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LLVM Talk Overview
• The LLVM Approach to Compilers
• The LLVM C/C++/ObjC Compiler
• Optimizing OpenGL with LLVM
• Using LLVM with Scripting Languages
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Open Source Compiler Technology
• “Scripting” Language Interpreters: Python, Ruby, Perl, Javascript, etc
– Traditionally interpreted at runtime, used by highly dynamic languages 

• Java and .NET Virtual Machines
– Run time compilation for any language that can target the JVM

• GCC: C/C++/ObjC/Ada/FORTRAN/Java Compiler
– Static optimization and code generation at build time



http://llvm.org/

OSS Compiler Technology Strengths 1/2
• Scripting/Dynamic Language Strengths:
– Interpreters are extremely portable and small (code size)
– Many interesting advanced compilation models (pypy, Parrot, jrubyc, etc)
– Dynamic languages are very expressive and powerful

• Java Virtual Machine Strengths:
– JVM bytecode is portable, JVMs available for many systems
– Many languages can be compiled to JVM
– Provides runtime/JIT optimization, high level optimizations
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OSS Compiler Technology Strengths 2/2
• GCC Strengths:
– Support for important languages like C/C++
– Other projects can emit C/C++ code and compile with GCC

– Good code generation/optimization
– Supports many different CPUs

• Common strengths:
– Each has a large and vibrant community!
– We support tons of existing code written in many languages!

With so many strengths, what could be wrong?
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OSS Compiler Technology Weaknesses 1/2
• Common Problem:
– The tools only work together at a very coarse grain

Python

Python
Interp

Ruby
Interp

Ruby

PyPy

GCC

C, C++,
Ada, ... Java

JVM

C code

– Each arrow/box is a completely separate project from the others
– Very little sharing (e.g.) between ruby and python interpreter

– Advanced optimizer projects don’t share code (e.g. jrubyc vs shedskin)

...
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OSS Compiler Technology Weaknesses 2/2
• Scripting Language Weaknesses:
– Efficient execution: poor “low level” performance, memory use

• Java Virtual Machine Weaknesses:
– Must use all of JVM or none of it: GC, JIT, class library, etc
– Forced to mold your language into the Java object model
– Huge memory footprint and startup time

• GCC Weaknesses:
– Old code-base and architecture: Very steep learning curve
– Doesn’t support modern compiler techniques (JIT, cross file optimization)
– Slow compile times 

Each approach has mostly disjoint strengths and weaknesses!
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LLVM Compiler Vision and Approach
• Basic mission: build a set of modular compiler components that:
– ... implement aggressive and modern techniques 
– ... integrate well with each other
– ... have few dependencies on each other
– ... are language- and target-independent where possible
– ... integrate closely with existing tools where possible

• Second: Build compilers that use these components
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Value of a library-based approach
• Reduces the time & cost to construct a particular compiler
• A new compiler = glue code plus any components not yet available

• Components are shared across different compilers
• Improvements made for one compiler benefits the others

• Allows choice of the right component for the job
• Don’t force “one true register allocator”, scheduler, or optimization order

• Examples:
– Initial bringup of llvm-gcc4 took 2-3 months (GCC is very complex!)
– Required building “GCC tree to LLVM” converter 
– Including support for many targets, aggressive optimizations, etc

– First OpenGL JIT built in two weeks: 
– Required building “OpenGL to LLVM” converter
– Replaced existing JIT, much better optimizations and performance

Key LLVM Feature:
IR is small, simple, easy to 

understand, and is well defined



Example Client: llvm-gcc4
C/C++/ObjC/...
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Standard GCC 4.x Design
• Standard compiler organization: front-end, optimizer, codegen
– Parser and front-ends work with language-specific “trees”
– Optimizers use trees in “GIMPLE” form, modern SSA techniques, etc.
– RTL code generator use antiquated compiler algorithms/data structures

Language
Front-end

tree-ssa
Optimizer

Code
Generator

C

C++
ObjC

AST “tree”

.s file

GIMPLE RTL

– Pros: Excellent front-ends, support for many processors, defacto standard
– Cons: Very slow, memory hungry, hard to retarget, no JIT, no LTO, no 

aggressive optimizations, ...

...
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llvm-gcc4 Design
• Use GCC front-end with LLVM optimizer and code generator
– Reuses parser, runtime libraries, and some GIMPLE lowering
– Requires a new GCC “tree to llvm” converter
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LLVM optimizer features used by llvm-gcc
• Aggressive and fast optimizer built on modern techniques
– SSA-based optimizer for light-weight (fast) and aggressive xforms
– Aggressive loop optimizations: unrolling, unswitching, mem promotion, ...
– Many InterProcedural (cross function) optimizations: inlining, dead arg 

elimination, global variable optimization, IP constant prop, EH optzn, ...
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Other LLVM features used by llvm-gcc
• LLVM Code Generator
– Modern retargetable code generator, easier to retarget than GCC

• Write LLVM IR to disk for codegen after compile time:
– link-time, install-time, run-time

Language
Front-end

LLVM
Optimizer

LLVM Code
Generator

C

C++
ObjC

LLVM IR LLVM IR
.s file

...

DISK

LLVM IR JIT

LTO

Ship Code
Gen

exe 
file

Install Time Code Generation



http://llvm.org/

LLVM
Optimizer

LLVM
Linker

Link-Time Optimization (LTO)
• Link-time is a natural place for interprocedural optimizations
– Cross-module optimization is natural and trivial (no makefile changes)
– LLVM is safe with partial programs (dynamically loaded code, libraries, etc)
– LTO has been available since LLVM 1.0!
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Example Client: OpenGL JIT
OpenGL Vertex/Pixel Shaders 
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OpenGL Pixel/Vertex Shaders
• Small program, provided at run-time, to be run on each vertex/pixel:
– Written in one of a few high-level graphics languages (e.g. GLSL)
– Executed millions of times, extremely performance sensitive

• Ideally, these are executed on the graphics card:
– What if hardware doesn’t support some feature? (e.g. laptop gfx)
– Interpret or JIT on main CPU

void main() {
 vec3 ecPosition = vec3(gl_ModelViewMatrix * gl_Vertex);
 vec3 tnorm      = normalize(gl_NormalMatrix * gl_Normal);
 vec3 lightVec   = normalize(LightPosition - ecPosition);
 vec3 reflectVec = reflect(-lightVec, tnorm);
 vec3 viewVec    = normalize(-ecPosition);
 float diffuse   = max(dot(lightVec, tnorm), 0.0);
 float spec      = 0.0;
 if (diffuse > 0.0) {
     spec = max(dot(reflectVec, viewVec), 0.0);
     spec = pow(spec, 16.0);
 }
 LightIntensity = DiffuseContribution * diffuse +
                  SpecularContribution * spec;
 MCposition     = gl_Vertex.xy;
 gl_Position    = ftransform();
}

GLSL Vertex Shader
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Traditional OpenGL Impl - Before LLVM
• Custom JIT for X86-32 and PPC-32:
– Very simple codegen: Glued chunks of Altivec or SSE code
– Little optimization across operations (e.g. scheduling)
– Very fragile, hard to understand and change (hex opcodes)

• OpenGL Interpreter:
– JIT didn’t support all OpenGL features: fallback to interpreter
– Interpreter was very slow, 100x or worse than JIT 

OpenGL
Parser

GLSL
Text

Interpreter

GFX Card

Custom JIT

OpenGL
AST
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OpenGL JIT built with LLVM Components

• At runtime, build LLVM IR for program, optimize, JIT:
– Result supports any target LLVM supports
– Generated code is as good as an optimizing static compiler

• Other LLVM improvements to optimizer/codegen improves OpenGL
• Key question: How does the “OpenGL to LLVM” stage work?
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Structure of an Interpreter
• Simple opcode-based dispatch loop:

• One function per operation, written in C:

• In a high-level language like GLSL, each op can be hundreds of LOC

while (...) {
   ...
  switch (cur_opcode) {
  case dotproduct:      result = opengl_dot(lhs, rhs); break;
  case texturelookup: result = opengl_texlookup(lhs, rhs); break;
  case ...

double opengl_dot(vec3 LHS, vec3 RHS) {
  #ifdef ALTIVEC
    ... altivec intrinsics ...
  #elif SSE
    ... sse intrinsics ...
  #else
    ... generic c code ...
   #endif
}

Key Advantage of an Interpreter:
Easy to understand and debug, 

easy to write each operation (each 
operation is just C code)
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OpenGL to LLVM Implementation
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• At OpenGL build time, compile each opcode to LLVM bytecode:
– Same code used by the interpreter: easy to understand/change/optimize
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OpenGL to LLVM: At runtime
1.Translate OpenGL AST into LLVM call instructions: one per operation
2.Use the LLVM inliner to inline opcodes from precompiled bytecode
3.Optimize/codegen as before

 ...
 vec3 viewVec = normalize(-ecPosition);
 float diffuse = max(dot(lightVec, tnorm), 0.0);
 ...

   ...
  %tmp1 = call opengl_negate(ecPosition)
  %viewVec = call opengl_normalize(%tmp1);
  %tmp2 = call opengl_dot(%lightVec, %tnorm)
  %diffuse = call opengl_max(%tmp2, 0.0);
  ...

OpenGL
to LLVM

LLVM Inliner
   ...
  %tmp1 = sub <4 x float> <0,0,0,0>, %ecPosition
  %tmp3 = shuffle <4 x float> %tmp1, ...;
  %tmp4 = mul <4 x float> %tmp3, %tmp3
   ...

Optimize,
Codegen

PPC X86

OpenGL
ParserGLSL

OpenGL to 
LLVM

LLVM 
Optimizer

LLVM 
JIT

LLVM IR LLVM IROpenGL
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Benefits of this approach
• Key features of this approach:
– Each opcode is written/debugged for a simple interpreter, in standard C
– Retains all advantages of an interpreter: debugability, understandability, etc
– Easy to make algorithmic changes to opcodes

– OpenGL runtime is independent of opcode implementation
– LLVM provides high performance: optimizations, regalloc, scheduling, etc

• Continuing benefits of using LLVM:
– Support for new platforms for free
– LLVM codegen continues to improve as it is used by other projects (e.g. llvm-gcc)
– OpenGL group doesn’t maintain their own JIT!



Example Client:
a Scripting Language

Loosely based on “pypy” Python Compiler
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LLVM and Dynamic Languages
• Dynamic languages are very different than C:
– Extremely polymorphic, reflective, dynamically extensible
– Standard compiler optzns don’t help much if “+” is a dynamic method call

• Observation: in many important cases, dynamism is eliminable
– Solution: Use dataflow and static analysis to infer types:

var i;
for (i = 0; i < 10; ++i)
   ... A[i] ...

‘i’ starts as an integer

++ on integer returns integer

i isn’t modified anywhere else

– We proved “i” is always an integer: change its type to integer instead of object
– Operations on “i” are now not dynamic
– Faster, can be optimized by LLVM (e.g. loop unrolling)
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Advantages and Limitations of Static Analysis
• Works on unmodified programs in scripting languages:
– No need for user annotations, no need for sub-languages

• Many approaches for doing the analysis (with cost/benefit tradeoffs)

• Most of the analyses could work with many scripting languages:
– Parameterize the model with info about the language operations

• Limitation: cannot find all types in general!
– That’s ok though, the more we can prove, the faster it goes
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Scripting Language Performance
• Ahead-of-Time Compilation provides:
– Reduced memory footprint (no ASTs in memory)
– Eliminate (if no ‘eval’) or reduce use of interpreter at runtime (save code size)
– Much better performance if type inference is successful

• JIT compilation provides:
– Full support for optimizing eval’d code (e.g. json objects in javascript)
– Runtime “type profiling” for speculative optimizations

• LLVM provides:
– Both of the above, with one language -> llvm translator
– Install-time codegen
– Continuously improving set of optimizations and targets
– Ability to inline & optimize code from different languages
– inline your runtime library into the client code?
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Call for help!

Python

Common Dynamic Language 
Representation + Type Inference

Ruby C, C++, Ada, ...

– OSS community needs to unite work on various scripting languages
– Common module to represent/type infer an arbitrary dynamic language

– Who will provide this?  pypy? parrot? llvm itself someday (“hlvm”)?

Perl Javascript ...

llvm-gcc

LLVM

OpenGL

GLSL, ARB VP, ...

What Next?

LTO JIT Install Time
CodegenIPO

Cross Lang
Optzn

Debugger
Support
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LLVM Summary
• LLVM is a set of modular compiler components:
– LLVM can be used for many things other than simple static compilers!
– LLVM can be used to make a great static compiler! (llvm-gcc)

• LLVM components are language- and target-independent:
– Does not force use of JIT, GC, or a particular object model
– Code from different languages can be linked together and optimized

• LLVM provides aggressive functionality and is industrial strength:
– Interprocedural optimization, link-time, install-time optimization today!
– LLVM has compiled and optimized millions of lines of code

• LLVM 2.0 due out in May:
– Huge number of new features, codegen improvements
– Full ARM support, contributed by INdT, enhanced by Apple 

sabre@nondot.org http://llvm.org/


