
SAFECode: Enforcing Alias Analysis for Weakly Typed
Languages ∗

Dinakar Dhurjati Sumant Kowshik Vikram Adve
University of Illinois at Urbana-Champaign

{dhurjati,kowshik,vadve}@cs.uiuc.edu

Abstract
Static analysis of programs in weakly typed languages such as C
and C++ is generally not sound because of possible memory errors
due to dangling pointer references, uninitialized pointers, and array
bounds overflow. We describe a compilation strategy for standard
C programs that guarantees that aggressive interprocedural pointer
analysis (or less precise ones), a call graph, and type information
for a subset of memory, are never invalidated by any possible mem-
ory errors. We formalize our approach as a new type system with
the necessary run-time checks in operational semantics and prove
the correctness of our approach for a subset of C. Our semantics
provide the foundation for other sophisticated static analyses to be
applied to C programs with a guarantee of soundness. Our work
builds on a previously published transformation called Automatic
Pool Allocation to ensure that hard-to-detect memory errors (dan-
gling pointer references and certain array bounds errors) cannot in-
validate the call graph, points-to information or type information.
The key insight behind our approach is that pool allocation can be
used to create a run-time partitioning of memory that matches the
compile-time memory partitioning in a points-to graph, and effi-
cient checks can be used to isolate the run-time partitions. Further-
more, we show that the sound analysis information enables static
checking techniques that eliminate many run-time checks. Our ap-
proach requires no source code changes, allows memory to be man-
aged explicitly, and does not use meta-data on pointers or individual
tag bits for memory. Using several benchmarks and system codes,
we show experimentally that the run-time overheads are low (less
than 10% in nearly all cases and 30% in the worst case we have
seen). We also show the effectiveness of static analyses in eliminat-
ing run-time checks.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Reliability, Security, Languages

Keywords Compilers, programming languages, alias analysis, re-
gion management, automatic pool allocation.

∗ This work is supported in part by the NSF Embedded Systems pro-
gram (award CCR-02-09202), the NSF Next Generation Software Program
(award CNS 04-06351), and an NSF CAREER award (EIA-0093426).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’06 June 10–16, 2006, Ottawa, Ontario, Canada
Copyright c© 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

1. Introduction
Alias information, type information, and call graphs are the fun-
damental building blocks for many kinds of static analysis tools,
including model checkers and error checking tools. For programs
written in weakly typed languages, however, these fundamental
building blocks may not be valid if the program performs any il-
legal memory operations such as array bound violations, dangling
pointer dereferences, and references using uninitialized pointers,
because these unsafe operations can overwrite memory locations
in ways not predicted by the compiler. This means that even tools
that aim to provide sound results with no false negatives [24, 10]
cannot guarantee that they do so. In fact, software validation tools
usually assume that such memory corruption cannot occur, e.g. they
assume malloc always returns fresh memory (so dangling pointer
references cannot occur) and that memory allocations are logically
infinitely apart (so a buffer overflow cannot trample any other allo-
cation). This problem is potentially important because many soft-
ware validation tools today are used to detect security vulnerabili-
ties or identify logical errors in important system software.

Unfortunately, it has proven extremely expensive to detect im-
portant classes of unsafe memory operations for a weakly typed
language using static analysis, run-time checks or a combination
of both [2, 39, 27, 34, 32]. All of these approaches have overheads
that are prohibitively high for production use (e.g., 2x-11x). Fur-
thermore most of these use heuristic techniques to detect certain
errors, especially dangling pointer errors, and do not guarantee that
all such errors will be detected.

An alternative approach is to use strongly typed systems that
closely match the C type system, e.g., CCured [33] or Cyclone [20,
25]. The strong safety guarantees of these systems are technically
attractive but they are obtained by disallowing explicit memory
deallocation in general ([25] allows explicit deallocation in some
restricted cases) and relying on automatic memory management.
The adoption of automatic memory management for existing C
software is likely to be slow for several reasons. First, it can take
significant effort to tune legacy C programs to reuse memory effec-
tively in a managed environment. Second, system and embedded
software often have stringent requirements for performance, mem-
ory consumption, real-time constraints, and even power constraints.
C has been widely used for such software partly because of the con-
trol it gives over performance and memory consumption. For these
reasons (and because of the possible manual effort required to port
programs to these languages), existing C and C++ applications may
be slow to adopt such languages and many may not do it at all.

1.1 Overview of our approach

In this paper, we describe a novel, automatic approach an ordinary
compiler can use to ensure three key analysis results — namely,
a points-to graph, a call graph, and available type information —

144

are sound, i.e., will not be invalidated by any possible memory er-
rors, even undetected errors such as dangling pointer dereferences.
We achieve this by defining new operational semantics based on
the analysis results. We give a formal proof of soundness of our
approach for a subset of C.

Our solution builds on a previously published transformation
we call Automatic Pool Allocation [31]. Automatic Pool Alloca-
tion uses the results of a pointer analysis to partition heap memory
into fine-grain pools while retaining explicit deallocation of indi-
vidual objects within pools, i.e., it partitions the heap but does not
perform automatic memory management. The transformation was
developed and used for optimizing memory hierarchy performance.
The transformation essentially provides a run-time partitioning of
the heap that corresponds directly to the partitioning of memory in
the points-to graph.

The primary contribution of this work is to show how Auto-
matic Pool Allocation can be used to enforce the validity of a given
points-to graph despite potential memory errors, and to do so effi-
ciently. This work is based on two key observations. First, by par-
titioning memory (at least) as finely as the points-to graph, we can
check efficiently that a pointer does not reference a memory object
that is not in its predicted points-to set. Second, many pools have
a type-homogeneity property that allows us to eliminate many or
most of these run-time checks. Furthermore, the type-homogeneity
property also allows us to statically ensure that dangling pointer
errors will not cause any unexpected type violation.

There are four technical challenges that we solve in this work
in order to use Automatic Pool Allocation for guaranteeing that the
static analysis results are correct:

• We formalize the necessary properties of pool allocation as a
new type system and the necessary run-time checks in an op-
erational semantics so that we can prove the correctness of the
overall system. In an accompanying technical report [13], we
give a formal proof of correctness for a subset of C that includes
all important root causes of memory errors: dangling pointers,
arbitrary casts and type mismatches, uninitialized variables, and
array bounds violations.

• Second, pool allocation does not prevent dangling pointer ref-
erences to freed memory. We show how to exploit type homo-
geneous pools to ensure that such dangling references do not
cause any unexpected type violations in these pools. We have
used this insight in previous work on enforcing memory safety,
but only for a subset of C without non-type safe constructs and
we did not prove its soundness [15].

• Non-type-safe constructs in C (e.g., many pointer casts, unions,
and varargs function calls) or pointer analysis imprecision may
produce non-type-homogeneous pools. We show how to use
run-time checks to enforce isolation of such pools from each
other and from type homogeneous pools. We also need addi-
tional run-time checks to detect other memory errors such as
uninitialized references and array bounds violations.

• Finally, we show that we can use sound static analyses that
exploit the points-to graph and call graph to safely optimize
away many of the run-time checks and other run-time overheads
introduced by SAFECode. We also give an example to show
how a different static analysis tool (ESP [10]) could benefit
from our approach.

Our approach has several practical strengths (discussed later in
Section 9) and three key limitations. The first two limitations are
the requirements that the pointer analysis be flow-insensitive and
unification-based. We believe our approach can be extended to
enforce non-unification based pointer analysis as well, by adding
meta-data to every pointer that may target multiple pools. How-

ever, the requirement of flow-insensitivity may be much harder
to relax (though, as discussed in Section 6.2, sound flow-sensitive
techniques can be implemented on top of our approach.) The third
limitation is that our analysis does not detect all memory errors;
it only guarantees sound pointer analysis and call graph semantics
with low run-time overhead in the presence of memory errors.

We have implemented our techniques in a system we call SAFE-
Code - Static Analysis For safe Execution of Code - using the
LLVM compiler infrastructure [30]. Our system handles nearly
the full generality of C, except programs with “manufactured ad-
dresses.” We show experimentally using three groups of programs
(Olden, Ptrdist, and three daemons) that the run-time overheads of
SAFECode are close to 0 for most programs and less than 30%
in all cases we have tested. We also show that the static analyses,
whose correctness relies on alias analysis guaranteed by SAFE-
Code, are important for achieving these low overheads.

The next section describes the language and analysis represen-
tations we assume as our inputs. Sections 3 describes our overall
approach, type system, and operational semantics for a subset of C.
Section 4 discusses the extensions to the type system to handle the
full generality of C programs. Section 5 describes our implementa-
tion (SAFECode) of the run-time system. Section 6 describes static
analyses that benefit from SAFECode. Section 7 presents our ex-
perimental evaluation of SAFECode. Section 8 discusses related
work and section 9 concludes with directions for future work.

2. Assumptions and Background
The inputs to our approach are:

1. a program written in C;

2. The results of a flow-insensitive, field-sensitive, unification-
based pointer analysis on that program. As explained below, this
includes both points-to information and type information for
some subset of memory objects. The analysis may use various
forms of context-sensitivity (see below).

3. A call graph computed for the program.

Our goal is to enforce the correctness of these analyses for all ex-
ecutions of the program. We do not concern ourselves with how
these analysis results are actually computed; we only assume that
these are given in the format described below. In our implementa-
tion, we use an analysis called Data Structure Analysis (DSA) [29],
a context-sensitive, field sensitive, unification based algorithm to
compute both the pointer-analysis and the call graph.

We include type information as part of the points-to represen-
tation because a pointer analysis can infer such information in a
weakly typed language. For example, DSA does this by checking
if all pointers to a particular “points-to set” (explained below) are
used or indexed consistently as one type τ∗ (where uses do not in-
clude casts). If so, DSA marks the type of objects in the set to be τ
and otherwise the type “Unknown,” explained below.

Although our implementation of SAFECode supports all of
C, we use a subset of C as the source language in this paper to
better illustrate our main ideas. This language, shown in Figure 1,
includes most sources of potential memory errors in weakly typed
languages including:

(P1) dangling pointers to freed heap memory,

(P2) array bound violations,

(P3) accesses via uninitialized pointers, and

(P4) arbitrary cast from an int type to another pointer type and
subsequent use.

The remaining language features of C, namely, structures, func-
tions, stack and global allocations, and function pointers, produce

145

Var x y
NodeVar ρ
Types τ ::= int | char | Unknown

| τ ∗ ρ
Statements S ::= ε | S; S | x = E | store E, E

| storec E, E | free(E, E)
| associate(ρ, τ)

Expressions E ::= Var | V | E op E | load E
| loadc E | cast E to τ
| malloc (x, E) | &E[E])

Value V ::= Uninit | Int

Figure 1. The input language (we omit structs, stack allocations,
globals, functions, and function pointers here; they are discussed in
Section 4). The constructs shown in bold are necessary to represent
the pointer analysis as a part of the input program.

two other kinds of memory errors: dangling pointers to a stack
frame after a function returns and illegal indirect calls. The lan-
guage extensions for the same are discussed later in Section 4.

In our input language, we include int (4-byte) and char (1-
byte) as primitive data types, and use distinct load and store opera-
tions for these types (e.g., load E for loading ints and loadc E for
loading chars). The cast, malloc, free operations are similar
to those in C. &E[E] is for pointer arithmetic of C.

2.1 Pointer Analysis Representation

Intuitively, pointer analysis representation can be thought of as a
storage-shape graph [36, 26] (also referred to as a points-to graph),
where each node represents a set of dynamic memory objects (a
“points-to set”) and distinct nodes represent disjoint sets of objects.
Pointers pointing to two different nodes in the graph are not aliased.
We assume there is one points-to graph per function, since this
allows either context-sensitive or insensitive analyses. Figure 2 (a)
shows an example program in source language and Figure 2 (b) the
associated storage-shape graph.

We assume that the input pointer analysis is encoded as type
attributes within the program, using a type system analogous to
Steensgaard’s [36]. Each points-to graph node is encoded as a dis-
tinct type (although we continue to refer to nodes below). The input
to our approach is a program in this language. Figure 2 (c) shows
the running example in our input language. Each pointer in this lan-
guage has an extra attribute, ρ, which intuitively corresponds to the
node it points to in the points-to graph. For example, in Figure 2(c),
the type of y is int*r2, denoting that it points to objects of node
r2 in the points-to graph. The statement associate(ρ, τ) asso-
ciates node ρ of the graph with type τ , denoting that the node ρ
contains objects of type τ . If τ is a pointer type, say, τ ′ ∗ ρ′, then
associate(ρ, τ ′ ∗ ρ′) directly encodes a “points-to” edge from
node ρ to node ρ′. These associate statements are typically listed
at the beginning of each function. Note that there can be only a sin-
gle target node for each variable (or field of pointer type), which
restricts the input to a unification-based pointer analysis.

Memory that is used in a type-inconsistent manner, e.g., due
to unions or casts in C, must be assigned type Unknown (this is
verified by our type checker). Unknown is interpreted as an array
of chars. In the running example, the target of z (node r3) has type
Unknown because this memory is accessed both as an int and as
an int**. Distinct array elements (due to Unknown or an actual
array) are not tracked separately.

In the absence of frees and other memory errors, we can
check that this program encodes the correct aliasing information by
using typing rules similar to Steensgaard’s. We do not give those
rules here as our approach described in Section 3 is stronger and
subsumes this checking; we not only check that the static aliasing
is correct but we also enforce it in the presence of memory errors.

2.2 Background on Automatic Pool Allocation

Given a program containing explicit malloc and free operations
and the pointer analysis information above, Automatic Pool Alloca-
tion transforms the program to segregate data into distinct pools on
the heap [31]. Pool allocation creates a distinct pool, represented by
a pool descriptor variable (also known as a pool handle), for each
points-to graph node representing heap objects in the program. For
a points-to graph node with τ �= Unknown, the pool created will
only hold objects of type τ (or arrays thereof). i.e., the pools will
be type-homogeneous. We refer to such type-homogeneous pools
as TK (type known) and all others as TU (type unknown). Calls to
malloc and free are rewritten to call new functions poolalloc
and poolfree, passing in the appropriate pool descriptor.

In order to minimize the lifetime of pool instances, pool allo-
cation examines each function and identifies points-to graph nodes
whose objects are not reachable via pointers after the function re-
turns. This is a simple reachability analysis on the points-to graph
for the function. The pool descriptor for such a node is created on
function entry and destroyed on function exit so that a new pool in-
stance is created every time the function is called. For other nodes,
pool allocation adds new arguments to the function to pass in the
pool descriptor from the caller. Finally, each function call is rewrit-
ten to pass any pool descriptors needed by any potential callee.

In our previous work, we have used Automatic Pool Allocation
to improve memory hierarchy performance [31] and to enforce
memory safety without automatic memory management in a type-
safe subset of C [15]. The current work is the first to consider how
automatic pool allocation can be used to enforce the correctness of
a points-to graph, call graph and type information.

3. Type System
3.1 Overview

We first give an informal overview of our approach, focusing on
four key insights we exploit in this work. The first two are new
in the current work while the other two are borrowed from our
previous work on memory safety for a type-safe subset of C [15].

The goal of our work is to ensure that memory errors (e.g.,
dangling pointer references after a free, array bounds violations,
etc.) do not invalidate the points-to information, call graph, or type
information computed by the compiler. The major challenge is
enforcing points-to information; type information follows directly
from this. The call graph is simply checked explicitly at each
indirect call site (See Section 4 for a discussion on eliminating
some of the run-time checks at indirect call sites).

Note that a node in a points-to graph (or the storage shape
graph) is just a static representation of a set of dynamic memory
objects. If these memory objects are scattered about in memory
(as is usually the case), it is prohibitively expensive to check that
a pointer actually points to a memory object corresponding to its
target node (i.e., has not been corrupted by some memory error). As
noted earlier, however, our transformation called Automatic Pool
Allocation partitions the heap into regions based on a points-to
graph [31]. This leads us to the following new insight that is the
key to the current work:

[Insight1]: If memory objects corresponding to each node in
the points-to graph are located in a (compact) region of the heap,
we could check efficiently at run-time that the target of a pointer is
a valid member of the compile-time points-to set for that pointer,
i.e., that alias analysis is not invalidated.

Note that this insight relies on the property that unaliasable
memory objects are not allocated within the same region, which is
not usually guaranteed by previous region-based systems [38, 20].

Non-heap (i.e., global and stack) objects may be in the same or
different points-to sets as heap objects. We can simply include such

146

int **x, *y, *z, ***w, u;
x = (int **) malloc(4);
y = (int *)malloc(4);
z = (int *) malloc(4);
...
store y, x // equivalent of *x = y
store 5 ,y
free(z) ; // creates a dangling pointer
store 10, z;
...
u = load z; // equivalent of u = *z;
...
w = cast z to (int ***);
store x, w;

w
z

r2, int

r1, int*y

x
r3, unknown

associate(r1, int * r2);
associate(r2, int);
associate(r3, Unknown);
int *r2 *r1 x;
int *r2 y;
int *r3 z; *r2*r1*r3 w; int u;
x = malloc(4);
y = malloc(4);
z = malloc(4);
...
store y, x; store 5, y;
free(z); // dangling pointer still exists
store 10, z ;
...
u = load z ;
...
w = cast z to (int *r2*r1*r3);
store x, w ;

(a) (b) (c)

Figure 2. (a) Original program, (b) its points-to graph, and (c) program in our type system

objects in the set of address ranges for the appropriate pool (but
many stack objects can be handled more efficiently as described in
Section 4). Overall, the operation poolcheck(ph, A, o) verifies
that the address, A, is contained within the set of memory ranges
assigned to pool, ph, and has the correct alignment for the pool’s
data type (or for the field at offset o if o �= 0).

Even with the above partitioning of memory, checking every
pointer dereference (or every pointer definition) would be pro-
hibitively expensive. The second insight allows us to eliminate a
large number of the run-time checks:

[Insight2]: Any initialized pointer read from an object in a TK
region or from an allocation site, will hold a valid address for its
target region. All other pointers, i.e., pointers derived from indexing
operations, and pointers read from TU regions (including function
pointers), need run-time checks before being used.

Intuitively, in the absence of dangling pointer errors and array
indexing errors, an initialized pointer obtained from a TK region
will always be valid; it cannot have been corrupted in an unpre-
dictable way e.g. via arbitrary casts and subsequent stores (it would
then be obtained from a TU region).

Uninitialized pointers and array indexing errors are addressable
via run-time checks. Dangling pointer references, however, are
difficult to detect in general programs, and we do not attempt to
detect or prevent such errors. Instead, we ensure that such errors do
not invalidate the results of alias analysis, by exploiting two ideas
that we also used in previous work on enforcing memory safety for
a type-safe subset of C [14, 15]:

[Insight3]: In a TK (type-homogeneous) region, if a memory
block holding one or more objects were freed and then reallocated
to another request in the same region with the same alignment, then
dereferencing dangling pointers to the previous freed object cannot
cause either a type violation or an aliasing violation.

Essentially, we make sure that, if a dangling pointer to freed
memory points into a newly allocated object, the old and new
objects have the same static type and that any pointers they contain
have identical aliasing properties. Thus loads or stores using the
dangling pointers may give unexpected results but cannot trample
memory outside the expected pool.

This principle allows free memory to be reused within the same
region (unlike other region-based languages, which either disallow
such reuse [38] or allow it only in restricted cases [25, 37]). For
reuse across regions, as we noted in our previous work [15], Auto-
matic Pool Allocation already provides us a solution:

[Insight4]: We can safely release the memory of a region when
there are no reachable pointers into that region.

This gives us a way to release memory to the system. Since
Automatic Pool Allocation already binds the life times of regions
(using escape analysis), we can arrange for memory to be released
at the end of a region’s life time.

Finally, in order to prove the correctness of our approach, we
formalize the key properties of our regions by extending the previ-
ous type system encoding points-to information (described in Sec-
tion 2) in two ways: (1) to encode regions corresponding to points-
to sets, with allocation and deallocation out of these regions; and
(2) to encode information about region lifetimes. The type system
is designed to be mostly statically checkable for the correctness of
encoded types (i.e. the points-to relations, lifetimes, and the call
graph). We borrow a key idea from Tofte and Talpin’s work on re-
gions for ML [38] to simplify the type system, namely, we restrict
region lifetimes to be lexically scoped (others have shown that this
is not strictly necessary [1, 20]).

3.2 Syntax

Figure 3 gives the syntax of the language in our type system. This
syntax, which forms the input to our type checker, includes new
constructs for encoding region handles, region lifetimes, region
allocation and deallocation, and separate versions of load/store
that require run-time checks. The associate statement of Figure 1
is now transformed to the poolinit statement along with a lexical
scope indicating where the association is valid, essentially creating
a lifetime for the corresponding region. For example, statement
poolinit(ρ, τ) xρ{ S }, creates a region named ρ that can hold
objects of type τ , with the handle xρ. Our typing rules, described in
Section 3.3, make it illegal to store an object of type other than τ in
this region. The type of the region handle xρ is handle(ρ, τ). Notice
that regions in our system are nested and a region can only contain
objects of one type (although this type may have to be Unknown for
some regions). The lexical scoping, along with region attributes for
pointers, allow the type checker to ensure that an object in a region
cannot be accessed outside the lifetime of the region. Although this
seems to disallow cycles in points-to graph, extensions for handling
them are straightforward; we support creating multiple regions at
the same lexical level (not present in the syntax here) and it can be
used to create regions for all the nodes in a cycle at once (discussed
further in the technical report [13]).

Calls to malloc and free in the input program are replaced by
calls to poolalloc and poolfree. poolalloc takes in a handle

147

RegionVar ρ
Var x y
Types τ ::= int | char | Unknown

| τ ∗ ρ | handle(ρ, τ)
Statements S ::= ε | S; S | x = E | store E, E

| storeToU x, E, E | storec E, E
| storecToU E, E | poolfree(E, E)
| poolinit(ρ, τ) x { S }
| pool{S}pop(ρ)

Expressions E ::= var | V | E op E | load E
| loadFromU x, E | loadc E
| loadcFromU E | cast E to τ
| poolalloc (x, E) | (x,&E[E])
| castint2pointer x,E to τ

Value V ::= Uninit | Int | region(ρ)

Figure 3. Our syntax

int *r2 *r1 x;
int u, *r2 y
int *r3 z;
int *r2*r1*r3 w;
poolinit(r2, int) r2handle {
poolinit(r1, int *r2) r1handle {
poolinit(r3, Unknown) r3handle {

x = poolalloc(r1handle, 1);
y = poolalloc(r2handle, 1);
z = poolalloc(r3handle, 1);
store y, x; store 5, y;
poolfree(r3handle,z); //dangling pointer exists
storeToU r3handle, 10, z ;
...
u = loadFromU r3handle, z ;
...
w = cast z to (int *r2*r1*r3);
storeToU r3handle, x , w ; //type checks as region of r3
... //is Unknown

} } }

Figure 4. Running example in our type system

to the region as an argument and allocates an object (or an array of
objects) out of the region. The type of an allocated object (or array
element) is the type associated with the region. The poolfree
statement frees a memory object and releases the memory back
to the region. Uninit essentially represents the NULL value in
C. The castint2ptr, loadFromU, storeToU are versions of
cast, load, store that require various run-time checks. Other
than Uninitialized pointer checks, the only operations that require a
run-time check are those that take in a pool handle as an argument.

Everything else in the syntax including pool{(S)}pop(ρ) ,
region(ρ) are not part of the source language but needed for op-
erational semantics and are described in section 3.4.

The Figure 4 shows the running example in this new syntax. The
storeToU and loadFromU operations are versions of store and
load that need run-time checks. The associate is now replaced
by poolinit, binding the lifetime of the pools.

We use Automatic Pool Allocation transformation to take an
input program including the pointer analysis annotations described
in Section 2, and produce a program with region types and region
allocation.

3.3 Typing rules

The type system is expressed by the following three judgments:
C � e : τ (for expression typing) , C � S (for statement typing),
C � τ (for type typing).

(SS0)
C � τ Γ(x) = τ
C(= Γ, Δ) � x : τ

(SS1)
C � n : int

(SS2)
C � e1 : int C � e2 : int

C � e1 op e2 : int

(SS3)
C � τ

C � Uninit : τ
τ �=handle(ρ′ , τ ′)

(SS4)
C � e : τ ∗ ρ C � ρ : τ τ �∈ {Unknown,char}

C � load e : τ

(SS4char)
C � e : char ∗ ρ C � ρ : char

C � loadc e : char

(SS5)
C � e : τ ∗ ρ C � ρ : Unknown

C � x :handle(ρ, Unknown)
C � loadFromU x, e : int

(SS5char)
C � e2 : τ ∗ ρ C � ρ : Unknown

C � x :handle(ρ, Unknown)
C � loadcFromU x, e2 : char

(SS6)
C � ρ : τ C � x :handle(ρ, τ) C � e : int

C � poolalloc(x, e) : τ ∗ ρ

(SS7)
C � ρ : τ C � x :handle(ρ, τ) C � e : int

C � castint2ptr x, e to τ ∗ ρ : τ ∗ ρ

(SS8)
C � τ ′ C � e : τ ∗ ρ

C � cast e to τ ′ ∗ ρ : τ ′ ∗ ρ

(SS9)
C � ρ : τ C � x :handle(ρ, τ)
C � e2 : τ ∗ ρ C � e3 : int

C � x, &e2[e3] : τ ∗ ρ

(SS10)
C � e : τ

C � cast e to int : int
τ �=handle(ρ, τ ′)

Figure 5. Expression typing judgments

In these judgments C, the typing context, is a pair of typing
environments (Γ;Δ) where Γ is a map between variable names and
their types (built up using the variable declarations) and Δ is a map
between region names and the type of objects stored in the region
(built up using poolinits). We present the typing rules for our
language in Figures 5, 6, and 7.

While many of the type rules are similar to those of C, some type
rules are unique to our approach and require further explanation.
(SS4) and (SS14) type loads/stores using pointers to type consistent
memory (TK pools). They check that the type of the objects in
the pool matches the type of the pointer operand. (SS5) is for
loads using pointers to untyped Unknown memory (TU pools);
note that we get back an int. (SS7) allows a cast from int to
pointer type, As discussed later in the operational semantics, such
a cast requires a run-time check to make sure that the pointer is
of the right type in the right pool. This coupled with (SS5) above
enables loading pointers from TU pools safely. (SS15) types stores
to Unknown memory. (SS8) types a cast from a pointer to a
region to another pointer pointing to the same region. This helps
in supporting arbitrary casts of pointer types as long as they have
the same region attribute, without requiring run-time check; note
that (SS4) and (SS14) require that a pointer be cast back to the type
of objects in the region before use. (SS17) is for creating a region
using poolinit; we add the region variable and the handle to the
typing context before checking the body of the poolinit. (SS6)
gives a type for the memory objects allocated in a pool. (SS16)
frees objects only when they belong to the appropriate pool.

148

(SS11)
C � ε

(SS12)
C � s1 C � s2

C � s1; s2

(SS13)
C � x : τ C � e : τ

C � x = e

(SS14)
C � ρ : τ C � e1 : τ ∗ ρ
C � e2 : τ τ �∈ {Unknown,char}

C �store e2, e1

(SS14char)
C � ρ : char C � e1 : ρ ∗ char C � e2 : char

C �storec e2, e1

(SS15)
C � ρ : Unknown C � e1 : τ ∗ ρ
C � e2 : τ C � x :handle(ρ, Unknown)

C �storeToU x, e2, e1

(SS15char)
C � ρ : Unknown C � e1 : τ ∗ ρ
C � e2 : char C � x :handle(ρ, Unknown)

C �storecToU x, e2, e1

(SS16)
C � ρ : τ C � x :handle(ρ, τ) C � e2 : τ ∗ ρ

C �poolfree(x, e2)

(SS17)
C � τ Γ[x �→handle(ρ, τ)], Δ[ρ �→ τ] � s

x �∈ Γ and ρ �∈ Δ
C(= Γ, Δ) �poolinit(ρ, τ)x{s}

Figure 6. Statement typing judgments

(SS18)
C � int, char

(SS19)
C � Unknown

(SS20)
Δ(ρ) = τ
C � ρ : τ

(SS21)
� ρ : τ

C � τ ∗ ρ

(SS22)
Δ(ρ) = Unknown
C(= Γ, Δ) � τ ∗ ρ

(SS23)
C � ρ : τ

C �handle(ρ, τ)

Figure 7. Well formed types

3.4 Operational semantics

The operational semantics rules for our language provide a formal
basis for reasoning about program behavior even in the presence
of problems P1-P4. They essentially describe the run-time checks
needed to enforce the correctness of alias analysis. The rules are
listed in Figures 9 and 10.

Figure 8 lists the environments necessary to describe the opera-
tional semantic rules. The rules are described as a small-step oper-
ational semantics, −→expr for expressions and −→stmt for state-
ments. Each program state is represented by (VEnv, L, es) where
VEnv is the variable environment (partial map holding the values of
variables), L is the partial map of live regions and the correspond-
ing store, and es is an expression or statement in the program. H,
the system heap, contains the memory addresses not in use by the
program. H is a part of the program state but not included in the
notation for the sake of brevity. A program state (VEnv, L, es) be-
comes (VEnv’, L’, es’) if any of the semantic rules allow for it. The
expression in the box, if any, is a run-time check that is executed
before the corresponding rule. If the run-time check fails, then the
program state becomes specially designated Error state.

We assume that region(ρ) is the handle for a region named ρ.
A region (see Figure 8) is defined as a tuple { F ; RS }: F is a list
of freed memory locations within the region, and RS (the region
store) is a partial map between memory addresses and their values.

Briefly, the four memory errors P1-P4 listed in Section 2 are
solved as follows. P1 is solved using the type homogeneity princi-
ple, explained previously. This is implemented by rules R14, R34
and the static typing rules that check operations on pointers to

VarEnv VEnv : Var −→ Value
Region R ::= { F ; RS }
RegionStore RS : Int −→ Value
FreeList F ::= φ | aF
LiveRegions L := RegionVar −→ RS
SystemHeap H ⊆ Int32

Figure 8. Environments for operational semantics

known-type pools. We detect problem P2 using the run-time check
on rule R40. To detect P3, we initialize all newly created memory
and all local variables to Uninit and check Uninit pointers via
rules R6, R14, R23. Issue P4 is detected using R31.

Below we describe in more detail the rules that are unique
to our approach. (R15,R17): Evaluating poolinit creates a new
region, sets the free list to be empty, and evaluates the body inside
the syntactic construct pool{S}pop(ρ). This construct identifies
when the region is to be deallocated, i.e., when the body (S)
becomes empty. This is performed by rule R17. (R6): Performs
a store via a type-consistent pointers, after checking that v1 is not
Uninit. update(L,v1, v2) just updates the memory location v1
with value v2. Loads via type consistent memory have a similar
check for uninitialized pointers. (R10): Performs a store via a
pointer to Unknown memory, after checking that the pointer value
legally allows storing of a 4-byte value (an int). Note that our
proof below guarantees that v ∈ Dom(L[ρ].RS), so at run-time it
is enough to check for the open interval (v1, v1 + 3]. (R14):
Frees an object from region, ρ, and adds it to the free list F
of the same region. (R34): Returns a previously freed location
from the free list. Together with R14, this implements the type
homogeneity principle to make error P1 harmless. (R35): For a
poolalloc, when the free list is empty, this requests fresh memory
from the system. poolalloc aborts if it cannot allocate requisite
memory. (R31): A cast from int to another pointer type is always
checked at run-time using a poolcheck, i.e., we check that the
value is a properly aligned address in the appropriate pool for the
pointer type, and if not, we abort. This detects problem P4. (R40):
For array indexing, we check that the resultant pointer after the
arithmetic always points to the same pool as the source pointer
at the proper alignment. These checks are not exact array bounds
checks but a much coarser check for the pool bounds. This means
some array bound violations may go undetected.

The complete list of run-time checks in our system are the
checks in the boxes in Figures 9 and 10 along with checks on casts
from integer to function pointers. Note that the poolcheck oper-
ation described earlier in this section is exactly the check given in
R31. None of the run-time checks require any metadata on indi-
vidual pointer variables (usually required for precise array bounds
checks) or runtime tag bits on any memory locations (usually re-
quired for RTTI or to track legal pointer values). The only metadata
we require at runtime are available in the pool descriptor (handle),
which is known at compile time.

3.5 Soundness proof

The proof of soundness is composed of two “invariant preserva-
tion” theorems — one for expressions and one for statements of the
program. Since we have not included control flow in our formaliza-
tion, all evaluations of expressions and statements terminate.

A detailed proof of our technique is included in a separate tech-
nical report [13]. Here we just summarize the important invariants
that our approach maintains at each step of the operational seman-
tics and state the soundness theorem for statements.

First, for an environment (VEnv, L), we define ||τ ||(V Env,L) to
be as follows:

149

R1
(VEnv, L, S1) −→stmt (VEnv’, L’, S1’)
(VEnv, L, S1 ; S2) −→stmt (VEnv’, L’, S1’ ; S2) R2

(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, x = E) −→stmt (VEnv’, L’, x = E’)

R3 (VEnv, L, x = v1) −→stmt (VEnv[x �→ v1], L, ε) R4
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, store/storec E, E2) −→stmt (VEnv’, L’, store E’, E2)

R5
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, store/storec v,E) −→stmt (VEnv’, L’, store v, E’)

R6 (VEnv, L, store/storec v2, v1) −→stmt (VEnv, update(L, v1, v2), ε) (v1)! = Uninit
where

update(L, v1, v2) := L’ ∪ {(ρ, { R.F ;R.(RS[v1 �→ v2]) }) } if ∃ρ ∈ Dom(L) s.t. L = L’ ∪ {(ρ,R)} and v1 ∈ Dom(R.RS)
L else

R7
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, storeToU/storecToU E, E2, E3) −→stmt (VEnv’, L’, storeToU/storecToU E’, E2, E3)

R8
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, storeToU/storecToU v1, E, E3) −→stmt (VEnv’, L’, storeToU/storecToU v1, E’, E3)

R9
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, storeToU/storecToU v1, v2, E) −→stmt (VEnv’, L’, storeToU/storecToU v1, v2, E’)

R10 (VEnv, L, storeToU region(ρ), v2, v1) −→stmt (VEnv, update(L, v1, v2, 4) }], ε) (v1, v1 + 3] ∈ Dom(L[ρ].RS)
where

update(L, v1, v2, 4) := L’ ∪ {(ρ, { R.F ;R.(RS[v1 �→byte(v2, 3)][(v1+1) �→byte(v2 , 2)][(v1 + 3) �→byte(v2, 1)][(v1 + 4) �→byte(v2, 0)])
if ∃ρ ∈ Dom(L) s.t. L = L’ ∪ {(ρ,R)} and [v1, v1 + 3] ∈ Dom(R.RS)

L else
and byte(n, k) := (n << (8 * (3 - k))) >> 24 .

R11 (VEnv, L, storecToU region(ρ), v2, v1) −→stmt (VEnv, update(L, v1, v2) }], ε)

R12
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolfree(E, E2) −→stmt (VEnv’, L’, poolfree(E’, E2)

R13
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolfree(v, E) −→stmt (VEnv’, L’, poolfree(v, E’)

R14 (VEnv, L ∪ { (ρ, {F ; RS}) }, poolfree(region(ρ), v)) −→stmt (VEnv, L ∪ { (ρ, {vF ; RS}) }, ε) v! = Uninit

R15 (VEnv, L, poolinit(ρ,τ)x{ S }) −→stmt (VEnv ∪ {(x,region(ρ))}, L ∪ {(ρ, {φ; φ})}, pool{S}pop(ρ)) if (ρ �∈ Dom(L)).

R16
(VEnv, L, S) −→stmt (VEnv’, L’, S’)
(VEnv, L, pool{S}pop(ρ)) −→stmt (VEnv’, L’, pool{S′}pop(ρ))

R17 (VEnv ∪ {(x,region(ρ))} , L ∪ {(ρ,R)} , pool{ε}pop(ρ)) −→stmt (VEnv, L, ε)
Note that H the set of addresses in the system heap and not used by the program gets updated by H ∪ Dom(R.RS)

Figure 9. Operational semantic rules for statements

||int||(V Env,L) := Int32
||τ ∗ ρ||(V Env,L) := {Uninit}∪ Dom(L[ρ].RS)
||handle(ρ, τ)||(V Env,L) := { region(ρ)}
||Unknown||(V Env,L) := Int8
||char||(V Env,L) := Int8

Intuitively for a well-formed type τ , ||τ ||(V Env,L) represents the
set of values that a variable (or object) of that type can hold under
that context and environment. For example, for a variable of type
τ ∗ rho, the set of values it can hold are either Uninit or addresses
of objects in region ρ, which is Dom(L[ρ].RS)).

Let �env denote the judgment for a well formed environment.
We defined an environment (VEnv, L) to be well formed under a
typing context C (denoted by C �env (VEnv, L)) if and only if the
following invariants hold.

Inv1 Dom(Γ) = Dom(VEnv)

All variables in the typing environment are present in the vari-
able environments and vice versa.

Inv2 Dom(Δ) = Dom(L)

All region names in the region type environment are already
present in the domain of region maps and vice versa.

Inv3 ∀x ∈ Dom(VEnv), if C � x : τ then VEnv[x] ∈ ||τ ||(V Env,L)

If a variable has type τ , then it must contain only valid values of
type τ . In particular, a pointer variable with region attribute ρ,
must always point to an object in that region or it has the value
Uninit

Inv4 ∀ρ ∈ Dom(L), if C � ρ : τ then ∀v ∈ Dom(L[ρ].RS),
L[ρ].RS[v] ∈ ||τ ||(V Env,L) .

If region ρ is associated with type τ then each memory location
in the region store will only contain values of the correct type.

Inv5 ∀ρ ∈ Dom(L), L[ρ].F ⊆ Dom(L[ρ].RS)

This invariant states that the memory addresses in the free list
are a subset of the addresses of the region

Inv6 ∀ρ1ρ2 ∈ Dom(L), if ρ1 �= ρ2 then Dom((L[ρ1]).RS) ∩
Dom((L[ρ2]).RS) = φ and ∀ρ ∈ Dom(L), Dom(L[ρ].RS) ∩
H = φ.

A memory address cannot be part of two live regions. Also a
memory address cannot be a part of system heap (i.e., unused
by a program) and also a part of live region.

Now assume that a run-time check failure leads to the Error
state in the operational semantics. We can now prove the following
soundness theorem:

150

R18 (VEnv ∪ {(x, v)}, L, x) −→expr (VEnv ∪ {(x, v)}, L, v) R19
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, E op E2) −→expr (VEnv’, L’, E’ op E2)

R20
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, v op E) −→expr (VEnv’, L’, v op E’)

R21 (VEnv, L, m op n) −→expr (VEnv, L, m opInt n))

R22
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, load/loadc E) −→expr (VEnv’, L’, load/loadc E’) R23 (VEnv, L, load/loadc v1) −→expr (VEnv, L, getvalue(L, v1)) (v1)! = Uninit

where
getvalue(L, v1) := L[ρ].RS[v1] if ∃ρ ∈ Dom(L) s.t. v1 ∈ L[ρ].Dom(RS)

Uninit else

R24
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, loadFromU/loadcFromU E, E2) −→expr (VEnv’, L’, loadFromU/loadcFromU E’, E2)

R25
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, loadFromU/loadcFromU v1, E) −→expr (VEnv’, L’, loadFromU/loadcFromU v1, E’)

R26 (VEnv, L, loadFromU region(ρ), v1) −→expr (VEnv, L, getvalue(L, v1, 4) }]) (v1, v1 + 3] ∈ Dom(L[ρ].RS)
where

getvalue(L, v1, 4) := combine(L[ρ].(RS[v1]),L[ρ].(RS[v1 + 1]),L[ρ].(RS[v1 + 2]),L[ρ].(RS[v1 + 3]))
if ∃ρ ∈ Dom(L) s.t. [v1, v1 + 3] ∈ L[ρ].Dom(RS)

Uninit else
and combine(b1, b2, b3, b4) := (b1 << 24) || (b2 << 16) || (b3 << 8) || (b4).

R27 (VEnv, L, loadcFromU region(ρ), v1) −→expr (VEnv, L, getvalue(L, v1) }])

R28 (VEnv, L, cast E to τ) −→expr (VEnv, L, E) R29
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, castint2ptr E, E2 to τ) −→expr (VEnv’, L’, castint2ptr E’, E2 to τ)

R30
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, castint2ptr v, E to τ) −→expr (VEnv’, L’, castint2ptr v, E’ to τ)

R31 (VEnv, L, castint2ptr (region(ρ), v to τ) −→expr (VEnv, L, v) v ∈Dom(L[ρ].RS)

R32
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolalloc(E, E2)) −→expr (VEnv’, L’, poolalloc(E’, E2)) R33

(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolalloc(v, E)) −→expr (VEnv’, L’, poolalloc(v, E’))

R34 (VEnv, L ∪ { (ρ, {a F ; RS}) }, poolalloc(region(ρ), 1)) −→expr (VEnv, L ∪ { (ρ, {F ; RS}) }, a)

R35 (VEnv, L ∪ { (ρ, {φ; RS}) }, poolalloc(region(ρ), 1)) −→expr (VEnv, L[ρ �→ {φ; RS[a �→ Uninit]}], a)
where a is a new address obtained from system allocator, i.e. a ∈ H. H becomes H - { a }.

R36 (VEnv, L ∪ { (ρ, {F ; RS}) }, poolalloc(region(ρ), m)) −→expr (VEnv, Initialize(L ∪ { (ρ, {F ; RS}) }, Uninit, a,m), a) if (m != 1)
where a is a new address for the array obtained from system allocator and Initialize initializes each element of the array with Uninit. H becomes H - { a
, a + 1, ... , a + m-1 }

R37
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, (E, &(E1)[E2])) −→expr (VEnv’, L’, E’, &(E1)[E2])) R38

(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, (v, &(E)[E2])) −→expr (VEnv’, L’, v, &(E’)[E2]))

R39
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, (v, &(v1)[E])) −→expr (VEnv’, L’, (v, &(v1)[E’]))

R40 (VEnv, L, (region(ρ), &v1[v2])) −→expr (VEnv, L, v1 + v2 ∗ sizeof(τ)) (v1 + v2 ∗ sizeof(τ)) ∈Dom(L[ρ].RS)
where τ is the “static” type of the individual element of the array, available from the declaration.
Note that sizeof(τ) is a compile time constant.

Figure 10. Operational semantic rules for expressions

THEOREM 1. If Γ �S and Γ �env(VEnv, L) then either (VEnv,
L, S) −→∗

stmtError or (VEnv, L, S) −→∗
stmt (VEnv’, L’, ε) and

C �env (VEnv’, L’).

Proof: The proof for this theorem is by induction on the structure
of typing derivations (In Section 11 of the technical report [13]).

The soundness result gives us the following invariant – “For a
well typed program containing pointer variable p whose declared
type is τ ∗ ρ, in every execution state the value of p is guaranteed
to be a pointer to an object in the region ρ”. This holds even in
the presence of undetected memory errors like dangling pointer
dereferences and array bound violations, and thus it guarantees
correctness of the aliasing information induced by our type system.

3.6 Weaknesses

The key weakness of our system is that it permits dangling pointer
errors and array bounds violations to go undetected (but confined
within a pool). As explained in Section 1, the only current solution

to the former (for obtaining soundness guarantees) is via the use of
automatic memory management. For the latter, although we could
implement more precise array bounds checks, the best current solu-
tion for precise bounds checking imposes more overhead than our
approach.

A second issue is that in some cases, our system might require
more memory than the original C program (since we cannot free
memory to the system until a region goes out of scope). In our
previous work, we have evaluated the increase in the context of
programs with no type casts and found that the increase is minimal
in practice [15]. We believe this issue is unlikely to be significant in
practice because we allow reuse within regions (which we believe
is quite common for data structures that shrink and grow).

Finally, if the pointer analysis cannot infer an allocation site
and consequently a region, for a pointer (e.g. if the address is
“manufactured” or read off the disk), we simply insert an abort

151

Region var ρ
PointerType pt := τ ∗ ρ|τ ∗ (ρ, n)
Function Type ft := τ −→ τ
Function Sets fs := f , fs |ε
FuncPtrType fpt := ft * fs
StructType st := struct { Fld1 : τi, ..., Fldn : τn } |∀ρ.st |τ<ρ>
Type τ := int | pt | st | ft | fpt | Unknown
Expressions E := Eprev|&(x->Fldi) |&f
Definitions d := FSET fs = f , fs

Figure 11. Syntactic extensions for representing structs, functions,
function pointers. Eprev is expressions, E, of the core language,
shown in Figure 1

before every use of such a pointer. This could reject a legal C
program (other systems like CCured share the same weakness).

4. Extensions for full C
Several constructs of C were omitted in the previous section to ex-
plain our core ideas. Our implementation handles the full language.
In this section, we briefly discuss how we handle the remaining
constructs including function calls, function pointers and support
for region polymorphic functions (we omit control-flow as it does
not require any checks and is straightforward to add). The accom-
panying technical report [13] contains more detailed discussion.

Some of the ideas for implementing region polymorphism in
functions and structs are directly borrowed from Cyclone [20].
However, it is worth noting that our universal types are quantified
only over region type variables (and not arbitrary type variables).
This is sufficient for our goal of trying to retrofit polymorphic
region types for otherwise non-polymorphic C code.

Structure types: Structures types are like in C and the syntax for
structures is shown in Figure 11. A pointer can point into a structure
at an offset n ≥ 0 and we use τ ∗ (ρ, n) to denote the type of such
a pointer (n is a compile type constant). Given this, the only extra
safety implications of structure types are that (a) the poolcheck
must use the offset o in checking alignment, and (b) structure
indexing operations for pointers to TU regions need a poolcheck
(similar to array indexing). A notational issue is that it is convenient
to include polymorphic type constructors (similar to those used in
Cyclone [20]) because a struct type with a pointer field can be used
in different places with the field pointing to distinct sets of objects
(e.g., when two distinct linked lists are created with the same list
node type). The syntax was shown in Figure 11. For example, the
polymorphic type struct S<rho> { Field0 : int, Field1
: int * rho } can be instantiated with a region type variable
to get a new type pointing to a particular points-to set.

Region-polymorphism for functions: Like Cyclone [20], we
support region polymorphic functions, parameterized via region
names. Region polymorphism is necessary because it is imprac-
tical to duplicate function definitions for each context in which
they are used. Automatic Pool Allocation already infers this region
polymorphism automatically for C programs based on points-to
analysis [31]. We leverage that work and only have to type-check
that the inferred polymorphism and instantiation are correct.

Function pointers: We represent the call graph in the input type
system by adding a function set attribute (called fs in Figure 11)
to each function pointer type, making explicit the set of possible
targets for that function pointer. The function set attribute can be
initialized using the FSET definition. For example, the definition
FSET fs = func1, func2, func3 followed by a use (int ->
int)*fs fptr denotes a function pointer fptr whose targets are
the functions func1, func2, func3. Before an indirect call, we
check at run-time if the function pointer actually points to one of

the functions in its FSET attribute. A number of these run-time
checks are unnecessary and can be eliminated using simple static
typing rules. Essentially function pointers that are read from a TU
pool (via casts from int to function pointers), and function pointers
whose targets are more precise than the one used by the Automatic
Pool Allocation, will continue to require a run-time check.

Global and stack allocations: We make memory allocation for
both global and stack variables explicit using operations alloca
and galloc (the latter takes an optional initializer). These elimi-
nate the need for the & operator for taking the address of variables.
Note that a global or stack object may not have a valid pool handle
if no heap object is aliased to it. To ensure that valid pool handles
are created for these objects, we pretend that they are allocated us-
ing malloc at program entry and function entry respectively, and
infer the life times of regions using Automatic Pool Allocation.
Globals are still allocated in the global area just like the original
program. We simply register the valid range of global addresses
with the corresponding pool handle if any run-time checks are ever
needed for that global pool. Stack objects whose region is created
within the same function (i.e., does not escape to a parent) are al-
located on the stack, like the original program. Otherwise, we al-
locate them using poolalloc at function entry and free them at
function returns. In practice we found that most stack allocations
in the original program do not escape and can actually be allocated
on the stack.

Compatibility with external libraries: So far we have assumed
that we have the source for the complete program including all
external libraries. In practice, we have to deal with cases where
the sources for some external libraries may not available or it may
not be feasible to analyze them. Here, we explain how we handle
these external library calls.

Our approach can work correctly (but slightly inefficiently) for
most library calls. Our pointer analysis marks any points-to graph
node reachable from an external function as “incomplete” (by omit-
ting a C (Complete) flag) We can treat pools corresponding to such
points-to graph nodes as TU pools. Our typing rules then ensure
that we can only load/store an int or char from/into such pools.
All pointers read from such memory have to go through a run-
time check, because of R31, thus ensuring soundness. However,
this means we may conservatively perform more checks than nec-
essary.

One case that deserves a special mention here is that of pointers
to memory allocated within external library and returned to the
program. The pool corresponding to such pointer may not exist
(will be null in our implementation) or even if it does exist, because
of node merging during the pointer analysis, such a pool does not
actually contain the target object of the pointer. This will lead to
a run-time failure if the program ever executes a run-time check
on pointers to such object. To partially solve this problem, we
intercept all calls to malloc/free from the libraries. We store all
the allocations in a global hash table, and do a run-time check
in the global hash table when a pool is null or if a normal run-
time poolcheck fails. However, we can do this only if the memory
returned by an external library call is dynamically allocated heap
memory. If the library call returns stack allocated memory, or
memory in the static region, which we didn’t encounter so far in
our experiments, we abort the program.

Another problem we encounter is that of call back functions.
If an internal function may be called from external code, we must
ensure that the external code calls the original function, not the
pool-allocated version. This ensures backwards-compatibility but
at the cost of soundness. In most cases, we can directly transform
the program to pass in the original function and not the pool-
allocated version: this change can be made at compile-time if it

152

passes the function name but may have to be done at run-time if
it passes the function pointer in a scalar variable. In the general
case (which we have not encountered so far), the function pointer
may be embedded inside another data structure. Even for most such
functions, the compiler can automatically generate a “varargs”
wrapper designed to distinguish transformed internal calls from
external calls. When this is not possible, we must leave the callback
function (and all internal calls to it), completely unmodified.

The third problem is that of incorrect usage of library calls
leading to undetected/unmasked memory errors in the unchecked
external code. Though we automatically check preconditions for
some of the standard C library calls before their invocation, the
general solution again involves analyzing the source of the libraries.

5. Implementation
Our compiler system, SAFECode (Static Analysis For safe Execution
of Code), is implemented using the LLVM compiler infrastruc-
ture [30]. In principle, SAFECode supports any source language
translated into the LLVM IR, but our experience has been with C.

5.1 Type inference and type checking

Conceptually, analysis validation in SAFECode consists of a non-
standard type-inference step using Automatic Pool Allocation, fol-
lowed by a standard type checking step using our pool-based type
system defined earlier, and insertion of the necessary run-time
checks described in Section 3.4.

The “type inference” phase of SAFECode takes the input pro-
gram and the points-to graph as defined in section 2.1 and trans-
forms the program to add the region type attributes and region
parameters of our extended type system. Because our type rules
include the region types, region lifetimes, and lexical scoping of
region parameters, our type checker effectively ensures the correct-
ness of the region inference.

Our current implementation does more run-time checks than
those outlined in the operational semantics; we do poolchecks be-
fore all uses of a pointer pointing to TU pool. These checks sub-
sume checks of casts from int to pointer to TU pool (R31), checks
on indexing of pointers to TU pools (R40) but add unnecessary
checks before uses of pointers to TU pools read from TK pools. We
are refining our implementation to eliminate unnecessary checks.

5.2 The SAFECode runtime system

The pool allocation runtime library requires some significant
changes to support the safety guarantees and run-time checks re-
quired in this work. The key new aspects of the run-time are briefly
described here. A more complete description is available in the
technical report [13].

A pool in our implementation is organized as a linked list of
(large) blocks. The pool handle (or the pool descriptor) stores the
header to this list. If there is insufficient space for a new allocation,
the pool requests more blocks from the underlying system heap us-
ing malloc. An allocation request is satisfied by returning a free
chunk within one block (or spanning multiple blocks if needed).
One key change in the pool implementation is that heap metadata
(such as the object header describing the size of an allocated ob-
ject and the free list) cannot be interleaved with live objects in a
pool since our approach allows some memory errors to overwrite
arbitrary data within a pool. Allowing the metadata to be corrupted
would potentially lead to arbitrary safety violations. We maintain
metadata for the free list at the start of each free block and ensure
(as part of the poolchecks below) that this data cannot be corrupted.
To record the size of an allocated object so that it can be found ef-
ficiently, we take advantage of type homogeneity (which we have
empirically found is available for most pools even in C programs,

as explained in Section 2.1). We use a bit vector (with one bit per
data element of the pool type) to track the start of each allocated
object (or the start of a free chunk immediately after an allocated
object). Because searching this bit vector would be very inefficient
for large arrays, we allocate each large array in a (contiguous) set
of new blocks and perform a poolfree for the array simply by
freeing all the blocks.

By far the most important operations (in terms of performance
impact) are the pool bounds checks (poolcheck), which are used
either during the array indexing or during cast operations. To make
the check efficient, we organize heap memory in the pool as blocks
of size 2k bytes for some fixed k, and record the starting address
of all blocks in a hash set. For poolcheck(ph, A, o): we check
A & ˜(2k − 1) (mask off last k bits) against the hash set of
ph. Alignment check is straightforward since each block contains
objects of the same type. To exploit the high spatial locality of array
references, we use a two-element cache to remember the block
address of the two last successful hash lookups.

When a reserved address range is available (e.g., the high GB
within a 4GB address space for processes on Linux), we set Uninit
to the base of this range so that the Uninit check is performed
“for free” by the memory management hardware. This technique is
unusable for kernel modules and also for references that may access
a structure type with size greater than the reserved range (which is
extremely rare). In such cases, we have to retain explicit software
checks at run-time.

6. Sound Static Analyses Enabled By SAFECode
The guarantees provided by our system can be used to write sound
static analyses based on the points-to graph, call graph, and type
information. In this section we first show that a static array bounds
checking technique developed in our previous work, which relies
on a call graph, can now be used soundly for non-type-safe pro-
grams in our environment. We also illustrate how our soundness
guarantees about alias analysis can benefit other static analysis
tools, using an existing software verification tool as an example.

6.1 Static array bounds checking in SAFECode

We can use an interprocedural array bounds checking algorithm
that we developed previously (for a type-safe subset of C) to elim-
inate some runtime array bounds checks. The algorithm uses the
call graph but not points-to-graph because it does not track val-
ues through loads/stores. It propagates affine constraints on integer
variables from callers to callees (for incoming integer arguments
and global scalars) and from callees to callers (for integer return
values and global scalars). We then perform a symbolic bounds
check for each index expression using integer programming (our
compiler uses the Omega Library from Maryland [28]). We retain
the run-time checks for all the array references that could not be
proved to be safe using our static analysis. Since SAFECode se-
mantics guarantee the correctness of the call graph, this optimiza-
tion is safe (just like it would be safe for a type-safe language).
To our knowledge, SAFECode is the first system for ordinary C
programs (including explicit memory deallocation) where such an
optimization can be performed safely.

6.2 Static analyses in ESP

As a final example, we briefly describe one software validation
tool, ESP [10], that relies on alias analysis to give guarantees about
programs and could benefit from the guarantees provided by our
system. Other software validation tools, e.g., BLAST [24], could
make use of our guarantees in a similar fashion.

ESP relies on value flow analysis [16], a static analysis used to
identify the set of pointer expressions that refer to the memory lo-
cations holding a certain value of interest, such as a lock. These

153

void KernelEntryPoint(int **o) {
int **q, *r;

1: r = malloc(....);
2: ... //some computation using r
3: free(r);

if (o != NULL)
4: q = o;

else {
5: q = malloc(..);
6: *q = ... /* *q initialized with some safe value */

}
7: *r = ... /* dangling pointer error, can overwrite *q */
8: if (o != NULL)

Probe(o); /* checks that *o is a valid pointer */
9: **q = data1; /* Dereference arbitrary pointer */
}

Figure 12. Example – Value flow analysis with memory errors

sets are called value alias sets and computed by a data-flow anal-
ysis (value flow simulation). The dataflow transfer functions dis-
ambiguate memory references using flow-insensitive, unification-
based context sensitive may-alias analysis. This approach has been
used to verify various properties in software, e.g., the Probe secu-
rity property [16], which requires that any pointer passed into the
kernel from user space is checked (“probed”) before being derefer-
enced by the kernel.

Consider applying ESP to verify the code fragment in Figure 12,
which is a buggy version of the kernel code fragment used in [16].
In the function, KernelEntryPoint, the pointer o is passed in
from a user routine and its target needs to be probed before being
dereferenced by the kernel. Because of line 4, ESP tracks q and o as
value aliases if o != NULL. The newly allocated memory when o
== NULL is initialized to be safe. Line 7 contains a memory error (a
dangling pointer dereference). Since the system memory allocation
could allocate previously freed memory of r for the allocation of
q, this dangling pointer dereference could actually overwrite *q.
This violates the results of the May-alias analysis that q and r
are not aliased to each other. In line 8, the target of pointer o is
probed. ESP thus transitions both the value aliases, o and q, to
the safe state. Dereferencing *q is hence detected to be safe by
ESP. However, in reality, *q could now point to any location in
memory and can be dereferenced by the program, violating the
Probe security property. Enforcing the assumed aliasing properties
is essential for the soundness of the tool.

In our system, the same example would allocate q and r in
two different pools as they are not aliased. This ensures that the
dangling pointer error in r does not trample the memory of q.
Thus, we ensure the validity of a critical aliasing property, without
actually detecting the error itself.

The above is an example of a flow-sensitive program analysis
that uses an external flow-insensitive alias analysis and can be eas-
ily made sound using our approach. For a general flow-sensitive
analysis that reasons about loads/stores, we must modify the se-
mantics of malloc (and free) in the analysis so that the address re-
turned by malloc may be “aliased” to any previously freed objects
in the same alias set. This is a straightforward (and local) change
within the implementation of a dataflow analysis.

7. Results
We present an experimental evaluation of SAFECode for several
ordinary C programs and a few operating system daemons. These
experiments have three goals:

• To measure the net overhead and different components of over-
head incurred by our run-time checks;

• To evaluate the benefit of using sound static analyses enabled
by SAFECode to eliminate various kinds of runtime checks.

• To compare the overhead of our approach to that of CCured.

7.1 Run-time Overheads

We evaluated our system using 9 programs from the Olden suite of
benchmarks [8], 3 programs from PtrDist, and four system codes
– bsd-fingerd-0.17, ftpd-BSD-0.3.2, ghttpd-1.4, and netkit-telnet-
0.17 daemon. The benchmarks and their characteristics are listed
in Table 1. We compiled each program to the LLVM compiler
IR, perform our analyses and transformations, then compile LLVM
back to C and compile the resulting code using GCC 3.4.2 at -O3
level of optimization. For the benchmarks we used a large problem
size to obtain reliable measurements. For ftpd and fingerd, we
ran the server and the client on the same machine to avoid network
overhead, and measured their response times for client requests.
We successfully applied SAFECode to netkit-telnetd but this
is an interactive program and we did not notice any perceptible
difference in the response times. We do not report detailed timings
for this code here.

The “native” and “LLVM (base)” columns in the table repre-
sents execution times when compiled directly with GCC -O3 and
with the base LLVM compiler using the LLVM C back-end fol-
lowed by GCC -O3. Using LLVM (base) times as our baseline al-
lows us to isolate the overheads added by SAFECode. The “PA”,
“PA + non-array checks”, and “SAFECode” columns show the ex-
ecution times with just pool allocation, SAFECode without array
indexing checks, and SAFECode with all the run-time checks re-
spectively.

The column “SAFECode/PA” (the ratio of SAFECode time to
pool allocation time) shows that the run-time checks added by
SAFECode have a relatively small impact on performance (over
and above pool allocation): less than 10% in all cases except ks
and yacr2, which have 11% and 18% overhead. The latter two
overheads are entirely due to pool checks for array references, as
seen by comparing the “PA+non-array checks” vs. the “SAFE-
Code” columns.

Comparing the columns “SAFECode/LLVM” (ratio of SAFE-
Code time to LLVM base time) with “SAFECode/PA,” we see that
the pool allocation transformation has a significantly bigger impact
on performance than the run-time checks. Four of the programs
show significant slowdowns due to PA: em3d, anagram, ks and
yacr2. We believe that these slowdowns are because our modified
pool run-time library has not been tuned at all. We currently use
an inefficient bit-vector implementation of free lists. A more recent
version of the pool runtime library used in [31] shows no slowdown
for these four programs. We aim to merge our extensions with this
version in the near future.

In case of perimeter, we discovered that LLVM uses “loop in-
variant code motion” to remove an expensive computation out of
a timing loop, thus dramatically speeding up its performance com-
pared to gcc. This suggests that SAFECode/LLVM ratio is the only
meaningful way to isolate the overheads of SAFECode approach.
voronoi benchmark fails at run-time because our pointer analysis
is currently unable to track the region for a pointer that is cast from
an int and it is treated as a “manufactured” pointer.

7.2 CCured comparison

The last column in Table 1 compares the overhead of SAFECode
with that of CCured, for the Olden benchmarks rewritten by the
CCured team. We have not tried to compare our results on other
system codes as it involved significant porting effort in writing the
CCured wrappers. In all these programs SAFECode has signifi-
cantly less overhead than CCured, even though SAFECode’s pool
checks are more expensive than the run-time checks inserted by

154

Benchmark Lines Execution times (secs) Slowdown ratios
of native LLVM PA PA + SAFECode CCured SAFECode SAFECode SAFECode CCured

code (base) non array /LLVM /PA /native /native
checks

Olden
bh 2053 1.449 1.357 1.338 1.361 1.403 1.923 1.03 1.05 0.97 1.31
bisort 707 11.740 11.530 11.531 11.531 11.531 11.358 1.00 1.02 0.98 0.97
em3d 557 13.960 11.29 14.245 14.245 14.248 20.812 1.27 1.00 1.02 1.49
health 725 1.909 1.936 1.296 1.296 1.299 1.710 0.67 1.00 0.68 .90
mst 617 11.259 12.920 12.837 12.837 12.96 16.956 1.00 1.01 1.15 1.51
perimeter 395 2.033 0.048 0.051 .051 0.051 2.544 1.04 1.00 .025 1.25
power 763 1.253 0.887 0.934 0.934 0.918 1.408 1.03 0.98 0.73 1.12
treeadd 385 5.426 5.457 5.425 5.425 5.425 14.784 0.99 1.00 1.00 2.72
tsp 561 1.277 1.270 1.250 1.250 1.250 1.578 0.98 1.00 0.98 1.23
voronoi 111 Rejected because of cast from integer to pointer
System
fingerd 338 6.410 6.555 6.617 6.617 6.753 1.03 1.02 1.05
ftpd 26653 1.210 1.185 1.160 1.160 1.190 1.00 1.03 0.98
ghttpd 837 3.723 3.507 3.761 3.780 3.766 1.07 0.99 1.00
PtrDist
anagram 647 12.778 16.084 16.915 17.953 19.742 1.23 1.05 1.54
ks 782 3.554 4.429 4.501 4.501 4.981 1.12 1.11 1.40
yacr2 3982 3.795 3.991 4.398 4.398 5.204 1.30 1.18 1.37

Table 1. Benchmarks (telnetd in text) - Runtime Overheads

CCured. The lower overhead can be attributed to the broad range
of static analysis techniques employed by SAFECode for elimi-
nating garbage collection (GC) overhead, stack safety checks, and
many array bounds checks, and the run-time techniques that elimi-
nate null pointer checks and metadata maintenance overhead. Note,
however, that several of our static and run-time techniques for re-
ducing overhead (except GC overhead) could be used with CCured
as well. We believe that for end-users, any differences in the over-
heads of the systems is likely to be less important than the choice
between automatic and explicit memory management.

7.3 Effectiveness of Static Analysis

Table 2 shows the effectiveness of our static checks and of segregat-
ing memory objects into TK and TU pools. Columns 2 and 3 show
the total number of static array accesses and the number that must
be checked at run time. The next two columns show the total num-
ber of static loads and stores and the number of pointers that need
to be checked at run time. The last two columns show the static
number of TU and TK pools. We found that our static array safety
checks were successful in eliminating some run-time array bounds
checks in most programs. Our static pointer safety techniques elim-
inate all other run-time checks (checks involving TU pools), except
in the three programs that have TU pools.

8. Related Work
For weakly typed languages like C and C++, there are broadly
two kinds of techniques addressing memory errors: memory safety
techniques that try to detect or prevent some or all memory errors,
and stronger approaches that provide soundness guarantees. In this
section, we discuss each of these different kinds of techniques
along with few other related approaches.

8.1 Techniques focusing on detecting memory errors:

Purely static approaches: A number of techniques have been pro-
posed to detect memory errors at the source level. A majority of
these techniques target bounds errors [5, 15, 17, 18, 40, 21]. Some
of these (including EspX [21], CSSV [17]) completely eliminate
buffer over runs by requiring annotations in the source and check-
ing them. While these annotations, when written, are extremely

Benchmark Static Counts
Total Checked Total Non-array TU TK
array array loads / pointer

accesses accesses checks checks
bh 80 45 708 96 1 3
bisort 2 0 103 0 0 1
em3d 17 14 80 0 0 10
health 3 0 221 0 0 2
mst 4 3 53 0 0 5
perimeter 4 4 233 0 0 1
power 4 4 229 0 0 4
treeadd 2 0 31 0 0 1
tsp 0 0 176 0 0 1

fingerd 13 8 32 11 0 3
ftpd 362 209 1949 285 2 22
telnetd 432 363 1602 0 0 15

anagram 63 47 164 4 1 5
ks 58 52 326 0 0 3
yacr2 302 302 856 0 0 26

Table 2. Benchmarks - Effectiveness of Static Checks

useful to eliminate the bounds errors, we believe that majority of
todays software may never be rewritten with annotations. Other
static approaches for bounds detection([5, 15, 18, 40]) including
the static bounds checker developed in our previous work [15], do
not use annotations, but generate many false positives when ap-
plied to general programs. We believe these approaches are com-
plementary to our approach here and can be used to prove some
array accesses as safe and eliminate those run-time checks. Simi-
larly static techniques that detect other memory errors like pointer
dereferences to freed memory (e.g., [22]) also generate false posi-
tives and can only be used to optimize away some of the run-time
overhead. Thus we deem them as complementary.

Run-time techniques for error detection: There have been a
large number of systems for detecting memory access errors by
adding run time checks and meta-data [23, 35, 2, 27, 34, 32, 39, 41]
(the work by Loginov at el. also detects type errors [32]). Except
the Patil work [34], these systems use heuristic techniques that
do not detect or eliminate all possible errors, especially dangling

155

pointer errors which are quite difficult to detect reliably. Therefore,
these systems do not provide a sound basis for static analysis
techniques. The tool by Patil and Fisher [34] can reliably detect
memory reference errors, including dangling pointer errors but
at the cost of very high overheads (2x-6x in many programs).
Furthermore, even this tool does not prevent type violations on
references to legal memory addresses (though it might be extended
to do so). Overall, none of these tools provide a sound semantics
despite their high-overhead run-time checks.

In other work, we have proposed a new backwards-compatible
technique to detect all bounds errors precisely [11]. This ex-
tends Jones-Kelley’s backwards-compatible bounds checking tech-
nique [27] to detect bounds errors but without the reported 10x-11x
overhead. The technique relies on pools to partition the memory
and uses a table for each pool to lookup the source of each pointer
arithmetic, thus avoiding the metadata and backwards compatibility
concerns. However, because of the precise checks, the overheads
are still higher compared to our current approach; a maximum of
69% compared to a maximum of 30% in the current work on the
same set of Olden benchmarks.

More recently, we have also investigated a technique that can
detect dangling pointer errors [12] instead of masking them. This
work makes use of virtual memory checks performed in hardware
and pools to detect dangling pointer errors. However, that work
targets server software where the memory allocation/deallocation
frequency is less and is not applicable to other classes of software
with frequent allocations and deallocations.

8.2 Techniques providing a strong guarantee

Two systems, CCured [33] and Cyclone [20], both enable type-
safe execution of C or modified C programs, which enables sound
analysis of these programs. CCured ensures type-safe execution
for standard C programs, with some source changes required for
compatibility with external libraries. It uses a conservative garbage
collector instead of explicit deallocation of heap memory. Com-
pared with our approach, the major advantage of CCured is that it
guarantees the absence of dangling pointer references and also per-
forms exact bounds checks on all memory references. In contrast,
a key contribution of our work has been to enable sound analysis
while still retaining explicit memory management. A second dif-
ference is that CCured introduces significant metadata for runtime
checks. This metadata is the primary cause of the porting effort
required for using CCured on C programs because it can require
wrappers around some library functions. SAFECode uses no meta-
data on individual pointer values and provides better backwards-
compatibility than CCured.

There are also minor technical differences between the systems.
Our classification of memory into type-consistent and Unknown
is analogous to the WILD and non-WILD types of CCured, except
that we use a pointer analysis to infer the types of memory objects.
We allow Unknown memory to point to type consistent mem-
ory by performing a run-time check as explained in Section 3.1.
CCured uses physical subtyping and RTTI to eliminate some run
time overhead on pointer casts. Our type inference supports limited
forms of physical subtyping (only for upcasts and casts from void*
to other pointer types) but we plan to investigate a more sophisti-
cated version in the future.

Cyclone [20, 25] uses a region-based type system to enforce
strict type safety, and consequently enforces alias analysis, for a
variant of C. Unlike SAFECode and CCured, Cyclone disallows
non-type-safe memory accesses (e.g., operations that would pro-
duce the equivalent of Unknown type or WILD pointers). Cyclone
and other region-based languages [6, 19, 7, 9, 37]) have two disad-
vantages relative to our work: (a) they can require significant pro-
grammer annotations to identify regions; and (b) either they provide

no mechanism to free or reuse memory within a region (e.g., RT-
Java) or they allow deallocation of memory within a region only in
special cases (e.g., uniqueness annotations to Cyclone [25] or reset
region in ML kit for regions [37]). In all the above systems, data
structures that must shrink and grow (with non-nested object life-
times) can be put in regions only when they use a restricted form of
aliasing. Often they have to be allocated on the garbage collected
heap. In contrast, we infer the pool partitioning automatically with
no annotations, and we permit explicit deallocation of individual
data items within regions without aliasing restrictions or extra an-
notations.

8.3 Other related work

Reaps [4] is another region based system that is related to our work.
Reaps are regions with efficient deallocation of individual objects
within a region. However Reaps is a performance enhancement
approach and does not provide any soundness guarantees.

DieHard [3] is another related approach that tries to achieve
probabilistic error tolerance using randomization of the alloca-
tions/deallocations in the heap and replication of the program.
DieHard uses a heap, which is M times the maximum live size, and
relies on randomization to avoid the bounds errors and dangling
free errors. The execution time overheads of DieHard in the non-
replicated version are less than 8%. However, the possible several
fold increase in memory consumption could make it unattractive
for system software. Moreover, running several copies of a program
(replication) may be suitable only in cases where spare processors
are readily available. Finally, DieHard ignores errors on stack mem-
ory. In contrast, we provide strong guarantees on the correctness of
our semantics and do it for stack, heap, and global memory, and
incur minimal increases in memory consumption.

9. Concluding Discussion
This paper has described an approach to provide a semantic foun-
dation (a points-to graph, call graph, and type information) for
building sound static analyses for nearly arbitrary C programs.
The approach can be easily added to any C compiler contain-
ing a pointer analysis that meets the specified properties (flow-
insensitive, unification-based).

The approach also has some other practical strengths: it is fully
automatic and requires no modifications to existing C programs; it
allocates and frees memory objects at the same points as the orig-
inal program (minimizing the need to tune memory consumption);
and it supports nearly the full generality of the C language, except
for “manufactured addresses” (which could also be supported via
pragmas or compile-time options) and some casts from int to point-
ers. Finally, our experiments show that the run-time overheads of
our approach are quite small, generally less than a few percent rela-
tive to code with pool allocation alone. We believe these overheads
are low enough to be used in production code, especially when se-
curity is a significant concern.

We believe that our approach represents an interesting and use-
ful low overhead alternative to techniques that focus on complete
soundness with no dangling pointers. However, in some application
domains stronger guarantees than given by our current approach are
required. We believe that the right long term approach is to offer a
choice to the end user between our current approach with alterna-
tives that can detect all memory errors or use garbage collection.

Towards this end, we plan to build a framework that includes
this work along with our other work that detects bounds errors [11]
and dangling pointer errors [12]. We believe that there shouldn’t
be any major technical challenges in integrating the two techniques
with SAFECode since they are also developed using the LLVM
compiler system and Automatic Pool Allocation transformation.

156

References
[1] A. Aiken, M. Fahndrich, and R. Levien. Better static memory

management: Improving region-based analysis of higher-order
languages. In ACM SIGPLAN Conf. on Programming Language
Design and Implementation (PLDI), June 1995.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of
all pointer and array access errors. In ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), June
1994.

[3] E. Berger and B. Zorn. Diehard: Probabilistic memory safety
for unsafe languages. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2006.

[4] E. Berger, B. Zorn, and K. McKinley. Reconsidering custom memory
allocation. In Proc. Conference on Object-Oriented Programming:
Systems, Languages, and Applications, 2002.

[5] R. Bodik, R. Gupta, and V. Sarkar. ABCD: eliminating array bounds
checks on demand. In Proc. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), 2000.

[6] G. Bollella and J. Gosling. The real-time specification for Java. IEEE
Computer, 33(6):47–54, 2000.

[7] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership
types for safe region-based memory management in real-time java. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), 2003.

[8] M. C. Carlisle. Olden: parallelizing programs with dynamic data
structures on distributed-memory machines. PhD thesis, 1996.

[9] W.-N. Chin, F. Craciun, S. Qin, and M. Rinard. Region inference for an
object-oriented language. In ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), June 2004.

[10] M. Das, S. Lerner, and M. Siegle. Esp: Path-sensitive program
verification in polynomial time. In Proc. ACM SIGPLAN Conf. on
Programming Language Design and Implementation (PLDI), Berlin,
Germany, Jun 2002.

[11] D. Dhurjati and V. Adve. Backwards-compatible array bounds
checking for C with very low overhead. In Proc. 28th Int’l Conf.
on Software Engineering (ICSE), Shanghai, China, May 2006.

[12] D. Dhurjati and V. Adve. Efficiently detecting all dangling pointer
uses in production servers. In Proc. Int’l Conf. on Dependable Systems
and Networks (DSN), Philadelphia, USA, June 2006.

[13] D. Dhurjati, S. Kowshik, and V. Adve. Enforcing alias analysis
for weakly typed languages. Tech Report UIUCDCS-R-2005-2657,
Computer Science Dept., Univ. of Illinois at Urbana-Champaign, Oct
2005. See http://safecode.cs.uiuc.edu/.

[14] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. In Conf. on Language,
Compiler, and Tool Support for Embedded Systems (LCTES), Jun
2003.

[15] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without garbage collection for embedded applications. ACM
Transactions on Embedded Computing Systems, Feb. 2005.

[16] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via
scalable path-sensitive value flow analysis. In Proc. of ACM SIGSOFT
international symposium on Software testing and analysis, 2004.

[17] N. Dor, M. Rodeh, and M. Sagiv. Cssv: Towards a realistic tool for
statically detecting all buffer overflows in c. In SIGPLAN Conference
on Programming Language Design and Implementation, Sandiego,
June 2003.

[18] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. Vitek. Buffer
overrun detection using linear programming and static analysis.
In Proceedings of the 10th ACM conference on Computer and
communications security, New York, NY, USA, 2003.

[19] D. Gay and A. Aiken. Memory management with explicit regions. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), pages 313–323, Montreal, Canada, 1998.

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney. Region-based memory management in cyclone. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), June 2002.

[21] B. Hackett, M. Das, D. Wang, and Z. Yang. Modular checking for
buffer overflows in the large. In Proc. 28th Int’l Conf. on Software
Engineering (ICSE), Shanghai, China, 2006.

[22] B. Hackett and R. Rugina. Region-based shape analysis with tracked
locations. In POPL ’05: Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
310–323, New York, NY, USA, 2005. ACM Press.

[23] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Winter USENIX, 1992.

[24] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with Blast. In Tenth International Workshop on Model
Checking of Software (SPIN), pages 235–239, 2003.

[25] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with
safe manual memory-management in Cyclone. In Proc. of the 4th
international symposium on Memory management (ISMM), 2004.

[26] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In
Proc. ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering (PASTE), pages 54–61, 2001.

[27] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in c programs. In Automated and
Algorithmic Debugging, pages 13–26, 1997.

[28] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
D. Wonnacott. The Omega Library Interface Guide. Technical report,
Computer Science Dept., U. Maryland, College Park, Apr. 1996.

[29] C. Lattner. Macroscopic Data Structure Analysis and Optimization.
PhD thesis, Comp. Sci. Dept., Univ. of Illinois, Urbana, IL, May 2005.

[30] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proc. Int’l Symp.
on Code Generation and Optimization (CGO), San Jose, Mar 2004.

[31] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
Proc. ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), Chicago, IL, Jun 2005.

[32] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps. Debugging via
run-time type checking. Lecture Notes in Computer Science, 2001.

[33] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
Ccured: type-safe retrofitting of legacy software. ACM Transactions
on Programming Language and Systems, 27(3):477–526, 2005.

[34] H. Patil and C. N. Fischer. Efficient run-time monitoring using
shadow processing. In Automated and Algorithmic Debugging, pages
119–132, 1995.

[35] J. Seward. Valgrind, an open-source memory debugger for x86-
gnu/linux.

[36] B. Steensgaard. Points-to analysis in almost linear time. In ACM
symposium on Principles of programming languages (POPL), 1996.

[37] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen,
P. Sestoft, and P. Bertelsen. Programming with Regions in the ML
Kit. Technical Report DIKU-TR-97/12, 1997.

[38] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, pages 132(2):109–176, Feb. 1997.

[39] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. ACM SIGOPS Operating Systems
Review, 27(5):203–216, December 1993.

[40] Y. Xie, A. Chou, and D. Engler. Archer: using symbolic, path-sensitive
analysis to detect memory access errors. SIGSOFT Softw. Eng. Notes,
28(5):327–336, 2003.

[41] S. H. Yong and S. Horwitz. Protecting C programs from attacks via
invalid pointer dereferences. In Foundations of Software Engineering,
2003.

157

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

