
The LLVM Compiler System

Chris Lattner
sabre@nondot.org

Bossa International Conference
on Open Source, Mobile Internet and Multimedia

March 12, 2007

LLVM: Low Level Virtual Machine

http://llvm.org/

LLVM Talk Overview
• The LLVM Approach to Compilers
• The LLVM C/C++/ObjC Compiler
• Optimizing OpenGL with LLVM
• Using LLVM with Scripting Languages

http://llvm.org/

Open Source Compiler Technology
• “Scripting” Language Interpreters: Python, Ruby, Perl, Javascript, etc
– Traditionally interpreted at runtime, used by highly dynamic languages

• Java and .NET Virtual Machines
– Run time compilation for any language that can target the JVM

• GCC: C/C++/ObjC/Ada/FORTRAN/Java Compiler
– Static optimization and code generation at build time

http://llvm.org/

OSS Compiler Technology Strengths 1/2
• Scripting/Dynamic Language Strengths:
– Interpreters are extremely portable and small (code size)
– Many interesting advanced compilation models (pypy, Parrot, jrubyc, etc)
– Dynamic languages are very expressive and powerful

• Java Virtual Machine Strengths:
– JVM bytecode is portable, JVMs available for many systems
– Many languages can be compiled to JVM
– Provides runtime/JIT optimization, high level optimizations

http://llvm.org/

OSS Compiler Technology Strengths 2/2
• GCC Strengths:
– Support for important languages like C/C++
– Other projects can emit C/C++ code and compile with GCC

– Good code generation/optimization
– Supports many different CPUs

• Common strengths:
– Each has a large and vibrant community!
– We support tons of existing code written in many languages!

With so many strengths, what could be wrong?

http://llvm.org/

OSS Compiler Technology Weaknesses 1/2
• Common Problem:
– The tools only work together at a very coarse grain

Python

Python
Interp

Ruby
Interp

Ruby

PyPy

GCC

C, C++,
Ada, ... Java

JVM

C code

– Each arrow/box is a completely separate project from the others
– Very little sharing (e.g.) between ruby and python interpreter

– Advanced optimizer projects don’t share code (e.g. jrubyc vs shedskin)

...

http://llvm.org/

OSS Compiler Technology Weaknesses 2/2
• Scripting Language Weaknesses:
– Efficient execution: poor “low level” performance, memory use

• Java Virtual Machine Weaknesses:
– Must use all of JVM or none of it: GC, JIT, class library, etc
– Forced to mold your language into the Java object model
– Huge memory footprint and startup time

• GCC Weaknesses:
– Old code-base and architecture: Very steep learning curve
– Doesn’t support modern compiler techniques (JIT, cross file optimization)
– Slow compile times

Each approach has mostly disjoint strengths and weaknesses!

http://llvm.org/

LLVM Compiler Vision and Approach
• Basic mission: build a set of modular compiler components that:
– ... implement aggressive and modern techniques
– ... integrate well with each other
– ... have few dependencies on each other
– ... are language- and target-independent where possible
– ... integrate closely with existing tools where possible

• Second: Build compilers that use these components

Core

Optzn

xforms

X86

Support

Code
genTarget

PPC

DWARF

analysis

LTO

linker

LL IOBC IO System

CBE

GC

IPO

GCC

JIT

ARM ...

...

...

http://llvm.org/

Value of a library-based approach
• Reduces the time & cost to construct a particular compiler
• A new compiler = glue code plus any components not yet available

• Components are shared across different compilers
• Improvements made for one compiler benefits the others

• Allows choice of the right component for the job
• Don’t force “one true register allocator”, scheduler, or optimization order

• Examples:
– Initial bringup of llvm-gcc4 took 2-3 months (GCC is very complex!)
– Required building “GCC tree to LLVM” converter
– Including support for many targets, aggressive optimizations, etc

– First OpenGL JIT built in two weeks:
– Required building “OpenGL to LLVM” converter
– Replaced existing JIT, much better optimizations and performance

Key LLVM Feature:
IR is small, simple, easy to

understand, and is well defined

Example Client: llvm-gcc4
C/C++/ObjC/...

http://llvm.org/

Standard GCC 4.x Design
• Standard compiler organization: front-end, optimizer, codegen
– Parser and front-ends work with language-specific “trees”
– Optimizers use trees in “GIMPLE” form, modern SSA techniques, etc.
– RTL code generator use antiquated compiler algorithms/data structures

Language
Front-end

tree-ssa
Optimizer

Code
Generator

C

C++
ObjC

AST “tree”

.s file

GIMPLE RTL

– Pros: Excellent front-ends, support for many processors, defacto standard
– Cons: Very slow, memory hungry, hard to retarget, no JIT, no LTO, no

aggressive optimizations, ...

...

http://llvm.org/

llvm-gcc4 Design
• Use GCC front-end with LLVM optimizer and code generator
– Reuses parser, runtime libraries, and some GIMPLE lowering
– Requires a new GCC “tree to llvm” converter

Language
Front-end

LLVM
Optimizer

LLVM Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

AST “tree” LLVM IR LLVM CG IR
...

http://llvm.org/

LLVM optimizer features used by llvm-gcc
• Aggressive and fast optimizer built on modern techniques
– SSA-based optimizer for light-weight (fast) and aggressive xforms
– Aggressive loop optimizations: unrolling, unswitching, mem promotion, ...
– Many InterProcedural (cross function) optimizations: inlining, dead arg

elimination, global variable optimization, IP constant prop, EH optzn, ...

Language
Front-end

LLVM
Optimizer

LLVM Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

Interprocedural
Optimizations

...

Loop
Optimizations

Standard Scalar
Optimizations

http://llvm.org/

Other LLVM features used by llvm-gcc
• LLVM Code Generator
– Modern retargetable code generator, easier to retarget than GCC

• Write LLVM IR to disk for codegen after compile time:
– link-time, install-time, run-time

Language
Front-end

LLVM
Optimizer

LLVM Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

...

DISK

LLVM IR JIT

LTO

Ship Code
Gen

exe
file

Install Time Code Generation

http://llvm.org/

LLVM
Optimizer

LLVM
Linker

Link-Time Optimization (LTO)
• Link-time is a natural place for interprocedural optimizations
– Cross-module optimization is natural and trivial (no makefile changes)
– LLVM is safe with partial programs (dynamically loaded code, libraries, etc)
– LTO has been available since LLVM 1.0!

Code
Gen

Any
Front-end

LLVM
Optimizer

LLVM

LLVM
. . .

LLVMAny
Front-end

LLVM
Optimizer

LLVM

Any
Front-end

LLVM
Optimizer

LLVM

Compile Time

IR in .o
files

Link Time

Example Client: OpenGL JIT
OpenGL Vertex/Pixel Shaders

http://llvm.org/

OpenGL Pixel/Vertex Shaders
• Small program, provided at run-time, to be run on each vertex/pixel:
– Written in one of a few high-level graphics languages (e.g. GLSL)
– Executed millions of times, extremely performance sensitive

• Ideally, these are executed on the graphics card:
– What if hardware doesn’t support some feature? (e.g. laptop gfx)
– Interpret or JIT on main CPU

void main() {
 vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex);
 vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);
 vec3 lightVec = normalize(LightPosition - ecPosition);
 vec3 reflectVec = reflect(-lightVec, tnorm);
 vec3 viewVec = normalize(-ecPosition);
 float diffuse = max(dot(lightVec, tnorm), 0.0);
 float spec = 0.0;
 if (diffuse > 0.0) {
 spec = max(dot(reflectVec, viewVec), 0.0);
 spec = pow(spec, 16.0);
 }
 LightIntensity = DiffuseContribution * diffuse +
 SpecularContribution * spec;
 MCposition = gl_Vertex.xy;
 gl_Position = ftransform();
}

GLSL Vertex Shader

http://llvm.org/

Traditional OpenGL Impl - Before LLVM
• Custom JIT for X86-32 and PPC-32:
– Very simple codegen: Glued chunks of Altivec or SSE code
– Little optimization across operations (e.g. scheduling)
– Very fragile, hard to understand and change (hex opcodes)

• OpenGL Interpreter:
– JIT didn’t support all OpenGL features: fallback to interpreter
– Interpreter was very slow, 100x or worse than JIT

OpenGL
Parser

GLSL
Text

Interpreter

GFX Card

Custom JIT

OpenGL
AST

http://llvm.org/

OpenGL JIT built with LLVM Components

• At runtime, build LLVM IR for program, optimize, JIT:
– Result supports any target LLVM supports
– Generated code is as good as an optimizing static compiler

• Other LLVM improvements to optimizer/codegen improves OpenGL
• Key question: How does the “OpenGL to LLVM” stage work?

OpenGL
Parser

OpenGL to
LLVM

LLVM
Optimizer

LLVM
JIT

LLVM IR LLVM IROpenGL
AST

GLSL
Text

http://llvm.org/

Structure of an Interpreter
• Simple opcode-based dispatch loop:

• One function per operation, written in C:

• In a high-level language like GLSL, each op can be hundreds of LOC

while (...) {
 ...
 switch (cur_opcode) {
 case dotproduct: result = opengl_dot(lhs, rhs); break;
 case texturelookup: result = opengl_texlookup(lhs, rhs); break;
 case ...

double opengl_dot(vec3 LHS, vec3 RHS) {
 #ifdef ALTIVEC
 ... altivec intrinsics ...
 #elif SSE
 ... sse intrinsics ...
 #else
 ... generic c code ...
 #endif
}

Key Advantage of an Interpreter:
Easy to understand and debug,

easy to write each operation (each
operation is just C code)

http://llvm.org/

OpenGL to LLVM Implementation

OpenGL
ParserGLSL

OpenGL to
LLVM

LLVM
Optimizer

LLVM
JIT

LLVM IR LLVM IROpenGL
AST

llvm-gccOpcode
Functions

C Code
Bytecode

DISK

OpenGL Build Time

Ship

Bytecode

• At OpenGL build time, compile each opcode to LLVM bytecode:
– Same code used by the interpreter: easy to understand/change/optimize

http://llvm.org/

OpenGL to LLVM: At runtime
1.Translate OpenGL AST into LLVM call instructions: one per operation
2.Use the LLVM inliner to inline opcodes from precompiled bytecode
3.Optimize/codegen as before

 ...
 vec3 viewVec = normalize(-ecPosition);
 float diffuse = max(dot(lightVec, tnorm), 0.0);
 ...

 ...
 %tmp1 = call opengl_negate(ecPosition)
 %viewVec = call opengl_normalize(%tmp1);
 %tmp2 = call opengl_dot(%lightVec, %tnorm)
 %diffuse = call opengl_max(%tmp2, 0.0);
 ...

OpenGL
to LLVM

LLVM Inliner
 ...
 %tmp1 = sub <4 x float> <0,0,0,0>, %ecPosition
 %tmp3 = shuffle <4 x float> %tmp1, ...;
 %tmp4 = mul <4 x float> %tmp3, %tmp3
 ...

Optimize,
Codegen

PPC X86

OpenGL
ParserGLSL

OpenGL to
LLVM

LLVM
Optimizer

LLVM
JIT

LLVM IR LLVM IROpenGL
AST

http://llvm.org/

Benefits of this approach
• Key features of this approach:
– Each opcode is written/debugged for a simple interpreter, in standard C
– Retains all advantages of an interpreter: debugability, understandability, etc
– Easy to make algorithmic changes to opcodes

– OpenGL runtime is independent of opcode implementation
– LLVM provides high performance: optimizations, regalloc, scheduling, etc

• Continuing benefits of using LLVM:
– Support for new platforms for free
– LLVM codegen continues to improve as it is used by other projects (e.g. llvm-gcc)
– OpenGL group doesn’t maintain their own JIT!

Example Client:
a Scripting Language

Loosely based on “pypy” Python Compiler

http://llvm.org/

LLVM and Dynamic Languages
• Dynamic languages are very different than C:
– Extremely polymorphic, reflective, dynamically extensible
– Standard compiler optzns don’t help much if “+” is a dynamic method call

• Observation: in many important cases, dynamism is eliminable
– Solution: Use dataflow and static analysis to infer types:

var i;
for (i = 0; i < 10; ++i)
 ... A[i] ...

‘i’ starts as an integer

++ on integer returns integer

i isn’t modified anywhere else

– We proved “i” is always an integer: change its type to integer instead of object
– Operations on “i” are now not dynamic
– Faster, can be optimized by LLVM (e.g. loop unrolling)

http://llvm.org/

Advantages and Limitations of Static Analysis
• Works on unmodified programs in scripting languages:
– No need for user annotations, no need for sub-languages

• Many approaches for doing the analysis (with cost/benefit tradeoffs)

• Most of the analyses could work with many scripting languages:
– Parameterize the model with info about the language operations

• Limitation: cannot find all types in general!
– That’s ok though, the more we can prove, the faster it goes

http://llvm.org/

Scripting Language Performance
• Ahead-of-Time Compilation provides:
– Reduced memory footprint (no ASTs in memory)
– Eliminate (if no ‘eval’) or reduce use of interpreter at runtime (save code size)
– Much better performance if type inference is successful

• JIT compilation provides:
– Full support for optimizing eval’d code (e.g. json objects in javascript)
– Runtime “type profiling” for speculative optimizations

• LLVM provides:
– Both of the above, with one language -> llvm translator
– Install-time codegen
– Continuously improving set of optimizations and targets
– Ability to inline & optimize code from different languages
– inline your runtime library into the client code?

http://llvm.org/

Call for help!

Python

Common Dynamic Language
Representation + Type Inference

Ruby C, C++, Ada, ...

– OSS community needs to unite work on various scripting languages
– Common module to represent/type infer an arbitrary dynamic language

– Who will provide this? pypy? parrot? llvm itself someday (“hlvm”)?

Perl Javascript ...

llvm-gcc

LLVM

OpenGL

GLSL, ARB VP, ...

What Next?

LTO JIT Install Time
CodegenIPO

Cross Lang
Optzn

Debugger
Support

http://llvm.org/

LLVM Summary
• LLVM is a set of modular compiler components:
– LLVM can be used for many things other than simple static compilers!
– LLVM can be used to make a great static compiler! (llvm-gcc)

• LLVM components are language- and target-independent:
– Does not force use of JIT, GC, or a particular object model
– Code from different languages can be linked together and optimized

• LLVM provides aggressive functionality and is industrial strength:
– Interprocedural optimization, link-time, install-time optimization today!
– LLVM has compiled and optimized millions of lines of code

• LLVM 2.0 due out in May:
– Huge number of new features, codegen improvements
– Full ARM support, contributed by INdT, enhanced by Apple

sabre@nondot.org http://llvm.org/

