
Checker: a Static Program Checker

Nicholas Lewycky

June 7, 2006

Abstract

Automated software analysis is the process of testing program
source code against a set of conditions. These may be as simple as
verifying the coding standards, or as complicated as new languages
which are formally verifiable by a theorem solver.

Checker is able to find two small classes of errors, one is memory
faults, the other, non-deterministic behaviour. Lacking interprocedu-
ral analysis, checker can not be applied to real-world software.

Contents

1 Introduction 2
1.1 Static Single Assignment . 2
1.2 Basic Blocks . 3
1.3 Control Flow Graph . 3
1.4 LLVM Intermediate Representation 4

2 Related Work 7

3 The Checker 8
3.1 Validity . 8
3.2 Addressability . 9

4 Technical Novelty 11
4.1 Pointer Analysis . 12

5 Future Work 15

1

6 Conclusion 16

1 Introduction

The first stop for checking a program for errors is the compiler. Modern
compiler design focusses on efficient algorithms for fast compilation, with
compiler warnings coming as a convenience.

I examine the possibility of using modern compiler techniques to produce
a program checker. This is built on top of Chris Lattner’s excellent compiler
framework, LLVM (Low Level Virtual Machine) which provides a C front
end, an SSA (Static Single Assignment) based intermediate representation
and many different analysis and optimization passes.

1.1 Static Single Assignment

In source code form, a program declares variables and may assign and reassign
values to them throughout the execution. In static single assignment form,
there is one unchanging definition per variable. The conversion is done by
defining a new variable at each assignment. This transforms x = 1; y = x;

x = 2; into x1 ← 1; y1 ← x1; x2 ← 2.
A variable may be defined as being equal to multiple values by employing

the φ function. Setting a value to φ(x1, ..., xn) means that the value is equal
to one of the values in the set. Consider this simple example:

int x, y;

if (condition)

x = a;

else

x = b;

y = x;

In each branch, we have a different definition of the variable, x1 ← a
and x2 ← b. y is defined with the φ function. In our example above, y ←
φ(x1, x2).

Similarly, loops are written with φ-nodes at the top. A loop with iterator
i from 0 is written i1 ← φ(0, i1 + 1). An example:

2

int y = 0;

for (int i = 0; i < n; i++)

y += i;

becomes:

y1 ← 0;
for (i1 ← φ(0, i2); i1 < n; i2 ← i1 + 1)

y2 ← φ(y1, y2 + i1)

LLVM uses static single assignment form for its intermediate representa-
tion. In LLVM’s implementation of φ-nodes, each value in the set is associ-
ated with the basic block containing the definition of the variable.

1.2 Basic Blocks

A basic block is a series of instructions that execute in order with other points
of entry or exit. In this sense it is atomic; execution will always begin at the
beginning of a basic block and continue to the last instruction. Sometimes
this rule is weakened to allow for error handling (such as division by zero) or
exceptions.

One way to build basic blocks is to take the code and cut it wherever an
instruction jumps, or wherever a jump may land. These form the boundaries
of your basic blocks. Note that this technique doesn’t always produce the
largest possible basic blocks (and thus the fewest number).

In LLVM, a basic block must begin with the φ-nodes and end with a
terminator instruction. These include branch instructions, calls of functions
that may throw an exception, or a function return. Function calls that can
not throw exceptions are not terminator instructions.

1.3 Control Flow Graph

Basic blocks form the nodes of a directed graph called the control flow graph.
The edges connect one basic block to the blocks it could jump into. In
this form, a cycle represents a loop, a detached subgraph or basic block is
unreachable code, and a cycle with no edges leading out of it must be an
infinite loop.

The program

3

if (t % 2 == 0)

print(t, " is even");

else

print(t, " is odd");

for (int i = 0; i < t; ++i)

if (i * i == t) {

print(t, " is ", i, " squared");

break;

}

return;

could be translated into:

if (t % 2 == 0)

T F

print(t, " is even"); print(t, " is odd");

int i = phi(0, inc)
if (i < t)

T F

if (i * i == t)

T F
return;

print(t, " is ", i, " squared");
break;

int inc = i + 1;

1.4 LLVM Intermediate Representation

LLVM sports an instruction set architecture with explicit basic blocks, SSA
form and 34 instructions in six categories. It features an explicit control flow

4

Type Description Type Description
void No value
bool True or Value

ubyte Unsigned byte sbyte Signed byte
ushort Unsigned 16 bits short Signed 16 bits

uint Unsigned 32 bits int Signed 32 bits
ulong Unsigned 64 bits long Signed 64 bits
float 32-bit floating point double 64-bit floating point
label Branch destination

Table 1: Primitive types in LLVM IR

graph, language-independent type information and explicit typed pointer
arithmetic. It has an infinite number of registers and explicit memory operations.[ALB+03,
LA04b]

There are 13 primitive types shown in Table 1 from which compound
types may be derived. These derived types may be arrays, such as [3 x [4

x int]], a pointer type float*, a structure {int, float, [3 x sbyte]}
or a function void (int)* being a pointer to a function that returns void
and takes a signed 32-bit integer.[Lat06]

The registers in LLVM are SSA variables, and their identifiers are prefixed
with “%”. Variables are declared by the statement that defines them. All
instructions in LLVM are strongly typed, with the type of its arguments
appearing before the argument. In the event that the two arguments of an
binary operation are the same, the type is only specified once, immediately
after the opcode. A sample instruction is %result = mul uint %X, 8.

Throughout this paper, I will refer to certain instructions:

load %y = load type * %x.
Dereferences the pointer x and loads the value into register y.

store store type %x, type * %y.
Stores the value in register x into the memory referred to by y. In C,
this would be *y = x;.

getelementptr %y = getelementptr type * %x, long 0, long 0

“getelementptr” may be used as an instruction defining a variable, or
inline as an expression in a another operation. In either case, “getele-
mentptr” is variadic, meaning that is may have any number of argu-

5

ments. The first argument is always a base pointer, followed by the
indices in the new pointer being calculated.

This is an especially interesting instruction because it allows the type-
safe subset of pointer arithmetic.

malloc, alloca %x = alloca type

%x = malloc type

Both heap and stack allocation (malloc and alloca respectively) have
their own opcodes, and take the same arguments: one type, optionally
followed by a count, optionally followed by an alignment.

free free type %x

Frees memory allocated with the malloc instruction.

br br label %loopexit

br bool %condition label %else label %then

A branch statement, with an optional conditional.

Taken directly from LLVM’s C front end, a small complete program looks
like:

%y = global sbyte* %x ; <sbyte**> [#uses=1]

%x = weak global sbyte 0 ; <sbyte*> [#uses=1]

%.str_1 = internal constant [6 x sbyte] c"abcde\00" ; <[6 x sbyte]*> [#uses=0]

implementation ; Functions:

void %f() {

entry:

%tmp.0 = load sbyte** %y ; <sbyte*> [#uses=1]

store sbyte 100, sbyte* %tmp.0

ret void

}

The global variables begin a program, followed by the word “implemen-
tation”, then the functions. Note that the label “entry” is mandatory; there
is a label at the beginning of every basic block. The ; text indicates a com-
ment running to the end of the line. For the most part, the LLVM assembly
language is self-explanatory, but for comprehensive details, please consult
the language reference.[Lat06].

6

2 Related Work

The design of the checker was heavily influenced by two projects, Valgrind[SN]
and Coverity.

Valgrind is a dynamic memory error detector. It works by interpreting
compiled x86 programs and JIT compiling them into a reduced SPARC-like
assembly, where it instruments the code, and JITs it back into x86 for ex-
ecution. In the instrumentation phase, modifies the code to store an extra
“validity” byte for each byte of register data or memory, and an extra ad-
dressability bit for each byte of allocated memory. The validity bits are set
when they are assigned with a “valid” value (a source with the validity bits
set) and cleared when assigned from a source with the bits cleared. The “ad-
dressability” bit stores whether a given address can be dereferenced; it is set
on malloc and cleared on free. Valgrind will intercept the trap to Linux kernel
and verify that the arguments are all valid or addressable, as appropriate for
the given system call. It also tests the validity bits on branch instructions.
In Valgrind, it is acceptable to copy around undefined data. An error is only
thrown when the behaviour of the program is determined by an undefined
value.

Coverity’s checker is derived and rewritten from their earlier work, Stan-
ford GCC[ECCH00]. This is a static checker built in to a compiler framework,
using a language called “metal” to describe invalid operations, such as double
calls to a locking function, in terms of the primitives in the target program.

Checker is directly built on top of a compiler framework, the Low Level
Virtual Machine[LA04a]. LLVM is particularly well suited for developing new
mid-level language-independent interprocedural analysis and optimizations.
It also provides a type-safe bytecode language with JITter, alongside a static
compiler. This compilation strategy allows for link time optimization.

The applicability of LLVM to code checking was not lost on its authors.
SAFEcore[DKAL05] is a project with similar goals, but a more formal and
rigorous design. Their procedure marks all potentially invalid behaviour with
run-time checks, then applies static optimization to eliminate the need for
the run-time checks.[DKA05]

7

http://www.valgrind.org/
http://www.coverity.com/
http://llvm.org
http://safecode.cs.uiuc.edu/

3 The Checker

The program checker doesn’t directly verify C or C++ semantics. Instead,
we rely on the LLVM GCC front end to compile a program into the LLVM
intermediate representation, which is then verified. Similarly, not all prop-
erties of a program are verified by the checker; LLVM includes an extensive
module verifier which guarantees that all of the LLVM language assertions
are held before the checker operates upon it.

Correct operation of the checker also relies on the strength of LLVMs
optimizers having been applied on the input. There is no attempt made in
the checker to simplify expressions or detect dead code paths. The checker
will generate spurious errors if the optimizers have not been run.

There are two major categories of errors, validity errors referring to non-
deterministic behaviour, and addressability errors being memory faults.

3.1 Validity

The LLVM IR includes an interesting constant value, undef or “undefined
value” which used whenever the programs behaviour is valid regardless of
the value. In practise, it is found whenever LLVM’s optimizers find a case
where the value is uninitialized, but not when it is indeterminate.

Nondeterministic behaviour occurs whenever an undefined value affects
the control flow of the program. Since all instructions which affect control
flow are enumerated as branch instructions, we enumerate all branch instruc-
tions and detect branches on undef argument.

• branch on undef found.

An variable of undefined value will affect the control flow of the pro-
gram, leading to results that are not determined by the program input.

Example:

extern void print(char*);

void f()

{

int x;

if (x)

print("foo");

8

}

• switch on undef found.

Similarly to branches, checker also finds non-determinism in switch
statements.

Example:

extern void print(char*);

static const int x[2][3] = {{10, 11, 12}, {13, 14, 15}};

void f()

{

int *p = (int*)x;

switch (p[6])

{

case 0:

print("foo");

break;

case 1:

print("bar");

break;

}

}

3.2 Addressability

Memory accesses concern either reads, writes, or calls of function pointers.
Besides checking for undef pointer values, checker finds the following errors:

• read/write/free of unallocated memory.

Checker has found a free instruction whose argument can not be a
pointer to allocated memory. Such an instruction is always in error if
executed.

Example:

#include <stdlib.h>

9

void f() {

char *x = (char*) ’y’;

free(x);

}

• free of non-heap memory.

A free instruction may only free memory allocated with the malloc
instruction, not with alloca nor a pointer to a variable.

Example:

#include <stdlib.h>

void f() {

char x;

char *y = &x;

free(y);

}

• write to constant memory.

In C, a variable declared const may not be modified, although the
compiler will not stop you if you take a pointer and cast away constness.

Example:

void f() {

char *x = "String!";

x[0] = ’s’;

}

• write to function pointer.

read from function pointer.

The pointer being read or written is known to be the address of a
function.

Example:

char f() {

char *F = f;

return *F;

}

10

• call via non-function pointer.

The input code takes a pointer to a variable or allocated memory and
then casts it into a function pointer and tries to call it. In some rare
cases this may be intentional; a JITter will allocate memory to emit
target instructions for execution. However, it is unportable and target-
specific, and the behaviour is not defined by the C or C++ language
standard.

Example:

void f() {

char x;

char *y = &x;

void (*F)() = (void(*)()) y;

F();

}

None of these errors rely on knowledge of the type system, so the errors are
found at the point of memory operation, not at a potentially harmless casting
instruction. In this context, the term “function” refers to the functions visible
at link time.

All of the examples compile in GCC 3.3 with no warnings, even in full
warnings mode. GCC 3.4 and up note that casting between function pointer
types and data pointer types is invalid.

4 Technical Novelty

Checker’s most interesting work is handled by the pointer analysis mechanism
to follow the propagation of pointers through the program flow. The result
is that at any point in the program, checker can produce a list of all possible
memory regions being aliased (a shorter list than the list of all pointers),
even in a type-unsafe program.

The issue at hand is which pointers a given memory operation may be
operating on. Although some operations may reduce a pointer—by masking
off all of the top bits for example—could that pointer value have been cal-
culated and used in this instruction? As written, the algorithm errs on the
side of caution. Continuing our example:

11

char x;

char *f()

{

long ptr = (long)&x;

long x = ptr & 0x0000ffff;

long y = ptr & 0xffff0000;

char *p = (char*)(x + y);

return p;

}

Checker never actually proves that pointer p is correctly pointing to our
character x. Through data-flow, checker knows that the only pointer con-
tributing to p is &x. We can then state is that any access through p either
refers to &x, or else refers to indeterminate memory as an invalid access. At
this time, checker is unable to determine whether the final pointer is in fact
valid, and so makes the conservative assumption that it is.

4.1 Pointer Analysis

Checker’s method of pointer analysis is flow-based, type-ignorant and whole-
program approach starting with the points of creation, similar to Andersen’s
Analysis[And94] or Points-To Analysis using Binary Decision Diagrams[BLQ+03].
Points of creation are explicit allocations, global variables and functions,
which may be dereferenced. Each of these allocations is a region from the
base pointer up to a size which may not be known until execution time.

The set of instructions operating on these pointers is then calculated as a
transitive closure through the instructions. Each instruction is tagged with
the exhaustive set of pointers that its result may be an expression of. The
algorithm to achieve this is described by three discrete passes:

1. Starting at each point of creation, iterate through the list of users and
follow through its users transitively. This produces a tree where the leaf
nodes are memory loads, or instructions that have no useful result such
as branches, memory stores or frees. The result of any other instruction
is assumed to be a function of the base pointer.

2. The load-store pairing pass finds matching store instructions for each
load instruction to see if a pointer could have been stored there. If so,

12

the result of this load instruction is also tagged with the same pointer
and we must repeat step one.

As well as stores, we also pair loads with global variables that may have
been initialized with the address of another global variable.

3. Finally, a pointer may be laundered through the CFG. The example
program on the following page demonstrates this technique using a
branch instruction to choose a basic block based on a bit in the pointer.
Each basic block stores 0 or 1 to an array. There is no direct data flow
from the pointer into the array. Repeat this 32 times to leak a 32-bit
pointer.

In order to detect this, we note any branch statement that is conditional
on a pointer value. The pointer value is assumed to be known in the
basic blocks linked to from the branch, and transitively in the blocks
that it leads to, ending where the paths of the branch converge. We
calculate this by taking the set of basic blocks reachable starting at the
branch, and removing the intersection of basic blocks reachable by each
of the branch’s conditions. The result is the set of blocks that could
expose the pointer value.

Within these blocks, any store to memory could potentially be leaking
the pointer, even the store of a constant. As such all stores are tagged.
More improbable is that the result of all loads must also be tagged.
One example would be a 32 levels of nested if statements uniquely
identifying each possible value of a 32-bit pointer, then dereferencing
that constant value.

After that, newly defined SSA variables inside these basic blocks are
tagged. The successor blocks are checked to see if there are any φ-nodes
leading back into the set. If so, they are tagged as well. Now that these
new instructions have been added to the closure, we must repeat the
algorithm starting at step one.

Through this algorithm, the checker solves for the set of all possible
pointer values involved in the execution of any given instruction.

13

CFG for ’main’ function

entry:
 %t = alloca int
 %v = alloca [32 x bool]
 call void %__main()
 store int 42, int* %t
 %tmp.6 = cast int* %t to ulong
 br label %no_exit.0

no_exit.0:
 %i.0.0.0 = phi uint [0, %entry], [%inc.08, %then.0], [%inc.0, %else.0]
 %tmp.11 = cast uint %i.0.0.0 to ubyte
 %tmp.12 = shl int 1, ubyte %tmp.11
 %tmp.13 = cast int %tmp.12 to ulong
 %tmp.15 = and ulong %tmp.13, %tmp.6
 %tmp.16 = seteq ulong %tmp.15, 0
 br bool %tmp.16, label %else.0, label %then.0

T F

else.0:
 %tmp.21 = cast uint %i.0.0.0 to long
 %tmp.22 = getelementptr [32 x bool]* %v, long 0, long %tmp.21
 store bool false, bool* %tmp.22
 %inc.0 = add uint %i.0.0.0, 1
 %tmp.8 = setgt uint %inc.0, 31
 br bool %tmp.8, label %loopexit.0, label %no_exit.0

T F

then.0:
 %tmp.18 = cast uint %i.0.0.0 to long
 %tmp.19 = getelementptr [32 x bool]* %v, long 0, long %tmp.18
 store bool true, bool* %tmp.19
 %inc.08 = add uint %i.0.0.0, 1
 %tmp.811 = setgt uint %inc.08, 31
 br bool %tmp.811, label %loopexit.0, label %no_exit.0

T F

loopexit.0:
 br label %no_exit.1

no_exit.1:
 %i.1.0.0 = phi uint [0, %loopexit.0], [%indvar.next, %loopentry.1]
 %ri.1.0 = phi ulong [undef, %loopexit.0], [%ri.0.0, %loopentry.1]
 %tmp.27 = cast uint %i.1.0.0 to long
 %tmp.28 = getelementptr [32 x bool]* %v, long 0, long %tmp.27
 %tmp.29 = load bool* %tmp.28
 br bool %tmp.29, label %then.1, label %else.1

T F

then.1:
 %tmp.32 = cast uint %i.1.0.0 to ubyte
 %tmp.33 = shl int 1, ubyte %tmp.32
 %tmp.34 = cast int %tmp.33 to ulong
 %tmp.36 = or ulong %tmp.34, %ri.1.0
 br label %loopentry.1

else.1:
 %tmp.39 = cast uint %i.1.0.0 to ubyte
 %tmp.40 = shl int 1, ubyte %tmp.39
 %tmp.41 = xor int %tmp.40, -1
 %tmp.42 = cast int %tmp.41 to ulong
 %tmp.44 = and ulong %tmp.42, %ri.1.0
 br label %loopentry.1

loopentry.1:
 %ri.0.0 = phi ulong [%tmp.36, %then.1], [%tmp.44, %else.1]
 %indvar.next = add uint %i.1.0.0, 1
 %exitcond = seteq uint %indvar.next, 32
 br bool %exitcond, label %loopexit.1, label %no_exit.1

T F

loopexit.1:
 %tmp.47 = cast ulong %ri.0.0 to int*
 %tmp.51 = load int* %tmp.47
 %tmp.48 = call int (sbyte*, ...)* %printf(sbyte* getelementptr ([4 x sbyte]* %.str_5, long 0, long 0), int %tmp.51)
 ret int 0

Figure 1: Break up a pointer into an array of booleans and reassemble it

14

5 Future Work

The implementation is missing some critical features preventing it from being
used to verify real world software. Primarily, it lacks interprocedural analysis.
Note that this is not a theoretical limitation—an inliner can rewrite a pro-
gram without function calls—nor is it a limitation due to the use of LLVM—
LLVM is famous for performing extensive interprocedural optimizations—but
merely a limit of the current implementation.

Checker’s analysis passes also suffer from other, smaller, deficiencies:

1. The validity pass is unable to detect an out of bounds access to an
array, even if the bounds and index are both known at compile time.
Currently, any value taken from a memory load is assumed to be valid,
even if there is no matching store at all!

The proper way to fix this is to expose the pointer analysis to LLVMs
optimizers through the provided AliasAnalysis interface, so that LLVM
can find such cases and substitute them for undef.

2. Due to its optimization-centric design, LLVM naturally removes par-
tially undefined values. For example:

int f() {

int x;

x |= 1;

return x;

}

is optimized into:

int %f() {

entry:

ret int -1

}

While this substitution is always valid for an optimizer, it replaces
undefined behaviour with defined behaviour, circumventing checker’s
ability to detect the non-determinism in the original code. However,
LLVM will generate code based on the optimized version, and so, the

15

resulting program will not be non-deterministic. In this sense, checker’s
failure to warn about this error could be considered correct, as it is oper-
ating on the compiler’s interpretation of the program, not the language
standard’s interpretation. Nevertheless, LLVM could be modified to
change its treatment of undef.

3. The pointer analysis is region-based, and unable to differentiate be-
tween accesses of different fields in an array or structure.

4. The pointer analysis could be made less conservative in step three by
eliminating store instructions that are identical in all branches and
guaranteed to execute. This is made slightly more difficult because the
order of multiple store instructions storing to the same region needs to
be compared.

5. Region-based analysis could become a more fine-grained field-based
analysis.

Even the best analysis process is limited by its interface with the user.
One way to improve checker is to make it interactive, allowing the user to
see what the aliasing set of a variable is at a particular point. A more
advanced version of the same would employ LLVMs JITter to allow a mixed
static/dynamic analysis where the user could enter values for the registers
and execute for a few instructions to test a hypothesis.

Finally, checker needs to be able to prune pointers from the aliasing set
when a conditional is encountered.

6 Conclusion

Finding simple common errors proves possible with relatively little work. We
have found that checker can detect coding errors and offers opportunities for
further extension, but is not yet capable of properly analyzing real-world
software.

References

[ALB+03] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla,
and Brian Gaeke. LLVA: A Low-level Virtual Instruction Set

16

Architecture. In Proceedings of the 36th annual ACM/IEEE in-
ternational symposium on Microarchitecture (MICRO-36), San
Diego, California, Dec 2003.
http://llvm.org/pubs/2003-10-01-LLVA.html

[And94] Lars Ole Andersen. Program Analysis and Specialization for the C
Programming Language. PhD thesis, DIKU, University of Copen-
hagen, May 1994.
http://repository.readscheme.org/ftp/papers/topps/D-203.pdf

[BLQ+03] Marc Berndl, Ondřej Lhoták, Feng Qian, Laurie Hendren, and
Navindra Umanee. Points-to analysis using bdds. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Lan-
guage Design and Inplementation, pages 103–114. ACM Press,
2003.

[DKA05] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. Enforc-
ing Alias Analysis for Weakly Typed Languages. Technical Re-
port #UIUCDCS-R-2005-2657, Computer Science Dept., Univ.
of Illinois, Nov 2005.
http://llvm.org/pubs/2005-11-SAFECodeTR.html

[DKAL05] Dinakar Dhurjati, Sumant Kowshik, Vikram Adve, and Chris
Lattner. Memory safety without garbage collection for embedded
applications. Trans. on Embedded Computing Sys., 4(1):73–111,
2005.
http://llvm.org/pubs/2005-02-TECS-SAFECode.html

[ECCH00] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.
Checking System Rules Using System-Specific, Programmer-
Written Compiler Extensions. 4th Symposium on Operating Sys-
tems Design & Implementation, 2000.
http://www.stanford.edu/ engler/mc-osdi.ps

[LA04a] Chris Lattner and Vikram Adve. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Pro-
ceedings of the 2004 International Symposium on Code Gener-
ation and Optimization (CGO’04), Palo Alto, California, Mar
2004.
http://llvm.org/pubs/2004-01-30-CGO-LLVM.html

17

http://llvm.org/pubs/2003-10-01-LLVA.html
http://repository.readscheme.org/ftp/papers/topps/D-203.pdf
http://llvm.org/pubs/2005-11-SAFECodeTR.html
http://llvm.org/pubs/2005-02-TECS-SAFECode.html
http://www.stanford.edu/~engler/mc-osdi.ps
http://llvm.org/pubs/2004-01-30-CGO-LLVM.html

[LA04b] Chris Lattner and Vikram Adve. The LLVM Compiler Frame-
work and Infrastructure Tutorial. In LCPC’04 Mini Workshop
on Compiler Research Infrastructures, West Lafayette, Indiana,
Sep 2004.
http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html

[Lat06] Chris Lattner. LLVM Assembly Language Reference Manual,
May 2006.
http://llvm.org/docs/LangRef.html

[SN] Julian Seward and Nick Nethercote. Valgrind, an open-source
memory debugger for x86-GNU/Linux.
http://www.valgrind.org/

18

http://llvm.org/pubs/2004-09-22-LCPCLLVMTutorial.html
http://llvm.org/docs/LangRef.html
http://www.valgrind.org/

	Introduction
	Static Single Assignment
	Basic Blocks
	Control Flow Graph
	LLVM Intermediate Representation

	Related Work
	The Checker
	Validity
	Addressability

	Technical Novelty
	Pointer Analysis

	Future Work
	Conclusion

