
An Aspect for Idiom-based Exception Handling
(using local continuation join points, join point properties, annotations and type parameters)

Bram Adams
GH-SEL, INTEC, Ghent University

Bram.Adams@UGent.be

Kris De Schutter
LORE, University of Antwerp
Kris.DeSchutter@UA.ac.be

Abstract
The last couple of years, various idioms used in the 15 MLOC C
code base of ASML, the world’s biggest lithography machine man-
ufacturer, have been unmasked as crosscutting concerns. However,
finding a scalable aspect-based implementation for them did not
succeed thusfar, prohibiting sufficient separation of concerns and
introducing possibly dangerous programming mistakes. This paper
proposes a concise aspect-based implementation in Aspicere2 for
ASML’s exception handling idiom, based on prior work of join
point properties, annotations and type parameters, to which we
add the new concept of(local) continuation join points. Our solu-
tion takes care of the error value propagation mechanism (which
includes aborting the main success scenario), logging, resource
cleanup, and allows for local overrides of the default aspect-based
recovery. The highly idiomatic nature of the problem in tandem
with the aforementioned concepts renders our aspects very robust
and tolerant to future base code evolution.

Categories and Subject DescriptorsD.1.m [Programming Tech-
niques]: Aspect-oriented programming; D.2.5 [Testing and De-
bugging]: Error handling and recovery; D.2.7 [Software Engin-
eering]: Restructuring, reverse engineering, and reengineering;
D.3.2 [Programming Languages]: C; D.3.2 [Programming Lan-
guages]: Prolog; D.3.m [Programming Languages]: Local con-
tinuation join point

General Terms Design, Languages, Reliability

1. Introduction
Exception handling is one of the more fundamental issues en-
countered during software development, especially in legacy pro-
gramming languages like C or Cobol. C in particular lacks any
dedicated means to tackle exceptions, so over time people have re-
sorted to all kinds of tricks to emulate them [6]: setjmp/longjmp,
global error variables, signals, returning error values, etc.

In [2] the authors discuss a variant of the so-called “return-
code idiom” as the preferred means for exception handling in the
15 MLOC C code base of ASML, the world’s biggest lithography
system manufacturer. This idiom is part of a global idiom-based
software development strategy for safeguarding the machines’ reli-
ability and functioning.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Workshop SPLAT ’07 March 12-13, 2007 Vancouver, British Columbia, Canada.
Copyright c© 2007 ACM 1-59593-656-1/07/03. . . $5.00

However, for idioms to work properly, developers need to be
disciplined enough to use them correctly and consequently. Also,
the choice for one particular idiom ties the code base almost ex-
clusively to the chosen pattern, making it very hard to migrate to or
experiment with other approaches.

Exception handling has been identified before [7] as a typical
crosscutting concern, i.e. it exhibits excessive scattering (through-
out the whole system) and tangling to the point where it severely
obscures normal flow. However, as we will see, abstracting the
return-code idiom into an aspect requires a combination of concepts
which are not mainstream in aspect languages. Without these fea-
tures, writing a useful, flexible exception handling aspect for sys-
tems written in legacy programming languages is hard to achieve.

The contributions of this paper are as follows:

• the introduction of the concept of local continuation join points;

• their application, together with join point properties, annota-
tions and type parameters, to the idiom-based exception hand-
ling pattern;

• and a discussion of the benefits of our approach as well as of
some implementation issues.

First (section 2), we will introduce the specific details of
ASML’s return-code idiom using the running example of [2], even-
tually identifying the core aspect of the problem. This concern is
modeled using local continuation join points, which are introduced
and applied on the running example in section 3. Section 4 treats
the logging part of the idiom using join point properties and an-
notations, whereas section 5 looks at the resource cleanup concern.
Section 6 discusses our approach and some implementation issues.
Finally, section 7 concludes this paper.

2. The return-code idiom
As its name implies, ASML’s return-code idiom is based on the
dedicated use of return values for passing error values up the call
chain. Alongside this, errors have to be logged in a so-called “event
log” in order to accommodate off-line exception analysis. In the
following subsections we will dive deeper into the actual code
behind this idiom, based on the reports by Bruntink et al [2, 1].

2.1 Implementation details

Each procedure is given a special local variable in which the current
error status (initiallyOK) is stored, although more than one variable
is necessary in some cases like parallel execution or errors during
resource cleanup. Whenever an error occurs directly inside a pro-
cedure (not from within a called procedure), the developer has one
of two choices:

• recover from the error immediately, or

1 int f(int a, int ** b){
int r = OK;

3 bool allocated = FALSE;
r = mem_alloc(10, (int **) b);

5 allocated = (r == OK);

7 if ((r == OK) && ((a < 0) || (a > 10))){
r = PARAM_ERROR;

9 LOG(r,OK); / * root error * /
}

11 if (r == OK){
r = g(a);

13 if (r != OK){
LOG(LINKED_ERROR,r); / * linked error * /

15 r = LINKED_ERROR;
}

17 }
if (r == OK) r = h(b);

19 if ((r != OK) && allocated) mem_free(b);
return r;

21 }

Figure 1. Example of the return-code idiom, based on [2].

• abort the procedure and propagate the error back to its caller.
This entails logging of the error in an entry called a “root error”,
followed by transfer of control flow to the procedure’s caller.

Fig. 1 shows an example of this (based on [2]). The variable called
r on line 2 holds the error status of proceduref . On line 7,
parametera is checked to see whether it lies in the range of[0, 10].
If not, the error status gets updated (line 8), and this error is logged
as a root error (line 9). The remaining logic is then skipped until
line 19, where cleanup takes place.

Any calling procedure at its turn has the same choice of either
handling the propagated error or passing it on. In the latter case, it
has the possibility to add extra context information by replacing
the original error value by another, (possibly) more meaningful
one. The change of error value has to be logged, and this kind of
entry is now called a “linked error” as it links a higher-level error
value to a lower-level one. In the end, this gives rise to an “error
link tree”, i.e. an exception trace for a particular error. Line 14 of
Fig. 1 demonstrates this logging of a linked error (the original error
having occurred during the execution of procedureg on line 12).
Note that a root error is a special case of a linked error, as it links
an error to theOKvalue. If ultimately no exception handler is found,
the system could go down.

Aside from error variable management, control flow transfer
and logging, resource cleanup (memory in this case) plays an im-
portant role (line 19 on Fig. 1). If an error has occurred, any pre-
viously allocated memory in the current procedure needs to be de-
allocated. This concern is not treated in [2], but we will look at it to
illustrate how the various concerns fit together.

It is clear from the example that the idiom’s logic seriously over-
crowds the procedure’s main control flow. There is both serious
tangling and scattering, as the idiom is applied system-wide. Even
for such a simple example as Fig. 1 it is hard to deduce e.g. what
are all possible execution paths that get through the if-checks of
lines 18 or 19. This of course hampers any maintenance and/or re-
/reverse-engineering efforts. From the analysis in [2], it turns out
that most developer errors regarding the idiom are caused by er-
roneous guards (i.e. checks) on the error variabler and inconsist-
encies between the logged error value and the one assigned tor .
Other common errors include forgetting to return an error value,
returning the wrong value, logging incorrect things, etc.

We would like to use aspects to relieve the base code developer
from the return-code idiom burden, while still giving him the power

to override default exception handling if he desires to. In order to
do this, we will first take a closer look at Fig. 1’s hidden patterns.

2.2 Distinguishing the different concerns

BLABLABLABLABLAB

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

II

BLABLABLABLABLA

BLABLAB

BLABLABLABLABLABLABLABLABLABLA

BLABLABLABLABLABLABLABLA

LABLABLABLABLABL

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

BLABLABLABLABLA

BLABLAB

BLABLABLABLABLAB

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

BLABLABLABLABLA

BLABLAB

BLABLABLABLABLAB

I

I

I

I

I

I

I

I

I
I

BLABLABLABLABLA

BLABLAB

BLABLABLABLABLABLABLABLABLABLABI

BLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLABLABLABLABLA

BLABLABLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLABLABLAB

BLABLABLABLABLABLABLABLABLABLABLABLABLA

1 int f(int a, int ** b){
int r = OK;

3 r = mem_alloc(10, (int **) b);

5 if (r != OK){
/ * no logging needed * /

7 / * no deallocation needed * /
return r;

9 } else {
if ((a < 0)||(a > 10)){

11 r = PARAM_ERROR;
LOG(r,OK);

13 if (r != OK) mem_free(b);
return r;

15 } else {
r = g(a);

17 if (r != OK){
LOG(LINKED_ERROR,r);

19 r = LINKED_ERROR;
if (r != OK) mem_free(b);

21 return r;
} else {

23 r = h(b);
if (r != OK){

25 / * no logging needed * /
if (r != OK) mem_free(b);

27 return r;
} else {

29 / * no deallocation needed * /
return r;

31 }
}

33 }
}

35 }

Figure 2. Restructured version of Fig. 1. Crosscutting concerns are
marked with colored F-shapes, rectangles and underlining.

What contributes most to the program complexity is the del-
icate interplay of main logic, exception handling and resource
(memory) cleanup. What is more, exception handling actually en-
compasses various subconcerns: error variable management, con-
trol flow transfer, logging linked errors, detecting root errors, etc.
To make these patterns stand out in the code, we rewrote Fig. 1’s
abbreviated programming style into the equivalent, more verbose
Fig. 2. Now, we can clearly identify the various concerns:

• the declaration, initialisation and returning of a unique error
variable (the doubly underlined code on lines 2 and 30),

• the “assign return values to the error variable”-concern (singly
underlined lines),

• the control flow transfer which either continues normal execu-
tion of a procedure or aborts it by returning the error value (the
three light F-shapes),

• the logging of linked errors (the three dark rectangles),

• memory cleanup (the light rectangles),

• the argument range checking concern (the dark F-shape), and

• the main logic (remaining code).

Our goal now is this: to extract all concerns into aspects, thereby
allowing the base code to be reduced to its main logic, as shown on

1 / * @range("a",0,10) * /
int f(int a, int ** b){

3 mem_alloc(10, (int **) b);

5 / * @log("LINKED_ERROR") * /
g(a);

7 h(b);
}

Figure 3. Main logic of Fig. 1 to which all aspects and their logic
rules and facts are applied.

Fig. 3 (ignore the comments for now). We impose the following
restrictions:

• The procedures’ signatures remain unaltered in order to allow
for gradual, stepwise migration (no broken interfaces!). I.e. all
procedures will retain their integer typed return value, which
can be used as an error value by some aspect-based exception
handling implementations, while others may ignore it.

• In our aspects, we will keep as close to the spirit of the return-
code idiom as possible, again keeping in mind a gradual, step-
wise migration. However, nobody disallows experimentation
with setjmp/longjmp or global error variables later on.

For the purpose of this paper, we implement everything in As-
picere21, the new version of Aspicere, our aspect language for
C [9]. Advice in Aspicere2 is a special construct featuring a Prolog-
based pointcut and a body written in C. Context (types, constants,
etc.) gathered during pointcut matching is readily available in the
advice body. Weaving happens at link-time and involves transform-
ations on an intermediate representation of the source code. We will
present Aspicere2’s features as we go, and as needed.

3. Control flow transfer through local
continuation join points

From the list of concerns, the one governing the transfer of control
flow strikes us as the most fundamental and hardest one. We will
therefore discuss it first.

3.1 Fundamental issues

The following pseudo-code forms the heart of the control flow
transfer problem:

if (r != OK){
2 return r;

} else {
4 / * continue * /

}

After each idiomatic (i.e. returning error values) procedure call,
the execution of the enclosing procedure either halts or continues
depending on the call’s returned error value (see light F-shapes of
Fig. 2).

We argue that this behaviour is not possible to achieve with
current aspect technology for legacy languages. A naive approach
would be to put advice around every procedure call in order to
only continue the call if no error has occurred yet in the current
procedure. Once an error happens all remaining calls within the
current procedure will be short-circuited. Unfortunately, accesses
of local variables, calculations (more than likely containing bad
operands by now), loops, gotos, etc. cannot be skipped and will
potentially lead to catastrophe. Would adding extra join point types
for loops, gotos, variable accesses, etc. and short-circuiting them
help? It would work, but the continuous checks to see whether to
skip a join point or not incurs a lot of redundant overhead. Also, it

1 http://users.ugent.be/ ∼badams/aspicere2/

1 void f(void){
printf("A");

3 do_something();
printf("B");

5 }

6 int main(void){
f();

8 printf("C");
return 0;

10 }

Figure 4. Small example highlighting the differences between
(local) continuation join points.

foregoes the more fundamental thing one tries to accomplish here:
skipping the remaining execution of a procedure once a call within
it contains an error value.

The approach that comes closest to this is to rewrite procedures
in continuation passing style [5] such that the call to the continu-
ation argument can be circumvented by withholding a proceed-call.
Migrating to this style of programming is as huge an undertaking as
would be abandoning the act of returning an error value. Instead we
prefer to introduce a new concept:local continuation join points.

The concept of continuation join points presented here differs
from that in [4]. There, Endoh, Masuhara and Yonezawa use the
term in reference to a formalisation technique used for defining the
semantics of their join point model. We, instead, use the term in the
sense of a programming language concept, as will become apparent
in the following sections.

3.2 Definition

A continuationat any point in the execution of a program can be
informally defined as the future execution of that program from that
point on. E.g. in:

1 printf (getLine ());

the initial continuation is the entire program. The continuation
after application and evaluation ofgetLine is the application and
evaluation ofprintf .

Certain programming languages are able to turn the concept of
a continuation into a first-class entity, which can subsequently be
manipulated by the program (mainly re-invocation, which causes
the control flow to return to the point at which the continuation was
made). This is for instance the case in Smalltalk, where it was used
to great effect for the Seaside web application framework [3].

In the context of aspect-oriented programming, we now turn the
concept to use in a join point model. As such we define:

thecontinuationof a join pointp as (a join point represent-
ing) the future execution after conclusion ofp.

The reification of the continuation of a join point as another join
point is what makes it possible for this continuation to become the
target of aspectual advice.

Let us apply this definition to the code in Fig. 4. Without any
advice this program outputs “ABC”. Short-circuiting the continu-
ation of the call todo something on line 3 yields “A” only, as
the entire remainder of the program is skipped. The return value of
the continuation corresponds to that of the program (i.e.int) and
could e.g. hold a meaningful error value.

As it is, this construct is too strong for our purposes. Indeed, it
captures the entire future execution of a program, whereas we are
only interested in this future execution up to the end of the current
executing procedure. We therefore introduce a reduced version:

the local continuationof a join point p is (a join point
representing) the future execution after conclusion ofp,
limited to the control flow of the procedure in whichp is
active.

Let us again apply this to the code in Fig. 4. Short-circuiting the
call’s local continuation join point now yields “AC”, as only the
remaining execution of proceduref is skipped. There is no return
value here, asf is avoid -procedure.

So, the concept of a local continuation join point allows us to
capture the “remainder of the execution of a procedure”, which
is needed for the exception handling mechanism. As a sidenote,
it seems that only around-advising local continuation join points
of calls or variable accesses is useful. An execution join point’s
local continuation corresponds to nothing (or rather a no-op), while
before-/after-advice on a call’s local continuation is identical to
after-advice on the call or its enclosing execution resp.

3.3 Syntax in Aspicere2

A local continuation join point is coded in Aspicere2 as follows.
Given a join pointJp the local continuation of that join point is:

1 local_continuation(ContinuationJp, Jp)

In the spirit of the pointcut language of Aspicere2,local conti-
nuation is a logic-based predicate. It takes any join point (here:
Jp) and deduces the associated local continuation join point (here:
ContinuationJp). The value for this is then available for fur-
ther use in the pointcut and advice. In the case of around-advice,
calling proceed will activate the join point (and hence the con-
tinuation) as expected. This (re-)activation can be done as many
times as needed, including zero. The latter situation is at the heart
of the exception handling mechanism.

3.4 Application to the control flow transfer

The exception handling aspect is shown in Fig. 5 while its ac-
companying logic rules are depicted in Fig. 6. For now, we fo-
cus on the control flow transfer advice of lines 37–45 (code with
the shaded background). Adviceerror code passing imple-
ments the three light F-shapes of Fig. 2. Indeed, the advice body
on lines 41–44 is nearly identical to the pseudo-code of section 3.1.
The remarkable thing here is that the advice superimposes on join
pointsJp (line 37) which represent the local continuation of join
pointsJpCall (line 40). The latter are so-called “idiomatic calls”
(line 38), of which exception handling should not be manually over-
ridden (line 39).

What exactly are idiomatic calls? Turning to the predicates
shown in Fig. 6, we see (lines 14–20) that idiomatic calls are noth-
ing more than invocations (calls) returning an integer and located
inside idiomatic procedures (lines 17–18). The execution join point
JpEncl of the latter has a property namederror var (line 19;
more on this in section 4). We want to avoid calls to standard library
procedures which accidentally return integers, hence the excluded
wildcard pattern on line 16.

The only thing to explain now are idiomatic procedures (lines
9–12). It is possible that some in-house modules or external lib-
raries deliberately do not take part in the return-code idiom.
Their return values should not be interpreted as error values. The
idiomatic proc -predicate remedies this by limiting the as-
pects’ scope to the relevant modules (e.g. “main.c” on line 11).

To summarise, whenever an error value is returned from an
idiom-participating procedure call, the remaining procedure exe-
cution is skipped. Otherwise, it is business as usual. This is clearly
illustrated in Fig. 7, which gives an overview of the role of each
advice described in this paper and the join points it applies at.

4. Logging and customisation through join point
properties and annotations

The previous section’s control flow transfer advice is only part of
the story. In this section we will consider the logging concern, as
well as the possibility of overriding the default aspect behaviour.

4.1 Concepts

Developers should be able to override flow transfer in case the de-
fault idiom does not suffice, e.g. to perform extra resource cleanup

1 / * necessary imports * /

3 int * intro error_var() on Jp:
idiomatic_proc(Jp);

5

int around error_code_mgmt(int * R) on Jp:
7 idiomatic_proc(Jp)

&& property(Jp,error_var,R){
9 * R=OK;

proceed();
11 return * R;

}
13

void after error_code_resetting(int * R) on Jp:
15 idiomatic_call(Jp,R)

&& manual(Jp){
17 * R = OK;

}
19

void after error_code_logging(int * R,
21 int ErrorCode) returning (int * Return) on Jp:

idiomatic_call(Jp,R)
23 && log(Jp,ErrorCode){

if (* R != OK){
25 LOG (ErrorCode, * R);

* R = ErrorCode;
27 * Return = ErrorCode;

}
29 }

31 void after error_code_update(int * R)
returning (int * Result) on Jp:

33 idiomatic_call(Jp,R){
* R=* Result;

35 }

int around error_code_passing(int * R) on Jp:
38 idiomatic_call(JpCall,R)

&& !!manual(JpCall)
40 && local_continuation(Jp,JpCall){

if (* R!=OK)
42 return * R;

else
44 return proceed();

}

Figure 5. The idiom-based exception handling aspect. The shaded
area corresponds to Fig. 2’s light F-shapes (control flow transfer).

or to locally recover from expected errors right after the erroneous
procedure call. We also need a way to automatically log linked er-
rors, and here again developers should be able to decide whether
linking is necessary and if so what the new error value should be.
Both cases are concerned with providing the developers the neces-
sary power to control advice execution.

A second issue relates to advice interaction. How does each
advice know when an error has occurred and what its value is?
Using a global error variable (or a stack thereof) will lead to race
conditions in multi-threaded architectures. This problem will get
even worse for the resource cleanup aspect. Also, it is at odds
with the actual semantics of an error status, as these are tied to
procedures.

To solve the second issue, we will use join point properties [8].
Join point properties are (name,value)-pairs attached to individual
join points. The familiarthisJoinPoint -object of AspectJ e.g.
is actually a container of join point properties provided by the
system. In [8], the authors propose to let the user add custom
properties as a means to communicate between various advices

1 error_code("LINKED_ERROR",0).

3 int_invocation(Jp,FName):-
invocation(Jp,FName),

5 type(Jp,Type),
type_name(Type,"int")

7 .

9 idiomatic_proc(Jp):-
execution(Jp,_),

11 filename(Jp,"main.c")
.

13

idiomatic_call(JpCall,R):-
15 int_invocation(JpCall,FName),

\+wildcard(". * printf",FName),
17 enclosingMethod(JpCall,JpEncl),

idiomatic_proc(JpEncl),
19 property(JpEncl,error_var,R)

.
21

manual(JpCall):-
23 annotation(JpCall,manual,_)

.
25

log(JpCall,ErrorCode):-
27 annotation(JpCall,log,[ErrorName]),

error_code(ErrorName,ErrorCode)
29 .

Figure 6. Accompanying Prolog metadata of the aspect in Fig. 5.

and, even more importantly, independently developed aspects. This
eases advice interactions, and, if the properties are thread-local, it
fits nicely with multi-threading environments.

Overriding the default behavior will be achieved using the
concept of annotations. Annotations are well-known by now as
AspectJ 1.52 has had them for some time. Put briefly, they corres-
pond to metadata associated to program elements by means of a
kind of tags. They convey information which is not expressible in
the programming language itself. Of course, C does not have an-
notations by default, so we will abuse comments for this (as was
the style in Java before annotations were turned into first-class en-
tities). Our annotations are associated with the first statement or
(nested) expression which follows them.

We prefer manipulation of advice through annotations above
custom advice written by the developer for various reasons:

• During examination of advice interaction, one can focus on the
few known system-wide aspects (guided by annotations) in-
stead of (possibly) hundreds of small ones added by individual
developers every day. This makes proving correctness of the
aspect-enabled system more reasonable.

• Existing development tools (IDEs) do not need to change. Care
must be taken that the weaver for system-wide aspects can be
integrated nicely into the compiler chain3.

• Aberrant exception handling behaviour remains localised.

4.2 Example

The exception handling aspect of Fig. 5 shows the application of
join point properties and annotations for the developer overrid-
ing and logging advices (lines 1–35). Lines 3–4 contain the de-

2 http://www.eclipse.org/aspectj/
3 This is actually a problem we are trying to solve with MAKAO (Makefile Archi-
tecture Kernel for Aspect Orientation), a re(verse)-engineering framework for build
systems. More info onhttp://users.ugent.be/ ∼badams/makao/ .

Figure 7. Schematic order of execution of a woven idiomatic pro-
cedure. Full arrows denote execution flow, while dashed ones in-
dicate that the sequence in between them can show up zero or more
times. Rounded rectangles represent advice, while hexagons indic-
ate execution, call and local continuation join points. The advice
name is centered for around-advice, while it is right-aligned for
after-advice.

claration of a join point property callederror var represent-
ing an error variable4 (cf. the idiom itself) in each idiomatic pro-
cedureJp . Of course, the variable should be initialised to theOK
status every time a procedure starts executing and should be used
as the procedure’s return value at the end. This is handled by ad-
viceerror code mgmt (lines 6–12). As shown here, a join point
property (R) can be accessed via theproperty -predicate (line 8)
by supplying both the join point and the right property name.

In Aspicere2, the order of before-advice corresponds to the ac-
tual run-time order, while after-advice is written down in reverse or-
der5. This means that adviceerror code update (lines 31–35)
is the first to execute after an idiomatic call (see Fig. 7), to record
the call’s error status into the enclosing procedure’serror var
property.

Now, annotations will kick in. First, logging of linked errors can
only be meaningful if a developer provides the new error value.
Hence, the absence of a log annotation could be interpreted as if
logging is not necessary. Line 5 in Fig. 3 shows such an annota-
tion, consisting of a name (“log”) and some attributes (here only
“LINKED ERROR”). Adviceerror code logging (lines 20–
29 on Fig. 5) tells us that when an annotated (line 23), idiomatic
procedure call (line 22) returns, there will be a linked error log if
theerror var property signals an error (line 24). Both the error
variable and the call’s return value need to be updated to the newly
provided error value. Logging only happens when needed.

To override theerror code passing -advice for manual
recovery (lines 14–18), it suffices to reset the error variable (line 17)
when a developer uses a@manual-annotation. Indeed, as the error
variable isOKagain, theerror code passing -advice will not
notice anything and just proceed (see Fig. 7). The developer should
then catch the procedure call’s error return value, check it for the

4 In Aspicere2, properties, return values and procedure actuals are accessible from
within the advice by pointers instead of by their real type. This is why e.g. the
error var -property’s type isint * instead ofint .
5 You can easily memorise this, as the firstbefore-advice runsbeforeall others, while
the firstafter-advice executesafterall others. Analogous rules hold foraround-advice.
This precedence system differs at some points from AspectJ’s.

1 int f(void){
int tmp=OK;

3 ...
/ * @manual() * /

5 tmp=g();

7 if (tmp==EASY_TO_FIX_ERROR){
/ * recover manually * /

9 } else if (tmp==INITIAL_CLEANUP_ERROR){
...

11 rethrow(tmp);
}

13

...
15 }

17 int rethrow(int a){
return a;

19 }

Figure 8. Small example illustrating developer overriding of ex-
ception handling.

1 / * necessary imports * /

3 int around range_check(int * R, int Arg,
int LowerBound, int UpperBound) on Jp:

5 idiomatic_proc(Jp)
&& property(Jp,error_var,R)

7 && range(Jp,Arg,LowerBound,UpperBound){
if ((Arg < LowerBound)||(Arg > UpperBound)){

9 * R=PARAM_ERROR;
LOG(* R,OK);

11 return * R;
} else {

13 return proceed();
}

15 }

Figure 9. Parameter range checking aspect.

proper value he expects and recover from it the way he/she wants.
Fig. 8 illustrates this on lines 7–8. So, control flow transfer happens
by default, while logging should be explicitly asked for.

What if the developer just wants to do some initial recov-
ery manually, followed by the default exception handling beha-
viour? This is actually easy to do (lines 9–12): use the@manual-
annotation and just call the identity procedure (aptly calledrethrow ,
see lines 17–19) after the local recovery. This will again trigger the
default exception handling on the original error.

Although not necessarily a part of the return-code idiom, we can
extract the argument range checking concern as well, which gives
us the aspect of Fig. 9 and its accompanying Prolog file (Fig. 10).
It only involves looking for@range-annotations on procedures
(see line 1 of Fig. 3) containing the relevant argument name and
the two bounds. The advice body is similar to Fig. 2’s dark F-
shape. Fig. 10’s predicate allows easy access to both annotation
info (line 2) as well as the checked argumentArg (line 3).

5. Memory cleanup through join point properties
and type parameters

Having tackled the error propagation and logging concerns, we will
now focus on the cleanup of resources in case of errors, and more
in particular of any dynamically allocated memory. The exact prob-
lem involves detecting which variables refer to allocated memory
(need to be cleaned up) and which ones are just dangling point-

1 range(Jp, Arg ,LowBound,UpBound):-
annotation(Jp,range,[ArgName,LowBound,UpBound]),

3 nth_arg(Jp, Arg ,ArgName)
.

Figure 10. Accompanying Prolog metadata of aspect in Fig. 9.

/ * necessary imports * /
2

int * intro memory_op_success() on Jp:
4 memory_allocation(Jp,_,_);

6 Type intro memory_op_alloc(TYPE Type) on Jp:
memory_allocation(Jp,_,Type);

8

void after successful_alloc(int * SuccessVar,
10 TYPE Type,Type AllocVar,Type Actual)

returning (int * Code) on Jp:
12 memory_allocation(Jp,Actual,Type)

&& property(Jp,memory_op_success,SuccessVar)
14 && property(Jp,memory_op_alloc,AllocVar){

if (* Code==OK){
16 * SuccessVar=1;

* AllocVar= * Actual;
18 }

}
20

void after cleaning_up(int * R, int * SuccessVar,
22 TYPE Type,Type AllocVar) on Jp:

idiomatic_proc(Jp)
24 && enclosingMethod(JpCall,Jp)

&& memory_allocation(JpCall,_,Type)
26 && property(Jp,error_var,R)

&& property(JpCall,memory_op_success,SuccessVar)
28 && property(JpCall,memory_op_alloc,AllocVar){

if ((* R!=OK)&&(* SuccessVar==1)){
30 mem_free(AllocVar);

}
32 }

Figure 11. Memory handling aspect.

ers (no cleanup). Thanks to the return-code idiom, catching the
memory allocation procedure’s return value and checking it when
halting from the continuation does the job. Of course, there should
be a way to access the allocated memory. For both these purposes,
join point properties of the memory allocation procedure calls are
a perfect fit.

Fig. 11 shows the resulting memory cleanup aspect. The two
mentioned join point properties are declared on lines 3–4 and 6–
7. The first one (initialised by default onOK) signals whether the
corresponding memory allocation is a success, in which case the
second one holds a reference to the allocated memory area. The
properties are associated withmemory allocation s, i.e. calls
to memory operation s (lines 4–9 on Fig. 12) of which some
examples are given (lines 1–2). For each call, both the second6

actual Actual (line 8) as well as its typeType (line 7) are
captured. Yes, it is possible that a float is allocated or some user-
defined struct. As C lacks interfaces or something similar, and
void -pointers are not type-safe (although it would work in this
case), we apply the original Aspicere’s type parameters [9] here.
These can be used in advice bodies like C++-templates do, or as
an around-advice’s return type. They just need to be declared as
TYPEs in the advice’s signature (lines 6, 10 and 22 of Fig. 11)
before they can be used.

6 Indexing in code starts from zero.

memory_operation("mem_alloc").
2 memory_operation("mem_calloc").

4 memory_allocation(Jp,Actual,Type):-
invocation(Jp,FName),

6 memory_operation(FName),
nth_arg_type(Jp,1,Type),

8 nth_actual(Jp,1,Actual)
.

Figure 12. Accompanying Prolog metadata of aspect in Fig. 11.

Advice successful alloc (lines 9–19) catches the return
error value of allocation procedure calls and stores a reference to
the allocated memory area, but only if no error occurred. Advice
cleaning up (lines 21–32) frees allocated memory after the
continuation has been skipped (error var -property differs from
OK) for each successfully allocated variable (line 29).

Notice on Fig. 7 that memory allocation and cleanup won’t
take place when a range violation occurs. This is semantically
correct, as careful investigation of Fig. 2 learns. On line 13, the
memfree -call will always be run to cleanup the allocation of
line 3 (which has succeeded when a range violation happens). As
this is a redundant transaction (allocate, detect range error and de-
allocate), our aspect just ignores memory allocation and cleanup in
this case. An alternative which adheres better to the idiom would
be to advise the lastmemory allocation ’s local continuation
join point, provided that all such allocations occur at the beginning
of procedures.

What if the call tomemfree on line 30 of Fig. 11 goes wrong?
Aspicere2 doesnotallow advice on advice, which would let this er-
ror go unnoticed. Fortunately, replacing calls tomemfree by in-
vocations of a wrapper around it solves this if the wrapper is part of
the base code. Indeed, our aspects will target either the wrapper or
the memfree -call it contains, providing default exception hand-
ling. If some more specialised recovery actions would be needed in
this case, one could put them into an additional aspect or just add it
directly to the wrapper.

6. Discussion and Future Work
6.1 Benefits

Looking back at all aspects and Prolog files we presented, one
could argue whether the original code of Fig. 1 is not much shorter.
At first sight, it is. However, keeping in mind that the aspects have
to be written only once and will be superimposed throughout the
system, they form in fact an initial investment that will pay itself
back once a whole module is refactored. All developers need to
do is to annotate their code or (in some cases) override default
exception handling behaviour. In [1] the code reduction achieved on
a representative module of 20 kLOC has been measured. Exception
handling accounted for 9% of this (1716 LOC), whereas our aspects
(together with their Prolog files) account for 122 LOC. For each
logged linked error, there will be a@log-annotation. If developers
want to recover manually, there will be another extra line of code,
i.e. the@manual-annotation. More precise numbers can only be
obtained when applying our aspects in practice, but all in all our
approach seems to allow for a substantial large code reduction. This
enhances base code readability and facilitates software evolution.

Of course, before this can happen, the current base code will
need a thorough conversion. First, the actual main concern should
be recovered from the tangled representation it is held captive in (cf.
Fig. 2). Also, the relevant error values should be looked up. Finally,
all error handling code should vanish and annotations should be in-
serted to guide the aspects. This is indeed a major effort, requiring

1 int f(int a, int ** b){
int r = OK;

3 bool allocated = FALSE;
r = mem_alloc(10, (int **) b);

5 allocated = (r == OK);
if ((a < 0) || (a > 10))

7 ROOT_LOG(PARAM_ERROR,r);
LINK_LOG(g(a),LINKED_ERROR,r);

9 NO_LOG(h(b), r);
if ((r != OK) && allocated)

11 mem_free(b);
return r;

13 }

Figure 13. Macro solution for Fig. 1.

extensive test suites to validate the migration results. Nevertheless,
this situation comes as no surprise when migrating from a code base
that is dictated by a couple of idioms, especially when they are as
invasive as the return-code idiom. The automated approach for con-
cern verification presented in [1] could be applied here. Automatic
pointcut and advice construction, however, is unnecessary. Indeed,
our major pointcuts are based on “semantic” concepts like:

• returning an integer;

• local continuation join points;

• annotations;

• join point properties.

At the same time, exception handling advice is actually very
generic by itself, which is enforced by the use of context variables
for representing types, annotation attributes, etc. This robustness
property can only be proven by applying the aspects on various
modules, possibly having differences in idiom interpretation.

The resulting code of Fig. 3 could in fact be the starting point for
any exception handling strategy, so the cleanup effort is no waste
of time. An aspect-based solution has another benefit: changing ex-
ception handling strategies is now a matter of writing and using an-
other aspect. As return values were used to indicate an error status
in the original implementation, they are now pretty much useless
in the base code. Instead of turning them intovoid , keeping them
adds extra possibilities for aspect implementations. This is an extra
benefit of section 2.2’s restrictions.

6.2 Alternatives

Fig. 13 shows a macro-based solution presented in [2] for Fig. 1’s
example procedure. MacrosROOTLOG, LINK LOGandNOLOG
hide assignments to the error value as well as any neededLOG-calls.
Cleanup code was not elaborated on in [2] as it was considered as
a separate concern. The macros already are a significant improve-
ment as checks are hidden behind them. They still need to be called
manually, which is a likely smaller source of problems than the cur-
rent situation, and there is still an explicit error variable. A practical
case is required to see if our aspect approach proves to be feasible
and less error prone.

Instead of having to advise local continuation join points,
it could also be possible to add a new keyword to the lan-
guage:break(some value) . Its semantics are analogous to
thebreak -keyword used to jump out of loops, but now the current
executing base procedure is stopped. More work is needed to really
assess this keyword’s viability and general applicability.

6.3 Implementation notes

Having learnt a lot from our experiments with the original As-
picere [9], we redesigned the language a bit and reimplemented

Figure 14. Aspicere2’s weaver architecture.

its weaver. Instead of our own XML framework and extended C
parser, we opted for LLVM (Low-Level Virtual Machine)7. This
provides an SSA-form intermediate representation called LLVM
bytecode, which is generated from C or C++ by a GCC-based fron-
tend. Weaving boils down to bytecode transformation at link-time,
at which time all modules’ bytecode has been glued together. This
is illustrated on Fig. 14. A reification pass then traverses the link-
time module and asserts all interesting program entities as Prolog
facts. Next, all pointcuts (transformed into Prolog rules) are quer-
ied to find any matching join points. Armed with the resulting set
of matches, a weaving pass transforms the IR representation of the
full program. Afterwards, optimisations reduce the woven code by
inlining, dead code elimination, etc. The end result is a bytecode
representation of the whole, woven program that can be interpreted
or linked with all required libraries into a normal executable.

We have not applied our aspects in practice yet, except for [2]’s
running example where they behave as explained in this paper. Nev-
ertheless, we can already make some qualitative efficiency obser-
vations. At build time, compilation and linking is replaced by the
process outlined in Fig. 14. At run-time, the aspects also add some
extra complexity:

• advice has been transformed into procedures to which various
calls are issued;

• the cleanup aspect adds extra variables to idiomatic procedures
and contains extra calls to thesuccesful alloc -advice.

On the other hand:

• join point properties can be mapped onto local variables;

• adviceerror code passing can be inlined efficiently, res-
ulting in the same code size as the original base code;

• Fig. 9’s aspect actually optimises the current implementation as
it avoids unnecessary memory (de-)allocation;

• the bytecode optimisation passes can optimise away lots of
redundant code.

Experiments will have to indicate which arguments will prevail.

7. Conclusion
We have shown how a combination of carefully crafted aspects re-
lieves the developers from the return-code idiom administration,
unless they really want to do manual recovery themselves. At the
heart of our approach lies the concept of local continuation join
points, giving aspect developers the power to skip the remainder of
a procedure at any (join) point during its execution. Join point prop-
erties are used to decouple advices from each other, while annota-
tions allow developers to override the default exception handling
scheme. The latter, together with type parameters and the fact that

7 http://llvm.org/

all procedures keep returning an integer error value, results in fairly
robust pointcuts and advice. We argued that the aspects consider-
ably improve code readability, understandability and evolvability,
by extracting all exception control flow and (in general) reducing
code size. Compared to the original code, the woven application
should have similar run-time efficiency. Our claims still need to be
backed by an actual application to a real-world case.

Acknowledgments
The authors want to thank Tom Tourwé for his support and com-
ments on details of the actual problem, and both Serge Demeyer
and Yanic Inghelbrecht for feedback on an early draft of the paper.

References
[1] M. Bruntink, A. van Deursen, and T. Tourwé. An initial experiment

in reverse engineering aspects. InWCRE ’04: Proceedings of Working
Conference on Reverse Engineering, pages 306–307. IEEE Computer
Society, 2004.

[2] M. Bruntink, A. van Deursen, and T. Tourwé. Discovering faults in
idiom-based exception handling. InICSE ’06: Proceeding of the 28th
international conference on Software engineering, pages 242–251,
New York, NY, USA, 2006. ACM Press.

[3] S. Ducasse, A. Lienhard, and L. Renggli. Seaside — a multiple control
flow web application framework. InISC ’04: Proceedings of 12th
International Smalltalk Conference, pages 231–257, Sept. 2004.

[4] Y. Endoh, H. Masuhara, and A. Yonezawa. Continuation join points.
In FOAL ’06: Proceedings of the Foundations of Aspect-Oriented
Languages Workshop at AOSD 2006, pages 1–10, March 2006.

[5] J. Guy Lewis Steele.RABBIT: A Compiler for SCHEME. PhD thesis,
May 1978.

[6] A. Kelley and I. Pohl. A book on C (Fourth Edition). Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA, 1998.

[7] M. Lippert and C. V. Lopes. A study on exception detection
and handling using aspect-oriented programming. InICSE ’00:
Proceedings of the 22nd international conference on Software
engineering, pages 418–427, New York, NY, USA, 2000. ACM Press.

[8] I. Nagy, L. Bergmans, and M. Aksit. Composing aspects at shared join
points. In A. P. Robert Hirschfeld, Ryszard Kowalczyk and M. Weske,
editors,NODe2005: Proceedings of International Conference Net-
ObjectDays, volume P-69 ofLecture Notes in Informatics, Erfurt,
Germany, Sep 2005. Gesellschaft für Informatik (GI).

[9] A. Zaidman, S. Demeyer, B. Adams, K. D. Schutter, G. Hoffman, and
B. D. Ruyck. Regaining lost knowledge through dynamic analysis and
aspect orientation. InCSMR ’06: Proceedings of the Conference on
Software Maintenance and Reengineering, pages 91–102, Washington,
DC, USA, 2006. IEEE Computer Society.

