructure?

* Provides modular & reusable components for building compilers
- Components are ideally language/target independent

- Reduces the time & cost to construct a particular compiler
* A new compiler = glue code plus any components not available

- Allows components to be shared across different compilers
* Improvements made to one compiler benefits the others

- Allows choice of the right component for the job
* Does not force the use of “one true register allocator” or scheduler

LLVM is a compiler infrastructure

llvm-gcc is a compiler
http://llvm.org/

What is the LLVM Compiler Infrastructure?
Low Level Virtual Machine

- A well-defined Intermediate Representation (IR) for programs
— Language independent, target independent, easy to use

- Many high-quality libraries (components) with clean interfaces!

— Optimizations, analyses, modular code generator, JIT compiler, accurate
GG, profiling, debugging, X86/PPC/IA64/SPARC/Alpha code generators,
link time optimization, IPA/IPO...

- Tools built from the libraries:

— Aggressive optimizing C/C++/0bjC compiler, automated compiler
debugger, compiler driver, modular optimizer, LLVM JIT...

This all exists and works today!
http://llvm.org/

Building a Static Compiler

with LLVM Components

Example of a Simple Static Compiler

- Standard compiler organization, which uses LLVM as midlevel IR:
— Language specific front-end lowers code to LLVM IR
— Language/target independent optimizers improve code
— Code generator converts LLVM code to target (e.g. 1A64) code

C .
Con Language wmiR | Mid-Level [LWMIR Code

—> — Lo EmEERN
ObiC Front-end Optimizer Generator

Many compilers (e.g. GCC) follow this model.

http://llvm.org/

Front-end options for this compiler

» Front-ends are truly separate from optimizer & codegen
— Can use front-end AST’s that are tailored to the source language
— Optimizer & Codegen improvements benefit all front-ends
— Front-ends generate debug info and include it in the IR

~ Language MR | Mid-Level LvMIR Code

—_ . . —_— — s fil
Front-end Optimizer Generator .

FORTRAN — Pgrggrs
AdaJava —7| Key LLVM Feature:
IR is small, simple, easy

_ to understand, and is
Python — Retarget or write well defined
JavaScript —¥& parsers for other

—5 languages

llvm-gcc currently uses the GCC 4.0.1 parsers
http://llvm.org/

Optimizer options for this compiler

» Optimizer is solely concerned with semantics of LLVM IR
— Optimizer & Codegen only know LLVM, not all source languages
— LLVM includes IP framework and aggressive IP optimizations
— LLVM uses a modern and light-weight (fast) SSA-based optimizer

Language lWMmR | Mid-Level LWwMIR Code

. . —_— — s fil
Front-end Optimizer Generator .

Standard Scalar and
Loop Optimizations

Interprocedural Optzns
(cross function)

http://llvm.org/

Link-Time Optimization

- Link-time is a natural place for interprocedural optimizations
— Cross-module optzn is natural and trivial (no makefile changes)
— All optimizations respect limitations of incomplete programs
— e.g. building an app with missing libraries, building a library, etc...
— LTO has been available since LLVM 1.0!

Any Lvm Mid-Level
Front-end Optimizer

Any Lwm Mid-Level LLVM twvm Mid-Level tvm Code
Front-end ” Optimizer Linker Optimizer Gen

Any Liwvm Mid-Level IRin .o Link Time
Front-end Optimizer files

—>
—
—
—
—
—
—
—
—

Com plle T|me \ Choose from same set
of optimizations at

compile and link time http:/lvm.org/

CodeGen options for this compiler

» The LLVM code generator is modern and modular:
— Modern: maintains SSA form until register allocation
— Modular: choose components based on compiler constraints
— e.g. ltanium port uses a PQS, could use more aggressive scheduler
— Fast: Representation is similar to the “compressed RTL" GCC proposal

LLVM IR —— Code

=% machine code
__ Generator

i
t

A
—

Instruction Prepass Register Late Code
Selection Scheduling Allocation Optimization Emission

e LLVM IR =— <=

Target Mcchine Irf{tructions

—

Peephole Schedule Linear Scan

Code Size Output .s
Emission for Latency RegAlloc

Optzns file

Cost-Optimal Schedule for Graph

ILP, Bundling, Output .o
BURS Reg Pressure Coloring

Predication or .exe file

CodeGen choices this compiler

- Portable IR provides flexibility for many different ways to codegen
* Note: IR can have symbols stripped, like machine code
= ... LLVM IR does not suffer from Java/C#'s “easy to decompile” problem

Code —> sfile LLVM-to-C

LLVM IR — . LLVM IR —5
Generator —> ofile Converter

. file

Traditional Compiler Portability to New Architectures

_ L Lwm
Quick JIT

LLVM IR

Fast Developer Debug-
Compile-Run cycle

http://llvm.org/

More Aggressive Applications of LLVM

Dynamic Code Specialization

Good for long-running computations

with “dynamic constants” Use LLVM to
specialize run-time constants into the
code, then optimize based on them.

Run-time code generation

Efficient implementation of mini
languages: Dynamically translate
language to LLVM, then JIT compile.

<script type="text/javascript">

function myfunction() { for (i = 0;i < ARCHnodes; i++)
compute(15) for (j=0;j < 3;j+4)

} disp[disptplus][il[j] *= - Exc.dt * Exc.dt;

</script>

Install-time Code Generation

Tune apps for the specific architecture
at the end-user site

Code
Gen

LLYM IR —> Ship

Vendor provides code generator?

“Old binaries scheduled for new chips”

http://llvm.org/

The LLVM Code

Representation (IR)

Requirements on the LLVM IR

» IR must be usable through much of the compiler:
— Produced by front-ends, consumed by code generator

- It must be language- and target-independent:
= Including mixing of source languages within the same LLVM file
— Allows cross-language analysis and optimization
— Can still perform target-specific optimizations on it

» It must host a wide variety of optimizations and analyses:
— Standard scalar optimizations (e.g. common subexpr elimination)
— Loop optimizations (e.g. LICM, unrolling, unswitching, ...)
— Interprocedural (e.q. inlining, arg promotion, IP-SCCP, global var opt)
— Must support both high- and low-level optimization

http://llvm.org/

Design Approach of the LLVM IR

- Design IR as a typed Virtual Instruction Set load int* %Ptr

— Operations are low-level instructions in CFG add int %X, 1
~L & ind d . % setlt int %Y, 10
anguage- & target- independent semantics %C. label ¥Dest

- IR is designed with three isomorphic formats:
— In memory IR - for the compiler to work on
— On-disk compressed binary IR - Interchange format
— On-disk text - Compiler debugging, inspection

- IR has a clean/simple design:
— Small memory footprint, fast to manipulate
— Easy to understand (and well specified/documented)

http://llvm.org/docs/LangRef.html

http://llvm.org/

LLVM IR Features

- Basic features:
— Light-weight design, efficient and easy to understand
— Scalars values are always in SSA form, memory never is
— IR is fully typed and types are rigorously checked for consistency
— Explicit array/struct accesses, supports alias/dependence analysis
= Full support for vector/SIMD datatypes and operations

= Full support for GCC-style inline assembly

* Minor features:
— Exceptions are explicit in CFG, not an on-the-side datastructure
— Includes support for Accurate Garbage Collection
— IR is easily extensible with intrinsic functions
— Supports custom calling conventions (required for guaranteed tail calls)

http://llvm.org/

Example LLVM Tool: Bugpoint

Automatically reduce optimizer/codegen ICEs, miscompilations, and JIT failures

- Simple idea: binary search for bug
— Figure out which pass (out of 60+) is causing the problem
— Figure out what (code) input to the pass demonstrates the problem
» For a compiler crash:
— Binary search pass list. Run previous passes to get its input.
— Split up program, eliminate pieces not required for ICE
* For a miscompilation:
— Run program with designated input to determine if it works
— Split program, optimize/codegen half, link together, run.
» Can reduce 100K LOC program to a single basic block in 5 mins

» Simple tool reuses many LLVM libraries, relies on well defined IR

http://llvm.org/docs/Bugpoint.html

http://llvm.org/

LLVM + GCC Integration

LLVM + Apple GCC Integration

- llvm-gcc 4.0 is the 3" edition of llvm-gcc:
— Based on Apple GCC 4.0.1 branch
— GIMPLE to LLVM translation: ~6000 lines of code
— Tight integration: [lvm-gcc links in the LLVM libraries
— GCC front-ends, LLVM optimizers & code generators

- Current status:
— Mostly feature complete:

— Supports C/C++/0bjC/ObjC++, vector support, debug info, has basic
inline asm support, most GCC attributes, etc

— Missing features (as of April 25, 2006):
— No linker support for transparent IPO yet (exists in Ilvm-gcc3)
— C++ Exception Handling (exists in llvm-gcc3)
— long double and other minor features

http://llvm.org/

LLVM + FSF GCC Integration: Design

 Most likely design point: replace tree-ssa with LLVM, keep RTL
— Convert from GENERIC to LLVM in frontend
— Convert from LLVM to RTL in the backend

» Design Advantages:
— GCC gets LLVM LTO support, a light-weight IR and fast optimizer
— LLVM is similar to tree-ssa: tree-ssa expertise should transfer well
— By using the RTL backend, no GCC targets are lost

» Eventually could use native LLVM backends if desired:

— Enables JIT compiler for Java, faster compiles, direct .o file emission, better
codegen, easier porting to new targets

— ... for the subset of GCC targets that are supported by LLVM

These thoughts are based on my impression of the GCC mailing list discussions,
details subject to change! http://llvm.org/

LLVM + FSF GCC Integration: Progress

+ Remaining technical issues to resolve:
— No LLVM to RTL backend implemented yet
— Must forward port from Apple 4.0.1 branch to mainline
— Must implement minor missing features

» Assigning control / Copyright assignment to FSF:
— Ongoing project!
— Progress since November:
— FSF okay’s writing IR to disk, LTO proposal is made
— No more web registration required to download LLVM
— Official LLVM domain changes from llvm.cs.uiuc.edu to llvm.org

— Many missing features implemented in LLVM (vector support, target
intrinsics, inline asm, debugging, ...)

— Continuing to work with the copyright clerk and related parties to
complete paperwork

http://llvm.org/

LLVM vs LTO for link-time optimization

« LTO advantages over LLVM:
— LLVM is missing some functionality, has no LLVM-to-RTL backend yet
* LLVM advantages over LTO:
— LLVM has had IPO support since before tree-ssa was started!
— LLVM exists, works great, and can be evaluated today
— LLVM has far more efficient data structures than GCC:
— LLVM can represent 200K LOC in ~50M, GCC requires multi GB
— Many projects to fix GCC's mem usage have had limited success
— Without major changes, LTO cannot link different languages or flags:
— Langhooks and global flags like -ffast-math are a big problem
— LTO suffers same class of bugs that IMA does:
= Linking “GCC trees” is extremely hard to do 100% correctly
— Cross language linking multiplies the problem many-fold
— Does not try to solve front-end issues with IPA infrastructure!

http://llvm.org/

LLVM ltanium

Code Generator

LLVM Itanium Backend Status

» Itanium backend developed & maintained by Duraid Madina
— Progress has been slow, due to lack of time and other commitments

* Current implementation:
— Basically working, very few miscompilations
— Missing many simple optimizations
— Has trivial stop bit insertion, but no bundle aware hazard recognizer
— No post-pass scheduling, predication, prefetching, modsched, etc
— ~4000 lines of code (.cpp, .h, .td)

- Generated code is about 50-60% the performance of GCC
* When assembled with IAS, LLVM beats GCC on many programs
— IAS is an ‘optimizing assembler, which does scheduling/bundling

A small investment can go a long way!
http://llvm.org/

LLVM Summary

+ LLVM is @ modular compiler infrastructure:
— Primary focus is on providing good interfaces & robust components
— LLVM can be used for many things other than simple static compilers!

 LLVM provides language- and target-independent components:
— Does not force use of JIT, GC, or a particular object model
— Code from different languages can be linked together and optimized

- LLVM is well designed and provides aggressive functionality:
— Interprocedural optimization, link-time/install-time optimization today!

« LLVM 1.7 was released last week:
— Huge number of new features, many codegen improvements
— Give it a try: http://llvm.org/releases/

clattner@apple.com http://llvm.org/

