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LLVM Talk Overview
• Introducing LLVM
• Building a Static Compiler with LLVM Components
• LLVM Code Representation (IR)
• GCC + LLVM Integration
• Itanium Code Generator Status
• (more) Q&A
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What is a Compiler?

• Examples:
– Traditional C compiler (gcc), Java JIT compiler (hotspot), system assembler 

(as), system linker (ld), IDEs (Xcode), refactoring tools, ...
• Intentionally a very broad definition

A tool that inspects and manipulates 
a representation of programs

LLVM is not a compiler
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What is a Compiler Infrastructure?
• Provides modular & reusable components for building compilers
• Components are ideally language/target independent

• Reduces the time & cost to construct a particular compiler
• A new compiler = glue code plus any components not available

• Allows components to be shared across different compilers
• Improvements made to one compiler benefits the others

• Allows choice of the right component for the job
• Does not force the use of “one true register allocator” or scheduler

LLVM is a compiler infrastructure
llvm-gcc is a compiler
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What is the LLVM Compiler Infrastructure?

• A well-defined Intermediate Representation (IR) for programs
– Language independent, target independent, easy to use

• Many high-quality libraries (components) with clean interfaces!
– Optimizations, analyses, modular code generator, JIT compiler, accurate 

GC, profiling, debugging, X86/PPC/IA64/SPARC/Alpha code generators, 
link time optimization, IPA/IPO…

• Tools built from the libraries:
– Aggressive optimizing C/C++/ObjC compiler, automated compiler 

debugger, compiler driver, modular optimizer, LLVM JIT...

Low Level Virtual Machine

This all exists and works today!



Building a Static Compiler 
with LLVM Components
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Example of a Simple Static Compiler
• Standard compiler organization, which uses LLVM as midlevel IR:
– Language specific front-end lowers code to LLVM IR
– Language/target independent optimizers improve code
– Code generator converts LLVM code to target (e.g. IA64) code

Language
Front-end

Mid-Level
Optimizer

Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Many compilers (e.g. GCC) follow this model.
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Front-end options for this compiler
• Front-ends are truly separate from optimizer & codegen
– Can use front-end AST’s that are tailored to the source language
– Optimizer & Codegen improvements benefit all front-ends
– Front-ends generate debug info and include it in the IR

Language
Front-end

Mid-Level
Optimizer

Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Retarget or write
parsers for other

languages

Python

JavaScript
. . .

llvm-gcc currently uses the GCC 4.0.1 parsers

GCC
Parsers

C/C++

FORTRAN
Ada Java

...
Key LLVM Feature:

IR is small, simple, easy 
to understand, and is 

well defined
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Optimizer options for this compiler
• Optimizer is solely concerned with semantics of LLVM IR
– Optimizer & Codegen only know LLVM, not all source languages
– LLVM includes IP framework and aggressive IP optimizations
– LLVM uses a modern and light-weight (fast) SSA-based optimizer

Language
Front-end

Mid-Level
Optimizer

Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Interprocedural Optzns 
(cross function)

Standard Scalar and 
Loop Optimizations
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Mid-Level
Optimizer

LLVM
Linker

Link-Time Optimization
• Link-time is a natural place for interprocedural optimizations
– Cross-module optzn is natural and trivial (no makefile changes)
– All optimizations respect limitations of incomplete programs
– e.g. building an app with missing libraries, building a library, etc...

– LTO has been available since LLVM 1.0!

Code
Gen

Any
Front-end

Mid-Level
Optimizer

LLVM

LLVM
. . .

LLVMAny
Front-end

Mid-Level
Optimizer

LLVM

Any
Front-end

Mid-Level
Optimizer

LLVM

Compile Time

IR in .o 
files

Link Time

Choose from same set 
of optimizations at 

compile and link time
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CodeGen options for this compiler
• The LLVM code generator is modern and modular:
– Modern: maintains SSA form until register allocation
– Modular: choose components based on compiler constraints
– e.g. Itanium port uses a PQS, could use more aggressive scheduler

– Fast: Representation is similar to the “compressed RTL” GCC proposal

Code
Generator

LLVM IR machine code

Instruction 
Selection

Prepass 
Scheduling

Register 
Allocation

Late 
Optimization

Code 
Emission

Target Machine InstructionsLLVM IR

Cost-Optimal 
BURS

Peephole 
Emission

Schedule for 
Reg Pressure

Schedule 
for Latency

Graph 
Coloring

Linear Scan 
RegAlloc

Output .o 
or .exe file

Output .s 
file

ILP, Bundling, 
Predication

Code Size 
Optzns
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CodeGen choices this compiler
• Portable IR provides flexibility for many different ways to codegen
• Note: IR can have symbols stripped, like machine code
– ... LLVM IR does not suffer from Java/C#’s “easy to decompile” problem

Code
Generator

LLVM IR
.s file

.o file

Traditional Compiler

LLVM-to-C 
Converter

LLVM IR .c file

Portability to New Architectures

LLVM 
Quick JIT

LLVM IR

Fast Developer Debug-
Compile-Run cycle
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More Aggressive Applications of LLVM
Dynamic Code Specialization

Good for long-running computations 
with “dynamic constants”.  Use LLVM to 
specialize run-time constants into the 
code, then optimize based on them.

    for (i = 0; i < ARCHnodes; i++)
      for (j = 0; j < 3; j++)
        disp[disptplus][i][j] *= - Exc.dt * Exc.dt;

Run-time code generation
Efficient implementation of mini 
languages:  Dynamically translate 

language to LLVM, then JIT compile.

<script type="text/javascript">
function myfunction() {
    compute(15)
}
</script>

Ship Code
Gen

LLVM IR exe 
file

Vendor provides code generator?

“Old binaries scheduled for new chips”

Install-time Code Generation
Tune apps for the specific architecture 

at the end-user site



The LLVM Code 
Representation (IR)
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Requirements on the LLVM IR
• IR must be usable through much of the compiler:
– Produced by front-ends, consumed by code generator

• It must be language- and target-independent:
– Including mixing of source languages within the same LLVM file
– Allows cross-language analysis and optimization
– Can still perform target-specific optimizations on it

• It must host a wide variety of optimizations and analyses:
– Standard scalar optimizations (e.g. common subexpr elimination)
– Loop optimizations (e.g. LICM, unrolling, unswitching, ...)
– Interprocedural (e.g. inlining, arg promotion, IP-SCCP, global var opt)
– Must support both high- and low-level optimization
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Design Approach of the LLVM IR

• Design IR as a typed Virtual Instruction Set
– Operations are low-level instructions in CFG
– Language- & target- independent semantics

• IR is designed with three isomorphic formats:
– In memory IR - for the compiler to work on
– On-disk compressed binary IR - Interchange format
– On-disk text - Compiler debugging, inspection

• IR has a clean/simple design:
– Small memory footprint, fast to manipulate
– Easy to understand (and well specified/documented)

%X = load int* %Ptr
%Y = add int %X, 1
%C = setlt int %Y, 10
br %C, label %Dest

http://llvm.org/docs/LangRef.html
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LLVM IR Features
• Basic features:
– Light-weight design, efficient and easy to understand
– Scalars values are always in SSA form, memory never is
– IR is fully typed and types are rigorously checked for consistency 
– Explicit array/struct accesses, supports alias/dependence analysis
– Full support for vector/SIMD datatypes and operations
– Full support for GCC-style inline assembly

• Minor features:
– Exceptions are explicit in CFG, not an on-the-side datastructure
– Includes support for Accurate Garbage Collection
– IR is easily extensible with intrinsic functions
– Supports custom calling conventions (required for guaranteed tail calls)
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Example LLVM Tool: Bugpoint

• Simple idea: binary search for bug
– Figure out which pass (out of 60+) is causing the problem
– Figure out what (code) input to the pass demonstrates the problem 

• For a compiler crash:
– Binary search pass list.  Run previous passes to get its input. 
– Split up program, eliminate pieces not required for ICE

• For a miscompilation:
– Run program with designated input to determine if it works
– Split program, optimize/codegen half, link together, run.

• Can reduce 100K LOC program to a single basic block in 5 mins

• Simple tool reuses many LLVM libraries, relies on well defined IR

Automatically reduce optimizer/codegen ICEs, miscompilations, and JIT failures

http://llvm.org/docs/Bugpoint.html



LLVM + GCC Integration
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LLVM + Apple GCC Integration
• llvm-gcc 4.0 is the 3rd edition of llvm-gcc:
– Based on Apple GCC 4.0.1 branch
– GIMPLE to LLVM translation: ~6000 lines of code
– Tight integration: llvm-gcc links in the LLVM libraries
– GCC front-ends, LLVM optimizers & code generators

• Current status:
– Mostly feature complete: 
– Supports C/C++/ObjC/ObjC++, vector support, debug info, has basic 

inline asm support, most GCC attributes, etc
– Missing features (as of April 25, 2006):
– No linker support for transparent IPO yet (exists in llvm-gcc3)
– C++ Exception Handling (exists in llvm-gcc3)
– long double and other minor features
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LLVM + FSF GCC Integration: Design
• Most likely design point: replace tree-ssa with LLVM, keep RTL
– Convert from GENERIC to LLVM in frontend
– Convert from LLVM to RTL in the backend

• Design Advantages:
– GCC gets LLVM LTO support, a light-weight IR and fast optimizer
– LLVM is similar to tree-ssa: tree-ssa expertise should transfer well
– By using the RTL backend, no GCC targets are lost

• Eventually could use native LLVM backends if desired:
– Enables JIT compiler for Java, faster compiles, direct .o file emission, better 

codegen, easier porting to new targets
– ... for the subset of GCC targets that are supported by LLVM

These thoughts are based on my impression of the GCC mailing list discussions, 
details subject to change! 
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LLVM + FSF GCC Integration: Progress
• Remaining technical issues to resolve:
– No LLVM to RTL backend implemented yet
– Must forward port from Apple 4.0.1 branch to mainline
– Must implement minor missing features

• Assigning control / Copyright assignment to FSF:
– Ongoing project!
– Progress since November:
– FSF okay’s writing IR to disk, LTO proposal is made
– No more web registration required to download LLVM
– Official LLVM domain changes from llvm.cs.uiuc.edu to llvm.org
– Many missing features implemented in LLVM (vector support, target 

intrinsics, inline asm, debugging, ...)
– Continuing to work with the copyright clerk and related parties to 

complete paperwork
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LLVM vs LTO for link-time optimization
• LTO advantages over LLVM:
– LLVM is missing some functionality, has no LLVM-to-RTL backend yet

• LLVM advantages over LTO:
– LLVM has had IPO support since before tree-ssa was started!
– LLVM exists, works great, and can be evaluated today

– LLVM has far more efficient data structures than GCC:
– LLVM can represent 200K LOC in ~50M, GCC requires multi GB
– Many projects to fix GCC’s mem usage have had limited success

– Without major changes, LTO cannot link different languages or flags:
– Langhooks and global flags like -ffast-math are a big problem

– LTO suffers same class of bugs that IMA does:
– Linking “GCC trees” is extremely hard to do 100% correctly
– Cross language linking multiplies the problem many-fold

– Does not try to solve front-end issues with IPA infrastructure!



LLVM Itanium
Code Generator
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LLVM Itanium Backend Status
• Itanium backend developed & maintained by Duraid Madina
– Progress has been slow, due to lack of time and other commitments

• Current implementation:
– Basically working, very few miscompilations
– Missing many simple optimizations
– Has trivial stop bit insertion, but no bundle aware hazard recognizer
– No post-pass scheduling, predication, prefetching, modsched, etc
– ~4000 lines of code (.cpp, .h, .td)

• Generated code is about 50-60% the performance of GCC
• When assembled with IAS, LLVM beats GCC on many programs
– IAS is an ‘optimizing assembler’, which does scheduling/bundling

A small investment can go a long way!
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LLVM Summary
• LLVM is a modular compiler infrastructure:
– Primary focus is on providing good interfaces & robust components
– LLVM can be used for many things other than simple static compilers!

• LLVM provides language- and target-independent components:
– Does not force use of JIT, GC, or a particular object model
– Code from different languages can be linked together and optimized

• LLVM is well designed and provides aggressive functionality:
– Interprocedural optimization, link-time/install-time optimization today!

• LLVM 1.7 was released last week:
– Huge number of new features, many codegen improvements
– Give it a try: http://llvm.org/releases/

clattner@apple.com


