
A Virtual Instruction Set Interface for Operating
System Kernels

John Criswell, Brent Monroe, and Vikram Adve

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Email: {criswell,bmmonroe,vadve}@cs.uiuc.edu

Abstract— In this paper, we propose and evaluate a virtual
instruction set interface between an operating system (OS) kernel
and a general purpose processor architecture. This interface
is a set of operations added to a previously proposed virtual
instruction set architecture called LLVA (Low Level Virtual
Architecture) and can be implemented on existing processor
hardware. The long-term benefits of such an interface include
richer OS-information for hardware, greater flexibility in evolv-
ing hardware, and sophisticated analysis and optimization capa-
bilities for kernel code, including across the application-kernel
boundary transformations. Our interface design (LLVA-OS)
contains several novel features for machine-independence and
performance, including efficient saving and restoring of (hidden)
native state, mechanisms for error recovery, and several primitive
abstractions that expose semantic information to the underlying
translator and hardware. We describe the design, a prototype
implementation of LLVA-OS on x86, and our experience porting
the Linux 2.4.22 kernel to LLVA-OS. We perform a performance
evaluation of this kernel, identifying and explaining the root
causes of key sources of virtualization overhead.

I. INTRODUCTION

Modern operating system (OS) kernels today are compiled
into machine code and use a set of low-level hardware in-
structions that allows the kernel to configure the OS response
to hardware events and to manipulate program state. Because
of these choices, substantial parts of the kernel are difficult to
analyze, type-check or verify. For example, even basic but cru-
cial properties like memory safety become difficult to enforce.
Program analysis techniques for more sophisticated security
properties (e.g., enforcing isolation between kernel extensions
and the core kernel [1] or analyzing reference checks on
sensitive kernel operations [2]) are also handicapped. First,
they can only be applied to a limited extent because of
the presence of inline assembly code. Second, they must
be applied offline because it is difficult to analyze machine
code, which means they cannot be used at key moments like
loading a kernel extension or installing a privileged program.
In practice, such compiler techniques are simply not applied
for widely-used legacy systems like Linux or Windows.

An alternative approach that could ameliorate these draw-
backs and enable novel security mechanisms is to compile
kernel code to a rich, virtual instruction set and execute it using
a compiler-based virtual machine. Such a virtual machine
would incorporate a translator from virtual to native code and
a run-time system that monitors and controls the execution

of the kernel. To avoid the performance penalties of dynamic
compilation, the translation does not need to happen online: it
can be performed offline and cached on persistent storage.

In previous work, we designed a virtual instruction set called
LLVA (Low Level Virtual Architecture) [3] that is low-level
enough to support arbitrary languages (including C) but rich
enough to enable sophisticated analyses and optimizations.
LLVA provides computational, memory access, and control
flow operations but lacks operations a kernel needs to config-
ure hardware behavior and manipulate program state.

In this paper, we propose and evaluate a set of extensions
to LLVA (called LLVA-OS) that provide an interface between
the OS kernel and a general purpose processor architecture. An
Execution Engine translates LLVA code to machine code and
includes a library that implements the LLVA-OS operations.
Together, LLVA and the Execution Engine define a virtual
machine capable of hosting a complete, modern kernel. We
emphasize, however, that incorporating techniques for memory
safety or other security mechanisms is not the goal of this
paper: those are subjects for future work. We believe LLVA-
OS provides a powerful basis for adding such techniques but
designing them requires significant further research. We also
observe that kernel portability is not a primary goal of this
work, even though it may be achieved as a side effect of the
virtual instruction set design.

Specifically, the primary contributions of this paper are:
1) The design of LLVA-OS, including novel primitive

mechanisms for supporting a kernel that are higher-level
than traditional architectures.

2) A prototype implementation of LLVA-OS and a port of
the Linux 2.4.22 kernel to LLVA-OS.

3) A preliminary evaluation of the prototype that shows the
performance overhead of virtualization in terms of four
root causes.

Our evaluation revealed where our design choices added
virtualization overhead to the Linux kernel: context switching,
data copies between user and kernel memory. read page faults,
and signal handler dispatch. Our analysis explores how certain
design decisions caused overhead in page faults and data
copying and how better implementation could reduce context
switching and data copying overheads. Our analysis also shows
that many of these overheads do not severely affect overall
performance for a small set of applications, and that, in most

cases, these overheads can be reduced with relatively simple
changes to the LLVA-OS design or implementation.

Section II describes in more detail the system organization
we assume in this work. Section III describes the design
of the LLVA-OS interface. Section IV briefly describes our
experience implementing LLVA-OS and porting a Linux kernel
to it. Section V evaluates the performance overheads incurred
by the kernel on the LLVA-OS prototype. Section VI compares
LLVA-OS with previous approaches to virtualizing the OS-
hardware interface, and Section VII concludes with a brief
summary and directions for future work.

II. BACKGROUND: VISC ARCHITECTURES AND LLVA

Our virtual instruction set extensions are based upon
LLVA [3], shown in Fig. 1. This instruction set is implemented
using a virtual machine that includes a translator (a code
generator), a profile-guided optimizer, and a run-time library
used by translated code. This virtual machine is called the
Low Level Execution Engine (LLEE).

Kernel

Drivers

OS

Applications

Low Level
Execution Engine

Processor

State HW
Control

Cache

V-ISA

Native ISA

OS API

Code
Gen.

Optimize Profile

Cached
translations

Profile info

Storage

Fig. 1. System Organization with LLVA

The functionality provided by the virtual instruction set can
be divided into two parts:

• Computational interface, i.e., the core instruction set;
• Operating System interface, or LLVA-OS;

The computational interface, defined in [3], is the core in-
struction set used by all LLVA software for computation,
control flow and memory usage. It is a RISC-like, load-
store instruction set with arithmetic, memory, condition test-
ing, and control-flow instructions. Compared with traditional
machine instruction sets, LLVA includes four novel features: a
language-neutral type system suitable for program analysis, an
infinite register set in static single assignment (SSA) form [4],
an explicit control flow graph per function, and explicit
distinctions between code, stack, globals, and other memory.
These features allow extensive analysis and optimizations to be
performed directly on LLVA code, either offline or online [3].

The OS interface, LLVA-OS, is the focus of this work. This
interface provides a set of operations that is primarily used by
the OS to control and manipulate architectural state.

III. DESIGN OF THE OS INTERFACE

Operating systems require two types of support at the OS-
hardware interface. First, the OS needs to access specialized

and privileged hardware components. Such operations include
registering interrupt handlers, configuring the MMU, and
performing I/O. Second, the OS needs to manipulate the state
of itself and other programs, e.g. context switching, signal
delivery, and process creation.

A. Design Goals for the OS Interface

To achieve our primary long term goal of designing an
architecture that improves the security and reliability of system
software, we designed LLVA-OS with the following goals:

• The LLVA-OS must be designed as a set of abstract
(but primitive) operations, independent of a particular
hardware ISA.

• The LLVA-OS must be OS neutral (like current native
instruction sets) and should not constrain OS design
choices.

• The LLVA-OS must be light weight and induce little
performance overhead.

The first goal is beneficial to enhance kernel portability
across some range of (comparable) architectures. Although it
may be similar to a well-designed portability layer within the
kernel, moving this into the virtual instruction set can expose
greater semantic information about kernel operations to the
underlying translator and even the hardware. For example,
it can allow the translator to perform sophisticated memory
safety checks for the kernel by monitoring page mappings,
system calls, and state-saving and restoring operations. The
second goal allows our work to be applied to a variety
of operating systems used in a wide range of application
domains. The third goal is important because our aim is to
incorporate the virtual machine model below widely-used,
legacy operating systems where any significant performance
overhead would be considered unacceptable.

B. Structure of the Interface

We define LLVA-OS, semantically, as a set of functions, i.e.,
an API, using the syntax and type system of the core LLVA
instruction set. We call these functions intrinsic functions,
or intrinsics, because their semantics are predefined, like
intrinsics in high-level languages. When compiling a call to
such a function, the translator either generates inline native
code for the call (effectively treating the function like a virtual
instruction) or generates a call to a run-time library within the
Execution Engine containing native code for the function.

Using function semantics for the interface, instead of defin-
ing it via explicit LLVA instructions, provides two primary
benefits. First, uses of these functions appear to a compiler as
ordinary (unanalyzable) function calls and therefore do not
need to be recognized by any compiler pass except those
responsible for translation to native code. Second, using func-
tions makes the control flow of the operations more explicit,
since most operations behave like a called function: some code
is executed and then control is returned to the caller.

C. Virtual and Native System State

The state of an executing program in LLVA-OS can be
defined at two levels: virtual state and native state. Virtual state
is the system state as seen by external software, including the
OS. The virtual state of an LLVA program includes:

• The set of all virtual registers for all currently active
function activations.

• The implicit program counter indicating which virtual
instruction to execute next.

• The contents of memory used by the current program.
• The current stack pointer indicating the bottom of the

currently active stack.
• The current privilege mode of the processor (either priv-

ileged or unprivileged).
• A set of MMU control registers.
• A local interrupt enable/disable flag.

Native state is the state of the underlying physical processor
and includes any processor state used by a translated program,
such as general purpose, floating point, and control flow
registers. It may also include the state of co-processors, such
as MMUs or FPUs.

A key design choice we made in LLVA-OS is to expose the
existence of native state while keeping the contents hidden.
In particular, we provide functions that can save and restore
native state without being able to inspect or manipulate the
details of native state directly. This design choice is motivated
and explained in Section III-D.

D. Manipulating Virtual and Native State

There are two broad classes of operations that one program
may use to manipulate the state of another, separately com-
piled, program: (i) saving and restoring the entire state of a
program, e.g., OS context switching routine, and (ii) directly
inspecting or modifying the details of program state, e.g., by
a debugger.

Some virtual machines, e.g., the Java Virtual Machine
(JVM) [5], encapsulate the saving and restoring of state
entirely inside the VM. This yields a simple external interface
but moves policy decisions into the VM. This model is
inadequate for supporting arbitrary operating systems, without
significant design changes to allow external control over such
policies. Other virtual machines, such as the Transmeta [6] and
DAISY [7] architectures based on binary translation, allow ex-
ternal software to save or restore virtual program state but hide
native state entirely. This requires that they maintain a mapping
at all times beween virtual and native state. Maintaining such
a mapping can be expensive without significant restrictions on
code generation because the mapping can change frequently,
e.g., every time a register value is moved to or from the stack
due to register spills or function calls.

We propose a novel solution based on two observations.
First, operations of class (i) above are frequent and
performance-sensitive while those of (ii) are typically not.
Second, for class (i), an OS rarely needs to inspect or
modify individual virtual registers in order to save and restore

program state. We provide a limited method of allowing
the OS to directly save and restore the native state of the
processor to a memory buffer. The native state is visible to
the OS only as an opaque array of bytes.

For operations of class (ii), the translator can reconstruct the
virtual to native mapping lazily when required. This moves the
mapping process out of the critical path.

We provide the functions in Table I to save and restore
native state. Because floating point registers do not always
need to be saved but integer registers usually do, we divide
native processor state into two sets. The first set is the Integer
State. It contains all native processor state used to contain non-
floating point virtual registers and the virtual software’s control
flow. On most processors, this will include all general purpose
registers in use by the program, the program counter, the stack
pointer, and any control or status registers. The second set is
the Floating Point (FP) State. This set contains all native state
used to implement floating point operations. Usually, this is the
CPU’s floating point registers. Additional sets can be added
for state such as virtual vector registers (usually represented
by vector co-processors in native state). Native state not used
by translated code, e.g. special support chips, can be accessed
using I/O instructions (just as they are on native processors)
using the I/O instructions in Table III.

E. Interrupts and Traps

LLVA-OS defines a set of interrupts and traps identified
by number. These events are serviced by handler functions
provided by the OS. LLVA-OS provides intrinsics that the OS
uses to register handler functions for each interrupt or trap
(these are omitted for space but are in [8]). On an interrupt or
trap, a handler function is passed the interrupt or trap number
and a pointer to an Interrupt Context, defined below. Page fault
handlers are passed an additional address parameter.

When an interrupt or trap occurs, the processor transfers
control to the Execution Engine, which saves the native state of
the interrupted program (on the kernel stack) before invoking
the interrupt or trap handler. Saving the entire Integer State
would be sufficient but not always necessary. Many processors
provide mechanisms, e.g., shadow registers, to reduce the
amount of state saved on an interrupt.

To take advantage of such hardware, when available, we
define the Interrupt Context: a buffer of memory reserved on
the kernel stack capable of holding the complete Integer State
when an interrupt or trap occurs. Only the subset of Integer
State that will be overwritten by the trap handling code need
be saved in the reserved memory by the Execution Engine.
Any other part of Integer State masked by facilities such as
shadow registers is left on the processor.

In cases where the complete Interrupt Context must be com-
mitted to memory, e.g., signal handler dispatch, we provide
intrinsics that can commit all the Integer State inside of an
Interrupt Context to memory. This allows us to lazily save
interrupted program state when needed. Interrupt and trap han-
dlers can also use the Interrupt Context to manipulate the state
of an interrupted program. For example, an OS trap handler

TABLE I

FUNCTIONS FOR SAVING AND RESTORING NATIVE PROCESSOR STATE

Name Description
llva.save.integer(void * buffer) Save the Integer State of the native processor in to the memory pointed to by buffer.
llva.load.integer(void * buffer) Load the integer state stored in buffer back on to the processor. Execution resumes at the instruction immediately

following the llva.save.integer() instruction that saved the state.
llva.save.fp(void * buffer, int always) Save the FP State of the native processor or FPU to the memory pointed to by buffer. If always is 0, state is

only saved if it has changed since the last llva.load.fp(). Otherwise, save state unconditionally.
llva.load.fp(void * buffer) Load the FP State of the native processor (or FPU) from a memory buffer previously used by llva.save.fp().

can push a function call frame on to an interrupted program’s
stack using llva.ipush.function(), forcing it to execute a signal
handler when the trap handler finishes. Table II summarizes
the various functions that manipulate the Interrupt Context.

F. System Calls

LLVA-OS provides a finite number of system calls identified
by unique numbers. Similar to interrupt and trap handlers, the
OS registers a system call handler function for each system
call number with an LLVA-OS intrinsic function.

Software initiates a system call with the llva.syscall intrinsic
(Table III). Semantically, this appears much like a function
call. They only differ in that system calls switch to the
privileged processing mode and call a function within the OS.

Unlike current designs, an LLVA processor knows the
semantic difference between a system call and an instruction
trap and can determine the system call arguments. This extra
information allows the same software to work on different
processors with different system call dispatch mechanisms,
enables the hardware to accelerate system call dispatch by
selecting the best method for the program, and provides the
Execution Engine and external compiler tools the ability to
easily identify and modify system calls within software.

G. Recovery from Hardware Faults

Some operating systems use the MMU to efficiently catch
errors at runtime, e.g., detecting bad pointers passed to the
write system call [9]. The OS typically allows the page
fault handler to adjust the program counter of the interrupted
program so that it executes exception-handling assembly code
immediately after the page fault handler exits. In an LLVA-
supported kernel, the OS cannot directly change the program
counter (virtual or native), or write assembly-level fault han-
dling code. Another mechanism for fault recovery is needed.

We observe that recovering from kernel hardware faults is
similar to exception handling in high level languages. The
LLVA instruction set [10] provides two instructions (invoke
and unwind) to support such exceptions. We adapted these
instructions to support kernel fault recovery in LLVA-OS.

The invoke intrinsic (described in Table III) is used within
the kernel when calling a routine that may fault; the return
value can be tested to branch to an exception handler block.
Invokes may be nested, i.e., multiple invoke frames may exist
on the stack at a time.

If the called function faults, the trap handler in the OS
calls llva.iunwind. This function unwinds control flow back

to the closest invoke stack frame (discarding all intervening
stack frames) and causes the invoke intrinsic to return 1. The
only difference between the original unwind instruction and
llva.iunwind is that the latter unwinds the control flow in
an Interrupt Context (to return control to the kernel context
that was executing when the fault occurred) while the former
unwinds control flow in the current context.

This method uses general, primitive operations and is OS
neutral. However, its performance depends on efficient code
generation of invoke by the translator [10]. Our current ver-
sion of LLEE has implementation and design deficiencies as
described in Section V-B.

To address these, we added a combined invoke/memcpy in-
trinsic named llva.invokememcpy. This intrinsic uses efficient
native instructions for data copying and always returns the
number of bytes successfully copied (even if control flow was
unwound by llva.iunwind).

H. Brief Overview of Virtual Memory and I/O

Our current LLVA-OS design assumes a hardware page table
with no explicit memory regions. Intrinsics for changing the
page table pointer and analyzing the cause of page faults are
described in Table III. We have yet to design intrinsics for
abstracting the page table format; that is left as future work.

The I/O functions, used to communicate with I/O devices
and support chips, are briefly described in Table III.

IV. PROTOTYPE IMPLEMENTATION

While designing LLVA-OS, we implemented a prototype
Execution Engine and ported the Linux 2.4.22 kernel to our
virtual instruction set. This essentially worked as a port of
Linux to a new instruction set. It took approximately one-
person-year of effort to design and implement LLVA-OS and
to port Linux to it.

Our Execution Engine is implemented as a native code
library written in C and x86 assembly. It can be linked to an
OS kernel once the kernel has been compiled to native code.
It provides all of the functionality described in Section III and
does not depend on any OS services.

Compilation to the LLVA instruction set is done using
LLVM [10]. Since the LLVM compiler currently requires OS
services to run, all code generation is performed ahead of time.

To port the Linux kernel, we removed all inline assembly
code in i386 Linux and replaced it with portable C code or C
code that used LLVA-OS.

TABLE II

FUNCTIONS FOR MANIPULATING THE INTERRUPT CONTEXT

Name Description
llva.icontext.save (void * icp, void * isp) Save the Interrupt Context icp into the memory pointed to by isp as Integer State.
llva.icontext.load (void * icp, void * isp) Load the Integer State isp into the Interrupt Context pointed to by icp.
llva.icontext.get.stackp (void * icp) Return the stack pointer saved in the Interrupt Context.
llva.icontext.set.stackp (void * icp) Set the stack pointer saved in the Interrupt Context.
llva.ipush.function (void * icp, int (*f)(...), ...) Modify the state in the Interrupt Context icp so that function f has been called with the given

arguments. Used in signal handler dispatch.
llva.icontext.init (void * icp, void * stackp) Create a new Interrupt Context on the stack pointed to by stackp. It is initialized to the same values

as the Interrupt Context icp.
llva.was.privileged (void * icp) Return 1 if the Interrupt Context icp was running in privileged mode. Return 0 otherwise.

TABLE III

SYSTEM CALL, INVOKE, MMU, AND I/O FUNCTIONS

Name Description
int llva.syscall (int sysnum, ...) Request OS service by calling the system call handler associated with number sysnum.
int llva.invoke (int * ret, int (*f)(...), ...) Call function f with the specified arguments. If control flow is unwound before f returns, then

return 1; otherwise, return 0. Place the return value of f into the memory pointed to by ret.
int llva.invokememcpy (void * to, void * from,
int count)

Copy count bytes from from to to. Return the number of bytes successfully copied before a fault
occurs.

llva.iunwind (void * icp) Modify the state in the Interrupt Context pointed to by icp so that control flow is unwound to the
innermost frame in which an invoke was executed.

void llva.load.pgtable (void * pgtable) Load the page table pointed to by pg.
void * llva.save.pgtable (void) Return the page table currently used by the MMU.
void llva.flush.tlbs (int global) Flush the TLBs. If global is 1, remove global TLB entries.
void llva.flush.tlb (void * addr) Flush any TLBs that are contain virtual address addr.
int llva.mm.protection (void * icp) Return 1 if the memory fault was caused by a protection violation.
int llva.mm.access.type (void * icp) Returns 1 if memory access was a read; 0 if it was a write.
int llva.mm.was.absent (void * icp) Returns 1 if the memory access faulted due to translation with an unmapped page.
int llva.ioread (void * ioaddress) Reads a value from the I/O address space.
void llva.iowrite (int value, void * ioaddress) Writes a value into the I/O address space.

During the first phase of development, we continued to
compile the kernel with GCC and linked the Execution Engine
library into the kernel. This allowed us to port the kernel incre-
mentally while retaining full kernel functionality. This kernel
(called the LLVA GCC kernel below) has been successfully
booted to multi-user mode on a Dell OptiPlex, works well
enough to benchmark performance, and is capable of running
many applications, including the thttpd web server [11], GCC,
and most of the standard UNIX utilities.

We have also successfully compiled the LLVA-ported kernel
with the LLVM compiler [10], demonstrating that the kernel
can be completely expressed in the LLVA instruction set. This
kernel also boots into multi-user mode on real hardware.

V. PRELIMINARY PERFORMANCE EVALUATION

We performed a preliminary performance evaluation on our
prototype to identify key sources of overhead present in our
current design. To do this, we benchmarked the LLVA GCC
and native i386 Linux kernels. We ran all of our tests on
a Dell OptiPlex with a 550 MHz. Pentium 3 processor and
384 MB of RAM. Since both kernels are compiled by the
same compiler (GCC) and execute on identical hardware, the
difference between them is solely due to the use of LLVA-
OS as the target architecture in the former. The use of this
interface produces multiple sources of overhead (described

below) because a kernel on LLVA-OS uses no native assembly
code, whereas the original kernel uses assembly code in a
number of different ways. It is important to note that the use of
the interface alone (with no additional hardware or translation
layer optimizations) does not improve performance in any way,
except for a few incidental cases mentioned below.

We do not compare the LLVA kernel compiled with LLVM
to the above two kernels in this work. Doing so compares the
quality of code generated by the LLVM and GCC compilers
which, while useful long term, does not help us identify
sources of overhead in the kernel.

We used three different types of benchmarks to study the
performance impact of LLVA-OS. Nano benchmarks test prim-
itive kernel functions, e.g., system call and trap latency, that
typically use only a few LLVA-OS intrinsics. These overheads
can be classified according to one of the four causes below.
Micro benchmarks measure the performance of high-level
kernel operations directly used by applications, such as specific
system calls. Finally, macro benchmarks are entire applications
and measure the performance impact of the abstractions on
overall system performance.

Unless stated otherwise, all benchmarks use the HBench-
OS framekwork [12] and present the average measurement of
100 iterations.

TABLE IV

NANONBENCHMARKS. TIMES IN µS. SOME NUMBERS FROM [8].

Operation Native LLVA % Ovhd LLVA-OS Intrinsics
System Call
Entry

.589 .632 7.30 llva.syscall

Trap Entry .555 .450 -18.92 Internal to LLEE
Read Page
Fault

1.105 1.565 41.63 llva.mm.protection,
llva.mm.access.type,
llva.mm.was.absent

Kernel-User
1KB memcpy

.690 .790 14.45 llva.invokememcpy

User-Kernel
1KB strcpy

.639 .777 21.64 invoke

A. Sources of Overhead

There are four distinct causes of overhead when a kernel
uses the LLVA-OS virtual architecture on a particular proces-
sor, compared with an identical kernel directly executing on
the same hardware:

1) The native kernel used assembly code to increase perfor-
mance and the same operation on LLVA must be written
using C code, e.g. IP Checksum code on x86 can exploit
the processor status flags to check for overflow, saving
a compare instruction.

2) The native kernel used assembly code for an operation
(for performance or hardware access) and LLVA-OS
provides an equivalent function, but the function is not
implemented efficiently.

3) The native kernel used assembly code to exploit a
hardware feature and this feature is less effectively used
in the LLVA-OS design, i.e., a mismatch between LLVA-
OS design and hardware.

4) The native kernel exploited OS information for optimiz-
ing an operation and this optimization is less effective
with LLVA-OS, i.e., a mismatch between LLVA-OS
design and kernel design.

These sources of overhead are important to distinguish
because the solution for each is different. For example, the first
two sources above have relatively simple solutions: the first by
adding a new intrinsic function to LLVA; the second simply
by tuning the implementation. Mismatches between LLVA-
OS design and either hardware features or OS algorithms,
however, are more difficult to address and require either a
change in LLVA-OS or in the design of the OS itself.

B. Nanobenchmarks

We used the benchmarking software from [8] to measure the
overhead for a subset of primitive kernel operations (Table IV).
These tests are based on HBench-OS tests [12] and use
specialized system calls in the kernel to invoke the desired
nano-benchmark feature. Many other primitive operations,
particularly synchronization and bit manipulation primitives,
are presented in [8].

As seen in Table IV, only a few primitive operations incur
significant overhead on LLVA-OS. Note that these operations

are extremely short (microseconds). Small inefficiencies pro-
duce large relative overhead, but their impact on higher-level
kernel operations and applications is usually far smaller.

We improve performance for trap entry. The i386 kernel
must support traps from Virtual 8086 mode. The LLVA kernel
does not, yielding simpler trap entry code.

The slight increase in system call latency is because the
native kernel saves seven fewer registers by knowing that they
are not modified by system call handlers [8]. Some of the
overhead is also due to some assembly code (which initiates
signal dispatch and scheduling after every system call) being
re-written in C. The overhead is partially due to a mismatch
between LLVA-OS design and Linux design and partially due
to the inability to write hand-tuned assembly code. A read
page fault has relative overhead of 42% (but the absolute
difference is tiny) [8] and is a mismatch between LLVA-OS
and hardware. The native Linux page fault handler uses a
single bitwise operation on a register to determine information
about the page fault; the LLVA kernel must use two LLVA-OS
intrinsics to determine the same information [8].

The overhead for copying data between user and kernel
memory stems from several sources. Both the invoke instruc-
tion (used by strcpy) and llva.invokememcpy (used by mem-
cpy) save a minimal amount of state so that llva.iunwind can
unwind control flow. The invoke instruction adds function call
overhead since it can only invoke code at function granularity.
Finally, the invoked strcpy function is implemented in C. The
i386 kernel suffers none of these overheads.

Reference [8] found that, for a small number of processes,
context switching latency doubled with the LLVA kernel due
to LLVA-OS saving more registers than the original context
switching code. However, once the system reaches 60 active
processes, the overhead of selecting the next process to run is
greater than the LLVA-OS overhead due to a linear time scan
of the run queue [8], [9]. For a large number of processes,
LLVA-OS only adds 1-2 microseconds of overhead.

C. Microbenchmarks

We used the HBench-OS benchmark suite [12] to measure
the latency of various high level kernel operations. We also
used a test developed by [8] that measures the latency of
opening and closing a file repeatedly. Tables V and VI present
the results.

All the system calls listed in Tables V and VI incur the
system call entry overhead in Table IV. All of the I/O system
calls incur the memcpy overhead, and any system call with
pathname inputs incurs the strcpy overhead.

Signal handler dispatch shows the greatest overhead (48%).
We know that some of the overhead comes from system call
overhead (the re-written dispatch code mentioned previously)
and some comes from saving the application’s state in kernel
memory instead of on the user space stack. We suspect that
the greatest amount of overhead, though, comes from saving
and restoring the FP State on every signal handler dispatch.
If true, we will need to revise the FP State intrinsic design to
remove the overhead.

TABLE V

HIGH LEVEL KERNEL OPERATIONS. TIMES ARE IN µS.

Operation Program Native LLVA % Ovhd
open / close N/A 4.43 5.00 12.93
fork and exit lat proc null 268.25 279.19 4.08
fork and exec lat proc simple

static
1026 1100 7.25

Signal Handler
Install

lat sig install 1.36 1.52 12.06

Signal Handler
Dispatch

lat sig handle 3.00 4.44 48.18

TABLE VI

READ BANDWIDTH FOR 4 MB FILE (BW FILE RD AND BW PIPE).

Buffer
Size
(KB)

File
Native
(MB/s)

File
LLVA
(MB/s)

Decrease
(%)

Pipe
Native
(MB/s)

Pipe
LLVA
(MB/s)

Decrease
(%)

4 276.27 271.47 1.74 264.17 200.84 23.97
16 179.71 177.70 1.12 206.31 170.48 17.37
64 183.20 182.57 0.34 212.59 177.85 16.34
256 111.71 112.60 -0.80 190.14 163.82 13.84
1024 84.37 86.39 -2.39 133.49 118.68 11.09
4096 86.16 86.37 -0.24 120.28 108.92 9.44

We believe the signal handler install overhead is partially
due to the system call latency and partially due to the overhead
from copying data from user space to kernel space (on our
Linux system, signal() is implemented by a library routine that
calls sigaction(), which reads from several user space buffers).

D. Macrobenchmarks

We ran two application-level benchmarks to evaluate the
overall performance impact LLVA-OS has on two types of
common applications: web servers and compilation.

First, we ran the WebStone benchmark [13] on the thttpd
web server [11] (Table VII). WebStone measures the band-
width that a web server can provide to a variable number of
clients. Our test retrieves files of size 0.5KB to 5MB. The
thttpd web server uses a single process and thread to handle
I/O requests from web clients [11].

The LLVA kernel decreases the bandwidth of the server by
less than 7%. We are still trying to determine the cause of
the decrease; we have, however, determined that data copying
overhead is not the primary cause, unlike an earlier version of
the system that had higher overheads [8].

We also benchmarked a build of OpenSSH 4.2p1 [14] using
the time command. A complete build took 176.78 seconds on
the native kernel and 178.56 seconds on the LLVA kernel,
yielding a negligible 1.01% overhead. The times are elapsed
time (the LLVA kernel does not correctly report per process
user or system time). The low overhead is because compilation
is primarily a user-level, CPU-bound task.

VI. RELATED WORK

There are several classes of related work, including (a) OS
support in virtualized processor architectures (or “codesigned

TABLE VII

WEB SERVER BANDWIDTH MEASURED IN MEGABITS/SECOND.

Clients Native LLVA % Decrease
1 81.21 76.16 6.22
4 72.21 68.76 4.78

virtual machines” [15]); (b) hardware abstractions in previous
operating systems; (c) virtual machine monitors; and (d)
operating systems that exploit language-based virtual machines
or safe languages.

Three previous system architectures have used an organi-
zation with separate virtual and native instruction sets: the
Transmeta Crusoe and its successors [6], the IBM DAISY
project [7], and the IBM S/38 and AS/400 families of sys-
tems [16]. Both Transmeta and DAISY emulated an existing,
“legacy” hardware ISA (x86 and PowerPC, respectively) as
their virtual instruction set on a completely hidden VLIW
processor. Both allowed existing operating systems written
for the legacy instruction sets to be run with virtually no
changes. Unlike LLVA-OS, these systems aim to implement
legacy instruction sets on novel hardware, but do not provide
any benefits to the OS.

The IBM AS/400 (building on early ideas in the S/38)
defined a high-level, hardware-independent interface called
the Machine Interface (MI) that was the sole interface for
all application software and for much of OS/400. The major
difference from our work is that their MI was effectively a
part of the operating system (OS/400); significant components
of OS/400 ran below the MI and were required to implement
it. In their approach, a particular OS is organized to enable
many or all of the benefits listed in Section I. LLVA-OS is
OS-neutral and aims to provide similar benefits to existing
operating systems without a major reorganization of the OS.

Many modern operating systems include some design fea-
tures to separate machine-independent and machine-dependent
code, and at least a few do this by using an explicit architecture
abstraction layer to define an interface to the hardware. Two
such examples include the Windows Hardware Abstraction
Layer (HAL) [17] and the Choices nanokernel [18]. These
layers are integral parts of the OS and only achieve greater
machine-independence and portability. In contrast, our OS
interface is an integral part of the (virtual) processor archi-
tecture and yet provides richer primitives than a traditional
architecture for supporting an OS.

The Alpha processor’s PALCode layer [19] provides an
abstraction layer similar to LLVA-OS. PALCode is special
privileged code running below the OS that can execute spe-
cial instructions and access special registers, e.g. the TLB.
PALCode routines, like LLVA-OS intrinsics, act like additional
instructions in the processor’s instruction set, have privileged
access to hardware, and provide a higher level interface
to the processor compared with traditional instruction sets.
PALCode’s goals, however, differ significantly from ours.
PALCode is co-designed with the OS and moves OS specific

functions into the abstraction layer. It does not hide the
processor’s native ISA from the OS. Because it is OS-defined,
it is unrecognizable by external compilers. In contrast, LLVA-
OS hides the entire native ISA from software, provides OS-
neutral abstractions, and has well-defined semantics. PALCode
is logically part of the OS, whereas LLVA-OS is part of the
processor architecture.

Virtual machine monitors such as VMWare [20], Denali [21]
and Xen [22] virtualize hardware resources to enable sharing
and isolation for multiple instances of operating systems.
These systems are orthogonal to our work, which virtualizes
the instruction set interface for a single instance of an OS.

Several operating systems, such as JX [23] and Singu-
larity [24], are written largely in safe languages (Java and
C# respectively) and compiled into typed bytecode languages
implemented via a virtual machine. These systems use lan-
guage safety features to provide increased reliability and com-
ponent isolation. These benefits, however, require profound
OS redesign and the use of safe languages. In contrast, we
do not (yet) provide a safe execution environment but focus
on hardware abstraction, and we enable existing operating
systems to be ported to our interface with relatively little effort.

Other systems, including JavaOS [25], J-Kernel [26],
JRes [27], KaffeOS [28] and the Java extension defined in
JSR-121 [29], have incorporated OS-like features into or
as a layer on top of a JVM. These systems aim to provide
OS services to Java applications but are not designed to be
general-purpose operating systems.

VII. SUMMARY AND FUTURE WORK

We have designed and implemented a virtual instruction set
interface between OS kernels and ordinary hardware. We have
successfully ported the Linux kernel to this interface, proving
that it is capable of supporting a real world, multi-user OS.

Preliminary measurements indicate that performance is rea-
sonable for some aspects of kernel execution, but improvement
can still be made for context switching, signal dispatch, read
page faults, and copying data between user and kernel memory.

In the near future, we will continue to tune our imple-
mentation to eliminate overhead. We also plan to enhance
the LLEE so that it can do online code generation, profiling,
and caching of translations. Longer term, we plan to continue
exploring the performance and security possibilities afforded
by our architecture.

REFERENCES

[1] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the reliability
of commodity operating systems,” in SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 2003, pp. 207–222.

[2] V. Ganapathy, T. Jaeger, and S. Jha, “Automatic placement of autho-
rization hooks in the linux security modules framework,” in CCS ’05:
Proceedings of the 12th ACM conference on Computer and communica-
tions security. New York, NY, USA: ACM Press, 2005, pp. 330–339.

[3] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke, “LLVA:
A Low-Level Virtual Instruction Set Architecture,” in Proc. ACM/IEEE
Int’l Symp. on Microarchitecture (MICRO), San Diego, CA, Dec. 2003,
pp. 205–216.

[4] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and
Systems, pp. 13(4):451–490, October 1991.

[5] T. Lindholm and F. Yellin, The Java Virtual Machine Specification.
Reading, MA: Addison-Wesley, 1997.

[6] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson, “The Transmeta Code Morphing Software:
Using speculation, recovery and adaptive retranslation to address real-
life challenges,” in Proc. Int’l Symp. on Code Generation and Optimiza-
tion (CGO), San Francisco, CA, Mar 2003.

[7] K. Ebcioglu and E. R. Altman, “DAISY: Dynamic compilation for
100% architectural compatibility,” in Proc. Int’l Conf. on Computer
Architecture (ISCA), 1997, pp. 26–37.

[8] B. M. Monroe, “Measuring and improving the performance of Linux on
a virtual instruction set architecture,” Master’s thesis, Computer Science
Dept., Univ. of Illinois at Urbana-Champaign, Urbana, IL, Dec 2005.

[9] D. P. Bovet and M. Cesati, Understanding the LINUX Kernel, 2nd ed.
Sebastopol, CA: O’Reilly, 2003.

[10] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation,” in Proc. Int’l Symp. on Code
Generation and Optimization (CGO), San Jose, Mar 2004.

[11] J. Poskanze, “thttpd - tiny/turbo/throttling http server,” 2000. [Online].
Available: http://www.acme.com/software/thttpd

[12] A. Brown, “A decompositional approach to computer system perfor-
mance,” Ph.D. dissertation, Harvard College, April 1997.

[13] Mindcraft, “Webstone: The benchmark for webservers,” 2002. [Online].
Available: http://www.mindcraft.com/webstone

[14] The OpenBSD Project, “Openssh,” 2006. [Online]. Available:
http://www.openssh.com

[15] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes. 500 Sansome Street, Suite 400, San Francisco CA,
94111: Morgan Kaufmann, June 2005.

[16] B. E. Clark and M. J. Corrigan, “Application System/400 performance
characteristics,” IBM Systems Journal, vol. 28, no. 3, pp. 407–423, 1989.

[17] M. E. Russinovich and D. A. Solomon, Microsoft Windows Internals,
Fourth Edition: Microsoft Windows Server(TM) 2003, Windows XP, and
Windows 2000 (Pro-Developer). Redmond, WA, USA: Microsoft Press,
2004.

[18] R. Campbell, N. Islam, P. Madany, and D. Raila, “Designing and imple-
menting Choices: An object-oriented system in C++,” Communications
of the ACM, vol. 36, no. 9, pp. 36(9):117–126, 1993.

[19] Compaq Computer Corporation, Alpha Architecture Handbook. Com-
paq Computer Corporation, 1998.

[20] VMWare, “VMWare,” 2006. [Online]. Available:
http://www.vmware.com

[21] A. Whitaker, M. Shaw, and S. D. Gribble, “Scale and performance in
the denali isolation kernel,” in Proc. Fifth Symp. on Operating Systems
Design and Implementation (OSDI 2002), Boston, MA, Dec 2002.

[22] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, “Xen and the art of virtualization,” in
Proc. ACM Symp. on Operating Systems Principles, October 2003.

[23] M. Golm, M. Felser, C. Wawersich, and J. Kleinoder, “The JX Operating
System,” in Proc. USENIX Annual Technical Conference, Monterey, CA,
June 2002, pp. 45–58.

[24] G. C. Hunt and J. R. Larus, “Singularity Design Motivation (Singularity
Technical Report 1),” Microsoft Research, Redmond, WA, Tech. Rep.
MSR-TR-2004-105, Dec 2004.

[25] T. Saulpaugh and C. Mirho, Inside the JavaOS Operating System.
Addison-Wesley, 1999.

[26] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von Eicken,
“Implementing multiple protection domains in Java,” in Proc. 1998
USENIX Annual Technical Conference, June 1998.

[27] G. Czajkowski and T. von Eicken, “JRes: A resource accounting inter-
face for Java,” in Proc. ACM Conf. on Object-Oriented Programming
Systems, Languages and Applications, 1998, pp. 21–35.

[28] G. Back and W. C. Hsieh, “The KaffeOS Java runtime system,” ACM
Trans. Program. Lang. Syst., vol. 27, no. 4, pp. 583–630, 2005.

[29] Java Community Process, “JSR 121,” 2003. [Online]. Available:
http://jcp.org/jsr/detail/121.jsp

