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Abstract

The PyPy project seeks to prove both on a research and a practical
level the feasibility of constructing a virtual machine (VM) for a
dynamic language in a dynamic language — in this case, Python.
The aim is to translate (i.e. compile) the VM to arbitrary target
environments, ranging in level from C/Posix to Smalltalk/Squeak
via Java and CLI/.NET, while still being of reasonable efficiency
within these environments.

A key tool to achieve this goal is the systematic reuse of the
Python language as a system programming language at various
levels of our architecture and translation process. For each level,
we design a corresponding type system and apply a generic type
inference engine — for example, the garbage collector is written in
a style that manipulates simulated pointer and address objects, and
when translated to C these operations become C-level pointer and
address instructions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—code generation, interpreters, run-time envi-
ronments; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—program analysis

General Terms Languages, Experimentation, Performance

Keywords Virtual Machine, Metacircularity, Type Inference, Re-
targettable Code Generation, Python

1. Introduction

Despite the constant trend in the programming world towards porta-
bility and reusability, there are some areas in which it is still noto-
riously difficult to write flexible, portable, and reasonably efficient
programs. The implementation of virtual machines is one such area.
Building implementations of general programming languages, in
particular highly dynamic ones, using a classic direct coding ap-
proach, is typically a long-winded effort and produces a result that
is tailored to a specific platform and where architectural decisions
(e.g. about GC) are spread across the code in a pervasive and inva-
sive way.

For this and other reasons, standard platforms emerge; nowa-
days, a language implementer could cover most general platforms
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in use by writing three versions of his virtual machine: for C/Posix,
for Java, and for CLI/.NET. This is, at least, the current situation of
the Python programming language, where independent volunteers
have developed and are now maintaining Java and .NET versions
of Python, which follow the evolution of the “official” C version
(CPython).

However, we believe that platform standardization does not
have to be a necessary component of this equation. We are basically
using the standard “meta-programming” argument: if one could
write the VM at a sufficiently high level of abstraction in a language
supporting such level, then the VM itself could be automatically
translated to any lower-level platform. Moreover by writing the
VM in such a way we would gain in flexibility in architectural
choices and expressiveness.

PyPy achieves this goal without giving up on the efficiency
of the compiled VMs, thereby keeping it within reach of further
reasonable optimization work.

The key factors enabling this result are not to be found in recent
advances in any particular research area — we are not for example
using constraint-based type inference. Instead, we are following a
novel overall architecture: it is split into many levels of stepwise
translation from the high-level source of the VM to the final target
platform, each step adding support for features that were assumed
primitive by the previous ones. Similar platforms can reuse many of
these steps, while for very different platforms we have the option to
perform very different translation steps. Each step reuses a common
type inference component with a different, ad-hoc type system.

Experiments also suggest a more mundane reason why such an
approach is only practical today: a typical translation takes about
half an hour on a modern PC and consumes between 512MB and
1GB of RAM.

Recent projects developing meta-circular interpreters [21][3][1]
incorporate a native compiler directly in their virtual machine de-
sign and high-level implementations. We believe that this is a less
evolvable and maintainable encoding of the semantics of a lan-
guage than a bytecode intepreter, especially with languages such
as Python for which internal design simplicity was not a goal from
the start or in its current evolution. Our on-going efforts (beyond
the scope of this paper) aim instead at generating native compilers
as a (non-trivial) step of our translation process (see sections 7 and
6). This belief and goal inform our architecture.

In the paper we shortly describe the architecture of PyPy in
section 2. In section 3 we describe our approach of varying the
type systems at various levels of the translation. Section 4 gives
an overview of the type inference engine we developed (and can
be read independently from section 3). We present experimental
results in section 5 and future work directions in section 6. In



def get_frame_class(self):
# select the appropriate kind of frame
if not frame_classes:
setup_frame_classes()
choose = 0
if self.co_cellvars or self.co_freevars:

# lazily

choose |= NESTED
if self.co_flags & CO_GENERATOR:
choose |= GENERATOR

Frame = frame_classes[choose]
return Frame

def create_frame(self, space,
w_globals, closure=None):
return self.get_frame_class() (space, self,
w_globals, closure)

Figure 1. methods from Python bytecode class to instantiate
frames.

section 7 we compare with related work, and finally we conclude
in section 8.

2. Architecture

There are two major components in PyPy:

1. the Standard Interpreter: an implementation of the Python pro-
gramming language, mostly complete and compliant with the
current version of the language, Python 2.4.

2. the Translation Process: a translation tool-suite whose goal is
to compile subsets of Python to various environments.

In particular, we have defined a subset of the Python language
called “restricted Python” or RPython. This sublanguage is not re-
stricted syntactically, but only in the way it manipulates objects
of different types. The restrictions are a compromise between the
expressivity and the need to statically infer enough type informa-
tion to generate efficient code. RPython still supports exceptions,
inheritance but limited to single inheritance with some mix-in sup-
port, dynamic dispatch, to some extent keywords arguments and
varargs, first-class function and class values, limited use of bound
methods, runtime isinstance and type queries, but no runtime
reflection. Bindings in class and global namespaces are assumed
constant. RPython code can be run on a Python interpreter with-
out severe semantics mismatches. Figure 1 shows some RPython
code from the Standard Interpreter and it can be seen that it is still
quite idiomatic Python code using the built-in dictionary type and
first-class class values instantiation.

The purpose of the translation tool-suite is to compile such
RPython programs to a variety of different platforms.

Our current efforts, and the present paper, focus on this tool-
suite. We will not describe the Standard Interpreter component
of PyPy in the sequel, other than to mention that it is written in
RPython and can thus be translated. At close to 90,000 lines of
code', it is the largest RPython program that we have translated so
far and is the main target driving the development of the tool-chain.
More information can be found in [16].

' The core interpreter is more like 30,000 lines of code, the rest includes
built-in modules and 30,000 lines of auto-generated unicode character
database data.
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3. System programming in Python
3.1 The translation process

The translation process starts from RPython source code and even-
tually produces low-level code suitable for the target environment.
Its architecture is shown in figure 2. It can be described as a front-
end followed by a series of step-wise transformations. Each trans-
formation step is based on control flow graph transformations and
rewriting, and on the ability to augment the program with further
implementation code written in Python and analysed with the suit-
able type system.

The front-end part of the translation process analyses the input
RPython program in two phases, as follows:?

1. We take as input RPython function objects,’ and convert them
to control flow graphs — a structure amenable to analysis. These
flow graphs contain polymorphic operations only: in Python,
almost all operations are dynamically overloaded by type.

2. We perform type inference on the control flow graphs. At this
stage, types inferred are part of the type system which is the
very definition of the RPython sub-language: they are roughly
a subset of Python’s built-in types, with some more precision to
describe e.g. the items stored in container types. Occasionally, a
single input function can produce several specialized versions,
i.e. several similar but differently typed graphs. This type infer-
ence process is described in more details in section 4.

At the end of the front-end analysis, the input RPython program is
represented as a forest of flow graphs with typed variables. Follow-
ing this analysis are a number of transformation steps. Each trans-
formation step modifies the graphs in-place, by altering their struc-
ture and/or the operations they contain. Each step inputs graphs
typed in one type system and leaves them typed in a possibly dif-
ferent type system, as we will describe in the sequel. Finally, a
back-end turns the resulting graphs into code suitable for the tar-
get environment, e.g. C source code ready to be compiled.

3.2 Transformations

The first of the transformation steps takes the RPython-typed flow
graphs, still containing polymorphic operations only, and produces
flow graphs with operations more familiar to the target environ-
ment. When the target is C or a C-like environment, this means
monomorphic C-like operations and C-like types. In the simplest
case, this is the only transformation step: these graphs are directly
fed to the C emitting back-end, which turns them into ANSI C
source code.

Not all targets of interest are C-like, though, and we have
recently developed a variant of this step for use when target-
ing higher-level, object-oriented (OO) environments. Its design
was motivated by work on back-ends for Smalltalk/Squeak* and
CLI/.NET. When targeting a C-like environment, the first transfor-
mation step is called the LLTyper or low-level typer: it produces
C-level flow graphs, where the object-oriented features of RPython

2 Note that the two phases are intermingled in time, because type inference
proceeds from an entry point function and follows all calls, and thus only
gradually discovers (the reachable parts of) the input program.

3 The input to our translation chain are indeed loaded runtime function ob-
jects, not source code nor ASTs. This enables a form of staged programming
in which we can use unrestricted Python for meta-programming purposes
at load time: the whole of the source program — as a Python program — pro-
duces the RPython program which is sent to the tool-chain in the form of its
object graph loaded in memory. This includes both the relevant functions
and prebuilt data.

4 QOur simple OO type system is designed for statically-typed OO environ-

ments, including Java; the presence of Smalltalk as a back-end might be
misleading in that respect.
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Figure 2. overview of the translation process.

(classes and instances) become manipulations of C structs with
explicit virtual table pointers. By contrast, for OO environments
this step is called the OOTyper: it targets a simple object-oriented
type system, and preserves the classes and instances of the origi-
nal RPython program. The LLTyper and OOTyper still have much
code in common, to convert the more Python-specific features like
the more complex calling conventions. In the sequel, we assume
the use of the LLTyper, as there are as yet no back-ends for the
OOTyper which are complete enough to translate the Standard In-
terpreter — although the CLI backend should be able to within a few
months.

For an example of a transformation that is applied after this first
step, consider that RPython has automatic memory management.
Even with the LLTyper, the first transformation step produces flow
graphs that also assume automatic memory management. Generat-
ing C code directly from there produces a fully leaking program,
unless we link it with an external garbage collector (GC) like the
Boehm conservative GC [7][6], which is a viable option.

We have two other alternatives, each implemented as a transfor-
mation step. The first one inserts naive reference counting through-
out the whole program’s graphs, which without further optimiza-
tions gives a somewhat bad performance (it should be noted that
the CPython interpreter is also based on reference counting, and
experience suggests that it was not a bad choice in this particular
case).

The other, and better, alternative is an exact GC, coupled with a
transformation, the GC transformer. It takes as input C-level-typed
graphs and replaces all malloc operations with calls to a garbage
collector’s allocation routine. The transformation inspects all the
graphs to discover the structure types in use by the program, and
assigns a unique type id to each of them. These type ids are then
collected in internal tables that describe the layout of the structures,
e.g. their sizes and the location of the pointer fields.

We have implemented other transformations as well, e.g. per-
forming various optimizations, or turning the whole code into a
style that allows us to use coroutines (still in ANSI C: it is a vari-
ant of continuation-passing that will be the subject of another pa-
per.) Another example is the exception transformer, which trans-
forms graphs that still contain implicit exception handling into a
form suitable for C (currently based on a global flag to signal the
presence of an exception, which is set and checked around selected
function calls).

More information about these transformations can be found in
[17].
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def 11_append(lst, newitem):
# Append an item to the end of the vector.
index = lst.length #get the ’length’ field
11_resize(lst, index+1) #call another helper
itemsarray = lst.items  #get the ’items’ field
itemsarray[index] = item #behaves like a C array

Figure 3. a helper to implement 1ist.append().

3.3 System code

A common pattern in all the transformation steps is to somehow
lower the level at which the graphs are currently expressed. Be-
cause of this, there are operations that were atomic in the input
(higher-level) graphs but that need to be decomposed into several
operations in the target (lower-level) graphs. In some cases, the
equivalent functionality requires more than a couple of operations:
a single operation must be replaced by a call to whole new code —
functions and classes that serve as helpers. An example of this is the
malloc operation for the GC transformer. Another example is the
list.append() method, which is atomic for Python or RPython
programs, but needs to be replaced in C-level code by a helper that
possibly reallocates the array of items.

This means that in addition to transforming the existing graphs,
each transformation step also needs to insert new functions into
the forest. A key feature of our approach is that we can write such
“system-level” code — relevant only to a particular transformation
— in plain Python as well. The idea is to feed these new Python
functions into the front-end, using this time the transformation’s
target (lower-level) type system during the type inference. In other
words, we can write plain Python code that manipulates objects that
conform to the lower-level type system, and turn these functions
into graph that are directly typed in this lower-level type system.

For example, 11_append () in figure 3 is a Python function that
manipulates objects that behave like C structures and arrays. This
function is inserted by the LLTyper, as a helper to implement the
list.append() calls found in its RPython-level input graphs. By
going through the front-end reconfigured to use C-level types, the
above function becomes a graph with such C-level types,® which is
then indistinguishable from the other graphs of the forest produced
by the LLTyper.

In the example of the malloc operation, replaced by a call to
GC code, this GC code can invoke a complete collection of dead
objects, and can thus be arbitrarily complicated. Still, our GC code
is entirely written in plain Python, and it manipulates “objects”
that are still at a lower level: pointer and address objects. Even
with the restriction of having to use pointer-like and address-like
objects, Python remains more expressive than, say, C to write a GC
(the work on the Jikes RVM’s GC [5] was the inspiration to try to
express GCs in Python; see section 7).

In the sequel, we will call system code functions written in
Python that are meant to be analysed by the front-end. For the
purpose of this article we will restrict this definition to helpers in-
troduced by transformations, as opposed to the original RPython
program, although the difference is not fundamental to the transla-
tion process (and although our input RPython program, as seen in
section 2, is often itself a Python virtual machine!).

Note that such system code cannot typically be expressed as
normal RPython functions, because it corresponds to primitive op-

3 The low-level type system specifies that the function should be specialized
by the C-level type of its input arguments, so it actually turns into one
graph per list type — list of integers, list of pointers, etc. This behavior
gives the programmer a feeling comparable to C++ templates, without the
declarations.
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erations at that level. As an aside, let us remark that the number of
primitive operations at RPython level is, comparatively speaking,
quite large: all list and dictionary operations, instance and class at-
tribute accesses, many string processing methods, a good subset
of all Python built-in functions... Compared with other approaches
(e.g. Squeak [11]), we do not try to minimize the number of primi-
tives — at least not at the source level. It is fine to have many primi-
tives at any high enough level, because they can all be implemented
at the next lower level in a way that makes sense to that level. The
key reason why this is not burdensome is that the lower level imple-
mentations are also written in Python — with the only difference that
they use (and have to be typeable in) the lower-level type system.®

3.4 Type systems

The four levels that we considered so far are summarized in figure
4.

The RPython level is a subset of Python, so the types mostly
follow Python types, and the instances of these types are instances
in the normal Python sense; for example where Python has only a
single type 1ist, RPython has a parametric type 1ist (T) for every
RPython type T, but instances of 1ist(T) are just those Python
lists whose items are all instances of T.

The other type systems, however, do not correspond to built-in
Python types. For each of them, we implemented:

1. The types, which we use to tag the variables of the graphs at the
given level (types are actually annotated self-recursive formal
terms, and would have been implemented simply as such if
Python supported them directly).

2. The Python objects that emulate instances of these types (more
about them below).

We have defined well-typed operations between instances of these
types, syntactically expressed with standard Python operators (e.g.
if x is a C-level array, x [n] accesses its nth item). The emulating
instances provide a concrete implementation of these operations
that works in normal Python; the types involved in the operations
are also known to the type inference engine when it analyses system
code like the helper of figure 3.

Now, clearly, the purpose of types like a “C-like struct” or a “C-
like array” is to be translated to a real struct or array declaration
by the C back-end. What, then, is the purpose of emulating such
things in Python? The answer is three-fold. Firstly, having objects
that live within the Python interpreter, but faithfully emulate the
behavior of their C equivalent while performing additional safety

6 This is not strictly true: the type systems are even allowed to co-exist in
the same function. The operations involving higher-level type systems are
turned into lower-level operations by the previous transformations in the
chain, which leave the already-low-level operations untouched.
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def 11_dict_insertclean(d, key, value, hash):

entry = 11_dict_lookup_clean(d, hash)

ENTRY = lltype.typeOf (entry).TO

entry.value = value

entry.key = key

if hasattr(ENTRY, ’f_hash’):
entry.f_hash = hash

if hasattr(ENTRY, ’f_valid’):
entry.f_valid = True

if hasattr(ENTRY, ’f_everused’):
entry.f_everused = True

d.num_items += 1

d.num_pristine_entries -= 1

Figure 5. built-in dict insertion helper.

checks, is an invaluable help for testing and debugging. For exam-
ple, we can check the correctness of our hash table implementation,
written in Python in term of struct- and array-like objects, just by
running it. The same holds for the GC.

Secondly, and anecdotally, as the type inference process (section
4) is based on abstract interpretation, we can use the following
trick: the resulting type of most low-level operations is deduced
simply by example. Sample C-level objects are instantiated, used
as arguments to a given operation, and produce a sample result,
whose C-level type must be the type of the result variable in the
graph.

The third reason is fundamental: we use these emulating ob-
jects to represent pre-built objects at that level. For example, the
GC transformer instantiates an object emulating a C array for the
internal type id table, and fills it with the correct values. This array
object is then either used directly when testing the GC, or translated
by the C back-end into a static pre-initialized array.

Because our helpers can be both run on top of CPython and
translated we can reuse them both as runtime implementations and
to render constant objects at translation time. This is both natural
and useful (especially for complex data structures). Figure 5 shows
a function implementing insertion in a built-in dictionary for keys
known to be absent, this is used at runtime after resizing and to fill
the constant dictionaries at translation.

4. Type inference

The various analyses used — from type inference to lifetime analy-
sis - are generally formulated as abstract interpretation. While this
approach is known to be less efficient than more tailored algorithms
like constraint-based type inference [23], we gain in freedom, con-
trollability and simplicity. This proved essential in our overall ap-
proach: as described in section 3, we need to perform type inference
with many different type systems, the details of which have evolved
over time.

We mitigate the potential efficiency problem by wise choices
and compromises for the domain used; the foremost example of this
is that our RPython type inference performs almost no automatic
specialization of functions in the presence of polymorphic argu-
ments. Another example is that unlike some schemes which follow
exact sets of concrete run-time classes, we only propagate a single
superclass per variable: the most precise common parent class. This
gives enough precision for our code generation purposes.

It is also simple, in the context of abstract interpretation, to
perform translation-time constant propagation, computations and
implement conditional code in a natural way. For example, the
code in figure 5, which is then specialized for the possible types
of dictionary d, shows this kind of compile-time computation and
introspection on low-level types — ENTRY is a C-like structure type



and the hasattr-ibute checks introspect it at translation time. This
kind of expressiveness increased our ability to reuse code even in
low-level helpers.

In the sequel, we give a more precise description of this process
and justify our claim that good performance and enough precision
can be achieved — at least in some contexts — without giving up the
naive but flexible approach.

4.1 Building control flow graphs

As described in the overview of the translation process (section
3.1), the front-end of the translation tool-chain works in two phases:
it first builds control flow graphs from Python functions, and then
performs whole-program type inference on these graphs.

Remember that building the control flow graphs is not done,
as one might first expect, by following a function at the syntactic
level. Instead, the whole program is imported in a normal Python
interpreter — the full Python language is used as a kind of prepro-
cessor with meta-programming capabilities. Once the program is
imported, the object data in memory consists of Python function
objects in bytecode format, as well as any other kind of objects cre-
ated at import-time, like class objects, prebuilt instances of those,
prebuilt tables, and so on. Note that these objects have typically
no text representation any more; for example, cyclic data structures
may have been built at this point. The translation tool-chain first
turns these function objects into in-memory control flow graphs
which contain direct references to the prebuilt data objects, and
then handles and transforms these graphs.

Figure 6 shows the control flow graph obtained for a simple
function — this is a screenshot from our graph viewer, used for
debugging; basic block placement is performed by Graphviz [4].

The actual transformation from function objects — i.e. bytecode
— to flow graph is performed by the Flow Object Space, a short but
generic plug-in component for the Python interpreter of PyPy. The
architecture of our Python interpreter is shown in figure 7. Note
that the left column, i.e. the bytecode interpreter and the Standard
Object Space, form the full Python interpreter of PyPy. It is an
RPython program, and the whole purpose of the translation process
is to accept this as input, and translate it to an efficient form. The
description of this particular input program is beyond the scope of
the present paper; see [18].

However, the bytecode interpreter plays a double role, at two
different levels. The so-called Object Spaces are domains in the
abstract interpretation terminology. By design, we cleanly sepa-
rated these domains from the bytecode interpreter core; the latter
is only responsible for decoding the bytecodes of an application
and emulating the corresponding stack machine. It treats all actual
application-level objects as black boxes, and dispatches all opera-
tions on them to the Object Space. The Standard Object Space is
a concrete domain, in which objects are the concrete Python ob-
jects of the various built-in types: lists, dictionaries, and so on. By
opposition, the Flow Object Space is really an abstract domain. It
handles objects that are placeholders.

Its lattice order (actually a join-semilattice only) is extremely
simple, because most actual analysis is delayed to the next phase,
the type inference engine. The objects are either Variables, which
are pure placeholders for entirely unknown values, or Constants
with a concrete Python object as value. The order places Variable
as the top, and keeps all Constants unordered. Thus if two differ-
ent constants merge during abstract interpretation, we immediately
widen them to Variable.

In conjunction with the Flow Object Space, the bytecode inter-
preter of PyPy thus performs abstract interpretation of Python byte-
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def is_prime{n):
d=2
while d < n:
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return False
d=d +1
return True
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Figure 6. the control flow graph of a simple function, computed
and displayed by our tool-chain.
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Figure 7. the interpreter and object spaces.



codes from the application.” In this case, the bytecodes in question
come from the RPython application that we would like to translate.

The Flow Object Space records all operations that the bytecode
interpreter “would like” to do between the placeholder objects. It
records them into basic block objects that will eventually be part
of the control flow graph of the whole function. The recorded
operations take Variables and Constants as argument, and produce
new Variables as results. The Constants serve two purposes: they
are a way to introduce constant values into the flow graphs — these
values may be arbitrarily complex objects, not just primitives — and
they allow basic constant propagation.

In the flow graph, branching occurs when the bytecode inter-
preter tries to inspect the truth value of placeholder objects, as it
would in response to conditional jump opcodes or other more com-
plicated opcodes: at this point, the Flow Object Space starts two
new basic blocks and - with a technique akin to continuations —
tricks the interpreter into following both branches, one after the
other. Additionally, the bytecode interpreter sends simple positional
signals that allow the Flow Object Space to detect when control
paths merge, or when loops close. In this way, abstract interpreta-
tion quickly terminates and the recorded operations form a graph,
which is the control flow graph of the original bytecode.

Note that we produce flow graphs in Static Single Information
or SSI[2] form, an extension of Static Single Assignment[9]: each
variable is only used in exactly one basic block. All variables that
are not dead at the end of a basic block are explicitly carried over
to the next block and renamed, as can be seen in figure 7: each link
carries a list of variables matching the formal input arguments of
its target block.

While the Flow Object Space is quite a short piece of code
— its core functionality takes only 300 lines — the detail of the
interactions sketched above is not entirely straightforward; we refer
the reader to [20] for more information.

4.2 The Annotator

The type inference engine, which we call the annotator, is the
central component of the front-end part of the translation process.
Given a program considered as a family of control flow graphs,
the annotator assigns to each variable of each graph a so-called
annotation, which describes the possible run-time objects that this
variable can contain. Following usual terminology, we will call
such annotations fypes — not to be confused with the Python notion
of the concrete type of an object. An annotation is a set of possible
values, and such a set is not always the set of all objects of a specific
Python type.

Here is a simplified, static model of how the annotator works.
It can be considered as taking as input a finite family of functions
calling each other, and working on the control flow graphs of each
of these functions as built by the Flow Object Space (section 4.1).
Additionally, for a particular “entry point” function, the annotator
is provided with user-specified types for the function’s arguments.

7Note that this process uses the unmodified bytecode interpreter. This
means that it is independent of most language details. Changes in syntax
or in bytecode format or opcode semantics only need to be implemented
once, in the bytecode interpreter. In effect, the Flow Object Space enables
an interpreter for any language to work as a front-end for the rest of the
tool-chain.

8 This is useful at this level for some constructs of the bytecode interpreter,
which can temporarily wrap internal values and push them onto the regular
value stack among the other application-level objects. We need to be able
to unwrap them again later. Moreover, we rely on this feature to perform
compile-time computations, particularly in the generic system code helpers,
which ask for and compute with the concrete types of the variables they
receive.

The goal of the annotator is to find the most precise of our types
that can be given to each variable of all control flow graphs while
respecting the constraints imposed by the operations in which these
variables are involved.

More precisely, it is usually possible to deduce information
about the result variable of an operation given information about
its arguments. For example, we can say that the addition of two in-
tegers must be an integer. Most programming languages have this
property. However, Python — like many languages not specifically
designed with type inference in mind — does not possess a type
system that allows much useful information to be derived about
variables based on how they are used; only on how they were pro-
duced. For example, a number of very different built-in types can be
involved in an addition; the meaning of the addition and the type
of the result depends on the type of the input arguments. Merely
knowing that a variable will be used in an addition does not give
much information per se. For this reason, our annotator works by
flowing types forward, operation after operation, i.e. by perform-
ing abstract interpretation of the flow graphs. In a sense, it is a
more naive approach than the one taken by type systems specifi-
cally designed to enable more advanced inference algorithms. For
example, Hindley-Milner type inference works in an inside-out di-
rection, by starting from individual operations and propagating type
constraints outwards [10][15].

Naturally, simply propagating types forward requires the use of
a fixed point algorithm in the presence of loops in the flow graphs
or in the inter-procedural call graph. Indeed, we flow types forward
from the beginning of the entry point function into each basic block,
operation after operation, and follow all calls recursively. During
this process, each variable along the way gets a type. In various
cases, e.2. when we close a loop, the previously assigned types
can be found to be too restrictive. In this case, we generalise them
to allow for a larger set of possible run-time values, and schedule
the block where they appear for reflowing. The newly generalised
types can in turn generalise the types of other result variables in
the block, which in turn can generalise the types that flow into the
following blocks, and so on. This process continues until a fixed
point is reached.

We can consider that all variables are initially assigned the
“bottom” type corresponding to the empty set of possible run-time
values. Types can only ever be generalised, and the model is simple
enough to show that there is no infinite chain of generalization, so
that this process necessarily terminates.

4.3 RPython types

As seen in section 3, we use the annotator with more than one type
systems. The most interesting and complex one is the RPython type
system, which describes how the input RPython program can be
annotated. The other type systems contain lower-level, C-like types
that are mostly unordered, thus forming more trivial lattices than
the one formed by RPython types.

The set A of RPython types is defined as the following formal
terms:

e Bot, T'op — the minimum and maximum elements (correspond-
ing to “impossible value” and “most general value”);

e Int, NonNeglInt, Bool — integers, known-non-negative inte-
gers, booleans;

e Str, Char — strings, characters (which are strings of length 1);

e Inst(class) — instance of class or a subclass thereof (there is
one such term per class);

e List(v) — list; v is a variable summarising the items of the list
(there is one such term per variable);



e Pbc(set) — where the set is a subset of the (finite) set of all
prebuilt constant objects. This set includes all the callables of
the input program: functions, classes, and methods.

e None — stands for the singleton None object of Python.

e NullableStr, NullableInst(class) — a string or None; resp.
an instance or None.

These types are ordered to form a lattice — we generally use
its structure of join-semilattice only, but we will see in section
4.5 a use case for the meet. Pbcs form a classical finite set-of-
subsets lattice, class annotations are ordered by inheritance. We
have left out a number of other annotations that are irrelevant for
the basic description of the annotator and straightforward to handle:
Dictionary, Tuple, Float, UnicodePoint, Iterator, etc. The
complete list and order is described in [17].

The type system moreover comes with a family of rules, which
for every operation and every meaningful combination of input
types describes the type of its result variable. Let V' be the set of
Variables that appear in the user program’s flow graphs. Let b be
a map from V to A; it is a “binding” that gives to each variable
a type. The purpose of the annotator is to compute such a binding
stepwise.

Let x, y and z be Variables. We introduce the rules:

z = add(z,y), b(z) = Int, b(y) = Int
B = bwith (z = Inf)

z = add(z,y), Bool <b(z),b(y) < NonNeglnt
b" = b with (z — NonNegInt)

The first rule specifies that if we see the addition operation applied
to Variables whose current binding is Int, a new binding b’ can
be produced: it is b except on z, where we have b'(2) = Int.
The second rule specifies that in a similar case, if both arguments
are known to be non-negative, so is the result. Extra rules control
addition between other combinations of numbers, as well as strings,
lists and tuples (for which addition is concatenation). Similar sets
of rules are introduced for each operation.

The type inference engine can be seen as applying this kind of
rules repeatedly. It does not apply them in random order, but fol-
lows a forward-propagation order typical of abstract interpretation.

It is outside the scope of the present paper to describe the type
inference engine and the rules more formally. The difficult points
involve mutable containers, e.g. initially empty list that are filled
somewhere else; the discovery of instance attributes — in Python,
classes do not declare upfront a fixed set of attributes for their
instances, let alone their types; and the discovery of base class
interfaces — across a class hierarchy, some methods with the same
name may be called polymorphically by the program, while others
may be unrelated methods used internally by the subclasses. These
examples require reflowing techniques that invalidate existing types
in already-annotated basic blocks, to account for the influence of
more general types coming indirectly from a possibly distant part
of the program. The reader is referred to [20] for more information.

4.4 Termination and complexity

The lattice model clearly contains no infinite chain. Moreover, it is
designed to convince oneself that the number of reflowings required
in practice is small. For example, we are not trying to do range
analysis beyond detecting non-negatives — the reason is that range
analysis is not an essential part of writing reasonably efficient
code. Consider that a translated RPython program runs hundreds
of times faster than when the same program is executed by the
standard Python interpreter: in this context, range analysis appears
less critical. It is a possible optimization that we can introduce in a
later, optional analysis and transformation step.
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The worst case behaviors that can appear in the model de-
scribed above involve the lattice of Pbcs, involving variables that
could contain e.g. one function object among many. An example
of such behavior is code manipulating a table of function objects:
when an item is read out of the table, its type is a large Pbc set:
Pbc({ fi, f2, f3,.-.}). But in this example, the whole set is avail-
able at once, and not built incrementally by successive discoveries.
This seems to be often the case in practice: it is not very common
for programs to manipulate objects that belong to a large but finite
family — and when they do, the whole family tends to be available
early on, requiring few reflowings.

This means that in practice the complete process requires a time
that is far lower than the worst case. We have experimentally con-
firmed this: annotating the whole PyPy interpreter (90,000 lines)
takes on the order of 5 to 10 minutes, and basic blocks are typi-
cally only reflown a handful of times, providing a close-to-linear
practical complexity.

We give formal termination and correctness proofs in [20], as
well as worst-case bounds and common-case estimates.

4.5 Precision

Of course, this would be pointless if the annotation did not give
precise enough information for our needs. We must describe a de-
tail of the abstract interpretation engine that is critical for precision:
the propagation of conditional types. Consider the following source
code fragment:

if isinstance(x, MyClass):
f(x)
else:

g(x)

Although the type of x may be some parent class of MyClass,
within the positive branch of the if it can be deduced to be of the
more precise type Inst(MyClass).”

This is implemented by introducing an extended family of types
for boolean values:

Bool(vy : (t1, f1),v2 : (t2, f2),...)

where the v,, are variables and ¢, and f, are types. The result
of a check, like isintance() above, is typically annotated with
such an extended Bool. The meaning of the type is as follows: if
the run-time value of the boolean is True, then we know that each
variable v, has a type at most as general as ¢,; and if the boolean
is False, then each variable v,, has a type at most as general as f,.
This information is propagated from the check operation to the exit
of the block via such an extended Bool type, and the conditional
exit logic in the type inference engine uses it to trim the types it
propagates into the next blocks (this is where the meet of the lattice
is used).

With the help of the above technique, we achieve a reasonable
precision in small examples. For larger examples, a different, non-
local technique is required: the specialization of type-polymorphic
functions.

As described in the introduction, the most important down-
side of our approach is that automatic specialization is a potential
performance-killer. So we decided that in the normal case, all calls
to a given function contribute to a single annotation of that function.
Inside the function graph, we propagate the join of the types of the
actual parameters of the call sites. We do support specialization,
however: we can generate several independently-annotated copies
of the flow graph of certain functions. When annotating RPython

9 Remember that our graphs are in SSI form, which means that the x inside
each basic block is a different Variable with a possibly different type as
annotation. Given that our type inference is not flow-sensitive, SSI gives an
advantage over SSA here.



programs, such specialization does not happen automatically: we
rely on hints provided by the programmer in the source code, in the
form of flags attached to function objects. As we had this trade-off
in mind when we wrote the Python interpreter of PyPy, we only had
to add about a dozen hints in the end.

This does not mean that automatic specialization policies are
difficult to implement. Indeed, the simpler lower-level type sys-
tems rely quite heavily on them: this is because the system code
helpers are often generic and can receive arguments of various C-
level types. In this case, because the types at this level are limited
and mostly unordered, specializing all functions on their input ar-
gument’s types works well.

At the level of RPython, the range of specializations that make
sense is actually much wider. Although we only specialize a very
small subset of the functions, we use criteria as diverse as special-
ization by the type of an argument, specialization by an expected-
to-be-constant argument value, memoized functions that the type
inference engine will actually call during annotation and replace
by look-up tables, and even complete overriding of the annotator’s
behavior in extreme cases. In this sense, the need for manual spe-
cialization turned into an advantage, in term of simplicity and flex-
ibility of implementing and using new specialization schemes.

This conclusion can be generalised. We experimented with a
simple approach to type inference that works well in practice, and
that can very flexibly accomodate small and big changes in the
type system. We think that the reasons for this success are to be
found on the one hand in the (reasonable) restrictions we put on
ourselves when designing the RPython language and writing the
Python interpreter of PyPy in RPython, and on the other hand in an
ad-hoc type system that is designed to produce enough precision
(but not more) for the purpose of the subsequent transformations to
C-level code.

We should mention that restricting oneself to write RPython
code instead of Python is still a burden, and that we are not propos-
ing in any way that the Python language itself should evolve in this
direction, nor even that RPython usage should become widespread.
Itis a tool designed with a specific goal in mind, which is the ability
to produce reasonably efficient, stand-alone code in a large variety
of environment.

5. Experimental results
5.1 Performance

Our tool-chain is capable of translating the Python interpreter of
PyPy, written in RPython, currently producing either ANSI C code
as described before, or LLVM'® assembler which is then compiled
to native code with LLVM tools.

The tool-chain has been tested with and can sucessfully apply
transformations enabling various combinations of features. The
translated interpreters are benchmarked using pystone (a Dhrystone
2.0 [24] derivative traditionally used by the Python community,
although it is a rather poor benchmark) and the classical Richards
benchmark (ported to Python) and compared against CPython 2.4.3
[22]. Results are summarized in table 1.

The numbers in parenthesis are slow-down factors compared to
CPython. These measures reflect PyPy revision 27815'!, compiled
with GCC 3.4.4. LLVM is version 1.8cvs (May 11, 2006). The
machine runs GNU/Linux SMP on an Intel(R) Pentium(R) 4 CPU

10The LLVM [14] project is the realization of a portable assembler infras-
tructure, offering both a virtual machine with JIT capabilities and static
compilation. Currently we are using the latter with its good high-level opti-
mizations for PyPy.

"PyPy is an open-source project under the MIT license, PyPy source
repository using subversion lives at http://codespeak.net/svn/pypy/dist/.
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at 3.20GHz with 2GB of RAM and 1MB of cache. The rows
correspond to variants of the translation process, as follows:

pypy-c: the simplest variant; translated to C code with no ex-
plicit memory management, and linked with the Boehm conserva-
tive GC.

pypy-c-thread: the same, with OS thread support enabled
(thread support is kept separate for measurement purposes because
it has an impact on the GC performance).

pypy-c-stackless: the same as pypy-c, plus the “stackless trans-
formation” step which modifies the flow graph of all functions to
allow them to save and restore their local state, as a way to enable
coroutines.

pypy-c-gcframework: in this variant, the “gc transformation”
step inserts explicit memory management and a simple mark-and-
sweep GC implementation. The resulting program is not linked
with Boehm. Note that it is not possible to find all roots from the C
stack in portable C; instead, in this variant each function explicitly
pushes and pops all roots to an alternate stack around each subcall.

pypy-c-stackless-geframework: this variant combines the “gc
transformation” step with the “stackless transformation” step. The
overhead introduced by the stackless feature is theoretically bal-
anced with the removal of the overhead of pushing and popping
roots explicitly on an alternate stack: indeed, in this variant it is
possible to ask the functions in the current C call chain to save their
local state and return. This has the side-effect of moving all roots
to the heap, where the GC can find them. (We hypothesize that the
large slowdown is caused by the extreme size of the executable in
this case — 21MB, compared to 6MB for the basic pypy-c. Making
it smaller is work in progress.)

pypy-llvm-c: the same as pypy-c, but using the LLVM back-end
instead of the C back-end. The LLVM assembler-compiler gives
the best results when - as we do here — it optimizes its input and
generates again C code, which is fed to GCC.

pypy-llvm-c-prof: the same as pypy-llvm-c, but using GCC’s
profile-driven optimizations.

The speed difference with CPython 2.4.3 can be explained at
two levels. One is that CPython is hand-crafted C code that has
been continuously optimized for a decade now, whereas the Python
interpreter of PyPy first seeks flexibility and high abstraction levels.
The other, probably dominant, factor is that various indices show
that our approach places a very high load on the GC and on the
memory caches of the machine. The Boehm GC is known to be
less efficient than a more customized approach; kernel-level pro-
filing shows that pypy-c typically spends 30% of its time in the
Boehm library. Our current, naively simple mark-and-sweep GC
manages to be a bit worse. The interaction with processor caches is
also hard to predict and account for; in general, we tend to produce
quite large amounts of code and prebuilt data. The overall perfor-
mance is still reasonable: some variants are within the same order
of magnitude as CPython, while others trade a slow-down for func-
tionalities not available in CPython.

5.2 Translation times

A complete translation of the pypy-c variant takes about 39 min-
utes, divided as shown in table 2.

An interesting feature of this table is that type inference is not
the bottleneck. Indeed, further transformation steps typically take
longer than type inference alone. This is the case for the LLTyper
step, although it has a linear complexity on the size of its input
(most transformations do).

Other transformations like the “gc” and the “stackless” ones
actually take more time, particuarly when used in combination with
each other (we speculate it is because of the increase in size caused
by the previous transformations). A translation of pypy-c-stackless,



Interpreter Richards, Time/iteration | Pystone, Iterations/second
CPython 2.4.3 789ms (1.0x) 40322 (1.0x)
pypy-c 4269ms (5.4x) 7587 (5.3x)
pypy-c-thread 4552ms (5.8x) 7122 (5.7x)
pypy-c-stackless 5121ms (6.5x) 6060 (6.7x)
pypy-c-gcframework 6327ms (8.0x) 4960 (8.1x)
pypy-c-stackless-gcframework 8743ms (11.0x) 3755 (10.7x)
pypy-llvm-c 3797ms (4.8x) 7763 (5.2x)
pypy-llvm-c-prof 2772ms (3.5x) 10245 (3.9x)

Table 1. summary of interpreter performance.

Step Time (minutes:seconds)
Front-end (flow graphs and type inference) 9:01

LLTyper (from RPython-level to C-level graphs and data) 10:38

Various low-level optimizations (convert some heap allocations to local variables, inlining, 6:51

)

Database building (this initial back-end step follows all graphs and prebuilt data structures 8:39
recursively, assigns names, and orders them suitably for code generation)

Generating C source 2:25
Compiling (gcc -02) 3:23

Table 2. dividing overall translation time by stage.

without counting GCC time, takes 60 minutes; the same for pypy-
c-stackless-gcframework takes 129 minutes.

6. Future work

As described in section 5, the performance of the compiled Python
interpreters is not yet up to competing with the well-established
CPython. We are always working to improve matters, considering
new optimizations and better GCs.

Current work also includes refininments of the OOTyper and
work on back-ends that use it, including those targeting CLI/.NET
and Smalltalk/Squeak.

6.1 JIT Specializer

So far, the PyPy tool-chain can only translate the Python interpreter
of PyPy into a program which is again an interpreter — the same
interpreter translated to C, essentially, although we have already
shown that some aspects can be “weaved” in at translation time,
like support for coroutines.

To achieve high performance for dynamic languages such as
Python, the proven approach is to use dynamic compilation tech-
niques, i.e. to write JITs. With direct techniques, this is a major
endeavour, and increases the effort involved in further evolution of
the language.

In the context of the PyPy project, we are now exploring — as
we planned from the start — the possibility of producing a JIT as a
graph transformation aspect from the Python interpreter. This idea
is based on the theoretical possibiliy to turn interpreters into com-
pilers by partial evaluation[12]. In our approach, this is done by
analysing the forest of flow graphs built from the Python inter-
preter, which is a well-suited input for this kind of techniques. We
can currently perform binding-time analysis on these graphs, again
with abstract interpretation techniques reusing the type inference
engine. The next step is to transform the graphs — following the
binding-time annotations — into a compiler; more precisely, in par-
tial evalution terminology, a generating extension. We can currently
do this on trivial examples.

The resulting generating extension will be essentially similar to
Psyco [19], which is the only (and hand-written) JIT available for
Python so far, based on run-time specialization.
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7. Related work

Applying the expressiveness — or at least the syntax — of very high-
level and dynamically typed languages to their implementation has
been investigated many times.

One typical approach is writing a static compiler. The viability
of, and effort required for, such an approach depends usually on
the binding and dispatch semantics of the language. Common Lisp
native compilers, usable interactively and taking single functions
or files as compilation units, are a well-known example of that
approach. However, the late binding for all names and the load
semantics make such an approach very hard for Python, if speed
improvements are desired.

In this context, it is more relevant to consider and compare
with projects using dynamic and very-high-level languages for
interpreters and VM implementations, and Just-In-Time compilers.

Scheme48 was a Scheme implementation using a restricted
Scheme, PreScheme [13], with static type inference based on
Hindley-Milner. This is viable for Scheme as base language. Sim-
plicity and portability across C platforms were its major goals.

Squeak [11] is a Smalltalk implementation in Smalltalk. It uses
SLang, a very restricted subset of Smalltalk with few types and
strict conventions, which can be mostly directly translated to C.
The VM, the object memory and the garbage collector support are
explicitly written together in this style. Again simplicity and porta-
bility were the major goals, as opposed to sophisticated manipu-
lation and analysis or “weaving” in of features as transformation
aspects.

Jikes RVM [1] is a Java VM and Just-In-Time compiler written
in Java. Bootstrapping happens by self-applying the compiler on a
host VM, and dumping a snapshot from memory of the resulting
native code. This approach directly enables high performance, at
the price of portability — as usual with pure native code emitting
approaches. Modularity of features, when possible, is achieved
with normal software modularity. The indirection costs are taken
care of by the compiler performing inlining (which is sometimes
even explicitly requested). In particular this modular approach is
used for implementing a range of choices for GC support [5].
This was the inspiration for PyPy’s own GC framework, although
much more tuning and work went into Jikes RVM. PyPy’s own GC



framework also exploits inlining of helpers and barriers to recover
performance.

Jikes RVM’s native JIT compilers [3] are not meant to be retar-
getted to run in other environments than hardware processors, for
example in a CLR/.NET runtime. Also Jikes RVM pays the com-
plexity of writing a JIT up-front, which also means that features and
semantics of the language are encoded in the JIT compiler code.
Major changes of the language are likely to correspond to major
surgery of the JIT.

PyPy’s more indirect approach, together hopefully with our
future work on generating a JIT compiler, tries to overcome these
limitations, at the price of some more efforts required to achieve
very good performance. It is too soon for a complete comparison
of the complexity, performance and trade-offs of these approaches.

8. Conclusion

The PyPy project aims at showing that dynamic languages are
suitable and quite useful for writing virtual machines in. We believe
that we have achieved this objective. The present paper gave an
overview of the architecture that enabled this result. Experiments
suggest that practical virtual machines could reasonably follow in
the near future, with faster-than-current virtual machines with JIT
specialization techniques for the mid-term future.

Targetting platforms that are very different from C/Posix is
work in progress, but given that many of the initial components
are shared with the existing stack of transformations leading to C,
we are confident that this work will soon give results. Moreover, we
believe that these results will show reasonable efficiency, because
our back-ends for VMs like Squeak and .NET can take advantage
of a high-level input (as opposed to trying to translate, say, C-like
code to Smalltalk).

A desirable property of our approach is to allow a given lan-
guage and VM to be specified only once, in the form of an inter-
preter. Moreover, the interpreter can be kept simple (and thus keep
its role as a specification): not only is it written in a high-level lan-
guage, but it is not overloaded with low-level design choices and
implementation details. This makes language evolution and exper-
imentation easier. More generally, this property is important be-
cause many interpreters for very difference languages can be writ-
ten: the simpler these interpreters can be kept, the more we win
from our investment in writing the tool-chain itself — a one-time
effort.

Dynamic languages enable the definition of multiple custom
type systems, similar to pluggable type systems in [8] but with
simple type inference instead of explicit annotations. This proved
a key feature in implementing our translation tool-chain, because
it makes a many-levels approach convenient: each abstraction level
can provide an implementation for some of the features that the
higher levels considered primitive. It offsets the need to define a
minimal kernel of primitives and build everything on top of it;
instead, we have been able to implement, so to speak, the right
feature at the right level.
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