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Abstract.
Modern network processors (NPs) are highly multithreaded chip multiprocessors (CMPs), supporting

a wide variety of mechanisms for on-chip storage and inter-task communication. Real network processor
applications are hard to program and must be tailored to fit the resources of the underlying NP, motivating
an automated approach to mapping multithreaded applications to NPs. In this paper we propose and eval-
uate compiler-based automated task and data management techniques to scale the throughput of network
processing task graphs onto NPs. We evaluate these techniques using a NP simulation infrastructure based
on realistic NP applications, and present an approach to discovering performance bottlenecks. Finally we
demonstrate how our techniques enhance throughput-scaling for NPs.
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1 Introduction

The deployment of network processors (NPs) has be-
come increasingly important as networking applications
continue to push more processing into the network. NP
applications are typically composed of many threads that
share memory, synchronize and communicate frequently.
Even today, for most NP architectures, writing code
means managing several concurrent software threads in
hand-coded assembly to ensure the most efficient code
possible, and to fully exploit the wide variety of instruc-
tions commonly available for synchronization and com-
munication. These programming challenges are limiting
the widespread adoption of NPs.

Instead of writing complex parallel applications, we
would rather the programmer be able to express the ap-
plication as a graph of tasks [3, 5] through a high-level
language. Ideally, the compiler would automatically in-
sert all synchronization, signalling, and manage memory,
allowing the high-level application to scale up to available
NP resources. In this paper we introduce a parametric
compilation and simulation framework that allows us to
explore such compiler transformations for scaling task
graphs for NPs.

1.1 Related Work

The notion of compiler support for automatically
transforming network processing applications is of grow-
ing interest in the parallel systems community. The
Shangri-la project [3] shares our approach of an inte-
grated, profile-driven compilation; however, it suggests a
custom programming language and uses an older NP (the
IXP2400) that has less on-chip parallelism and memory
bandwidth available. Shangri-la uses a task-based pro-
gramming model that, with its packet processing func-
tions and communication channels, resembles ours. Li
et al. [10] explore automatic multithreading by compiler-
inserted synchronization. However, they do not address
how shared variable are identified and the case where
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two shared variables depend on each other’s value. Dai
et al. [5] present an elaborate form of task partitioning
but since they evaluate it in isolation of multithread-
ing, they are concerned with making balanced partitions
and not with improved data locality and schedulability.
Mudigonda et al. [11] performed some evaluation of wide
memory accesses but did not use compiler feedback to
group memory accesses and selectively use memory band-
width, as well, it was not evaluated in conjunction with
parallel PEs.

1.2 Contributions

This paper makes the following contributions: (i) it de-
scribes, combines and evaluates task and memory trans-
formations and compilation techniques to automatically
scale the throughput of an application to the resources
of the underlying NP; (ii) it presents the NPIRE infras-
tructure, an integrated environment for network proces-
sor compiler and architectural research; (iii) it presents
an integrated evaluation of realistic parallel NP applica-
tions and multithreaded NPs.

2 Compiler Techniques for NPs

The goal of automated compilation for an NP is to
increase parallelism and hence throughput by scaling a
high-level specification of an application to exploit all
available processing and memory resources through in-
creased parallelism. In this section, we first describe the
programming model that we use, and discuss the differ-
ent types of memory that it implies. Next, we explore
compilation methods for increasing parallelism through
task transformations and for tolerating memory latency.

2.1 Programming Model

Rather than defining a new programming model, we
use the Click Modular Router [8] which has also been
used in a number of other studies of NP design [4, 14].
Click provides a large library of predefined network pro-
cessing tasks called elements which can be connected
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Figure 2: Separation of different types of memory.

in task graphs to form a wide variety of NP applica-
tions. Figure 1 shows an example Click configuration
(which compresses valid IP packets) and the resulting
task graph.

Click is coded in a high-level language (C++), which
is not a traditional choice for NPs due to its overheads.
However, the modularity and the absence of global vari-
ables make Click a good candidate for parallelization
and source-level optimization. In our evaluation, we at-
tempt to reduce the overheads of C++ by inlining most
method calls, and by optimizing the transitions between
elements, as our compiler understands the Click configu-
ration script.

2.2 Memory Types

The programming model that we assume allows the
compiler to easily distinguish between different types of
memory, identify shared memory, and map variables and
data structures to the various types of storage available
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Figure 3: Task transformations to increase parallelism;
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in the NP architecture. Figure 2 illustrates the four dif-
ferent types of memory that we support. First, there
are the instructions that comprise a task, which are typi-
cally read-only. Second is the execution context, the data
which is private to a task such as its execution stack,
registers, and any temporary heap storage. Third is the
persistent heap data which is maintained across instances
of a distinct task. The data structures that exist after
initialization is called static while the data structures cre-
ated as packets are processed are called dynamic. Fourth
is the packet data, including the actual packet buffer

(header and payload) as well as any meta-data attached
to the packet by tasks. One benefit of this model of mem-
ory is that the only way for two distinct tasks to commu-
nicate is through either packet meta-data or potentially
through a modified packet payload. To extract memory
types, the runtime profiling system (see Section 3) tracks
the creation of elements and other C++ objects at initial-
ization time. Later, all memory accesses are tagged and
classified by our profiling tool: because the memory types
are separate (no cross-referencing between the types), the
memory accesses can be classified without ambiguity.

2.3 An Overview of Task Transformations

Figure 3 illustrates four task transformations for in-
creasing parallelism in the task graph of a network pro-
cessing application. Figure 3(a) represents the normal,
sequential execution of three distinct tasks A, B, and C. To
increase parallelism, and to allow a minimal task graph
to scale up to a larger number of PEs and hardware con-
texts, we employ task replication: in Figure 3(b), tasks A
and C are each replicated. In Figure 3(c), we employ task

splitting which breaks a large task (eg., C) into smaller
tasks allowing these smaller task-splits to be scheduled
on multiple PEs, thus improving load balance. In Fig-



Table 1: Potential dependences through memory.

Dependence Type Dependence Location

Between distinct tasks packet meta-data
packet payload

Between task replicas persistent heap

Within a task stack
and between temporary heap
task-splits persistent heap

packet meta-data
packet payload

With an early-signalled task (none)

When speculating persistent heap
between task replicas

ure 3(d), we illustrate early signalling: when two inde-
pendent tasks (eg., B and C) are both guaranteed to exe-
cute, the execution of those two tasks can be aggressively
overlapped. Finally, Figure 3(e) demonstrates how spec-

ulation can be used to aggressively execute potentially
dependent tasks in parallel (eg., task C and its replica).
Speculation can be used to avoid synchronization in the
case of an unlikely dependence with a replica, but ensures
correctness by aborting and re-executing a task which vi-
olates such a dependence. In the remainder of this sec-
tion, we describe these task transformations in more de-
tail.

2.4 Task Replication

Giving the illusion of programming a machine where
everything happens in sequential order greatly simplifies
the programmer’s work by reducing the need to perform
dependence management. For a task which is not sensi-
tive to packet ordering,1 we can increase parallelism by
replicating that task. A task and its replica(s) (i) can
either occupy two hardware contexts on the same PE
or occupy multiple PEs, (ii) can potentially share an in-
struction store, and (iii) can share the persistent heap.
Thus there will potentially be dependences between the
replicas through the persistent heap: for example, if a
task increments a persistent counter for every packet.
Hence, dependences between task replicas can be con-
sidered to be unordered: the order of execution of the
task replicas does not matter as long as they execute
atomically with respect to the shared persistent heap.
Such atomic execution is provided by the insertion of
synchronization, i.e., a lock and unlock pair which cre-
ate a critical section around the memory accesses that
result in unordered dependences. For dependent shared
memory accesses in persistent heap identified by alias
analysis augmented with our memory typing system, we
automatically insert synchronization in a fashion simi-
lar to Li et al. [10] plus take care of grouping dependent
shared variables in the same synchronized section. The
synchronization placement is such that:

1To support packet ordering while not being overly conservative
in the common case we assume a mechanism for the application
developer to specify that ordering be preserved at a given point in
the task graph.

1. the task acquires a lock before the first read or write
to a given shared location;

2. the task releases the lock after the last read or write
to that location;

3. for any critical section that partially overlaps with
another, both critical sections are combined into
one.

While more aggressive or more fine-grained synchroniza-
tion strategies are possible, this method has the benefit of
avoiding deadlock situations, since only one lock is held
at a time. A more advanced approach would attempt to
decrease the size of the resulting critical section through
instruction scheduling [16] or implementing thread fold-
ing [6]. In summary, replication can be used to increase
the throughput of a bottleneck task, but can be limited
by intra-task dependences.

2.5 Task Splitting

To improve load balance, we can break a large task
into smaller tasks through task splitting, allowing the new
task-splits to be scheduled on multiple PEs. To split a
task requires an analysis of all dependences between the
task-splits. When we attempt to split a task, we must
preserve any of the original dependences within the task
that now cross task-split boundaries. Dependences across
task-splits can exist in any of the types of memory used
by a task (as summarized in Table 1), and are therefore
difficult to manage. These dependences are ordered since
the results of the producer task-split must be forwarded
to the consumer task-split as input. Furthermore, if a
task replica is split, any locks held across a split point
must migrate from the producer task-split to the con-
sumer task-split.

Our compiler performs task splitting by iteratively
splitting candidate tasks, measuring the resulting per-
formance through feedback, and repeating while perfor-
mance improves. Upon each splitting iteration we break
a task (or a task-split) in two task-splits of roughly the
same dynamic execution duration. We chose the candi-
date tasks for splitting to be the top three bottleneck
tasks. This criteria is estimated by the time that packets
are queued awaiting processing by distinct tasks. In our
test cases, we found that there was generally no benefit to
performing more than five iterations of splitting, for two
reasons: (i) each split incurs an overhead for communi-
cating the live data set between the resulting splits that
leads to diminishing returns; and (ii) we currently do not
create tasks splits that span across loops boundaries for
performance reasons.

A more advanced form of splitting would facilitate task

pipelining—allowing a split task to operate on multiple
packets at once. While automatically pipelining in the
presence of potential dependences within a task is poten-
tially beneficial, it is complex and hence our infrastruc-
ture does not support it yet.

2.6 Signalling a Task Early

Signaling a task early allows us to exploit inter-task
parallelism by executing independent tasks at the same
time instead of serially. Any task that post-dominates an
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Figure 4: Example of early signaling requiring extra
inter-task synchronization. Task B can start as early as
task A, however task D must wait for a resume signal from
task B because of an ordered dependence between tasks
B and D.

earlier point in the task graph is a candidate for early sig-
nalling. However, the compiler must ensure there are no
dependences between the candidate task and any inter-
mediate tasks, and ensure that the candidate task does
not deallocate memory (which may still be in use) nor
perform packet output.

In Figure 3(d) we illustrated a simple case of early sig-
nalling when two independent tasks (eg., B and C) are
aggressively overlapped by signalling C to execute early,
i.e., after A completes. However, if we consider a slightly
larger task graph the situation becomes more complex,
as shown in Figure 4. Assume that the compiler has
decided that B is independent of A. B can therefore be
signalled early (i.e., at the same time as A). If the com-
piler has also decided that C is independent of B, then
C may also be signalled early (ie., when A completes).
The problem is as follows: since when C completes it sig-
nals D, D may inadvertently execute in parallel with B;
if there is an ordered dependence between B and D, then
the dependence might be violated leading to an incor-
rect execution. Rather than making D wait to begin ex-
ecution until B completes, we take the more fine-grained
approach of having D execute up to the dependent oper-
ation, then wait until B completes. This synchronization
is performed using two additional types of signals: i) D

waits for B before performing the dependent operation,
and ii) B resumes D upon completion. Note that this
scheme for early signalling cannot be applied in some
situations, such as when the candidate task appears in
multiple locations in the task graph.

2.7 Speculation

When a task is replicated, the task and its replica may
have dependences through the persistent heap. We ini-
tially solved this problem by creating synchronized sec-
tions around the accesses to shared data. In the case
where actual sharing of data is rare, such synchroniza-
tion can be a wasteful overhead—instead we would rather
execute the critical section optimistically through sup-
port for speculation [7, 16] or transactional execution [13].
Such support involves two key mechanisms: (i) the ability
to detect violated data dependences between speculative
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critical sections; and (ii) the ability to checkpoint a crit-
ical section and roll-back execution in the event of such
a violation. When a task and its replica have conflicting
critical sections, we must decide which should succeed
and which must re-execute. Since these critical sections
are unordered we must impose an order, such as the or-
der in which the tasks entered the critical section. In
addition to eliminating potentially unnecessary synchro-
nization, speculation can also simplify the compiler since
dependences do not have to be completely understood.

2.8 Locality Transformation

In a typical mapping of a network application to a NP,
the packet data is mapped to a memory with a large
latency but high throughput. To help tolerate this la-
tency and to reduce request traffic, NPs typically support
“wide” memory operations where a single request results
in the transfer of multiple memory locations—essentially,
this results in the implementation of a software-managed
cache. Compiler support for managing memory must be
aware of this ability and automatically target wide mem-
ory operations when accessing a large data structure or
when accessing several consecutive memory words.

3 The NPIRE Framework

In this section, we present NPIRE (Network Processor
Infrastructure for Research and Evaluation), the basic
structure of which is shown in Figure 5. The goal of
NPIRE is to allow the investigation of high-level com-
piler transformations and NP architectures by mapping
a benchmark application (composed of a graph of tasks)
to a parameterizable NP architecture simulator. NPIRE
has two major components: (i) a compiler, built on
LLVM [9]; and (ii) a trace-based architectural simula-
tor, which is integrated into the benchmark application
by the compiler. The simulator provides feedback that
allows the compiler to iteratively mold the application



to the underlying NP. The remainder of this section de-
scribes NPIRE’s compiler and simulator in more detail.

3.1 Compilation

The compiler divides Click’s modular elements into
tasks, and performs the transformations described in Sec-
tion 2. However, the compiler must also perform the im-
portant tasks of memory mapping, task mapping, and
task scheduling.

Memory Mapping The role of the compiler is to map
each of the application-level memory types described
in Section 2.2 to the different forms of physical mem-
ory available in the underlying NP: i.e., memory that
is (i) local to the processor; (ii) shared at the proces-
sor level (e.g., for next-neighbor communication); (iii)
shared chip-wide (e.g., a scratchpad); or (iv) shared in
external (off-chip) memory. The mapping implemented
in NPIRE of each application-level type of memory to
physical memory is summarized later in Table 2. Our
approach here in the mapping was to map dynamically
sized application buffers to SRAM, the fastest external
storage. Packet data is mapped to DRAM because of
the potentially large amount of data to store. Stack is
allocated in registers so that it is private to a context.
Static persistent heap goes in local PE storage so that it
can be shared by several contexts while providing a fast
access to a few contexts.

Task Mapping While task mapping and scheduling
are not the focus of this work, they are crucial steps that
must be performed well to allow us to evaluate compiler
task transformations. Automatically mapping a task
graph to PEs is indeed a very challenging problem which
gives rise to a strong tension between locality and par-
allelism. Locality is optimized by mapping related tasks
to few PEs so that storage and communication are mini-
mized, while parallelism is improved by mapping tasks to
many PEs and exploiting more resources. In NPIRE, the
mapping process is iterative, based on profile feedback
from simulation, and proceeds in the following steps.

1. An initial measurement is made where each task
runs on its own PE, assuming an infinite number
of PEs.

2. Using a greedy algorithm, we then re-assign tasks
to the parameterized number of PEs while mini-
mizing the expected utilization of each PE.

3. Next we replicate the task with the longest queue
time (according to profile feedback). Replicas can
optionally be assigned to the same PE, or to differ-
ent PEs. We repeat this step until the NP is well
utilized.

4. Once a base mapping is decided, we attempt to im-
prove it through simulated annealing using a faster,
coarse-grain simulator to provide fast feedback.

Task Scheduling Once tasks have been mapped to
PEs, there still remains some flexibility in the schedul-
ing of tasks to the hardware contexts of each PE. We
capitalize on the fact that only heap data is persistent
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across task instances in a programming model such as
Click’s—this allows us greater flexibility in task schedul-
ing, since a given task need not be bound to a certain
hardware context within a PE. Instead, an instance of a
task (identified by a task ID and a pointer to the packet
that it will work on) is queued before each PE. A task
is executed when it reaches the head of the queue and a
hardware context is free to execute it. To improve load-
balance, task replicas may be assigned to a small group of
PEs. For such cases, we model a shared queue such that
a replica may execute on the next PE in the group with
an available hardware context. This model assumes that
the code for each task or task replica has been loaded
into each target PE.

3.2 Simulation

The simulation component of NPIRE is deeply param-
eterized, allowing us to vary the number of processing el-

ements (PEs), the number of hardware contexts per PE,
the interconnection between the PEs, and the implemen-
tation of the various forms of memory. Modern NP archi-
tectures are typically organized as a highly-multithreaded
CMP executing either (i) independent threads having
a global view of all shared on-chip resources; or (ii) a
pipeline of processing stages where each processor is spe-
cialized to perform a certain task. A third alternative is
a hybrid model (such as the Motorola C-5e [2] and the
Intel IXP processors [6]) where the processing of a packet
can flow through a general interconnection of processing
elements that share memory. For generality, we focus on
these hybrid architectures where the programmer is still
free to adopt a pipelined or run-to-completion program-
ming model.

The high-level architecture of the NPs that we can sim-
ulate with NPIRE is shown in Figure 6. The goal of
NPIRE is to focus on thread-level parallelism and inter-
task communication, similar to the Crowley and Baer [4]
and the Intel IXP architecture tool [6]— hence NPIRE
does not yet model the micro-architecture of PEs in de-
tail. Instead, we assume a single-cycle-per-instruction
PE model where instruction counts are obtained using a
conversion factor from the intermediate representation to
RISC instructions [1]. This abstraction technique, also



Table 2: Storage devices to which each memory type is
mapped for our benchmark applications.

Device
`

`
`

`
`

`
`

`
`

`
`

Type

Application Rou-

ter

NAT

External SRAM Packet Meta-Data 42B 36B

External DRAM Packet Buffer 23B 45B

Local storage Persistent Static Heap 5B 22B

Registers Stack 0B 96B

External SRAM Dynamic Heap 44B 49B

used by Vin et al. [15], gives us a reasonable approxi-
mation of the instruction counts and allows for a relative
comparison of the impact of the proposed compiler trans-
formations.

Modern NPs typically provide very low-latency switch-
ing between hardware contexts within a PE. In combi-
nation with non-blocking loads modeled in NPIRE, we
can tolerate the significant latency of memory accesses.
While in Intel’s IXP NPs, a context switch is triggered
explicitly by the programmer, our simulator triggers a
context switch whenever a long-latency memory access
occurs. Because we have replicated tasks containing crit-
ical sections, we must address potential deadlock scenar-
ios through support for pre-emption, although we do not
discuss this further here.

In NPIRE, to provide support for speculation (when
speculation is used) the compiler first inserts code to
checkpoint the context of a task at the entry of a crit-
ical section, and to restore this context in the event of
a dependence violation and rollback. Next, in the sim-
ulator we model hardware support for detecting data
dependence violations similar to that proposed previ-
ously [7, 16]—our focus is not to propose specific hard-
ware support for speculation in NPs but instead to evalu-
ate the potential performance benefits of optimistic crit-
ical sections.

4 Experimental Setup

We evaluate two benchmark applications: a RFC1812-
compliant router (Router) and a network address trans-
lation application (NAT), both of which are adapted
from those created by Kohler et. al. [8], and have been
used previously to benchmark NPs. Both applications
perform IP header processing—i.e., the packet payload
is irrelevant. Also, each application has two input and
two output interface tasks. In Router, packets are each
processed by an average of 16 tasks (with a standard devi-
ation of 1.12); 17% of the dynamic instructions that pro-
cess one packet are in synchronized sections (due to the
buffering of packets before being sent out after process-
ing). In NAT, packets are each processed by an average
of 12 tasks (with a standard deviation of 3.37), 32% of dy-
namic instructions that process one packet are in critical
sections because of again output buffering and because of
the packet rewriting tasks that create and access per-flow
records used to translate packet header fields. Table 2
shows the devices to which each application-level memory

Table 3: NP Architecture Simulated. The total latency
to access a form of storage is equal to the sum of all parts.
For example, to access external SRAM takes 4+51+5+
81 = 141 cycles, of which 132 are pipelined.

Unpipelined Pipelined
Storage Type (cycles) (cycles)

External DRAM access 12 R 226 / W 0
bus 4 59

External SRAM access 5 81
bus 4 51

On-chip shared SRAM access 3 R 21 / W 8
bus 3 37

Remote PE registers access 1 12
bus 1 1

Local store 4 11
Registers 4 0

Next-neighbor PE registers 4 4

Other Parameters Value

processing element frequency 1 GHz
hardware contexts per PE 8

queue size for bus 40
and memory controllers

pending loads allowed per context 3
rollback on failed speculation 40 cycles

context switch latency 0 cycles

type is mapped, as well as the average amount of data ac-
cessed per packet for each memory type. Finally, we mea-
sure our benchmark applications using modified packet
traces from the Teragrid-I 10GigE NLANR trace [12].

One goal of this work is to evaluate the ability of com-
piler task transformations to scale a NP application up to
larger numbers of PEs—hence we model NPs with a rep-
resentative memory organization and varying numbers
of PEs. Table 3 summarizes the architectural parame-
ters of our modeled processor, in particular the laten-
cies to access the various storage types available. While
these parameters are inspired by the IXP2800 NP [6]
(which has 16 PEs), our infrastructure is far more flexi-
ble than available IXP simulators, allowing us to target a
wide variety of architectures. We model several types of
storage and bus interconnects, each of which have both
pipelined and unpipelined components (as described in
Table 3). The simulated NP has seven external memory
channels: three for DRAM and four for SRAM. There
are four DRAM buses which can communicate with all
three DRAM channels through a time-multiplexed con-
nection. The NP is divided in half such that half of the
PEs each have two dedicated DRAM buses; of the two
buses, one is for reads and one is for writes. SRAM is
accessed through an additional four on-chip buses that
have the same organization as the DRAM buses. Fur-
thermore, through another bus each PE has access to
a shared on-chip SRAM as well as shared registers on
remote PEs. Finally, each PE has direct access to lo-
cal storage, its own registers, and certain registers of its
next-neighbor PEs.

To evaluate and compare different task transformation
and mapping techniques and their ability to effectively
scale an application to many PEs, we need a method for
finding the maximum sustainable packet input rate. We
derive this rate by finding, through a bisection search,
the smallest effective packet inter-arrival time where the



packet inter-departure time is equivalent (i.e., the NP can
keep up). When we refer to this rate as to the resulting
“throughput” of an experiment in the next section.

5 The Impact of Task Transformations

In this section, we use NPIRE to evaluate the impact
on packet throughput for the two benchmark applica-
tions (Router and NAT) of the compiler task transfor-
mations described in Section 2, and their ability to allow
the applications to scale to NPs with larger numbers of
PEs. For each application we also identify the perfor-
mance bottleneck, and determine whether it is a limita-
tion in the application or instead a saturated resource
in the underlying NP. Note that since both applications
each have two input and two output interface tasks, four
is the minimum number of PEs allowing us to bind each
interface task to a PE. Hence in all of our result graphs,
throughput speedup is computed relative to the maxi-
mum sustainable packet throughput on four PEs with no
task transformation.

Replication In this section, we evaluate four differ-
ent replication scenarios for the replication task trans-
formation presented in Section 2.4. The simplest sce-
nario (no transformation) has no replication and simply
extends the mapping to the number of available PEs.
Next, we investigate the case where a task and its repli-
cas are limited to execute on a certain PE (rep on PE),
but may use any available hardware context on that PE.
A more flexible form of replication allows a task and
its replicas to execute on any available context within
a small subset of PEs; we call this scheme “subset repli-
cation” (subset rep). Finally, we examine the case where
any task or replica can execute on any available con-
text of any PE, in a sense modeling a global task queue
(rep+global task queue).

In Figure 7(a), we first observe that with no transfor-
mation, Router does not scale at all as we increase the
number of PEs from four. Next, when the replication
transformation is performed but the replicas are limited
to a single PE (rep on PE), we see that throughput is im-
proved by a nearly constant amount (by about 5x), but
that this does not facilitate scaling either. We observe
that subset replication is ineffective until the number of
PEs is greater than the average number of active tasks
in the application (i.e., greater than 16 PEs, as described
in Section 4). For this transformation with larger num-
bers of PEs (such as 28 and 32 PEs), we see that the
mapping is imperfect, leading to inconsistent throughput
scaling—this underlines the importance and difficulty of
mapping. Finally, we see that Router with a global task
queue scales asymptotically up to 30 PEs. As the num-
ber of PEs increases, PE utilization steadily decreases
due to increasing contention on the external SRAM and
DRAM memory and the corresponding buses. In this
case, the maximum throughput obtained on 30 PEs is
27.2 times the throughput of the application with no
transformation—hence the combination of task replica-
tion with more flexible task scheduling can be quite pow-
erful.
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Figure 7: Impact of three variations of replication on
throughput with varying numbers of PEs, relative to the
application with no transformation running on 4 PEs.
subset rep means replication where a task and its repli-
cas can execute on a small subset of PEs, while rep on PE

means replication where replicas may only execute on a
specific PE.

Because NPs are complex systems, with many tasks
performing many communication and computation oper-
ations in parallel, identifying the performance bottleneck
for a given configuration is difficult. One method for bot-
tleneck identification involves idealizing potential bottle-
neck sources, as shown in Figure 8(a) where we focus on
the experiment of the global task queue from Figure 7(a).
In those “idealized executions”, we first observe that hav-
ing infinite PEs alone (I) is ineffective, indicating that
processing resources are not a bottleneck. Second, mod-
eling zero-cycle instructions (IZ) actually makes things
worse, because a large number of bus requests must retry,
and the overall fairness for bus requests is reduced. Elim-
inating synchronization (*S*) provides the biggest win,
motivating effort in more efficient or speculative criti-
cal sections. Finally, the further addition of perfect bus
pipelining provides the best overall throughput (IZSB),
confirming that bus contention is the next-most impor-
tant bottleneck after synchronization for Router.
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Figure 8: Impact of replication with a global task queue
on throughput for varying numbers of PEs, relative to
the application with no transformation running on 4 PEs.
Combinations of idealized executions are plotted to the
right: infinite number of PEs (I); maximum bus pipelin-
ing (B); maximum memory pipelining (M, i.e. the un-
pipelined time for a request is 1 cycle); zero instructions
(Z); and no synchronization (S, i.e. there are no critical
sections and we ignore inter-replica dependences).

In Figure 7(b), the throughput of NAT with no trans-
formation does not scale at all for increasing PEs. Repli-
cation limited to a PE provides a modest throughput
speedup of 1.36 for 4 PEs, but this gain is negated as we
increase the number of PEs: this is due to the reduction
in locality for data in the persistent heap, underlining
the tension between parallelism and locality. The greater
flexibility of subset replication with a global task queue
stabilize throughput, but the result is far from scaling
nicely to increasing PEs—hence there is a severe bottle-
neck for NAT. Using Figure 8(b), we attempt to find this
bottleneck. Similar to our result for Router, we find
that synchronization (*S*) is again the key bottleneck.

Task Splitting As it can be seen on Figures 9(a)
and 9(b), task splitting does not significantly impact the
throughput of Router and NAT: the communication
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Figure 9: Impact of the locality (locality), early sig-
nalling (early), and speculation (speculation) trans-
formations on throughput for varying numbers of PEs,
relative to the application with no transformation run-
ning on 4 PEs. Each experiment includes replication with
a global task queue.

overhead between the task splits actually reduces the
throughput of NAT by 3% (Figure 9(b)). Task split-
ting does not increase parallelism because the task-splits
execute in sequence, and are mapped to the same PEs as
the original unsplit task. The impact of task splitting
is more evident when replication is limited, as shown
in Figure 10(a) where we evaluate subset-replication
with and without the task splitting transformation on
Router. With subset replication, task splitting im-
proves the throughput on a small number of PEs because
the finer granularity of the task-splits improves the load
balance. We also observe that splitting can ease map-
ping, since the throughput is stabilized when increasing
the number of PEs from 16 (compared to no task split-
ting).

Early Signaling Figure 9(a) shows the impact of
the early signalling transformation on Router, where
throughput is reduced by 1%. This reduction is due to in-
creased task switching since there is more inter-task syn-



 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0  5  10  15  20  25  30  35

A
bs

ol
ut

e 
sp

ee
du

p

Number of PEs

split+subset_rep
subset_rep

(a) Impact of task splitting (split)

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30  35

T
hr

ou
gh

pu
t s

pe
ed

up

Number of PEs

locality+rep_on_PE
rep_on_PE

locality
no_transformation

(b) Impact of the locality transformation (locality)

Figure 10: Impact of transformations on the throughput
of Router for varying numbers of PEs, relative to the
application with no transformation running on 4 PEs.

chronization. However, we found that early signalling re-
duces packet processing latency by 8% on average across
all simulated NPs (i.e., when varying the number of PEs),
hence this transformation can still be compelling in some
scenarios. In Figure 9(b), we see that for NAT early sig-
naling increases the maximum throughput by only 0.1%.
Furthermore, for NAT, there is no significant improve-
ment in packet processing latency. A closer look revealed
that few tasks were signalled early for NAT, indicating
that for this application most tasks are inter-dependent.

Speculation Support for speculation allows the NP to
optimistically execute critical sections, as described in
Section 2.7 From Figure 9(a) we see that for Router

speculation has a significant negative impact. Surpris-
ingly, the fraction of speculated critical sections for which
speculation fails is fairly small: for example, speculative
critical sections fail only 5% of the time for 8 PEs, and
6.5% for 32 PEs. This indicates that for Router the
overhead of mis-speculation is intolerable. In contrast, in
Figure 9(b) we see that support for speculation results in
a dramatic improvement in throughput for NAT, for two
reasons. First, as we observed in Section 5, NAT is bot-

tlenecked mainly on synchronization of critical sections.
Second, we found that the fraction of speculated criti-
cal sections for which speculation fails is much smaller
than for Router: for example, in NAT speculative crit-
ical sections fail only 1.8% of the time for 12 PEs, and
2.2% of the time for 32 PEs. These results indicate that
speculation must be used judiciously, but can offer com-
pelling improvements in throughput for applications that
are bottlenecked on synchronization.

Locality Transformation Combining accesses to ex-
ternal memory reduces the number of accesses at the cost
of more bursty access behavior. As seen in Figure 9(a),
the NP is able to accommodate the traffic burstiness of
the locality transformation which results in a slight im-
provement in the throughput of Router for between 10
and 20 PEs (for example, throughput is improved by
3% for 12 PEs). The average fraction of time a PE
spends waiting for memory is reduced by nearly 50%,
and overall DRAM utilization is reduced by 5%. How-
ever, utilization for both the SRAM read buses and the
shared on-chip bus are increased by 10%, and the DRAM
read bus utilization is increased by 3%. In Figure 10(b),
the locality transformation on Router leads to a de-
cent improvement in throughput over in the application
without replication and replication limited to a PE. For
NAT, shown in Figure 9(b), the locality transformation
degrades performance beyond 10 PEs: in this case, the
benefit of combined accesses is negated by increased bus
contention, which in turn leads to a significant increase
in the amount of time spent in critical sections. In sum-
mary, the locality transformation is safer to use when
task scheduling is more localized, and must be used care-
fully to avoid the situation where the resulting bursty
traffic impedes the execution of critical sections.

6 Conclusions

We have demonstrated that a NP application described
as a graph of tasks in a high-level language can be trans-
formed automatically by a compiler to exploit NP re-
sources, and to scale up to NPs with larger numbers of
PEs. Of the transformations that we investigated, repli-
cation was the most effective at scaling an application
to larger numbers of PEs. We also found that flexibil-
ity in scheduling tasks and their replicas is key to scal-
ing throughput with the number of PEs. While early
signalling did not significantly improve throughput, we
observed that it can reduce packet processing latency.
When the tasks and their replicas are limited to execution
on a small number of PEs, we found that task splitting
can be used to improve load balance. We demonstrated
that support for speculation can result in a dramatic im-
provement in throughput when critical sections are exe-
cuted optimistically, for applications where the synchro-
nization of critical sections are a bottleneck and the fre-
quency of mis-speculation is low. Finally, combining ref-
erences to consecutive locations in external memory into
a wide reference can improve throughput by reducing the
number of references, but that the bursty behavior of this
transformation can lead to a prohibitive increase in con-



tention if the interconnect is already saturated.
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