The LLVM Compiler System

LLVM: Low Level Virtual Machine

Chris Lattner
sabre@nondot.org

Bossa International Conference
on Open Source, Mobile Internet and Multimedia
March 12, 2007

LLVM Talk Overview

» The LLVM Approach to Compilers

* The LLVM C/C++/0bjC Compiler

» Optimizing OpenGL with LLVM

- Using LLVM with Scripting Languages

http://llvm.org/

Open Source Compiler Technology

- “Scripting” Language Interpreters: Python, Ruby, Perl, Javascript, etc
— Traditionally interpreted at runtime, used by highly dynamic languages

- Java and .NET Virtual Machines
— Run time compilation for any language that can target the JVM

+ GCC: C/C++/0bjC/Ada/FORTRAN/Java Compiler
— Static optimization and code generation at build time

http://llvm.org/

OSS Compiler Technology Strengths 1/2

» Scripting/Dynamic Language Strengths:
— Interpreters are extremely portable and small (code size)
— Many interesting advanced compilation models (pypy, Parrot, jrubyc, etc)
— Dynamic languages are very expressive and powerful

- Java Virtual Machine Strengths:
— JVM bytecode is portable, JVMs available for many systems
— Many languages can be compiled to JVM
— Provides runtime/JIT optimization, high level optimizations

http://llvm.org/

OSS Compiler Technology Strengths 2/2

+ GCC Strengths:
— Support for important languages like C/C++
— Other projects can emit C/C++ code and compile with GCC
— Good code generation/optimization
— Supports many different CPUs

« Common strengths:
— Each has a large and vibrant community!
— We support tons of existing code written in many languages!

With so many strengths, what could be wrong?
http://llvm.org/

OSS Compiler Technology Weaknesses 1/2

- Common Problem:
— The tools only work together at a very coarse grain

Ruby Python

Ruby Python
Interp Interp Y i,dCa++, Java

Ceode

clae VM

— Each arrow/box is a completely separate project from the others
— Very little sharing (e.g.) between ruby and python interpreter
— Advanced optimizer projects don't share code (e.g. jrubyc vs shedskin)

http://llvm.org/

OSS Compiler Technology Weaknesses 2/2

- Scripting Language Weaknesses:
— Efficient execution: poor “low level” performance, memory use

- Java Virtual Machine Weaknesses:
— Must use all of JVM or none of it: GC, JIT, class library, etc
— Forced to mold your language into the Java object model
— Huge memory footprint and startup time

« GCC Weaknesses:
— Old code-base and architecture: Very steep learning curve
— Doesn’t support modern compiler techniques (JIT, cross file optimization)
— Slow compile times

Each approach has mostly disjoint strengths and weaknesses! . 1um ora/

LLVM Compiler Vision and Approach

* Basic mission: build a set of modular compiler components that:
— ...implement aggressive and modern techniques
.. integrate well with each other
... have few dependencies on each other
... are language- and target-independent where possible
.. integrate closely with existing tools where possible

- Second: Build compilers that use these components

X86 ARM PPC CBE GCC LTO

DWARF Target (;oe(:]e JIT Optzn linker IPO

BCIO LLIO System Core Support xforms analysis GC ...
http://llvm.org/

Value of a library-based approach

- Reduces the time & cost to construct a particular compiler
* A new compiler = glue code plus any components not yet available
- Components are shared across different compilers
* Improvements made for one compiler benefits the others
» Allows choice of the right component for the job
* Don't force “one true register allocator’, scheduler, or optimization order

- Examples:
—Initial bringup of llvm-gcc4 took 2-3 months (GCC is very complex!)
—Required building “GCC tree to LLVM" converter
—Including support for many targets, aggressive optimizations, etc
—First OpenGL JIT built in two weeks:
—Required building “OpenGL to LLVM” converter
—Replaced existing JIT, much better optimizations and performance
Key LLVM Feature:

IR is small, simple, easy to
understand, and is well defined http://llvm.org/

Example Client: llvm-gcc4

C/C++/0bjC/...

Standard GCC 4.x Design

- Standard compiler organization: front-end, optimizer, codegen
— Parser and front-ends work with language-specific “trees”
— Optimizers use trees in “GIMPLE” form, modern SSA techniques, etc.
— RTL code generator use antiquated compiler algorithms/data structures

@
s Language tree-ssa Code

—> — S EEEEN
ObiC Front-end Optimizer Generator

AST “tree” GIMPLE RTL

— Pros: Excellent front-ends, support for many processors, defacto standard

— Cons: Very slow, memory hungry, hard to retarget, no JIT, no LTO, no
aggressive optimizations, ...

http://llvm.org/

llvm-gcc4 Design

» Use GCC front-end with LLVM optimizer and code generator
— Reuses parser, runtime libraries, and some GIMPLE lowering
— Requires a new GCC“tree to llvm” converter

" 77 Language MR | LLVM MR | LLVM Code

C++

—> — o EmEERN
ObiC Front-end Optimizer Generator

AST “tree” LLVM IR LLVM CG IR

http://llvm.org/

LLVM optimizer features used by llvm-gcc

» Aggressive and fast optimizer built on modern techniques
— SSA-based optimizer for light-weight (fast) and aggressive xforms
— Aggressive loop optimizations: unrolling, unswitching, mem promotion, ...

— Many InterProcedural (cross function) optimizations:inlining, dead arg
elimination, global variable optimization, IP constant prop, EH optzn, ...

~ ' Language VMR LLVM wmiR LLVM Code .
Front-end Optimizer Generator '

Standard Scalar
Optimizations

Loop
Optimizations

Interprocedural
Optimizations

http://llvm.org/

Other LLVM features used by llvm-gcc

* LLVM Code Generator
— Modern retargetable code generator, easier to retarget than GCC

» Write LLVM IR to disk for codegen after compile time:
— link-time, install-time, run-time

~ ' Language VMR LLVM wmiR LLVM Code .
Front-end Optimizer Generator '

LLVM IR / JT

DISK —— LTO

. Code X
\Shlp Gen —> fie

Install Time Code Generation
http://llvm.org/

Link-Time Optimization (LTO)

- Link-time is a natural place for interprocedural optimizations
— Cross-module optimization is natural and trivial (no makefile changes)
— LLVM is safe with partial programs (dynamically loaded code, libraries, etc)
— LTO has been available since LLVM 1.0!

Any LLYM LLVM
Front-end Optimizer

Any LLVM LLVM LLVM Lm LLVM Livm Code
Front-end ” Optimizer Linker Optimizer Gen

Any w LLVM Link Time
Front-end Optimizer

—>
—
—
—
—
—
—
—
—

Compile Time

http://llvm.org/

Example Client: OpenGL JIT

OpenGL Vertex/Pixel Shaders

OpenGL Pixel/Vertex Shaders

- Small program, provided at run-time, to be run on each vertex/pixel:
— Written in one of a few high-level graphics languages (e.g. GLSL)
— Executed millions of times, extremely performance sensitive

- Ideally, these are executed on the graphics card:
— What if hardware doesn't support some feature? (e.g. laptop gfx)
— Interpret or JIT on main CPU

void main() {
vec3 ecPosition
vec3 tnorm
vec3 lightVec
vec3 reflectVec
vec3 viewVec

vec3(gl_ModelViewMatrix * gl_Vertex);
normalize(gl_NormalMatrix * gl_Normal);
normalize(LightPosition - ecPosition);
reflect(-lightVec, tnorm);
normalize(-ecPosition);
float diffuse max(dot(lightVec, tnorm), 0.0);
float spec 0.0;
if (diffuse > 0.0) {

spec = max(dot(reflectVec, viewVec), 0.0);

spec = pow(spec, 16.0);

}

LightIntensity = DiffuseContribution * diffuse +
SpecularContribution * spec;

MCposition gl_Vertex.xy;

gl_Position ftransform();

http://llvm.org/
GLSL Vertex Shader ttp://llvm.org

Traditional OpenGL Impl - Before LLVM

» Custom JIT for X86-32 and PPC-32:
— Very simple codegen: Glued chunks of Altivec or SSE code
— Little optimization across operations (e.g. scheduling)
— Very fragile, hard to understand and change (hex opcodes)

* OpenGL Interpreter:
— JIT didn’t support all OpenGL features: fallback to interpreter
— Interpreter was very slow, 100x or worse than JIT

GFX Card

Sl Custom JIT

Parser

Interpreter

OpenGL
AST

http://llvm.org/

OpenGL JIT built with LLVM Components

OpenGL OpenGL to LLVM LLVM
FEIFSE LLVM Optimizer JIT

LLVM IR LLVM IR

» At runtime, build LLVM IR for program, optimize, JIT:
— Result supports any target LLVM supports
— Generated code is as good as an optimizing static compiler
» Other LLVM improvements to optimizer/codegen improves OpenGL

- Key question: How does the “OpenGL to LLVM” stage work? http//llvim.org/

Structure of an Interpreter
- Simple opcode-based dispatch loop:

while (...) {

switch (cur_opcode) {

case dotproduct: result = opengl_dot(lhs, rhs); break;

case texturelookup: result = opengl_texlookup(lhs, rhs); break;
case ...

» One function per operation, written in C:

double opengl_dot(vec3 LHS, vec3 RHS) {
#ifdef ALTIVEC
... altivec intrinsics ...
#elif SSE

__sse intrinsics ... Key Advantage of an Interpreter:

#else Easy to understand and debug,
.. generic c code ... easy to write each operation (each
#endif operation is just C code)

}
- In a high-level language like GLSL, each op can be hundreds of LOC

http://llvm.org/

OpenGL to LLVM Implementation

C Code Bytecode Bytecode

Opcode
Functions

llvm-gcc —> DISK —> Ship

OpenGL Build Time

l

OpenGL OpenGL to LLVM LLVM

Rarser LLVM Optimizer JIT

LLVM IR LLVM IR

» At OpenGL build time, compile each opcode to LLVM bytecode:
— Same code used by the interpreter: easy to understand/change/optimize

http://llvm.org/

OpenGL to LLVM: At runtime

1.Translate OpenGL AST into LLVM call instructions: one per operation
2.Use the LLVM inliner to inline opcodes from precompiled bytecode

3.0ptimize/codegen as before

OpenGL OpenGL to LLVM LLVM
RIS LLVM Optimizer JIT

LLVM IR

AST

OpenGL
to LLVM ...
vec3 viewVec = normalize(-ecPosition); %tmpl = call opengl_negate(ecPosition)

float diffuse = max(dot(lightVec, tnorm), 0.0); %viewVec = call opengl_normalize(%tmpl);
%tmp2 = call opengl_dot(%lightVec, %tnorm)

%diffuse = call opengl_max(%tmp2, 0.0);

Optimize, LLVM Inliner
Codegen

sub <4 x float> <0,0,0,0>, %ecPosition
shuffle <4 x float> %tmpl, ...;
mul <4 x float> %tmp3, %tmp3

%tmpl
%tmp3
%tmp4

http://llvm.org/

Benefits of this approach

- Key features of this approach:

— Each opcode is written/debugged for a simple interpreter, in standard C
— Retains all advantages of an interpreter: debugability, understandability, etc
— Easy to make algorithmic changes to opcodes

— OpenGL runtime is independent of opcode implementation

— LLVM provides high performance: optimizations, regalloc, scheduling, etc

» Continuing benefits of using LLVM:

— Support for new platforms for free

— LLVM codegen continues to improve as it is used by other projects (e.g. llvm-gcc)
— OpenGL group doesn't maintain their own JIT!

http://llvm.org/

Example Client:

a Scripting Language

Loosely based on “pypy” Python Compiler

LLVM and Dynamic Languages

» Dynamic languages are very different than C:
— Extremely polymorphic, reflective, dynamically extensible
— Standard compiler optzns don't help much if “+"is a dynamic method call

» Observation:in many important cases, dynamism is eliminable
— Solution: Use dataflow and static analysis to infer types:

‘" starts as an integer
++4 on integer returns integer
var i
for (i=0;i < 10; ++i)
LA ..

i isn't modified anywhere else

— We proved “i”is always an integer: change its type to integer instead of object
— Operations on “i” are now not dynamic
— Faster, can be optimized by LLVM (e.g. loop unrolling) http/lvm.org/

Advantages and Limitations of Static Analysis

+ Works on unmodified programs in scripting languages:
— No need for user annotations, no need for sub-languages

» Many approaches for doing the analysis (with cost/benefit tradeoffs)

» Most of the analyses could work with many scripting languages:
— Parameterize the model with info about the language operations

- Limitation: cannot find all types in general!
— That'’s ok though, the more we can prove, the faster it goes

http://llvm.org/

Scripting Language Performance

 Ahead-of-Time Compilation provides:
— Reduced memory footprint (no ASTs in memory)
— Eliminate (if no ‘eval’) or reduce use of interpreter at runtime (save code size)
— Much better performance if type inference is successful
- JIT compilation provides:
= Full support for optimizing eval'd code (e.g. json objects in javascript)
— Runtime “type profiling” for speculative optimizations

* LLVM provides:

— Both of the above, with one language -> llvm translator

— Install-time codegen

— Continuously improving set of optimizations and targets

— Ability to inline & optimize code from different languages
— inline your runtime library into the client code?

http://llvm.org/

Call for help!

— 0SS community needs to unite work on various scripting languages
— Common modaule to represent/type infer an arbitrary dynamic language
— Who will provide this? pypy? parrot? llvm itself someday (“hlvm”)?

Ruby Python Perl Javascript ... ~ C,C++,Ada, .. GLSL, ARBVP, ...

Common Dynamic Language

: ?
Representation + Type Inference g Clpsnel What Next?

LLVM

LTO JIT Install Time Cross Lang Debugger
IPO Codegen Optzn Support

http://llvm.org/

LLVM Summary

* LLVM is a set of modular compiler components:
— LLVM can be used for many things other than simple static compilers!
— LLVM can be used to make a great static compiler! (Ilvm-gcc)

* LLVM components are language- and target-independent:
— Does not force use of JIT, GC, or a particular object model
— Code from different languages can be linked together and optimized

 LLVM provides aggressive functionality and is industrial strength:
— Interprocedural optimization, link-time, install-time optimization today!
— LLVM has compiled and optimized millions of lines of code

* LLVM 2.0 due out in May:
— Huge number of new features, codegen improvements
— Full ARM support, contributed by INdT, enhanced by Apple

sabre@nondot.org http:/ /llvm.o rg/ http://llvm.org/

