JOHANNES KEPLER
UNIVERSITY LINZ

Research and teaching network

Jakob Praher

A Change Framework based on the Low Level
Virtual Machine Compiler Infrastructure

THESIS

in partial satisfaction of the requirements for the degree of

DIPLOM-INGENIEUR

in the Master Program Computer Science

Created at the Institute for System Software
Johannes Kepler University Linz

Supervised by:

o.Univ.-Prof. Dipl.-Ing. Dr. Dr. h.c. Hanspeter Mossenbock

Linz, April 2007

Johannes Kepler University
A-4040 Linz - AltenbergerstraBe 69 - Internet: http://www.uni-linz.ac.at - DVR 0093696

Abstract I

Abstract

When developing or deploying large applications, one would like to have more insights
into what an application is doing at runtime. Frequently it is required to change defective
parts of an application as fast as possible. For instance one may wish to replace a certain
function call in a program with another function call whenever a specified condition
holds. This master thesis aims at building the change framework, a system for dynamic
program instrumentation and analysis. This research builds atop of the Low Level Virtual
Machine (LLVM) for representing C/C++ applications in an intermediate form. The
change framework consists of two parts, the application under analysis, and a monitor
process. The application under analysis is a C/C++ application compiled to LLVM
bytecodes. The monitor process communicates with the application process and is able
to dynamically instrument and analyze the application process using a domain specific
language. This change language has powerful constructs for defining and conditionally
applying application changes. An important overall goal of this system is to ease the
analysis as well as alteration of low level system software at run-time.

Kurzfassung

Hiufig wihrend der Entwicklung und im FEinsatz komplexer Anwendungen mdchie man
mehr Informationen und Finblicke haben, was eine Anwendung zur Laufzeit macht. Oft
ist es auch notwending fehlerhafte Teile schnell auszutauschen. Zum Beispiel das Erset-
zen einer Funktion mit einer anderen Funktion, immer wenn eine bestimmte Bedingung
eintritt. Diese Diplomarbeit beschdfigt sich mit dem Change Framework - ein System
zur dynamischen Analyse und Instrumentierung von Programmen. Die Arbeit verwen-
det die Low Level Virtuelle Machine (LLVM) zur Reprdsentation von C/C++ in einem
Zwischenformat. Das Change Framework besteht aus zwei Teilen. Finerseits der An-
wendung, die analysiert werden mdéchte und andererseits einem Monitorprozess. Erstere
ist eine Anwendung, die auf LLVM Bytecodes tibersetzt ist. Der Monitorprozess kom-
muniziert mit dem Anwendungsprozess und nimmt Anderungen an der Anwendung zu
deren Laufzeit vor. Diese Anderungen werden in einer domdnspezifischen Sprache, der
Change Language, verfasst. Diese Sprache bietet mdchtige Konstrukte zur Definition und
bedingten Anwendung von Anderungen an Applikationen. Eines der Hauptziele dieses
Systems ist es die Analyse und die Verdinderung von Anwendungen zur Laufzeit zu vere-
infachen.

Contents 11
Contents

1 Introduction 1

1.1 Dynamic Program Instrumentation and Analysis 2

1.2 Scenarios for Dynamic Program Analysis 3

2 System Architecture 4

2.1 A Framework for Program Analysis. 4

2.2 LLVM Intermediate Representation 6

2.3 Change Framework Overview 7

2.4 Compiling Applications to LLVM 9

2.5 Recompiling Instrumented Program Fragments 11

2.6 Summary e e e 11

3 Big Picture 12

3.1 Overview e e 12

3.2 Dynamic Program Analysis 12

3.2.1 Example Code Fragment 12

3.2.2 Program Analysis 13

3.2.3 Function Call Sequence 14

3.24 Loop Detection o 17

3.25 Memory Usage 21

3.3 Summaryo e 24

4 The Low Level Virtual Machine 25

4.1 OVErvIEW o e e 25

4.2 The History behind LLVM 25

4.3 Computer Architecture. 26

4.3.1 Computing Machines and Machine Language 26

4.3.2 Programs and Machine Language 26

4.3.3 Program Machine Interfaces 27

4.4 The Virtual Machine Concept 27

4.4.1 Overview e 27

4.4.2 Process Virtual Machines 28

4.4.2.1 Multiprogramming 28

4.4.2.2 High Level Language Virtual Machines 29

4.5 The Low Level Virtual Machine Architecture 31

4.5.1 Overview 31

4.5.2 Classifying the LLVM Architecture 31

4.5.3 High-Level Type Information, Low-Level Intermediate Language 31

4.5.3.1 High-Level Type Information 32

4.5.4 LLVM Virtual Instruction Set Overview 33

4.5.5 Three-address Code Architecture in SSA Form 33

4.5.5.1 Typed Polymorphic Instructions 34

Contents 111
4.5.5.2 Explicit Control Flow Information 34

4.5.5.3 Static Single Assignment Form 35

4.5.5.4 Type Information, 37

4.5.5.5 LLVM Memory Model 38

4.5.5.6 Function Calls and Exception Handling 39

4.5.6 Graph-Based In-Memory Representation 40
4.5.7 Bytecode - Binary Virtual Object Code Representation 43
4.5.8 Summary of the LLVA oo 44

4.6 SUMMATY . . .« v v v e e e e e e e e e e e 44
5 The Change Framework 45
5.1 Overview e e e 45
5.2 Change Framework Architecture 45
5.2.1 The Change Concept, 46
5.2.2 Change Application Overview 47
5.2.3 Change Unapplication Overview 48

5.3 Change Provider Architecture 48
5.3.1 A Sample Application 50
5.3.2 Change Points and Change Point Trajectories 51
5.3.3 Provider Context Information 52
5.3.4 Summary 53

5.4 Change Language 53
5.4.1 Overview 53
5.4.2 Syntaxo 53
5.4.2.1 Lexical Structure. 55

5.4.2.2 Change Specific Syntactic Aspects 56

5.4.3 Semantics 57
5.4.3.1 Value Types 57

5.4.3.2 Thestring Type 58

5.4.3.3 Pointer Types 59

5.4.3.4 Reference Types 59

5.4.3.5 Implicit Values 59

5.4.3.6 Predefined Values, 60

5.4.3.7 Literals 61

5.4.3.8 Type Equality 61

5.4.3.9 Type Compatibility 61

5.4.3.10 Assignment Compatibility 62

5.4.3.11 Implicit Type Conversions 62

5.4.3.12 Lexical Scopes 63

5.4.4 Context Conditions 63
5.4.4.1 General Context Conditions 64

5.4.4.2 Change Specific Context Conditions 64

5.5 Change Detection and Recompilation 68
5.5.1 Overview 68
5.5.2 Recompilation Checkpoints 68
5.5.2.1 Recompilation Detection Period 69

5.5.3 Checkpoint Testing Overhead 69
5.5.4 Alternatives to IR Transformation Based Checkpoints 71
5.5.4.1 Write a LLVM MachineFunctionPass 71

5.5.4.2 Implement an Intrisic Function or a Custom Bytecode . . 72

5.5.5 Finer Recompilation Models 73

Contents v
5.6 Change Protocol 75
5.6.1 Overview L 75
5.6.2 Communication Framework 76
5.6.2.1 Channel Message Handling 76

5.6.3 General Message Wire Format 78
5.6.3.1 Invoke Messages, 79

5.6.3.2 Return Messageso L. 79

5.6.3.3 Oneway Invoke Messages 80

5.6.4 Well Known Change Specific Messages 80
5.6.4.1 REGISTER_CHANGE Message 80

5.6.4.2 UNREGISTER_CHANGE Message 81

5.6.4.3 TIO_OUTPUT Message v v v v v v v v v v v v o 81

5.6.4.4 CLOSE Message v v v v v v v i v 82

5.7 Summary e e 83
6 Evaluation 84
6.1 Overview e e 84
6.2 Analysis of the Change Framework 84
6.2.1 Analysisof LLVM oo 85

6.3 Evaluation of the Existing Prototype 86
6.3.1 Evaluation of the LLVM Infrastructure 87
6.3.1.1 Common LLVM Suffixes 87

6.3.1.2 The Test Suites 87

6.3.1.3 The Run-Time Environments 88

6.3.1.4 Testing Infrastructure 89

6.3.1.5 Comparing Overall Run Time 89

6.3.1.6 Translation Time vs Overall Execution Time 90

6.3.1.7 Results of Run-Time Measurements 92

6.3.1.8 Average Resident Set Size Memory 92

6.3.1.9 Conclusion of LLVM Run Time Infrastructure 93

6.3.2 Evaluation of the Change Framework 93
6.3.2.1 Core Run-Time Overhead 94

6.3.2.2 Change Overhead 95

6.4 Summary e e 96
7 Related Work 97
7.1 Overview oo e 97
7.2 Dyninst APT 97
7.3 Solaris DTrace e 99
7.4 Java Virtual Machine Tool Interface 100
8 Summary 101
8.1 Conclusions e 101
8.2 Future Work Overview i 102
8.3 LLVM Enhancements 102
8.4 Language Enhancements 0oL 104
8.4.1 Provider Inheritance L L oo 104
8.4.2 Type Expressions and Variables. 105
8.4.3 Type Expression Pattern Matching 107

8.5 Framework Enhancements Lo 0oL 108
8.5.1 Separate Program Transformation and Information Providers . . . 109

Contents A\

8.5.2 Abstract Provider Language 112
8.5.3 Ahead Of Time Compiled Applications 112
8.6 Limitations of the Change Framework Prototype 113
8.6.1 Change Framework Limitations 113
8.6.2 Change Language Compiler Limitations 114
8.6.3 Summary 114

Bibliography 115

List of Figures VI

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6
5.7

6.1
6.2

6.3
6.4
6.5
6.6

7.1
7.2

8.1

Core Architecture for Program Analysis 4
LLVM Components it 5
LLVM Bytecode Model 6
Details of the Change Model 7
Compiling and Executing C/C++ to Machine Code 10
Executing C/C++ viaLLVMo L. 10
CFG of the Example Code Fragment 17
Loop Detection by Depth First Search Traversal 18
Translation from High-level Code to Machine Language 26
Process VM: The Virtual Machine runs as Application Process 28
Different Program Representations 32
A Simple CEG 35
LLVM call and invoke CFG 40
LLVM Value-User Type Hierarchy 41
LLVM Instruction Hierarchy 42
LLVM In Memory Representation 42
LLVM Binary Instruction Format 43
Components of a Change 46
Applying a Change 47
Bytecode Scopes 49
Sample Application LLVM IR for Hello World 51
Sample Application LLVM IR for Hello World with Checkpoints 70
Fundamental Channel State 75
ChangelO Communication Framework 76
Change Framework Overview 84
Execution Speedup Compared to the GCC(02) Version (Higher bars are

better) o 90
Comparing of JITting With and Without Inlining (Higher bars are better) 90
JIT Execution Time in % of Total Exec Time 91
Resident Set Size of the Applications (Smaller bars are better) 93
Time Scales, Lecture Notest for CSC 469H1F, [Bro06] 95
The Dyninst APT 98
Inserting Code into a Running Program 99

Change Framework as External Service 112

Introduction 1

Chapter 1

Introduction

Most of todays computers are based on the so called von Neumann Architecture. A
program is stored in memory as a consecutive block of instructions. The program is
executed by fetching an instruction from memory, decoding it to detect its type, executing
it, and writing the results back to memory. The instruction format and layout determines
the computer architecture or instruction set architecture (ISA).

Writing programs in this way is very difficult and error prone. Over the years, program-
ming languages have been created to make writing computer programs easier. In order
for the processor to execute a program written in a programming language, it has to be
transformed into a block of instructions. Debugging information maps source language
artefacts to instruction regions. This is essential to map runtime errors of a program to
the originating source language constructs. This information is very expensive. Typically
one would strip it off as soon as the program is not used for debugging anymore.

When developing or deploying large applications, one would like to have more insights
into what an application is doing at run-time. For instance one may wish to replace
a certain function call in a program with another function call whenever a specified
condition holds. This kind of analysis and transformation is hard to achieve with ahead-
of-time compilation models. Recompilation is often needed when changing code. The
running process has to be stopped, and new machine code executable has to be created
and executed.

An approach often used for generating log information is to add logging code at various
places and define the level of verbosity when launching an application. This is more
laborintensive and the many unused logging instructions can cause significant run-time
overhead. An ideal approach would be to dynamically change specific areas of a pro-
gram based on specified criteria. This master thesis describes an environment for this
purpose.

The work presented here is based on the LLVM (Low Level Virtual Machine) infras-
tructure. LLVM allows one to compile source code written in C/C++ to a low level
intermediate representation. This interemediate representation can then be ahead-of-
time compiled to the target machine code or dynamically executed using a so called
execution engine.

Introduction 2

1.1 Dynamic Program Instrumentation and Analysis

According to the thesaurus' analysis, can be defined as ezamination. Additionally to

examination, program analysis is the task of understanding the behavior and the nature
of a program. While static analysis refers to analyzing a program’s instructions or a
program’s source code, dynamic analysis refers to gathering information about a program
during its execution. The term at run-time is often used to describe the time during
that a program is executed. This is an important distinction. Due to the conditional
nature of computer programs, the same program can yield different results depending
on its execution context.

An important part of program analysis is instrumentation. The online encyclopedia
Wikipedia defines? instrumentation as:

Instrumentationis defined as “the art and science of measurement and con-
trol”. Instrumentation can be used to refer to the field in which instrument
technicians and engineers work, or it can refer to the available methods of
measurement and control and the instruments which facillitate this.

Program instrumentation means to change the program’s instructions in order to ana-
lyze the program. In computer science, the term instrumentation is used when changing
programs by adding and removing code with the concern of analysis, control, or mea-
surement of the instrumented code. This is a spearate concern from the application
code that solves a problem in the application domain. Often instrumentation code gets
inserted after the application code has been written.

As with static program analysis, static program instrumentation refers to adding instru-
mentation code before executing the program. Dynamic or interactive instrumentation
on the other hand means adding and removing instrumentation instructions at run-time.
An important distinction is that dynamic program analysis can also be done with static
instrumentation.

Understanding a complex software especially in case of wrong behavior or collecting
important performance data implies instrumentation of the right parts of the application
code. Often it is impossible to anticipate run-time behavior during static analysis of
a program. There is also a trend in modern optimizing compilers. Some compilers
use profiling data collected by previous runs of the application in order to help static
performance optimizations.

On the other hand modern just-in-time compilers rely on so called hot-spot information
which is collected at run-time. Dynamic instrumention allows the developer/user to
change parts of a program on an as needed basis. This greatly reduces the complexity
of the instrumated code.

http://thesaurus.reference.com/search?q=analysis
’http://en.wikipedia.org/wiki/Instrumentation

http://thesaurus.reference.com/search?q=analysis
http://en.wikipedia.org/wiki/Instrumentation

Introduction 3

1.2 Scenarios for Dynamic Program Analysis

The best way to see the importance of program instrumentation and analysis is by
example. Applications of dynamic program analysis are manyfold. On a macrolevel
there is for instance the big topic of finding errors in large applications. Origins of errors
are often hard to track only by looking at the static structure of the program. Below
is an example of a typical problem of a big application with many possible run-time
configurations.

Observed Problem. After a certain amount of successful HTTP requests a webserver
suddenly freezes and stops responding. Restarting the webserver results in new requests
being successfully processed. After a number of requests the same effect occurs again.
The log files do not contain any error descriptions.

Real Cause of Problem. FEach request is logged using reverse DNS resolution to ob-
tain the address name of the requesting user agent. The webserver blocks while resolving
the address in question. Due to a problem in the DNS resolution settings, all child pro-
cesses of the webserver are blocked by the DNS resolver. The webserver is unable to
process any more requests and freezes.

Possible Analysis.

Trace the main loop of the webserver process.

Write all functions called by the webserver onto standard output.

The output shows that the resolver library is blocking.

Examine the call stack to see where the application is calling the resolver library.
It shows that the log subsystem calls the DNS resolver.

Look through the configuration subsystem to find that the logging format includes
name resolution.

Disable name resolution for log entries and continue.

e Determine the name resolution problem. Solve the problem there and turn on
reverse name lookup again (if needed).

Furthermore on the microlevel, dynamic instrumentation can be used to optimize certain
application areas. Typical applications follow an 80-20 rule. At least 80 percent of the
run-time of an application is spent in at most 20 percent of the code. Static optimization
can not easily determine these hot-spots. Additionally, hot-spots can vary, depending
on the run-time context. In this case, instrumentation and analysis can help to deter-
mine hot-spots. With dynamic instrumentation it is also possible to change individual
functions to better optimized ones without stopping the program execution.

System Architecture 4

Chapter 2

System Architecture

2.1 A Framework for Program Analysis

This master thesis aims at building a system for dynamic program instrumentation and
analysis. Figure 2.1 shows the architecture. It consists of two processes:

e The application process
e A monitor process

Machine Application I__ogic -
Code Intermediate

Representation
Dynamic 1—[\
Compiler

(Just In Time)

Change Framework

Agelication Process

Change Requests
Information Exchange

Change
Char_'nge Change Information
Script Language (Intermediate

Compiler Representation)

Monitgr Process

Figure 2.1: Core Architecture for Program Analysis

The application process contains the application program to be instrumented and an-
alyzed. Instead of just being a native executable, the application process contains the
application logic in an intermediate representation (IR). This IR is dynamically compiled
to native code using a just-in-time (JIT) compiler.

System Architecture 5

The application process also contains the change framework. The change framework
uses information available from the application’s IR to instrument the code. It listens
for requests from the external monitor process and processes these. So called changes are
requests to instrument and change the application code. Changes are applied by instru-
menting the TR. After that, the framework informs the dynamic compiler to recompile
the changed application code. All applied changes are logged by the framewok. An
applied change can be unapplied again. This enables interactive usage and incremental
analysis.

The second process in Figure 2.1 is the monitor process. A monitor process communicates
with an application process over means of interprocess communication (IPC). Its main
task is to compile changes to IR and to communicate with the application’s process.
Changes are written in a specific language, the change language. As can be seen in
Figure 2.1, the monitor process includes a compiler to translate change language scripts.
To be easily incorporated into the application’s IR, they are compiled to the same IR.
After the change scripts are compiled, they can be transmitted to the application process
for getting processed by the change framework.

]
C/C++
Compiler
Backend
Lo (GCC)
C++ Libraries
Compiler Infrastructure F
Compilation
Strategy Tools
I

Low Level Object Code Representation
Virtual ISA (Instruction Set Architecture)

Figure 2.2: LLVM Components

The IR in use is the intermediate representation of the Low Level Virtual Machine
(LLVM) [LLVO06e] compiler infrastructure [LA04]. LLVM is both an infrastructure as
well as a framework for compiler engineering. As can be seen in Figure 2.2 LLVM is:

o A compilation strategy: Instead of doing translation-unit at a time compilation,
the LLVM strategy is to have whole program representations. One application is
continously optimized by staged compilation techniques during the run time of a
program.

A low level object code representation building a virtual instruction set architecture
(V-ISA).

A compiler infrastructure made of C++ class libraries.

Various tools for compiling, assembling, linking, debugging, and introspecting
LLVM bytecode files.

e GNU Compiler Collection (GCC) backend: Instead of generating native code out
of C/C++ source files, this version of GCC produces LLVM bytecodes.

System Architecture 6

These characterstics made LLVM a suitable foundation for this research.

2.2 LLVM Intermediate Representation

Representing the application logic in LLVM IR eases the gathering of static and dynamic
information. Additionally, changes can be made in a more portable and safer way than if
the framework would instrument machine code. The information contained in the LLVM
IR is the main information model available to the change framework. As can be seen in
Figure 2.3 the LLVM IR has the following structure:

e A module: The module is the container of functions and global variables.
e Functions: Functions are named, callable units of instructions.
e Global variables: Global variables are values that are accessible by all functions.

Header

Module

GlobalVariable1
GlobalVariable2

Function 1

s A (N

Inst1 o Inst3
Inst2 | Insta

. J . J

Function 2

s A (N

Inst1 .| Inst3
Inst2 | Insta

LLVM Bytecode File

Figure 2.3: LLVM Bytecode Model

As discussed in Chapter 4 the LLVM IR is not object oriented and resembles a C like
model albeit with higher level type information. In this view the function is the first
class way of representing logic. Functions further consist of a list of basic blocks, each
basic block consists of a set of instructions.

A basic block is a sequence of instructions that always execute sequentially without
changing the control flow. Because of that property they play an important role in
compiler optimization algorithms. Since LLVM is used as a framework for compiler
engineering, basic blocks have a first class representation. In this overview we just see
basic blocks as additional structural information.

System Architecture 7

Additionally LLVM provides the following advanced information:

Def-Use information

CFG (Control flow graph) based on basic blocks and terminator instructions
Data flow information based on the Static Single Assignment (SSA) form [CFR91]
High-level type information (primitives, pointers, arrays, structures, functions)

This information is used by the change framework when instrumenting applications.
The more information that is available the better the analysis of a program can be
performed. As with basic blocks, most of the concepts listed above are used in algorithms
of optimizing compiler passes. The LLVM concepts will be discussed in more detail in
Chapter 4 starting on page 25.

Another property of the LLVM IR is that all the information is available at no additional
costs. This information gets persisted in LLVM bytecode files. LLVM’s intermediate
representation is principally used as an in memory representation. Furthermore it can
be serialized into a binary bytecode format [LLVO06a]. This format is designed in a way
that keeps most information without the need for expensive recomputation.

2.3 Change Framework Overview

The change framework applies changes to a running application. After the IR gets
changed the function is recompiled. Each transformation is captured by a change defi-
nition. Figure 2.4 shows that changes are defined using the change language. It is a C
like language with specific support for changes.

[Change Info]

Change Script

change ... Predicate Change Body

/ predicate / Compiled LLVM LLVM

{ Bytecode Bytecode
body

}

Source Language Change Meta Information

C like language LLVM Bytecode representing Change

Figure 2.4: Details of the Change Model

A key concept of the change framework are change providers. Change providers operate
inside the application’s process. They are responsible for:

e Collecting information and exporting information to changes.
e Checking change predicates and inserting change bodies at well defined change
points.

A change provider can have a certain granularity. The granularity is the scope the
provider is working on:

System Architecture 8

e Per module: This means the provider is only interested in modules, and does not
look into the details of a module.

e Per function: This means the provider is interested in functions.

e Per basic block: This means the provider operates on basic blocks.

e Per instruction: This is the finest granularity. The provider operates on each
instruction.

Providers collect information and apply changes. Provider definitions build the interface
between the provider and the change scripts. The exported information is provider
specific.

function provider functionProvider {

/x Valid Change Points for this provider x/
points { OnEnter, OnLeave };

int id; /x instance id x/

string name; /x name of the function x/

int numArgs; /+* number of arguments x/

bool isVarArg; /x is it a variable argument function x/

Listing 2.1: Change Provider Defintion

Listing 2.1 shows an example function provider. The granularity is the first modifier
of the provider definition. This provider would have function granularity. It’s name
is functionProvider. It gets invoked for every function in the LLVM bytecodes. Fur-
thermore it is able to insert changes at OnEnter and OnLeave of a function. The field
declarations id, name represent exported information.

Providers are like plugins. Everybody comfortable with the LLVM class libraries and
bytecode format can write his own provider. Every provider that is declared like in
Listing 2.1 can be used in change scripts.

Provider definitions as in Listing 2.1 make providers available to change scripts. A change
definition, like in Figure 2.2, uses one or more providers with the intent to change parts
of an application. This is done by using the information made available by the provider.
A change definition consists of:

o A principal provider: The provider that is responsible for transforming the byte-
code and applying the change.

e A change point: A point, as exported by the provider, that describes the location
where the change is to be inserted.

o A change predicate: A predicate function that uses information exported by avail-
able providers. The change predicate determines if a change applies.

e A change body: The actual transformation. This is the code to be inserted at the
change point if the predicate evaluates to true.

The principal provider is responsible for applying the changes. The change point depends
on the provider chosen. For instance a change using our example functionProvider

System Architecture 9

provider can choose the change points OnEnter or OnLeave. Provider writers are respon-
sible for choosing self-explanatory names for change points.

change functionProvider :: OnEnter
/ functionProvider —>name =— ”"main” /

{
}

/x actions to be performed x/

Listing 2.2: A Change Definition

Change predicates are declared between two slashes (//). A change predicate tests a
possible change point for the specified predicate condition.

/ functionProvider —>name = "main” /

Listing 2.3: A Predicate using the Provider functionProvider

The predicate shown in Listing 2.3 is invoked by the function provider once for every
function in the application. If the predicate evaluates to true for a function f, the change
body gets inserted at the specified change point in function f. Change predicates are
tested during change application. They do not cause any runtime overhead. The change
body represents the change itself. The change language supports a subset of C statements
and expressions. In the example above the actions get inserted when entering a function
called main.

By convention every provider definition exports an implicit constant value. This implicit
value is usable from within a change definition that uses that provider. The example
change definition shown in Listing2.2 uses the provider functionProvider. This enables
the change to access the constant value functionProvider, that represents a pointer
to the fields exported by that provider. functionProvider->name refers to the current
function’s name as exported by the provider Listing 2.1.

2.4 Compiling Applications to LLVM

Applications need to be compiled to LLVM bytecode to be used with the change frame-
work. This section gives an overview of traditional machine code compilation as well as
the strategies to compile LLVM bytecode. When compiling source code to machine code,
individual source files, so called translation units, are compiled, assembled and linked
into an executable or library.

Figure 2.5 shows this model. Each translation unit is compiled into a separate object
file. The object files are linked together by the linker (link editor) to produce a single
executable or library file. The resulting executable is suitable for direct execution by the
underlying operating system.

Compiling to LLVM bytecodes is different to compiling native code as showed in Figure
2.5. The native code is executable by the operating system. When targeting the LLVM
architecture this is not the case. The underlying operating system and processor do
not understand the virtual instruction set. Figure 2.6 shows the two strategies for the

System Architecture 10

104 Machine Machine
} COde COde
f2 ()4
}
Application Process
Source code Compile to machine code Execute
C/C++ using compiler,assembler, linker machine code

Figure 2.5: Compiling and Executing C/C++ to Machine Code

Source code Source code
f1() { C/C++ f1() { C/C++
¥ ¥
2(){
}

compile to LLVM @ compile to LLVM

LLVM LLVM
bytecode bytecode

compile to machine code execute using LLVM
using LLVM assembler ExecutionEngine

Machine code LLVM
bytecode

~
N
—
~

-

¥

-

[T

execute (T Machine code
machine code
Machine code -
E LLVM execution engine
Application process

Figure 2.6: Executing C/C++ via LLVM

execution of LLVM bytecodes. On the left side C/C++ source code gets translated into
LLVM bytecodes. These bytecodes are then compiled to machine code using ahead-of-
time compilation. Compiling source languages this way differs only slightly from the one
showed in Figure 2.5. The most important difference is that this model leads to better
whole program optimizations.

On the right side, the bytecodes are dynamically compiled to machine code on an as
needed basis. Instead of directly loading and executing the native executable, a host
application, called an execution engine, is loaded. This execution engine in turn loads
the application’s bytecodes. For this research the dynamic compilation strategy was

System Architecture 11

used. In this approach the code is dynamically compiled on an as needed basis and
the compilation subsystem is already in the application’s process. While this is more
suitable for dynamic instrumentation, a static compilation strategy would also work.

2.5 Recompiling Instrumented Program Fragments

The last piece in the system architecture deals with recompiling instrumented program
fragments. When a change request arrives in the application process, the change frame-
work processes it. Changes are applied by transforming the applications IR, which leaves
the machine code version untouched at first. The application process’ machine code
needs a way to detect that there is a modified version of its intermediate representation
available, so that it recompiles the modified parts of the system.

In order to make the generated machine code aware whenever it should recompile itself,
a check code is injected in the application’s IR at load time. The change framework keeps
a global flag that represents the dirtiness of the bytecodes. If the bytecodes have been
changed, the dirty flag gets set to true. After checking the dirtiness the flag is reset, so
that the next bytecode change can be done right after a check was performed, not after
the machine code was recompiled.

The dirty state check is performed before a function is called. This is since the LLVM
execution JIT compiler translates on a per function granularity. A more detailed ex-
planation of the recompilation algorithm can be read in Chapter 5 beginning on page
45.

2.6 Summary

The aim of this chapter was to provide the reader with an essential overview of the system
architecture. To summarize, important properties of the change framework are:

Dynamic: Changes can be applied at run-time.

Reversible: Changes can be unapplied again.

Ezxtensible: Providers export instrumentation functionality.

Interactive: A set of change application/unapplication can be used to learn more

about the running program. Information output is transferred from the Execution

Engine to the change monitor process.

e Portable: Changes are applied by transforming LLVM IR. Providers are thus
portable to any processor architecture, targeted by the LLVM platform.

e Network transparent: The change framework and the change monitor are differ-

ent processes. Communication is performed through interprocess communication

(IPC) which need not take place on the same host. Since change scripts are com-

piled to LLVM bytecode, the change framework is not dependent on the system

architecture of the monitor process.

Big Picture 12

Chapter 3
Big Picture

3.1 Overview

In the last chapter the system architecture of the change framework was introduced.
As shown in Figure 2.1 the framework consists of two processes: The application to be
observed, called the application process, and the monitor process, that generates change
requests out of change scripts. The monitor process is the tool the user works with in
order to manipulate the application process at run-time.

Change providers run inside the application process and provide information, so called
change points as well as export information about the application process. Change scripts
use change providers and transform the application process’ intermediate representation.
The change framework operates using bytecode transformation. Any function, or variable
that is used by an application and is available in LLVM bytecode form can be analyzed
and transformed.

This chapter provides motivating examples on using the change framework. The next
section starts by defining a reference source example in the C programming language.
This will build the foundation for all change framework examples throughout the chap-
ter.

3.2 Dynamic Program Analysis

This section provides scenarios for using the change framework. The example code
fragment shown in Listing 3.1 forms the basis for change scripts in this section. The
result of the change script is presented as displayed in the monitor program. Two
examples for porgam analysis will be given. First information about the function call
sequence and loop detection is shown. Then memory usage information will be analyzed.
The examples are written in the change language and provide use cases for the change
framework as defined in Chapter 5.

3.2.1 Example Code Fragment

This subsection provides the example code fragment that serves as a foundation for the
change scripts that will be shown in the next sections.

Big Picture 13

// externally defined
void do_work_a() ;

void do_work_b() {
puts (”An_important, message”);
do_work_a ();
do_work_a ();

}

bool selector_func () {
static int counter =
counter —4+;
return counter % 2;

}

void complex_function () {

0;

while (true)

if (selector_func()) {
for (int j =0; j <2 ;5 j++)
{
do_work_a ();

}

else {
do_work_b ();

}
}

Listing 3.1: Example Code Fragment

Listing 3.1 shows the example code fragment, the function complex_function shows
a loop that performs calls and do_work_b depending of run-time state. The function
do_work_a is externally defined, while do_work_b prints a message on the standard
output stream and calls do_work_a two times.

3.2.2 Program Analysis

Many interesting questions can be asked about code fragments like the one showed in
Listing 3.1. For instance one could ask the following questions:

e What is the function call sequence?
e Is there a loop inside the function?
e How many bytes of heap memory are allocated, freed?

The answers to this questions are given in the next sections. It is assumed that the
application has been compiled to LLVM bytecodes and the application is executed using
the change framework. In order to get these information, the application is instrumented
by change scripts that get applied to the application process using a monitor process.
Theses change scripts are written the change language that is part of the change frame-
work.

Big Picture 14

All the information is gathered by the monitor process at run-time. The changes could
be applied to any application running within the change framework.

3.2.3 Function Call Sequence

Analyzing the function call sequence using the change framework is done using a sim-
ple provider that operates on a per function granularity. The provider is exported as
functionProvider below:

function provider functionProvider {
points {OnEnter, OnLeave};

int id;

string functionName;
int argCount;

int isVarArg;

}s

For more details on change providers please refer to Section 5.3. Providers can be used
in a change script, like the following:

change functionProvider :: OnEnter

/]
{

)

io—>printf("=—>_Entering _function '%s’\n”, functionProvider—>
functionName);

Listing 3.2: A Change Script to Print Out the Name of Every Called Function

To apply the above change script, that resides in the file function.cl to a process with
the id 22300, the monitor application monitor could be executed as follows:

monitor register 22300 function.cl

The change monitor would communicate with the application via the change protocol.
If successful the following would get written on the console of the monitor, depending
on the time of the registration and the semantics of the called functions:

)

Entering function ’selector_func
Entering function ’'do_work_a’
Entering function ’selector_func’
Entering function ’'do_work_b’
Entering function ’puts’

Entering function ’'do_work_a’

Entering function ’'do_work_a’

Entering function ’selector_func’

Entering function ’'do_work_a’

IR RNENY!

Big Picture 15

Since do_work_a and puts are defined in another translation unit, one does not know
the details of them by looking at Listing 3.1, so the listings show ’. ..’ lines, which stand
for various output messages. Besides the builtin value io, which is capable of sending
output to the monitor’s console, the change framework has another builtin value called
thread which acts as a thread local storage. This builtin value works like a map where
the change script author can store thread local information. The script of Listing 3.2
can be enhanced by making use of thread local storage:

change functionProvider :: OnEnter

/]
{

int callLevel = thread—>getInt(”callLevel”);

string space = ”7|_.” % callLevel;

io—>printf(7| %s+_ Entering_function '%s’\n”, space,
functionProvider —>functionName);

thread—>putlnt (”callLevel”, callLevel+1);

}

change functionProvider :: OnLeave

[/
{

int callLevel = thread—>getInt(”callLevel”);

string space = 7|, x (callLevel — 1);

io—=>printf(7| _%s+_Leaving_function_'%s’\n”, functionProvider—
functionName) ;

thread—>putlnt (”callLevel”, callLevel —1);

Listing 3.3: A Change Script to Print Out the Name of Every Called Function

After un-registering the old change script and registering the new change script the
following should appear on the monitor console, again depending on the run-time prop-
erties:

)

Entering function ’selector_func
Leaving function ’selector_func’
Entering function ’'do_work_a’

+ ...

Leaving function ’'do_work_a’

+

)

Entering function ’selector_func
Leaving function ’selector_func’
Entering function ’'do_work_b’

+ Entering function ’puts’

|+

+ Leaving function ’puts’

+ Entering functino ’do_work_a’
|+

+ Leaving function ’'do_work_a’
Leaving function ’'do_work_b’

b —F—F+ + +

Listing 3.4: Function Call Sequence with Call Nesting Level

By using a single provider on a per function granularity, and two builtin objects, thread
and io, a function call tree of the application is printed. Depending on the exposed
information of the provider much more information could get printed out, for example
the type of arguments or the return type.

Big Picture 16

The current change scripts do not have any change predicates, indicated by an empty /
/ change predicate. If one would be only interested in a certain class of functions, the
change script could be changed like in Listing 3.5:

o change functionProvider :: OnEnter
/ functionProvider—functionName [0..7] = "do_work” /

2
{
int callLevel = thread—>getInt(”callLevel”);
4 string space = 7|_.” % callLevel;
io—=>printf(7| _%s+_Entering_function_'%s’\n”, space,
functionProvider —>functionName);
6 thread—>putlnt(”callLevel”, callLevel+1);

}

change functionProvider :: OnLeave
10 / functionProvider—functionName [0..7] = ”do_work” /

{

12 int callLevel = thread—>getInt(”callLevel”);
string space = 7|_” % (callLevel — 1);
14 io—>printf(7| _%s+ Leaving_function_'%s’\n”, functionProvider—>
functionName) ;
thread—>putlnt (”callLevel”, callLevel —1);

16 }
Listing 3.5: A Change Script to Print Out the Name of Every Called Function, Filtered by
Function Name

The change script above, would yield the following call tree:

| + Entering function ’'do_work_a’
N

| + Leaving function ’do_work_a’
||+ ...

| + Entering function ’do_work_b’

| | + Entering functino ’do_work_a’
o+

| | + Leaving function ’do_work_a’
| + Leaving function ’do_work_b’

Listing 3.6: Funciton Call Sequence With Call Nesting Level

In Listing 3.5 the change predicates that filter the change points are defined on line two
and eleven. In order to yield a correct result they have to be the same. Such a change
predicate is evaluated for every point where the provider is applied to. The change
predicate ’/ functionProvider->functionName[0..7] == "do_work" /’ can be read
as: Apply this change if the first 7 characters of the functionName attribute matches
the string "do_work”. As can be seen from the source code fragment in Listing 3.1 this
limits the functions to do_work_a, and do_work_b. In the change language substrings
can be expressed by the sring slice astring[a..b]. The slice expression a..b, a is the
lower bound and b the upper bound. The string goes from position a to b — 1.

Additionally if the application contains other functions that also start with do_work and
are also called, these function would be printed here too. This is due to the fact that the
change framework is no source code transformer. Instead it operates on LLVM bytecode
transformation. Hence any function that is part of the application and available in LLVM
bytecode form is subject to transformation. All the provider information defined in the

Big Picture 17

provider declaration can be used inside change predicate expressions. The attributes of
the provider functionProvider are defined in Listing 3.2.3.

3.2.4 Loop Detection

Another interesting question to ask about a code fragment is to print out information
about loops. Loops are particularly interesting in computing since they give a hint about
hot spots in a program. A hot spot in an application is a set of instructions that are
executed quite frequently.

In principal there are two ways to do loop detection. One is dynamically, at run-time.
This could be accomplished by tagging every basic block during transformation. And
later at run-time keeping track which blocks have already been visited. If a block is
visited twice inside the same function, there exists a loop. This is the dynamic method.
There exists static approaches. A static approach is discussed here. This is based on
information obtained from the control flow graph (CFG) of a function. As discussed in
Chapter 4, LLVM provides explicit control flow information.

A CFG is a directed graph whose nodes are so called basic blocks. The edges of a CFG
represent control flow from one block to another block. A basic block can be defined as
a sequence of instructions that are always executed in sequence that is always entered at
its first instruction and exited at its last. Subsection has more information about CFGs.
[CT04] or [Muc98] provide more information about control flow data structures.

r = selector_func()
j=0
cmp(r==0)

Figure 3.1: CFG of the Example Code Fragment

Figure 3.1 shows the CFG for the example code fragment in Listing 3.2.3. The yellow
nodes show a loop header, a blue node shows a node which can only be reached by a
loop header, but points back at the loop header as well. The CFG provides one with
all the possible control-flow paths in a function. The CFG is a directed graph. Loops

Big Picture 18

in the program are cycles in the CFG. While there are many ways to do loop detection
in a CFG, a very simple one is to traverse the graph using a depth first search (DFS),
and to mark nodes as either one of: wunivisted, visiting in progress, visited. An edge is
a looping back-edge if the destination node is already in state in progress. A node goes
from unwvisited to wisited if all nodes reachable from this node are visited. While the
reachables have been visited the state of the node is set to wisiting in progress.

Current
visiting node.

Node traversal
in progress.
Node traversal
done.

BB1 (in
progress)

(1)

BB3
(unvisited)

BB2 (in
progress)

- . BB6 BB4 (in
BB4 (n BES Loop: [288
progress) (unvisited)

BB6 BB7
(visitinﬂ [(unvisited)]

> BB1 (in S

progress)

(2) (3)
BB2 (in BB3
progress) (unvisited)

BB4 (in
progress)

BB6 (done)

BB1 (in
progress)

BB2 (in
progress)

BB4 (done)

BB6 (done)

BB3
(unvisited)
BB5
(visiting)

BB7 (done)

BB5

(univisted)

BB7

(visiting)

Two Loops:

) [BB6 I | BB4 (in @ BB7 I | BB1 (in
(visiting) progress) (visiting) progress)

Figure 3.2: Loop Detection by Depth First Search Traversal

Figure 3.2 shows the traversal based on the CFG from Figure 3.1. There are two loops
in this graph. The back-edges are from block BBg to block BBy and from block BBy
to block BBj. The figure shows the DFS traversal in three different states. In the first
snapshot BBjg is currently beeing processed. As BBg points back to BBy and BBy is
still in wvisiting state, this is identified as a loop. In the second snapshot BBy is actively
processed. Note that this is still as part of the traversal of BBy (BBj is still in visiting
state and BBy is still unvisited. In this snapshot BBy points back to BB; and BBj is
still in visiting state, this is the second loop in the CFG. The last snapshot shows that
BB;5 is actively being processed. This points to BB7 which is already marked as visited.
After this step BB3 has yet to be processed before the whole graph is traversed.

With this information one can construct a loop information provider. The loop infor-
mation provider operates on a per function granularity and collects and exports loop
information. It could look like:

function provider loopInfo {
point {BeforeLoop, WithinLoopHeader, AfterLoop };

Big Picture

19

int

id;

string functionName;
int maxNumberOfBasicBlocks;

int numberOfExits;

}s

The loopInfo provider above offers the following change points: BeforeLoop, Within-
LoopHeader, and AfterLoop. BeforeLoop means the change code will get inserted before
the loop code. Hence this code will run only one time per loop. AfterLoop happens also
only once per loop and describes a point in the application before the first code outside
the loop is executed. It differs from BeforeLoop that AfterLoop code might be inserted
at more than one place. Since a loop might have more than one control flow outside the
loop. WithinLoopHeader means the code is inserted inside the loop header. This code
will run each time the loop header is run.

This provider can be used to write the following simple change script:

change loopInfo:: WithinLoopHeader

/o
{

io—>printf(”Loop_id=0x%X_detected _inside _function %s.\n”, loopInfo—>
id , loopInfo—>functionName);

This change script runs within the loop header. This means it is executed every time
the loop header is executed. If it would be registered with our example application, it

would print something like:

Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop
Loop

id=0x1
id=0x2
1d=0x2
1id=0x2
1d=0x1
1d=0x2
1id=0x2
1d=0x2
1d=0x1

detected
detected
detected
detected
detected
detected
detected
detected
detected

inside
inside
inside
inside
inside
inside
inside
inside
inside

function
function
function
function
function
function
function
function
function

complex_function.
complex_function.
complex_function.
complex_function.
complex_function.
complex_function.
complex_function.
complex_function.
complex_function.

The second loop code is executed three times. The loop body only executes 2 times.
This is because the loop header is entered 3 times. Thus the change code will be also
executed three times. As an enhancement we count the number of times a loop header

is executed. This is done by changing the change script to look like:

change looplInfo :: BeforeLoop

/o
{

thread—>setInt (loopInfo—id, 0);

}

change loopInfo:: WithinLoopHeader

[/
{

int execCount = thread—>getInt (loopInfo—id);

Big Picture 20

}

io—>printf(”Loop,id=0x7X_detected _inside_function %s, exec_count=%d
An”, loopInfo—id, loopInfo—>functionName, execCount+1);
thread—>setInt (loopInfo—id, execCount + 1);

Re-registering the change, this should print something like:

Loop id=0x1 detected inside function complex_function, exec count=I1.
Loop id=0x2 detected inside function complex_function, exec count=1.
Loop id=0x2 detected inside function complex_function, exec count=2.
Loop id=0x2 detected inside function complex_function, exec count=3.
Loop id=0x1 detected inside function complex_function, exec count=2.
Loop id=0x2 detected inside function complex_function, exec count=1.
Loop id=0x2 detected inside function complex_function, exec count=2.
Loop id=0x2 detected inside function complex_function, exec count=3.
Loop id=0x1 detected inside function complex_function, exec count=3.

To make output more interesting, a nesting level is added to the change output.

change looplInfo :: BeforeLoop

/
{

}

/

thread—>setInt (loopInfo—id, 0);
int loopNest = thread—>getInt (”loopNest”);
thread—>setInt (”loopNest”, loopNest + 1);

change loopInfo:: WithinLoopHeader

/
{

}

/

int execCount = thread—>getInt (loopInfo—id);

string space = 7|, % (thread—>getInt (loopNest)—1);

io—=>printf (7| _%s+Loop_id=0x7X_detected _inside_function %s,_exec,
count=d.\n”, loopInfo—>id, loopInfo—>functionName, execCount+1);

thread—>setInt (loopInfo—id, execCount + 1);

change loopInfo:: AfterLoop

/
{

}

/

int loopNest = thread—>getInt(”loopNest”);
thread—>setInt ("loopNest”, loopNest — 1);

The above change script would send the following output to the monitor process.

+ Loop id=0x1 detected inside function complex_function, exec count=1.

| + Loop id=0x2 detected inside function complex_function, exec count=l.
| + Loop id=0x2 detected inside function complex_function, exec count=2.
| + Loop id=0x2 detected inside function complex_function, exec count=3.
Loop id=0x1 detected inside function complex_function, exec count=2.

+ Loop id=0x2 detected inside function complex_function, exec count=1.
+ Loop id=0x2 detected inside function complex_function, exec count=2.
+ Loop id=0x2 detected inside function complex_function, exec count=3.
L

+
|
|
|

+ Loop id=0x1 detected inside function complex_function, exec count=3.

Big Picture 21

As can be seen the rich information represented in the LLVM intermediate format can
be effectively used to gather information about a program at run-time.

3.2.5 Memory Usage

In long running applications, the use of memory, especially dynamic memory, is of inter-
est. The LLVM intermediate language has first class support for memory allocation/free-
ing via specific instructions. For example the code fragment below allocates 128 bytes
on the heap memory.

char * p = (charx) malloc(sizeof(char) % 128);

The formal description of the LLVM malloc and free instruction is

result = malloc <type>[, uint <numElements>][, align <alignment >]
free <type> <value>

The C language malloc fragment can be translated to LLVM intermediate code as:

%p = malloc sbyte, uint 128

The malloc instruction has a reference to the element type, as well as the number of
elements allocated.

Freeing dynamically allocated memory in the C langauge is performed through the free
function. free takes a pointer to the memory region to be freed. After calling free this
memory region is not in use by the application any more.

char * p = (charx) malloc(sizeof(char) % 128);
free(p);

The above C language fragment can be translated to the folloing LLVM code snippet.

%p = malloc sbyte, uint 128
free sbytex %p

In order to get information about memory allocation, a mallocInst provider that provides
information about malloc instructions is introduced:

instruction provider mallocInst {
points {Before, After};

int id;

string elementType;
int elementSize;
int numElements;
int alignment;

b

Big Picture 22

Similarly for information about free we use the freeInst provider:

instruction provider freelnst {
points {Before, After};

int id;

string type;

string elementType;
int numElements;
int valueld;

For the purpose of this example we define the do_work_a function from our example
code fragment as:

/x
x Collects data from some source
*/
int read_data(charx data, int size_bytes);
/%
x Counts the number of digits in the integer
*/
int count_digits(int d);
/*
x Prints the size of elements in bytes
*/
charx print_size(int elements) {
int digitCount = count_digits (elements);

int length = digitCount + strlen ("DATA:__bytes”);

char x p = (char x) malloc(sizeof(char) * (length + 1));
*p =0 ;

sprintf(p, "DATA: %d_bytes”, elements);

return p;

/x

x Allocates a buffer and reads the data.
* Prints information about the data.

x Frees the data again.

*/

void do_work_a() {

const int SIZE_BYTES = 1024;

char *xp = (charx) malloc(sizeof(char) % SIZE BYTES);
memset(p, 0, sizeof(char)*SIZE_ BYTES);
int data = read_data(p, SIZE.BYTES);
puts(data_info (data));
free(p);

The do_work_a function allocates two byte arrays on the heap. One is a buffer into which
the read_data function writes data into. The other array is a string array created by the
print_size function. Note that the string buffer that gets allocated in the print_size
function does not get freed again.

Big Picture 23

The change script below prints all the allocation/free information within the function
do_work_a using the mallocInst and freeInst providers.

change malloclnst :: After

/]
{

io—>printf(”Allocated_%d_bytes_on_the_heap\n”, mallocInst—>
numElements * mallocInst—>elementSize);
}

change freelnst :: After

[/
{

io—=>printf(”Freed _%d_bytes_on_the_heap\n”, freelnst—>numElements x
freeInst —elementSize);

Registering this change script with the application process should yield:

Allocated 1024 bytes on the heap.
Allocated 14 bytes on the heap.
Freed 1024 bytes on the heap.

The above output shows that the 14 bytes are not freed again. The next step is to
get more information about the non-freed data. Since the providers in use are on an
instruction level, the change predicates as well as the change body can make use of all
providers of level basic block, function, and module. This is further explained in Chapter
5. This functionality can be used to print the function that contains the instructions
using the already introduced functionProvider:

change mallocInst :: After

/]
{

io—=>printf(?[%s]_Allocated %d_bytes_on_the_heap\n”, functionProvider
—functionName, mallocInst—>numElements * mallocInst—>elementSize
)
}

change freelnst :: After

/]
{

io—>printf (”"[%s] _Freed %d,_bytes_on_the_heap\n”, functionProvider—>
functionName, freelnst—>numElements x freelnst—>elementSize);

Registering the above script would yield:

[do_work_a] Allocated 1024 bytes on the heap.
[print_size] Allocated 14 bytes on the heap.
[do_work_a] Freed 1024 bytes on the heap.

Big Picture 24

As can be seen above the non-freed memory was allocated in the function print_size.
The change framework could even be used to correct a misbehavior like memory leaks
in application if one knows what to do. The behavior above could make perfect sense,
if the allocated memory is stored in some global variable or further processed by some
other functions. On the other hand it could simply be a mistake. However the change
framework makes diagnosing errors much easier.

Other memory related instructions of interested would be the load/store instructions.
In the LLVM all memory transfers between registers and memory is done by two in-
structions: load and store. The change framework could provide information on the
usage of allocated data. For instance if always only some bytes of the allocated data are
load/stored one could infer that the allocated memory is too big.

The change framework offers a broad range of analysis possibilities. Experienced engi-
neers can write their own providers and thus are able to greatly enhance the analysis
framework and provide custom information to change scripts.

3.3 Summary

The objective of this chapter was to give the reader a motivation as well as some real
world scenarios for using the change framework to gain information about programs
at run-time. First an example code fragment was presented. The change framework
was used to answer some questions about the behavior of the code at run-time. This
was done by using change providers in change scripts which were used to transform the
application intermediate representation at run-time.

The Low Level Virtual Machine 25

Chapter 4

The Low Level Virtual Machine

4.1 Overview

This chapter aims at introducing the Low Level Virtual Machine (LLVM) and the LLVM
Architecture (LLVA). As already mentioned in Chapter 2, LLVM builds the infrastruc-
ture for the change framework. First the history behind the LLVM project is presented.
The next section focuses on system concepts of computer architecture and discusses
important concepts such as instruction set architectures (ISAs), application binary in-
terface (ABI), or application programming interface (API). The following section then
introduces the virtual machine concept with a focus on process virtual machines. Even-
tually the last section of this chapter gives a detailed overview of LLVA.

4.2 The History behind LLVM

The origins of the LLVM root in project called "The Lifelong Code Optimization Project”
(LCO-Project) at the department of computer science at the university of Illinois at
Urbana-Champaign. This project was led by Vikram Adve and had the following goal:

"To enable modern application code to be optimized at link-time with all
static library code, reoptimized at run-time with runtime information about
system architecture and code behavior; and re-optimized offline in the field
(i.e., between runs) using profile information gathered from production runs.
We collectively refer to the latter two as post-link re-optimization.. . .” [Lif06]

To achieve this broad effort a new object code representation and compiler infrastruc-
ture for link-time and post-link optimization was needed. The LLVM provided this
infrastructure. Within the project it is/was used for the following research efforts:

Macroscopic data structure analysis and transformations
Runtime optimization of native code

Static analysis for software security and reliability
Virtual processor architectures

The LLVM project grew out of this project and is now a top level project on its own.
Nonetheless many of its key features root in the above requirements.

The Low Level Virtual Machine 26

4.3 Computer Architecture

Before describing the low level virtual machine in more detail, it is important to define
the concept of a machine. This section introduces principles of computer architecture
in terms of machine, machine language, and its important interfaces. Complex systems,
like computer systems, typically follow a layered approach. Every layer has its specific
task and the interaction between layers is performed through contracts and interfaces.
These contracts and interfaces have to be specified in an architecture. Furthermore the
architecture outlines the overall design and concepts behind a computer system.

4.3.1 Computing Machines and Machine Language

Computers are also called computing machines, or just machines. The principal job of
every computer is processing information. The core of a computing machine is often
referred to as the processor(s), or the central processing unit(s) (CPUs). The CPU is
generic in that sense that it takes a set of instructions as input and processes information
based on these instructions. A computer program is a set of instructions encoded in a
binary way that the computer can execute. This encoding is called “machine code” or
just code. It is said that the program has to be in machine language to be executable.
Thus machine language is a binary computer specific representation of a program.

Most processors consist of general purpose units: The arithmetical and logical unit
(ALU), the control circuitry (or control unit), the memory, and the input and output
devices (I/O unit). In the stored program or von Neumann architecture both instruc-
tions and data are represented within the computer’s memory as binary code. This
architecture is common today.

4.3.2 Programs and Machine Language

High Level Source Code (S) High Level Language (HLL)
e e.g. C,C++ Pascal,... SeHLL
Com@\g
Assembler Code (A) Assembler Language (AL)
| e.g. Intel ASM, ... Human AeAL
Assembling Understandable A\
L’ Machine
Machine Code (M) Understandable Machine Language (ML)
e.g. IA32, IA64, PowerPC, ... Me ML
S—

Figure 4.1: Translation from High-level Code to Machine Language

The processor or machine understands only one language, the machine language. In
machine language the high level language constructs are represented by binary encoded
processor instructions. A program in machine language representation is said to be
executable on that machine. Every high level source code has to be translated to machine
code to be executable by the processor. Figure 4.1 shows the typical translation from
HLL code to ML.

The Low Level Virtual Machine 27

4.3.3 Program Machine Interfaces

This subsection defines the interfaces between machines (either virtual or real) and appli-
cation software. The interfaces represent the architecture. Interfaces have a big impact
on the design of application software. Managing todays computer systems is a complex
tasks. Adaptability, failure isolation, fault tolerance, and security are among the issues
a computer system has to deal with. In the early days of computing, every system was
controlled by a single program that was in control of the whole computer.

Interfaces are an important part of the architecture. At various layers the following are
the most important interfaces:

e The instruction set architecture (ISA). ISA is used to refer to the characteristics
of a processor with regard to its instruction set. The ISA forms the foundation for
binary software compatiblity. It dates back to the development of the IBM 360
family in the early 1960s.

e The application binary interface (ABI). The ABI defines the interface to the ma-
chine from the application software point of view. For applications the OS is part
of the machine.

e The application interface (API). The API refres to intefaces inside a high level
language application. The API enables applications written to the API to be
ported easily (via recompilation) to any system that provides the same API. The
API tries to hide the underlying interfaces (such as the ABI, and the ISA) from
the programmer.

4.4 The Virtual Machine Concept

4.4.1 Overview

The concept of a virtual machine is closely related to the machine concept. The machine
abstraction is perspective dependent. From the application process’s point of view the
operating system is part of the machine. From the processor’s (system) point of view
the operating system is part of the executing system software. Because of this the term
virtual machine itself is perspective dependent too. [SNO5] characterize two types of
virtual machines:

e Process virtual machines: Virtualizing a process environment.
e System virtual machines: Virtualizing the whole system environment.

This means that the type of virtualization depends on the type of machine to be virtu-
alized. According to [SNO5] virtualization consists of:

e The mapping of virtual resources or state, e.g., registers, memory, or files, to real
resources on the underlying machine.

e The use of real machine instructions and/or system calls to carry out the actions
specified by virtual machine instructions and/or system calls.

The Low Level Virtual Machine 28

4.4.2 Process Virtual Machines

Computer programs are typically written in some programming language that are then
compiled and linked as executable binaries that conform to a specific application binary
interface (ABI). This so called user ABI is both processor (hardware) and operating
system specific. Process level VMs provide user applications with a virtual ABI execution
environment. There are different scenarios where this kind of virtualization is used. For
instance such virtual execution environments can provide:

Replication (multiprogramming)

e Emulation
e Portability and enhanced platform independence
e Optimization

Guest Application Process Application Process

. Virtualizing
Runtime Software
os Virtual Machine
Host
Hardware

Figure 4.2: Process VM: The Virtual Machine runs as Application Process

As can be seen in Figure 4.2 the virtualizing software runs as an application process
in the system environment. On top of the virtualizing software operates the real appli-
cation software, which only sees the virtualizing software as its execution environment.
The application that runs inside the virtual machine is called the guest. An ordinary
application process is called a host process. Every guest application is seen as a host
application by the operating system. The application itself does only know the guest
machine. The guest machine is also called the virtual machine.

Guest applications are not compiled and linked towards the host process ABI, but use
the guest process ABI, consisting of a guest user instruction set architecture (user ISA).
Virtual machine ISAs are often called Virtual ISAs or V-ISAs. The next subsections list
some common types of process virtual machines.

4.4.2.1 Multiprogramming

Most operating systems in use today already employ the concept of a process virtual ma-
chine. This machine is a same ABI and ISA execution environment. In a multiprogram-
ming operating system multiple processes run isolated from each other simultaneously
on the same operating system.

The Low Level Virtual Machine 29

The supervisor system provides the application program with the illusion of being the
only software program executing in the whole machine. This is done by providing each
running process with its own virtual memory address space, which is mapped by the
virtual memory subsystem of the operating system to physical memory. In addition,
every process has its own execution context. Process execution is scheduled by the
operating system scheduler. This is often referred to as preemptive multitasking. The
scheduler runs every process for a given time and then interrupts the process to schedule
the execution of another process.

The execution context for every process consists of

Program counter (PC)

Stack pointer (SP)

Generic purpose registers

Floating point registers

Processor control registers (CPU state)
Memory management register (virtual memory)

[SNO5] call this a replicated process virtual machine that exists for all concurrently
executing applications. In addition to replication, multiprogramming provides the user
with failure protection. A defective application is less likely to render the whole system
useless. Instead the user has the possibility to stop the faulty application while still
using all other applications.

4.4.2.2 High Level Language Virtual Machines

Multiprogramming is a same ISA and ABI virtual machine (VM). This means the appli-
cation is compiled for the host application and operating system, but instead of having
one application in control of the whole machine, every application process gets a virtual
machine that is managed by the operating system. This makes it possible to work with
multiple applications in one real machine almost simultaneously.

So called high level language virtual machines (HLL VMs) exists for different reasons.
One big issue is cross-platform portability. Not only that there exists multiple different
hardware architectures (little vs. big endian, RISC vs. CISC, 32bit vs. 64bit), addi-
tionally every user application depends on the ABI and API. This means that even if
a program is run on the same hardware architecture it has to be used on an operating
system that uses the same ABI as the one which it was compiled for.

This tight coupling of application software towards their system platform is often un-
wanted and unnecessary. An approach using process virtual machines is one way to
overcome this problem. So called HLL VMs are used to enable applications to be com-
piled against a high level language ISA and ABI. Only the HLL virtualization layer has
to be ported to anothter specific target in order to load the guest application without
recompilation on that target.

Cross-platform portability is not the only reason for the existence of HLL. VMs. Another
interesting aspect of HLL VMs is that the instruction set and the atomic operations can
be augmented to better suite the needs of application programs written in high level

The Low Level Virtual Machine 30

languages. This reduces the complexity of the application representation and makes it
possible to understand binary programs easier.

The V-ISA of HLL VMs is often called bytecode or intermediate language. These ISAs
are not suitable for direct hardware execution. Very popular modern HLL VM archi-
tectures are the Microsoft Common Language Infrastructure (MS CLI) as well as the
Java Virtual Machine (JVM) Specification from Sun Microsystems. These two versatile
platforms augment the ISA by:

e Object oriented features
e A memory model suitable for multi threaded applications
e Exception handling

e Access control and encapsulation

Type safety

Rich metadata support
Additionally these virtualization layers implement features like automatic memory man-
agement (garbage collection), reflective programming.

Instead of a simple Load/Store architecture, where values can either reside in memory
or in registers, the Java VM defines the following locations where a value can reside:

In an instance field: A field belonging to an instance

In a static field: A field belonging to a class
e In an array

In a local variable

As a constant value

On the ISA level there exist the concepts of object classes, object instances, arrays, and
constant pools. Additionally, a storage locations is typed. For instance, it is not possible
to store a value in a storage location whose type is not assignment compatible with the
value’s type. This means that a type systems is part of the ISA.

Both the CLI and the JVM do not operate on values in registers but use a so called
operand stack. A value has to be put on the operand stack to be used by instructions.
An instruction is processed by taking its used values off the stack and pushing the
outcome again on the top of the stack. After the instruction is processed the result is
on the top of the operand stack and can be there transferred to the storage locations.

Many different process virtual machines exist with varying purpose. The main goal of
this section was to introduce the concept of process virtual machines as well as show some
motivations why process virtual machines exists. [SNO5] provides additional information
about process and system virtual machines.

The Low Level Virtual Machine 31

4.5 The Low Level Virtual Machine Architecture

4.5.1 Overview

This section will look at the LLVM architecture. First the architecture will be classified.
Then the ISA of the LLVM will be presented in more detail. Furthermore various
representations of the LLVM ISA will be shown.

4.5.2 Classifying the LLVM Architecture

In Section 4.4 some fundamental virtual machine concepts where presented. As stated
in Section 4.2 the LLVM projected originated in the LCO project with the objectives for
lifelong code optimization.

The LLVM project’s primary goal is to provide a compiler infrastructure. A compiler
infrastructure is more than a compiler. A compiler is a program or a set of programs that
takes a computer program in a source language, e.g. C, C#, Java, ..., and translates it
into another language.

The LLVM project defines a complete virtual machine as a common model of inter-
operation. The LLVM-IR builds a complete V-ISA, in a way, that a program can be
compiled to LLVM object code and run by a virtualization layer, as in Figure 4.2.

In that the taxonomy of Section 4.4 the LLVM resembles a process VM. One of the key
differences between HLL VMs and the LLVM architecture is the low level character. Pro-
grams compiled to LLVM object code do not require runtime support and lack high-level
language features on the V-ISA level. This makes it possible to easily translate LLVM
object code to target machine code in a traditional ahead-of-time (AOT) compilation
model.

4.5.3 High-Level Type Information, Low-Level Intermediate Language

In this subsection we will define the meaning of high-level and low-level in the context of
type information and intermediate languages. LLVM by definition is a so called low-level
virtual machine. LLVM, compared to other process virtual machines characterizes itself
as having a low-level architecture.

Virtual machines, as real machines, are characterized by their ISA. A low-level virtual
machine therefore has a low-level ISA. A low-level ISA operates on a low-level interme-
diate representation (IR). The classification in this section is based on [Muc98]. Figure
4.3 shows different types of intermediate languages (ILs) and differentiate between:

e High-level intermediate languages: Are representation that are very close to the
original source code. One examples are abstract syntax trees (ASTs).

e Medium-level intermediate languages: Are already closer to a low-level representa-
tion. This means they lose some characteristics of the source code representation.

The Low Level Virtual Machine 32

_ A Source Languages
High Level (C/C++, Pascal, Java, C#,...)
(Language Specific)
Abstract Syntax Tree
. Source .
Representation

High Level intermediate
Language

. Feature
Preserving

.. Language I S
Independent
Medium Level intermediate

Medium Level
Language

(Language Indep.)

.. Symbolic
Instructions

A .Bimary L

Instructions Low Level intermediate
Language

.| .. Architecture
Dependent

Low Level Hardware Instructions

(Hardware Specific) v (1A32, x84, PowerPC, ...)

Figure 4.3: Different Program Representations

e Low-level intermediate languages: These ILs are more target specific. A typical
compiler uses a low-level representation to generate target code. The goal of lower-
level ILs is to mimic the various target architectures as much as possible, at the
same time retain abstract enough that low level tasks can be performed target
independent, if possible.

e Multi-level intermediate languages: These ILs include features that are best viewed
as representing multiple levels combined in one IL.

The LLVM intermediate representation is a multi-level IL. On the one hand symbolic
information is lowered to offsets, on the other hand LLVM supports high level type
information and supports first class support for functions and function types.

4.5.3.1 High-Level Type Information

LLVM preservers high-level types. In LLVM IR types are not lowered to being either
integral or floating points. The instructions are typed. This means that the LLVM
intermediate representation has high-level type information in all its instructions. This
enables much more powerful program analysis and data-flow analysis.

The Low Level Virtual Machine 33

4.5.4 LLVM Virtual Instruction Set Overview

The intermediate representation of the LLVM compiler infrastructure is a typed virtual
instruction set (V-ISA). [ALBT06] define the major design requirements of the LLVM
V-ISA as:

e Driven by the needs of compiler technology.
e Universal enough to support arbitrary user and system software.

[Lat02] characterizes the LLVM instruction set architecture as

... The LLVM instruction set represents a virtual architecture that captures
the key operations of ordinary processors but avoids machine specific con-
straints such as physical registers, pipelines, low-level calling conventions, or
traps. LLVM provides an infinite set of typed virtual registers which can
hold values of primitive types (integral, floating point, or pointer values).
The virtual registers are in Static Single Assignment (SSA) form ...”

The LLVM instruction set can be defined as having

e a three-address code architecture in SSA Form,

high-level type information preserved in the V-ISA,

a load and store architecture using typed pointers,

type-safe pointer arithmetic,

support for distinguishing safe and unsafe code via a cast instruction,
support for explicit memory allocation and a unified memory model,
support for function calls and exception handling,

a graph-based in memory representation, represented via a set of libraries,
support for textual assembler representation, and

support for a binary virtual object code representation.

4.5.5 Three-address Code Architecture in SSA Form

LLVM IR as opposed to many HLL VM IRs is not based on an operand stack. Instead
LLVM is a load and store architecture with an orthogonal three-address instruction set
format.

This resembles machine code very closely. LLVM defines the following instruction
classes:

e Control-flow instructions (also called terminator instructions, these terminate basic
blocks)

Binary operators

Logical operators

Binary comparison operators

Memory operators

Other operators

Meta instructions

The Low Level Virtual Machine 34

Meta instructions (also called pseudo instructions) are no instructions on their own.
These instructions encode information into other instructions, for example volatile
can be used in conjunction with a store to form a volatile store. The arithmetical
and logical operations, in three-address form are add, sub, mul, div, rem, not, and,
or, xor, shl, shr, and setcc. setcc is a set of comparison instructions with different
operators:

r ==y seteq %x, %y
!l =y setne %x, %y
xr>=y setle %x, %y
x <=1y setge %x, hy
x>y setlt %x, hy
x <y setgt %x, %y

Three-address form defines the tuple: < operation,inl,in2, out >.

4.5.5.1 Typed Polymorphic Instructions

Every value in the LLVM V-ISA is typed. There is one definition of an add instruction,
called add. This instruction can operate on several different types of operands, which
reduces the number of opcodes needed. The types of the operands of an instruction
define its result type and the semantics of the operation. Type rules have to be followed
strictly and are defined in [LLVO06¢].

4.5.5.2 Explicit Control Flow Information

Control flow information in LLVM is explicitly encoded in the form of a control flow
graph. A control flow graph (CF'G) is a directed graph that provides information about
the flow of control in a set of instructions. A CFG is a directed graph G, defined as:

G:=(N,FE)
N :={n|n is a basic block}
E :={(ni,n;j)|(n; € N) A (nj € N) A possible transfer of control from block n; to n;}

Where a basic block is a set of instructions which is always executed together. Control
always enters a basic block at its first instruction and leaves the block at its last.

while (i <10) {
if (1% 2=—0){
puts(”even”);
} else {
puts(7odd”);
i+

}

puts(”end_of_loop”);
Listing 4.1: Loop Code Fragment (C language)

The Low Level Virtual Machine 35

r=i%2
cmp(r ==0)

[puts "even" J [puts "odd" J

|

[puts "end of loop" J

Figure 4.4: A Simple CFG

Figure 4.4 shows a simplified CFG for the code fragment of Listing 4.1. Nodes in
the figure represent basic blocks, edges the control flow. Such a CFG provides all the
possible run-time control-flow paths. Listing 4.1 shows a simple loop and a conditional
branch inside the loop body. As can be seen in the figure the loop creates a cycle in the
execution path. The last node in the loop body gives control back at the loop header.
The loop header decides when to exit the loop. Eventually control is transferred to the
node in the bottom of the figure.

The LLVM V-ISA has direct support for basic blocks and control flow instructions. The
graph-based in-memory representation is based on a CFG. A function consists of a
set of basic blocks and each basic block consists of a set of instructions. Every basic
block has exactly one terminating instruction. This instruction is a control transferring
instruction. In Subsection 4.5.6 we will discuss this in more detail.

4.5.5.3 Static Single Assignment Form

LLVM instructions operate on registers. Instead of having a limited number of registers,
as hardware ISAs have, LLVM has an infinite number of registers. Within a code frag-
ment, one register can only be defined once. This means that for every new definition
a new register has to be used. If a program is in Static Single Assignment (SSA) form
[CFR™91], every variable is defined exactly once. Furthermore each use of a variable
refers to a single definition and the use is dominated by the definition of the variable.
The definition always (no matter via which control-flow path) precedes the use of a
variable.

LLVM registers are in SSA form. Whenever control flow merges a definition of a variable
might depend on the execution path. This means there could be several definitions of

The Low Level Virtual Machine 36

the variable, depending on the run-time path taken. To overcome this situation, the
SSA form uses a ¢ function. Such a ¢ function is of the form:

 := ¢((a, BB,), (b, BBy), (¢, BB.), (d, BBy), ...)

¢ takes several tuples. Each tuple consists of a value and the basic block, where the
execution came from. The ¢ function then selects the value of the matching execution
path. ¢ functions are the first entries in a control flow merging basic block. For every
incoming basic block, the ¢ function has a value. LLVM uses a ¢ instruction that
provides exactly this functionality. In the following example, we show the use of a ¢
instruction in LLVM code.

<result> = phi <type> [<val0><label0 >], ...,

The three listings below show a simple function, loopedSum, which calculates the sum
from 1 to N by using a loop. The Listing 4.2 shows the ordinary version of the function
in plain C. A for loop is used to iterate over an induction variable i. The result is stored
in the variable result, which is increased incrementally.

int loopedSum(int N)

{
int result = 0;
for (int i = 1; i <=N; i++)
{
result = result + 1i;
}
return result;
}

Listing 4.2: loopedSum in C

Listing 4.3 shows the same code algorithm, but in SSA form, using named blocks and
C style gotos. Except the ¢ function this code is still plain C. One can see that in the
LoopHeader the variables i, and result, are defiend using the ¢ node. The LoopHeader
has 2 incoming blocks, named Entry, and Loop. Thus phi gets two arguments, one if
control is reached via the Entry block, the other if control reaches LoopHeader via the
Loop block.

int loopedSum(int N)
{
Entry:
register int i0 = 1;
register int result0 = 0;
LoopHeader:
register int il
register int resultl
if (il <=N)
goto Loop;
else
goto LoopExit;

¢(<i0 ,Entry>,<i2 , Loop >);
¢(<result0 ,Entry><result2 ,Loop>);

Loop:
register int result2 = resultl + il;
register int i2 = il + 1;
goto LoopHeader;
LoopExit:
return resultl;

The Low Level Virtual Machine 37

Listing 4.3: loopedSum in Pseudo C Code in SSA Form

Finally Listing 4.4 shows the function in LLVM assembly code. This is very similar to
Listing 4.3, except that LLVM instructions are used instead of C language expressions
and statements. Since names only apply to values, constants cannot be named. This is
why the basic block Entry in Listing 4.4 differs from the one in 4.3. In LLVM the initial
values are introduced as operands of the phi instruction.

int %loopedSum (int %N)
{

Entry:
br label %LoopHeader
LoopHeader:
%il = phi int [1, %Entry], [%i2, %Loop]
%resultl = phi int [0, %Entry], [%result2, %Loop]
%cond = setle int %il, %N
br bool %cond, label %Loop, label %LoopExit
Loop:
Y%result2 = add int %resultl , %il
%i2 — add int %il, 1
br label %LoopHeader
LoopExit:
ret int %resultl

}
Listing 4.4: LLVM Assembly Code of the loopedSum

4.5.5.4 Type Information

The LLVM V-ISA is a strictly typed representation. Every value in LLVM has to have
a type. Values can be LLVM registers in SSA form or memory locations. This type
information provides more global information about the application. Furthermore the
type information can be used to check the type safety and to check for errors in the
LLVM code.

The LLVM type system consists of C-like types:

e Primitive types
e Complex types

The primitive types are:

e void

e bool

e signed and unsigned integers from 8 to 64 bits

e single precision (32 bit) and double precision (64 bit) floating point types (float,
double)

e the opaque type

The Low Level Virtual Machine 38

The complex types consist of:

e pointers
e arrays

e structures
e functions

The LLVM type system tries to be language agnostic. No direct representative of higher
level types, for instance classes, are used. These constructs have to be mapped on LLVM
types. As already mentioned all LLVM instructions are strictly typed. Additionally
LLVM instructions have restrictions on the types of their operands. The add instruction
requires its operands to be of the same type, which has to be an arithmetic type (i.e.
integral, floating point). The type of the result is the type of its operands.

struct MyStruct {
int x;
float =xpointerToY;
int array[10];

b

int main(int argc, charx*x argv) ;

Listing 4.5: Some C Types

%MyStruct = { int, floatx, [10 x int] }
Y%main = int (int, sbytexx)

Listing 4.6: Equivalent LLVM Types

Listing 4.5 shows a C structure and a function declaration. Listing 4.6 shows the equiv-
alent types in LLVM assembly code.

4.5.5.5 LLVM Memory Model

LLVM programs consist of a stack and a heap. The LLVM V-ISA has explicit typed
memory allocation instructions. The memory allocation and free instructions are:

e malloc
e alloca
o free

These instructions closely resemble the C runtime functions for memory allocation and
reclamation. The malloc instruction allocates one or more elements of a specific type
on the heap, returning a typed pointer of the element’s type which points to the new
memory.

The free instruction releases the memory allocated by the malloc instruction. The
alloca instruction resembles the malloc instruction, but allocates the objects on the
current stack frame instead of on the heap. Stack storage is automatically managed,
which means that there is no need for a free instruction for stack allocated objects.

The Low Level Virtual Machine 39

Furthermore according to [Lat02] all addressable objects in LLVM are explicitly allo-
cated:

e Stack allocated locals: Are allocated using the alloca instruction.
e Dynamically allocated memory: Are allocated using the malloc instruction
e Global values: These are global variables and functions.

Global values declare regions of statically allocated memory and are accessed through the
value of the object, e.g. the name of the global variable refers to the address. Memory
objects are always accessed by their address. Furthermore LLVM does not have an
address-of operator. Every variable referring to a memory object is always a pointer to
that value. All memory traffic occurs in LLVM via load and store instructions.

4.5.5.6 Function Calls and Exception Handling

The LLVM V-ISA has first class support for functions and exception handling. Depend-
ing on the exception handling needs, functions can be called using either call or invoke.
In any case the argument passing is done atomically by these instructions. Parameter
passing rules are not part of the generated code, but are abstracted by the VM. This
distinguishes the LLVM ISA from machine code ISAs. In machine code ISAs, like for
instance the TA32, the compiler has to deal with the parameter passing, which can be
done using registers and/or using stack slots. Furthermore LLVM has an infinite set of
registers in SSA form so there is no need for caller/callee saved registers. These facts
make it much easier to work with LLVM IR than to work with target machine code.

The call and invoke instructions take a pointer to a function as well as the parameters
to pass. Asin C all parameters are passed by value. LLVM implements stack exception
handing in a way that the presence of exception handling causes no extra instructions
to be executed when no exceptions are thrown. If an exception is thrown the stack
is unwound, stepping through the return address of function calls on the stack. LLVM
holds a static map of return addresses to exception handler blocks that are used to invoke
handlers during unwinding.

The difference between the call and the invoke instruction is that the invoke instruc-
tion terminates the basic block. The call site explicitly declares to handle an exception.
Hence if the caller throws an exception, control flow might continue at the exception
handler not right after the invoke instruction. When using the call instruction the
call site will never be notified if the callee threw an exception.

// function call ignoring possible exceptions

func ();
// function call, handling exceptions
try {
func ();
} catch(...) {

puts (”exception_during,_func_call!”);

puts(”after_func_call”);
Listing 4.7: C++4 Call Site, Showing Function Call and Exception Handling

The Low Level Virtual Machine 40

Listing 4.7 shows a simple C++ code fragment. First a function is invoked without
handling exceptions. After that the same function is called. This time the function is
surrounded by an exception handler.

; the first invocation of does not have an exception
; handler. if an exception is raised, the call site
; is leaved.

call void %func ()

calling func with exception handlers installed

b

invoke void %func() to label %OkLabel except label %CatchLabel
OkLabel :
; ... no exception occured; no branch

call int (sbytex)*x %puts(sbytex “after func call”);
; return
CatchLabel:
; ... exception occured
call int (sbytex)*x %puts(sbytex “exception during func call!”);
br %OkLabel

Listing 4.8: LLVM Assembly Code, Showing invoke and call

Listing 4.8 shows the LLVM version of the C++ code fragment. The first function call is
performed using the call instruction. The second function call is done using the invoke
instructions. The invoke instruction takes two additional parameters, the label if no
exception is raised and a second label in the exception case.

call %func

invoke %func

call %puts
"exception ..."

call %puts "after ..." ’

Figure 4.5: LLVM call and invoke CFG

The call instruction does not terminate a basic block, but the invoke instruction does.
Figure 4.5 shows the simplified CFG of Listing 4.8. As one can see the invoke introduces
two control-flow paths. One in the case of normal execution and one in the case of an
exception.

4.5.6 Graph-Based In-Memory Representation

LLVM defines three different representation formats: two serialized formats and one
in-memory format. The two serialized formats consist of one textual format and a

The Low Level Virtual Machine 41

Value Type

name: String fo— 1 fid:int
type | name: String

[BasicBlock | | User] . _Use
— —>{ prev: Use
numOperands: int operandList | nosvt- Use

[Constant | [Instruction |

[] []

GlobalValue
L 1

Function GlobalVariable

Figure 4.6: LLVM Value-User Type Hierarchy

binary format suitable for persistent storage of LLVM object code. The in-memory
representation is graph-based. This means that the memory representation resembles
a direct acyclic graph (DAG). The serialized representations are used as an interface
between LLVM tools as well as to write and read LLVM assembly code. The in-memory
IR is implemented as a C++ class library. [CP95] describes the advantages of a graph-
based intermediate representation. Figure 4.6 shows the most generic classes in an
Unified Modeling Language (UML) class diagram.

The Value class represents all values in an LLVM code. Every value has a type. Further-
more the LLVM IR object model distinguishes between two primary values, instructions,
and constants. Every instruction is an instance of class Instruction. Every constant
an instance of Constant. Global addressable values are represented by the GlobalValue
class. Representatives of global addressable values are global variables and functions.
Furthermore the Instruction and Constant types are User types. As can bee seen a
user has a reference to one or more uses. A use is an instance of class Use. Such a use
is a holder that provides access to both the used value and the user of that value. This
abstraction eases use analysis. One only needs a list of uses in order to access both the
users and used values.

Figure 4.7 shows the UML class diagram of the instruction hierarchy. As we can see
there are many different instructions. The derived classes depend on details of the in-
struction they model. For instance there is a class UnaryInstruction which represents
all instructions that only take one parameter. A special class of instructions are the in-
stances of TerminatorInst. All of them terminate a basic block, thus are always the last
instruction in a basic block. TerminatorInst are also called control flow instructions.
Currently they are:

e ReturnInst
e BranchInst
e SwitchInst
e Unreachablelnst
e Invokelnst

e UnwindInst

The Low Level Virtual Machine

BasicBlock

Value 1 Type
name: String 1_Jid:int
F\type name: String
AN _
A Use
l User — —> prev: Use
LoumOperande L] operandList | next: Use

parent

Instruction

PHINode

Unarylnstruction

Storelnst

Callinst

Termlnatorlnst

GetEIement
Ptrinst

| Freelnst /

[Castlnst | [Returninst |

Loadinst

[Allocationlnst

Branchlinst

v

[Unwindinst

VAArginst

These instructions provide the pointer to the next basic blocks.
TerminatorInst are needed to represent the CFG within LLVM bytecodes. Addition-
ally since every instruction is a user and therefore also a value, instructions can reference
other instructions directly. This implies that the in memory representation has no direct
Everything that is a value is a register or constant value.
structions can be named thus providing a way to create named registers. These named
registers are then used when the graph-based representation is serialized.

concept of a register.

register int a
register int b
register int c

int d =b + c;

Switchinst

Invokelnst

Unreachablelnst

Figure 4.7: LLVM Instruction Hierarchy

Const

Const Const
Int Int
10 7
Const Add (+]
Int Int: Int, Int Int
3 8
a a
[Mul¢) | [Mui() |
[Int:Int, Int | [Int: Int, Int_|
b c
[Alloca | [Add(+) |
[Int*: Void | [Int: Int, Int_]|
pointer to d é
[Store |
Void: Int*, Int

Figure 4.8: LLVM In Memory Representation

[Binarylnstruction |

Instructions of type

The Low Level Virtual Machine 43

The above C code fragement stores a complex expression in the variable d on the current
stack frame. The variables a, b, ¢, are not stored on the stack they are kept in registers.
Figure 4.8 shows the expression as a graph of values. Every box represents an instance
of Value. The first element is the type in textual representation. Two values have the
same type if their type identifier is lexical equivalent. In the in memory graph, types are
represented by pointers to shared instances of class Type.

4.5.7 Bytecode - Binary Virtual Object Code Representation

The LLVM architecture is very closely related to compiler architecture. A compelling
feature of the LLVM architecture is that it has a binary object code representation. A
program can be compiled to a binary LLVM object code. This object code can be later
compiled to machine code or can be loaded by a dynamic execution engine that generates
machine code by interpretation or binary translation.

0-1, 2-31

opcode (vbr encoded)

o o

type slot # (vbr encoded)

0-31

number of operands that follow

operand(i) value slot #

0-1, 27 8-19 | 20-31
? opcode type slot # 1st value slot #
0-1 2-7 8-15 ,16-23 L 24-31
1 1stvalue | 2nd value
0 opcode | type slot # slot # slot #

0-1, 2-7 8-13 | 14-19 , 20-25 |, 26-31
type 1stval. | 2nd val. | 3rd val.
slot # slot # slot # slot #

opcode

Figure 4.9: LLVM Binary Instruction Format

Figure 4.9 shows the instruction encoding of LLVM instructions. A binary LLVM code
is represented by a module. A module can have multiple functions and global variables.
The formal layout of the LLVM bytecode is defined in [LLV06a]. All values are encoded
in variable bit rate (VBR) encoding. In this encoding the most frequently used values
take the lowest numbers. This makes the bytecode more compact. The discussion of the
LLVM bytecode format is limited to the instruction encoding. As can be seen in Figure
4.9 there are 4 types of instruction formats. The least significant two bits determine the
format of the instruction.

e 00 - Variable number of operands

The Low Level Virtual Machine 44

e 01 - Instructions taking a single operand
e 10 - Instructions taking two operands
e 11 - Instructions taking three operands

The encoding guarantees that in most cases an instruction only takes 32 bits. In order
to achieve that, the values and types are not referenced directly, but through a type and
value table.

4.5.8 Summary of the LLVA

This introduced the LLVA and the most important aspects of its V-ISA as well as the
different representations and a comparison to other ISAs. The LLVA is a mid-level IL,
it resembles a low-level representation with high-level type information. LLVA is in SSA
form and has in-memory as well as serialized representations.

4.6 Summary

This chapter introduced the LLVM and the LLVA. The LLVM project originated at the
university of lllinois at Urbana-Champaign. The LLVM is a process virtual machine. It is
a low-level virtual machine with high-level type information. LLVM provides an infinite
set of typed virtual registers which can hold values of primitive types. Furthermore the
virtual registers are in Static Single Assignment (SSA) form. Additionally to the in-
memory representation the LLVM also has two serialized representations, one textual,
and a binary representation. Part of the LLVM project is a back-end for the GNU
Compiler Collection (GCC) project. This enables existing C/C++ applications to be
targeted to LLVM.

The Change Framework 45

Chapter 5
The Change Framework

5.1 Overview

The change framework is a system for dynamic program instrumentation and analysis
based on the Low Level Virtual Machine (LLVM) architecture. Chapter 4 covers the
underlying LLVM architecture. This chapter describes the instrumentation and analysis
architecture in greater detail. Starting from an architectural perspective, we will discuss
the individual parts and concepts of the framework. The main objective of the change
framework’s design is to be able to dynamically (at run-time) instrument applications. As
discussed in Chapter 2 the framework uses a technique called bytecode instrumentation.
The change framework extends the LLVM execution engine. Hence the intermediate
representation that gets transformed is the LLVM graph-based in-memory intermediate
language as described in the last chapter.

The LLVM dynamic compiler is used to binary translate parts of the bytecode to ma-
chine code on an as needed basis at run-time. Instrumentation of the application logic
is performed by transforming the IR. Since the compiler is available at run-time, re-
compiling the changed IR is possible without stopping and restarting the application.
This enables dynamic instrumentation. The design implies that the application’s code
has to be compiled to LLVM bytecode to be run within the change framework. Part
of the LLVM project is a version of the GCC compiler suite that includes support for
generating LLVM bytecode from C/C++ and ObjectiveC source files.

This way many existing C/C++ applications can be compiled to LLVM bytecodes and
hence are able to run within the change framework. Especially low level system code can
be instrumented too. Typically high level virtual machines like Java are lacking direct
support for compiling low level, non object-oriented system code to their respective byte
code. The project [Bri] even aimed at porting the entire Linux kernel to LLVA.

5.2 Change Framework Architecture

This section covers the high level architecture of the change framework. As can be seen
in Figure 2.1 the system consists of:

e The application process
e A monitor process

The Change Framework 46

The application under analysis is running inside the application process. As mentioned
above the application is compiled to LLVM bytecode and loaded using the LLVM exe-
cution engine. After loading the bytecode, the in-memory intermediate representation
(IR), as discussed in Chapter 4, is used to perform instrumentation. The IR is not in-
terpreted. The execution of the application is performed in its native (machine code)
form.

5.2.1 The Change Concept

The central concept that also gives the name to the change framework are changes. As
can be seen in Figure 2.1 change scripts are written in the change language and represent
one or more change. A change is the term that refers to an alteration to the application’s
IR. The language for writing changes will be discussed later in this chapter.

A change is applied to one or more points (change points) in the execution of the ap-
plication under analysis. A change consists of a number of statements, that are inserted
at these points. As can be seen in Figure 5.1 changes additionally contain so called
predicates. Predicates are used to control which of the potential change points will be
affected by this change. Predicates give the change author control where the change is
to be applied. We will see later that change providers exposes potential change points
and check predicates.

(7 N\
[Change Info] Meta information
Predlcate LLVM Change predicate
Ix==y && .. Bytecode Select the change points, where
the change statements are to be
inserted.
Change LLVM Change statements:
Statements Bytecode The bytecode that gets inserted,
if any change point matches the
supplied predicate.
A Y,

Change Representation

Figure 5.1: Components of a Change

To summarize, a change together with a change provider control the transformation
process on the application’s IR. Changes originate in the monitor process. They are
written in the change language and compiled to LLVM bytecode. After that the mon-
itor process sends changes to the application’s process using the change protocol. The
change protocol operates over a communication channel between the monitor and the
application’s process.

The two most important requests are:

e Requests to apply a certain change to the running application.

e Requests to unapply a change or a set of changes. This reverts the changes per-
formed to the code. After reverting a change the application should work as if the
change would never have been applied.

The Change Framework 47

In addition the communication channel provides a way to communicate results from the

application back to the monitor process.

5.2.2 Change Application Overview

Granularity Module Function BasicBlock Instruction Application's
Intermediate

Providers —‘ } —‘ Representation
I L I L Imported
| Change
Bytecode

|}
Registration

Change !
Manager Imp'ort o

Application's

) Byte'bode Machine Code

Change Framework

Application Process

1

Change Change
Info Bytecode

Change
Script

Figure 5.2: Applying a Change

Montior Process

The application’s process listens for change requests. When a change request enters the
application’s process, it is analyzed and handed to a central component called the change
manager. As can be seen in Figure 5.2. If the request is a change application request,

then

e the change’s bytecode is imported and added to the application’s IR, and

e the change is registered with its corresponding change provider. After registering
the change gets a unique registration id. This registration id is called a cookie.
The cookie is returned to the monitor process and is used to refer to that change.

While a change can access information from many providers, a change has exactly one
transforming provider. This provider is chosen by the change author and is part of
the change identifier. That provider is the responsible component in the application
process, we refer to this provider as the change’s responsible provider. Figure 5.2 shows
the actions performed when a change arrives: The change manager registers the change

with its responsible provider.

The responsible provider has the task of checking which points in the execution of the
application are to be affected by this provider. This is done by evaluating the change
predicates. Further the provider also has to transform the application IR to incorporate

The Change Framework 48

the change at matching change points. The change application process traverses the ap-
plication’s IR bytecode model. At every level (module, function, basicblock, instruction)
providers are informed. The responsible provider then checks, whether

e there is a change registered, and
e the change predicate matches the current context.

If both conditions hold, the change is weaved into application’s IR. For undoing the
change later, a change log is kept. After the change is weaved into the application IR, the
application IR is marked as dirty. The application code periodically checks whether the
machine code should get recompiled. If it detects that the application IR got modified,
the dynamic compiler is run. After recompiling and relinking the application runs the
new, modified machine code.

5.2.3 Change Unapplication Overview

If the entering request is a change unapplication request, the framework performs the
following tasks:

e The change manager gets informed, that a change with a certain change id (cookie)
should be unapplied.

e The change manager checks the change for validity, especially if the change has
really been registered and whether the change is already/still applied.

e A global undo log is used to remove the added instructions and global variables.

e Afore imported functions that belong to the change being unapplied can be re-
moved. Memory can be freed.

e The change is removed from the internal bookkeeping structures. It cannot be
unapplied more than once.

After the change removal process, the application’s IR is marked dirty and the dynamic
compiler will generate new machine code for the changed application parts. The effects
of the change application process are undone. The change is not applied anymore.

5.3 Change Provider Architecture

Change providers form a crucial part in the system above. Change provider live in
the application’s process and handle the transformation of the IR as well as providing
context information. The term provider stems from the fact that a provider encapsulates
these services and allows the system to be extensible. One can add custom providers
and register them with the system. Providers have to be implemented in C/C++ and
directly access the LLVM Compiler API. After registration, a provider can be used by
the change author.

Change providers operate on a predefined structural granularity. The granularity rep-
resents the bytecode level scope for which the provider is responsible. Currently these
are

The Change Framework 49

per module,

per function,

per basic block, and
per instruction.

""] Module
Module Scope
Function Function
F1 Scope

e | W Inst1 “Instruction [| Basic
Inst2 .. Scope_ . Block
Inst3 Scope
IDORRIRRIRN.
BB2 Inst1
Inst2
"""""""""""""""""""""""""""" —
BB2 Inst1
Inst2
... T

Figure 5.3: Bytecode Scopes

Given a certain granularity, every change provider provides potential change points, and
static context information. The concept of nested scopes applies to context information.
As can be seen in Figure 5.3, basic blocks are within the scope of a function, and
instructions are inside the scope of each basic block. The context information of a
function is valid throughout its scope.

A change’s responsible provider always operates on a specific granularity and is scope-
aware. Change statements and change predicates of a specific granularity can thus
use static context information of its container objects. This way a basic block change
predicate, for instance, can access context information of the container function and the
container module. An instruction change has additionally access to the basic block that
contains the instruction, and so on.

The main tasks of a provider are:

e Exposing potential change points.

e Evaluating change predicates to obtain change points.
e Updating information about its static context.

e Transforming the application’s IR at change points.

e Keeping undo records.

As an example we take a provider that works on a per function granularity. Such a
provider exposes potential change points at the beginning and at the end of a function.

The Change Framework 50

The provider is free to filter these change points before hand. A provider with function
granularity operates on a function at a time. Thus it only exposes points in the execution
of the application that are on function level such as entering and leaving a function.

Our example function provider could expose information, such as:

e The name of a the function.

The signature of the function.

The number of arguments.

Its return type.

All the information above is local to the function and known statically. Additionally to
that information, such a per function provider could expose change points.

5.3.1 A Sample Application

Listing 5.1 shows a sample application. This application is written in the C language and
has the following structure: It consists of one translation unit (here called a module), a
global variable, called names which is an array of strings. Furthermore it has a function
called say, one called hello_world, and another one called main. main is the module’s
entry point.

#include <stdio.h>

char snames[] = { 7Hello”, "World”, ”Application”, NULL } ;
void say(const char * value)
{
printf(”Say: %s\n”, value);
}

int hello_world() {
char xxname_iter = names;
while (*name_iter) {
say (#*name_iter);
name_iter—+-+;

}

return 0;

}

int main(int argc, charxx argv) {
return hello_world();
}

Listing 5.1: Sample Application

The application’s behavior is as follows: On start main is invoked. main in turn calls
the hello_world function. hello_world simple prints all elements of the global array
on the standard output by calling the say function. say takes a string and prints it to
stdout using the C run-time function printf.

The Change Framework 51

Module "mymodule"

GlobalVariable "names"

Function "hello_world"

entry

alloca

alloca

store

loopentry @

load

setne

load br
store

br

no_exit
load
call
load

ino loopexit

store
br

store
br

I

return
load

ret

Figure 5.4: Sample Application LLVM IR for Hello World

Figure 5.4 shows the LLVM IR of the module and the hello_world function in a graph-
based representation. This representation shows the module, the global variables, and
the function hello_world. The function hello_world is represented as set of basic
blocks, which are connected together by control flow instructions. Such a representation
is also called a control flow graph (CFG). Please refer to Chapter 4 for more theoretical
background. Each basic block is shown with its instructions. In favor of clarity Figure
5.4 only shows the opcodes of the instructions.

5.3.2 Change Points and Change Point Trajectories

Change points always represent events in the execution of the program. The collection of
change points over a period of time is referred to as a change point trajectory. During the
application of changes every change provider that has changes to apply checks whether
change points match. This is done by evaluating the change’s predicate with the current
static context information. When a change point occurs, the change is weaved into the
application’s IR.

procedure AFunctionProvider_onFunctionEnter (provider:Provider, changes
:Array of Change)
begin
for each change in changes
if change.predicate(provider.ctxInfo) then
; this is a change point
insert change.changeStatements at this point in the model
end
end
end

The Change Framework 52

Listing 5.2: Change Application - Changepoint

When a change is applied, the application’s IR is traversed and at potential change
points, the incoming predicate is matched. If the evaluation of the predicate yields true
for a specific point in the structure of the application, the change is instrumented into the
IR. Based on the way the application’s static structure is traversed, a certain trajectory
of change instrumentation is performed.

The pseudo code in Listing 5.2 shows the logic behind a function provider’s change point
called onFunctionEnter. The important point is that the change point exported as part
of the provider definition, maps to logic inside the provider’s implementation. This logic
has to evaulate the predicate and instrument the change into the point, if needed.

Whether or not the application’s IR is changed by a specific change is determined by the
static context information provided by the change providers. Later when the execution
of the new code begins, change points actually are executed. This is the dynamic tra-
jectory of change points, which depends on the run-time execution paths taken by the
application.

5.3.3 Provider Context Information

As stated in the last section one important job of every change provider is to export
information about its static context. This static context is used to evaluate change
predicates. Decision whether a point in the execution of the application is a change
point is done by the change provider.

The information collected is subject to the provider implementer. Whatever the imple-
menter chooses to collect is available to the change author. The information collected
is purely static. No information about the run-time state of the application needs to
be known. This is important as the transformation process has to be as efficient as
possible.

function provider functionProvider {
points {OnEnter, OnLeave} ;

int id;

string functionName;
int argCount;

int isVarArg;

Listing 5.3: Change Provider Information

In Listing 5.3 one can see the context information exported by the provider func-
tionProvider. This information matches the information the implementation of that
provider is able to expose. By this means the provider is able to export information to
the change framework. This information is read-only for the change author. It can be
used both to decide whether to apply the change (e.g. inside a predicate) and inside the
change statements.

The Change Framework 53

5.3.4 Summary

In this section the change concept was introduced. Change providers are the interface
between the change author and the execution engine. Change providers are written in
C/C++ and work directly with the LLVM API to manipulate the intermediate repre-
sentation. The provider architect has to choose a granularity that best suits the needs
of the provider. Additionally the architect exports information, called static context
information, to the change author.

When writing a change script the change author chooses one responsible provider. This
provider is responsible for checking whether and when a change should be weaved into
the application’s IR. The next section formally defines the change language.

5.4 Change Language

5.4.1 Overview

The change language provides an efficient way to write changes. As can be seen in
the next subsection, change language statements are syntactically a subset of C. The
change language is a domain language for authoring changes. Change providers, change
predicates, and change statements are first class language concepts. Some important
properties of the change language are:

e The change language is used to create one or more change definitions.

e Available providers have to be declared inside the change language in order to be
used.

e Each change definition consists of:

— A responsible provider
— A change predicate
— A block of change statements

5.4.2 Syntax

The syntax of the change language is described as a grammar in Listing 5.4 in Extended
Backus Naur Form (EBNF) [Wir77]. In this section we discuss syntactic properties of
the change language based on this grammar.

TranslationUnit = {ProviderDecl | ChangeDefinition }.

ProviderDecl = (”module” | "function” | ”basicblock” |
"instruction”) 7provider” ident "{” [ProvChangePointDecl 7;”] {
ProvFieldDecl 7;7} 7}7.

ProvChangePointDecl = "points” 7{” ident {”,” ident} "}”

ProvFieldDecl = TypeSpecifier ProvFIdDecltorList.

The Change Framework 54

ProvFIdDecltorList= ProvFldDecltor {”,” ProvFldDecltor }.

TypeSpecifier = 7void” | 7float” | ”"double” | {”signed” | ”
unsigned” | ”"char” | ”short” | "int” | ”long”} | 7string” | TypelD
TypelD = ident.
TypeName = TypeSpecifier [AbstractDecltor].
ProvFIdDecltor = Declarator.
Declarator = [Pointer] DirectDecltor.
DirectDecltor = (ident | 7(” Declarator ”)”)
{DirectDecltorExt}.
DirectDecltorExt = ”(” [ldentList | FormalParamList] ”)”

| 77 [SliceExpr] 7]

AbstractDecltor = Pointer | [Pointer] DirectAbstractDecltor.

DirectAbstractDecltor = 7 (” AbstractDecltor 7)” | 7[” |
ConstantExpression] ”]” | ”(”[ParamTypelList]”)” { 7[” [
ConstantExpression] ”]” | ”(”[ParamTypelList]”)” }.

Pointer = 7x7 {7x7}.

VariableDecl = TypeSpecifier Declarator {”,” Declarator}.

FormalParamList = FormalParam {”,”FormalParam}.

FormalParam = TypeSpecififer [Declarator | AbstractDeclarator].

IdentList = ident {”,”ident}.

ChangeDefinition = 7change” Changeldent ”/” [ConstantExpr] 7/”
BlockStat.

Changeldent = ident {”::” ident}.

Literal = ("true” | "false”) | string | char | integer |
float.

Expr = AssignExpr.

SliceExpr = ConstantExpr [”7..” ConstantExpr].

ConstantExpr = LogicalOrExpr.

AssignExpr = UnaryExpr {"=" LogicalOrExpr}.

LogicalOrExpr = LogicalAndExpr {”||” LogicalAndExpr}.

LogicalAndExpr = EqualityExpr {"&&” EqualityExpr}.

EquailtyExpr = RelationalExpr {"=—" RelationalExpr}.

RelationalExpr = AddExpr {(”>7]|"<”|">="|"<=")AddExpr}.

AddExpr = MultExpr {("+7|”=")MultExpr}.

MultExpr = CastExpr {(7*7]”/7]"%")CastExpr}.

CastExpr = [”(”TypeName”)”] UnaryExpr.

UnaryExpr = {7&"|7*7| 717|777 | 747 | "=} PostfixExpr.

PostfixExpr = PrimitiveExpr ("7 | 7.”) ident.

PrimitiveExpr = ident | Literal | ”(” Expr ”)”.

Statement = VariableDecl 7;”

| Expr 7;”
| 7if” 7(” Expr ”)” Statement "else” Statement
| 7while” ”(” Expr ”)” Statement
| "break” 7;”
| 7continue” ;7
| BlockStat
BlockStat = 7{” {Statement} ”}”.

Listing 5.4: Change Language Syntax

The Change Framework 55

5.4.2.1 Lexical Structure

The grammar in Listing 5.4 describes the individual grammatical rules. These rules
consist of terminal and non terminal symbols. The lexical structure further describes
the terminals of the language. Terminals are indivisible atoms built from characters.

Key Words.

basicblock , bool, break, change, char, continue, double, else, float
function, if, int, instruction, long, points, provider, return,
signed , string, unsigned, void, while

Terminals.

ident = (letter | '_7) {letter | digit | ’_’}.
integer = (’0° (’x’ hex {hex} | octet {octet} | {digit}) |
digitnonzero {digit}).

float = (7.7 | digit {digit} ’.’) {digit} ['E’ ["+7|"="] digit {
digit }].

string = ’7’ {stringCh | ’\\’ printable} 7.

char = ’\"’ (charCh | ’\\’ printable {hex}} ’\’’.

Identifiers have to start with a letter or an underscore optionally followed by any com-
bination of letter, digit, and underscore.

Binary Operators.

+a_7*7/7%a::7!:7>a>:;<7<:v&&»”v:7~,_>vH

Unary Operators.

&7*3_7"_)!7

Comments.

Starting from ’/*” up to */’, nesting possible and ignoring line feeds.

The Change Framework 56

5.4.2.2 Change Specific Syntactic Aspects

As can be seen in Listing 5.4, the change language resembles a C-like language. It has
the concepts of types, variable declarations, statements, and expressions. Additionally
a change program has features unique to its usage domain. A valid change program
is composed of one or more provider declaration (ProviderDecl) and change defini-
tions (ChangeDef). A change provider declaration is syntactically similar to a structure
declaration in C or a class declaration in C++, C#, or Java.

The following gives a rough overview of the syntactic requirements of a provider decla-
ration:

<Provider—Granularity> provider <Provider—Name> {

/x Valid change points for this provider x/
points { <Change — Point;>, <Change — Pointa>, ... };

<ProviderFieldi—Type> <ProviderField)—Name>; // Provider Field
Declaration

<ProviderField,—Type> <ProviderField,—Name>; // Provider Field
Declaration
s

The Provider-Granularity is one of module, function, basicblock, or instruction.
The Provider-Name has to be a valid identifier. The provider declaration block has to
start with a left brace ({) and gets terminated by a right brace(}). At the end of a
provider declaration one can optionally write a semicolon.

Inside a provider declaration block, one can define the valid provider change points,
followed by provider field declarations. The change point declaration is syntactically
equivalent to a C language enum. The identifier points has to be followed by a set of
valid change points. Change points have to be inside braces. The list of change point
names have to be valid coma separated identifiers.

Provider field declarations follow the C language synatx of:

type—name identifier

Provider fields must not have additional parts, like modifiers or initializers. From a
syntactic point, change definitions are modeled after function definitions. As for provider
declaration, below there is a relaxed syntactic notation of change definitions compared
to the EBNF productions in Listing 5.4.

change <Change—Identifier > /+ Change Header x/
/ <Change—Predicate> / /x Change Predicate */
{ /* Change Body */

<Change — Statement;> ;

<Change — Statement,;> ;

}s

The Change Framework 57

Change definitions are introduced by the keyword change followed by a valid Change-
Identifier. Change identifiers are a set of identifiers, separated by double colons (: :).

After the Change-Identifier, the Change-Predicate has to be defined. It is delimited from
the rest by forward slashes (/). The predicate has to be a valid constant expression. The
Change-Body again follows the C convention and uses braces. Inside the Change-Body
there are one or more Change Statements. As can be seen in Listing 5.4 such a statement
can be either a generic type declaration statement, an expression statement, or special
statements like if, while,

5.4.3 Semantics

In the last subsection the syntax of the change language was introduced using the gram-
mar in Listing 5.4. Further the grammar elements specific to the domain of writing
changes was discussed in more detail. This and the next subsection aim to describe
the semantics and context conditions of the change language. Some important semantic
aspects of the change language are:

e Value types

e The string type

e Pointer types

e Reference types

e Implicit variables
e Predefined types

e Predefined values
o Literals

e Type equality

e Type compatibility
e Assignment compatibility

e Scopes

5.4.3.1 Value Types

Value types have a pass by value semantics. If they are passed as parameters, or assigned
to other values, the value gets copied.

The Change Framework 58

All primitive types are value types. Primitive types are:
Type Size [bytes] Description

bool 1 Boolean value. Values: true, false.
char 1 Unsigned 8 bit integer value. Represents character
literals.
signed char 1 Signed 8 bit integer value.
short 2 Signed 16 bit integer value.
unsigned short 2 Unsigned 16 bit integer value.
int 4 Signed 32 bit integer value.
unsigned int 4 Unsigned 32 bit integer value.
long 8 Signed 64 bit integer value.
unsigned long 8 Unsigned 64 bit integer value.
float 4 32 bit IEEE floating point value.
double 8 64 bit IEEE floating point value.

5.4.3.2 The string Type

In C/C++ strings are mutable character arrays, which are terminated by a zero char-
acter. This can be inconvenient, since explicit string manipulation functions have to be
used to copy or compare strings:

const char xa_string = "A_String” ;

char xanother_string = strcpy(a_string);

if (strcmp(a_string, "A_string”)==0){ //element comparison
printf("%s_equals_’A_string ’\n”);

}

The change language introduces a first class string type, that is implemented in terms
of the C zero terminated character array concept. If a character pointer is used, the
default C reference behaviour is assumed. Otherwise, if string is used, the value type
semantic is used:

string a_string = ”A_String” ;

string another_string = a_string;

if (a_string = ”A_string”) { //element comparison
printf ("%s_equals_’A_string ’\n”);

This is especially practical when using string comparison in change predicates. Fur-
thermore the change language allows for convenient substring creation. In addition to
single element retrieval the array access operator [] allows a slice expression. The slice
expression is in the form a. .b. If s is a string, the expression s[a. .b] returns a slice of
the string inclusively starting at position a until exclusively position b.

string a_string = "Hello_World!”;
string hello = a_string [0..5];
string world = a_string [6..11];

Listing 5.5: String Slicing Example

The Change Framework 59

5.4.3.3 Pointer Types

The change language has direct support for so called pointer types. Pointer types are
composite types. A pointer type always needs another type. For instance a pointer to int
(int*) is used to store the address of an integer memory cell. If a variable has a pointer
type, the variables value is not the value, but is the address to the value. The change
language keeps the C language semantics for pointer types. The address-of operator (&)
and the dereferencing operator (*) support pointer operations.

Below you see a code snippet for declaring and using pointer types:

int a = 7;
int xpa = &a; //assign pa the address of a
xpa = 8; //this changes the wvalue in cell ’a’

printf("%d\n”, a); //yields: 8

Readers interested in learning more about how the C programming language, and hence
the change language, deals with pointer types and pointers are referred to [KR78].

5.4.3.4 Reference Types

So called reference types are types that behave like pointer types, but the address is
fixed. Reference types as opposed to value types have pass by reference semantic. Pointer
types have pass by reference semantic as well. For instance on assignment, values are
not copied, but are so called aliases to the original value in memory. Implicit provider
variables, which are discussed in greater detail below, are reference types.

5.4.3.5 Implicit Values

Some values in the change language are provided by the provider system. These values
get implicitly defined.

o change functionProvider :: OnEnter

/ functionProvider —functionName = ”hello_world” /
2 {
+)

In the above listing the change definition’s predicate on line one uses the variable func-
tionProvider. This variable is automatically introduced with the provider declaration.
Every change provider creates an implicit value that has the same name as the provider
identifier. This name can be used in change scripts without declaration. This value is
supplied with data from the application’s process where the change gets applied. The
compiler keeps track of which implicit variables are used and checks whether the usage
is valid.

The Change Framework 60

5.4.3.6 Predefined Values

Predefined values are known to the compiler and add functionality to the change scripts.
The design is extensible, adding additional predefined values to the application is sup-
ported. Currently the following values are predefined:

e io value - Writing data back to the monitor process.
e thread value - Storing data on a thread local storage.

The io value is used to communicate data to the monitor over the communication
channel. The change code alters the application’s process. Simply printing out values to
the standard output would result in displaying the results in the application’s standard
output instead of writing the output back to the monitor’s console.

The io value has the member function:

int printf(const char *xfmt, ...);

The following change definition uses the io value:

change functionProvider :: OnEnter

[/
{

io—>printf("Entering_function %s\n”, functionProvider—>functionName

)

The thread value is used to store data on thread local storage. Modern operating systems
allow multiple concurrent execution paths inside one process. These are called threads
of execution. A thread has its own call stack, but all threads share the memory heap.
Thread local storage (TLS) is storage that is relative to each thread. No other thread can
directly access the thread local storage of a thread. Per thread call information can be
directly associated with one thread. This makes TLS well suited for keeping information
related to function calls. For every primitive type the thread value has a getter and a
setter function:
/x
x* get or set a xxxx value on thread local storage.
*k
vo/id setXxxx (const char sname, xxxx value);
xxxx getXxxx(const char sxname);

For the int type the setter would be called setInt and the getter would be called
getInt. The following change definition shows a simple usage of the thread and io
values:

o change functionProvider :: OnEnter
/ funcitonProvider —>functionName — 7say” /
2 {
thread—>setInt ("say”, thread—>getlnt (”say”) + 1);

+)

The Change Framework 61

6 change functionProvider :: OnLeave

/ functionProvider —>functionName =— ”main” /
s {
io—>printf(”function_’say’ was_called %d_times.\n”, thread—>getInt (”
say”));

Listing 5.6: Listing: Change definitions using thread

For the example application we introduced in Listing 5.1 this would produce the following
output at the end of the main function:

[monitor—output]| function ’say’ was called 3 times.

The first change definition in Listing 5.6 is called when entering a function called say. In
line 4 the thread local value named say is incremented by one at each. By convention,
the thread member function getInt returns 0, if no variable was already associated
with that name. The second change definition beginning on line 7 is called at the end of
the program, when the main function terminates. At that point the thread local value
say is printed using the printf member function on the io reference variable.

5.4.3.7 Literals

Literals are tokens in the source code that directly lead to constants in the language.
The change language follows the C convention for literals, except that string literals have
the value type string.

The following literals are supported:

Literal Example Type Description

’c’, ’h’, ’a’, ’R’, ... char Character literal
"string" string String literal

1, 2, 0x10, 08, ... int Integer literal

.32, 1.321, 2e07, ... float Floating point literal

5.4.3.8 Type Equality

Any value in the change language has a type. Types define the characteristics of values,
for instance their size in memory or their structure. Two types are equal, if they are
represented by the same type name. Pointers are equal if they have the same nested
types. The definition for type equality is taken from [Moe03].

5.4.3.9 Type Compatibility

Two types are compatible if one of the following conditions is met:

e Both types are the same.

The Change Framework 62

e Both are pointer types, with the same type qualifiers, that point to compatible
types.

e Both are array types whose elements have compatible types. If both specify repe-
tition counts, the repetition counts are equal.

e Both are function types whose return types are compatible. If both specify types
for their parameters, both declare the same number of types for their parameters,
and the types of corresponding parameters are compatible.

e Both are provider types that are declared in different translation units with the
same member names in the same order. Provider type members whose name match
are declared with compatible types.

Table 5.4.3.9 shows examples of compatible types:

typel type2 Rule

int int Both types are the same.

long signed long Both types are the same .

char a[] char a[10] Both are array types and only one defines a repetition
count.

5.4.3.10 Assignment Compatibility

A value of type Src is assignable to a value of type Dest (Dest = Src;) if Src and Dest
are of the same type or if they are implicit convertible to each other. Conversion of a
type to another type is often called promotion. The next subsection deals with implicit
conversion of values. A special case is the null pointer assignment. Dest is a pointer
type, and Src is an integer with a value of zero. In that sense Src is called a null pointer
constant. After the assignment the value of Dest is called a null pointer.

The listing below shows a null pointer. The value of pointer type ptrToInt is referred
to as a null pointer after the assignment of the null pointer constant (0).

int xptrTolnt = 0;

5.4.3.11 Implicit Type Conversions

Types define the memory representation of values. Sometimes it is convenient to be
able to directly assign a value to another value, even if their types do not share type
compatibility. If two values do not have the same type, their memory might be different,
and one value can not be simply assigned to another value.

In this case the value of one type has to be converted to the other type. This conversion
may not be loss-less all the time. For instance, the following conversion, a valid C code
fragment, loses information during conversion:

The Change Framework 63

float aReal = 20.99;
int aNumber = aReal;

Listing 5.7: Type conversion in the C language

After the assignment in line 2, the value of the variable aNumber will yield 20, while the
assigned value is 20.99. Such a conversion of float to int is called a narrowing conversion.
In most typed languages conversion is performed implicitly by the compiler. When a
conversion would lose information, an explicit conversion has to be performed. Less strict
languages, like C perform even narrowing conversions implicitly. And some languages,
for instance C++, issue warnings, but perform the conversion.

The change language is stricter than the C language with regard to implicit conver-
sions. Implicit type conversions are only allowed if they can not be performed lossless.
Otherwise explicit type casts have to be supplied:

float aReal = 20.99;
int aNumber = (int)aReal;

Listing 5.8: Type Conversion in the Change Language

5.4.3.12 Lexical Scopes

A scope denotes a lexical block of a translation unit, provider declaration, and change
definition. Scopes define the visibility of symbols. A variable name is relative to its scope
or its parent scope. Thus scopes can be nested. For instance every change definition
inherits information from the module scope where it is defined. Predefined values are
defined in an common outer scope. This scope can not be directly manipulated within
the program language. This outer scope is referred to as the universe, as in [Moe03].

5.4.4 Context Conditions

While the syntax only defines what is required for the language to be syntactically cor-
rect, many semantic information about the change language were already defined in
the last subsection. This subsection covers so called context conditions. These condi-
tions are typically encoded directly in the compiler. Context is additional information
that the compiler needs to translate a given source code fragment into a valid target
representation.

As an example consider the following change language expression statement:

y + 3

If the compiler encounters this expression, it needs to answer, among other things, the
following questions:

e What is the symbol referred to by the identifier y?
e Is it a variable/constant/...7
e Has the variable already been declared?

The Change Framework 64

What is the symbol referred to by the literal 37

Is the addition a valid operation on the type of y and 37
Are the types compatible?

What is the type of the expression y + 37

There are general context conditions, which apply to one or several grammar rules. In
this section we will discuss some of the general context conditions as well some specific
context conditions concerning change language specific features.

5.4.4.1 General Context Conditions

e In general every name has to be declared before its use.

e Names of predefined values, as defined in Subsection 5.4.3.6, do not need to be
declared.

e Every name has to be unique within the same scope.

5.4.4.2 Change Specific Context Conditions

The description of the context specific conditions will focus on the change specific aspects
of the language. Every context condition will be discussed per grammar rule. A grammar
rule is followed by a description that gives the details of the respective grammar rule’s
context conditions.

Provider Declaration.

ProviderDecl = ("module” | ”function” | ”"basicblock” | ”instruction”)
"provider” ident "{” [ProvChangePointDecl ”;”] {ProvFieldDecl 7;”}

77}”

The provider declaration must match the provider definition running inside the applica-
tion’s process. Provider declarations should be generated by the provider author. Due
to performance provider fields are identified by offsets. Any offset mismatch between the
provider declaration in a change script and the provider running inside the application’s
process can result in severe run-time errors.

Change Definition.

ChangeDefinition = ”change” Changeldent ”/” [ConstantExpr] 7/”
BlockStat.

Changeldent must be of the form <provider-name> :: <change-point-position>.
The provider referred to as <provider-name> in the Changeldent is the transforming

The Change Framework 65

provider of the change. The transforming provider is responsible for evaluating the
change predicate and transforming the application’s IR if necessary. While a change def-
inition can refer to only one transforming provider, it can access several other providers
as so called information providers.

change branchInstProvider :: Before
/ functionProvider —>functionName = ”main”

{
}

Listing 5.9: Change Definition Using a branchInstProvider

To compile the above change script the change’s transforming provider, called branchIn-
stProvider, has to be declared in the same translation unit. The following listing shows
a sample provider declaration:

instruction provider branchInstProvider {
points { Before, After };
int id;

}

The predicate expression and the statements of a change definition can access providers
in addition to the change’s transforming provider. The change definition in Listing 5.9
above uses one additional provider whose declaration is also required in order to evaluate
the change predicate.

These additional providers are called information providers. These providers need to be
declared in the change language script. For instance a partial declaration for function-
Provider could look like:

function provider functionProvider {

int functionName;

When and how a change is able to access other provider to provide information is ex-
plained in more detail below. ConstantExzpr must be a valid change predicate. Con-
stantExpr has to be of type bool. If it is omitted, the value the ConstantExpr defaults
to the constant true. The provider referenced in the Changeldent and all declared
providers of a coarser granularity can be used inside the ConstantExpr to define the
change predicate.

The following listing shows a set of provider declarations:

module provider moduleProvider {
points { OnEnter };
int id;
string moduleName;

}

function provider functionProvider {
points { OnEnter, OnLeave };
int id;

The Change Framework 66

string functionName;

}

basicblock provider basicBlockProvider {
points { AtBegin, AtEnd };
int id;
int blockNumber;

}

instruction provider InstrProvider {
points { Before, After };
int id;
string type;
string category;
string description;
bool isTerm;

Listing 5.10: Sample Provider Declarations

Given the providers from Listing 5.10 the subsequent fragment would be a legal change
definition:

// Insert a change code before every
// instruction
change instrProvider :: Before

/ moduleProvider—moduleName = ”main”
&& functionProvider —>functionName = ”exampleFunction”
&& instrProvider —>category =— ”memory”
&& instrProvider —>type =— ”malloc” /

The change predicate in the change definition below is not allowed and will result in a
compile time error:

change basicBlockProvider:: AtBegin
/ functionProvider —>name = ”exampleFunction”
&& instrProvider —>type =— ”malloc” /

{ ...

The above change is transformed using a basicblock provider. The change’s transforming
provider is called basicBlockProvider. According to Listing 5.10 basicBlockProvider
is of granularity basicblock. Inside a basicblock change definition, it is not allowed to
use information from providers of a finer granularity. In the above change definition the
predicate illegally uses the provider instrProvider that is of granularity instruction.
The reason for this is that the change framework cannot guarantee that the information
of the provider instrProvider is valid and useful in this context.

To summarize given the provider declarations of Listing 5.10, the following can be said
about access to providers from within the change definitions:

The Change Framework 67

Transforming Provider Accessible Information Providers

change moduleProvider::... moduleProvider

change functionProvider::... moduleProvider, functionProvider

change basicBlockProvider::... moduleProvider, functionProvider, ba-
sicBlockProvider

change instrProvider::... moduleProvider, functionProvider, ba-

sicBlockProvider, instrProvider

Change Statements.

BlockStat = ”{” {Statement} 7}”.

Change statements are C-like statements, where normally every name has to be intro-
duced using a variable declaration. There is an exception for references to providers
(implicit values) as defined in Subsection 5.4.3.5 and the use of predefined values, as
defined in Subsection 5.4.3.6.

For accessing provider references the same restrictions apply to change statements as
to the predicate constant expression. The providers accessible to the containing change
definition can be used. If we consider a change script with the providers as declared in
Listing 5.10, the following change definition would be legal:

change basicBlockProvider:: AtBegin
/ functionProvider —>functionName = ”main” /

{

string moduleName = moduleProvider—moduleName;
io—>printf(”first_block_in_main, module,_ = %s\n”, moduleName) ;

}

While the following would not be legal:

change basicBlockProvider :: AtBegin
/ functionProvider —>functionName = ”"main” /

{

string instructionType = instrProvider—>type;
io—=>printf(”first_block_in_main,_instructionType=%s\n”,
instructionType);

The reason why the listing above is illegal is that the change’s transforming provider is
of granularity basicblock (see the change definition starting with change basicBlock-
Provider::...). This will raise a compile error. Additionally change statements can
access any predefined value, as defined in Subsection 5.4.3.6. Currently these are the io
and the thread values. It would make sense to declare predefined values, so that the
author could look at the definitions. Future work and enhancements are discussed in
Section 8.2.

Some tracing toolkits, like [CSL04], restrict the control flow constructs in the instru-
mentation language, so that it is not possible to create infinite loops inside the inserted
logic. While this is useful, it is more critical in per operating system instrumentation

The Change Framework 68

systems. In [CSL04] the whole operating system could be rendered useless, if an infinite
loop would be inserted in the wrong position. The change framework operates within
the instrumented application process. Bad or even malicious instrumentation cannot
directly influence the whole operating system.

5.5 Change Detection and Recompilation

5.5.1 Overview

In Subsection 5.2.2 the change application process was outlined. In the change framework
the application’s IR gets transformed by a so called transforming provider. Transforma-
tion adds nodes to or removes nodes from the IR of the application under analysis. This
happens while the application is executing. If the application bytecodes is interpreted
this would be all that is needed to incorporate the change into the application. For
efficiency reasons the change framework uses a JIT compiling execution engine. This
execution engine dynamically compiles the IR to machine code.

In the dynamically compiled mode the application completely runs in machine code.
Compilation is done lazily function at a time. This means that first the main entry
function of the application gets compiled to machine code. During compilation call and
invoke instructions are treated specially. The compiler determines whether the called
function has already been compiled or not. If the target function is already compiled,
the address of the function is emitted. If not a stub that lazily triggers compilation of
that function is added. This way the call graph of the application triggers the translation
process.

Calling the stub of a function triggers the JIT compiler to translate the respective func-
tion to native code. After that the call site gets redirected to the compiled function.
This ensures that next time the machine function is called directly. Application and/or
unapplication of changes transform the application’s IR. By that the IR gets out of
sync with the application’s machine code. A mechanism is needed so that the executing
machine code detects when it is in need for update.

5.5.2 Recompilation Checkpoints

A recompilation checkpoint in the change framework is a point in the execution of the
application, where the code is checked for recompilation. When an application is loaded,
the change framework initially transforms the application’s IR to contain checkpoints.
They are treated as immutable parts, and can not be altered by change application/u-
napplication. Recompilation checkpoints are used to determine whether the application
IR is out of sync with the machine code representation. This is the case after a change
was applied by the change framework.

The Change Framework 69

5.5.2.1 Recompilation Detection Period

The recompilation detection period is the time At starting from the time a change was
applied until the time the application code reflects the change. In the JIT compiler
case this is the time that went by between the application IR was transformed and
the machine code got recompiled and relinked. Another period, Ap, is the time period
between a change is applied, and the change is perceived by the user. At has direct
influence on Ap.

At depends on the following factors:

e Unit of compilation: At which IR node level can be recompiled. The LLVM JIT
compiler currently is able to compile individual functions at a time. Recompiling on
a finer granularity is not directly supported. This restricts on the way checkpoints
have to be used.

e The amount and locations of checkpoints for recompilation: In the LLVM JIT it
is reasonable to insert check points before functions are called. Checking on a
finer granularity makes no sense since the executing machine function can not be
swapped to a new machine function.

Listing 5.11 shows the recompilation checkpoint functionality in a pseudo change defini-
tion.

change instrProvider :: Before
/ instrProvider —>type = ”call” || instrProvider—>type = ”invoke”/

if (isApplicationDirty ()) {
ExecutionEngine—>recompileAndLinkDirtyFunctions () ;

1
}

Listing 5.11: Pseudo Change Of Recompilation Checkpoint

A sample application was introduced in Section 5.3.1. Listing 5.1 shows the example ap-
plication’s source code in the C language and Figure 5.4 shows the applicaiton’s graphical
1R.

In Figure 5.5 one can see the sample application’s IR with checkpoints applied. Before
any call instruction (call/invoke), a checkpoint tests the change framework’s state for
a changed IR. If the IR was changed the new IR will be compiled to machine code before
the execution of the target function. This ensures that the function call will jump to the
new function, if that function was changed.

5.5.3 Checkpoint Testing Overhead

In the current version of the change framework, the checkpoint testing logic consists
of a global boolean variable that gets compared. A conditional branch jumps to the
recompilation logic if the test is successful. There are two cases. The first case assumes
the recompilation flag is false. Hence no transformation happens. In the second case the
test for recompilation yields true. Hence recompilation gets triggered. In both cases the
following has to performed:

The Change Framework 70

Module "mymodule"

[GlobalVariable "names"]
Function "hello_world"
entry 1)
alloca loopentry @
alloca load
store setne
load br
store
br ‘
no_exit
load
dirty_check
call .
load loopexit
inc store
store br
br
L T

return
load

ret

Figure 5.5: Sample Application LLVM IR for Hello World with Checkpoints

e Load the global test variable GVr into a register Ry - (Load)
e Compare the register Ry (Compare)
e Conditional jump to a position (Conditional Changing the PC)

The steps above have to be executed for every function called in the application under
analysis. This means the overall overhead of the change framework depends on how
effective this code gets executed.

In the recompilation case additional the subsequent code has to be performed:

e Reset the global test variable GVr.
e Call the recompilation handler.
e Recompile and relink every dirty function.

In the case that recompilation is needed the time overhead is more absorbable, since the
time is dominated by the recompilation time.

Synchronization Issues. Loading and storing the global variable additionally in-
volves synchronization issues to think about. Multiple threads of execution might con-
currently write the global flag GVr. Testing and resetting GVr has to be done using
wait-free synchronization [Her91]. The change registration always sets the value to true,
hence this is a single unconditional store instruction which is atomic. The checkpoint
code tests the value and sets it to false, if it was set. This is done using a Compare
And Swap (CAS) instruction. This ensures that both testing and setting is done by a
single instruction. The invariant is that before recompilation is executed the flag is set

The Change Framework 71

to false. This ensures that if a change is applied during recompilation the flag is set to
true again.

Coalescing Recompilations. In order to prevent recompiling the same functions
too often within a short period of time, the change framework waits a time period ¢,
before transforming the application’s IR. If in that time period, another change arrives,
targeting the same function, the two changes are coalesced. Care must be taken, if ¢, is
chosen too big, the responsibility of the change framework would suffer, hence Ap would
be too big.

5.5.4 Alternatives to IR Transformation Based Checkpoints

The IR transformation checkpoint approach transforms the initial IR at application load
time. The advantage of this approach is that one can easily transform an application to
contain checkpoints. The solution is solely based on LLVM instructions, thus no lower
level mechanisms needs to performed.

It offers only limited performance and has some other drawbacks:

e It is hard to distinguish between the user authored application logic and the check-
point logic.

e Checkpoint logic should be transparent, thus it must not be accessible from
changes.

e When the application’s IR is transformed in a way that obsoletes checkpoints, the
checkpoint should be removed.

e When IR is transformed in a way that would require new checkpoints, a checkpoint
should be added.

This subsection provides alternative ways for implementing the check pointing logic.
Currently check pointing is performed by transforming the applications IR at load-time.
One alternative is to implement a MachineFunctionPass that is invoked when lowering
the LLVM bytecode to machine code. Another way would be to extend the LLVM
bytecode or to add a so called intrinsic function.

Both options add the benefit of making check points transparent to the rest of the
bytecode transformation process. The downside of both alternatives is that they are
more low level and therefore have to be explicitly ported to other targets.

5.5.4.1 Write a LLVM MachineFunctionPass

The LLVM compiler infrastructure makes heavy use of Passes. Passes perform the
transformations and optimizations that make up the compiler, they build the analysis
results that are used by these transformations, and they are, above all, a structuring
technique for compiler code[LLV06d]. A pass manager keeps track and schedules a set of
passes that work on a specific granularity and transform the LLVM IR. Code generation
is done by creating so called Machinefunctions out of LLVM function nodes. Later an
Emitter writes the machine code into a block of memory or a file.

The Change Framework 72

A MachineFunctionPass operates on individual MachineFunctions. Every LLVM IR
function node has one corresponding MachineFunction. When the JIT is created it
initializes the code generator. Among other things this is the point where the passes are
added to a so called pass manager (FunctionPassManager).

In pseudo code a MachineFunctionPass to emit checkpoints could look like:

/* This is target machine specific psuedo code, that
outlines the tasks needed to add a checkpoint
before a function is called. x/
procedure runOnMachineFunctionX86 (machineFunction:MachineFunction)
begin
for each machineBlock € machineFunction.basicBlocks
begin
for each machinelnstr € machineBlock.instructions
begin
/* if we are in a callsite , then emit the
check pointing code in a machine specific

way. */
if machinelnstr.opcode € {CALL, TAILCALL} then
Add code for checkpoint before machinelnstr .
end
end
end
end

After the JIT registers the checkpointing function pass, the checkpointing pass is per-
formed for each call to compile a function to machine code. The advantages are:

e The checkpoints are not visible inside the applicaiton’s IR.

e Checkpoints are compiled on an as needed basis.

MachineFunctionPasses do not translate the application’s IR, but build a separate
machine level model. Hence the recompilation checkpoints are invisible at the bytecode
level. This makes the change application easier, since there are no instruction sequences
that have to be treated special.

The MachineFunctionPass provides access to all the target machine specific function-
ality, but has the drawback that a MachineFunctionPass has to be implemented per
target machine to make sense.

5.5.4.2 Implement an Intrisic Function or a Custom Bytecode

Being an infrastructure for compiler engineering, the LLVM instruction set is not un-
touchable as for instance the bytecode of high level virtual machines, like the CIL, or the
Java bytecodes. Extensions to the LLVM instruction set can be done. Adding instruc-
tions is seldom needed and introduces binary compatibility issues. Often a better way
is to introduce a so called intrinsic function. Intrinsic functions are treated as ordinary
function calls. The interesting feature of intrinsic functions are that they are known to
the compiler.

The Change Framework 73

In this subsection we will consider the case of implementing an intrinsic function. Intro-
ducing a custom bytecode has no additional benefit, interested readers are referred to
[LLVO6b] for details on adding a custom bytecode to the LLVM infrastructure. Intrinsic
functions are identified by name. An intrinsic function name has to start with a 11vm.
prefix. No other function names are allowed to have that prefix. Please see Section
Intrisic Functions in [LLVO06¢| for details.

Lowering an intrinsic means that the high level intrinsic concept is translated to lower
level instructions. In the simplest case an intrinsic function is treated as an ordinary
function.

Generic Lowering of Instrinsics. Intrinsic functions are normally handled by the
code generator. If the code generator cannot handle an intrinsic, or does not know about
the intrinsic, the pass LowerIntrinsicCall can be used to transform the intrinsic call in
a target independent way. For instance the intrinsic 11vm.memcpy can be implemented
as a call to the CRT library’s mempcy if the target machine has no hardware support for
copying multi words, or if it has not been implemented yet.

Target Specific Lowering of Intrinsics. Implementing the target specific lowering
involves translating the high level intrinsic function call to machine code. In that case
an intrinsic is not much different from a custom bytecode. The generic SelectionDA-
GLowering instruction visitor has a visitor method called visitIntrinsicCall as well
as a target specific one called visitTargetInstrinsic that defers lowering.

The intrinsic function for checkpoints could be named 1lvm.checkpoint. The imple-
mentation is twofold:

e A target independent version that is converted to LLVM instructions.
e A target dependent version that makes heavy use of target dependent features.

A big advantage of this option is that an intrinsic function call does not introduce new
basic blocks. In the case of LLVM bytecode translation, inserting a conditional jump
instruction implies changing the CFG of that function.

5.5.5 Finer Recompilation Models

In this subsection the issue of testing for recompiling on a finer level than per function
is revised. Recompiling on a level finer than function is also a big issue especially in the
field of adaptive dynamic compilers. The following C application is used as an example
in this subsection:

void f1() {
printf(”hello_from_fl\n”);
}

void f2() {
printf(”hello_from_f2\n”);
}

The Change Framework 74

/x main entry point into the application x/
void start_app() {
/% infinite loop x/
while (1)
{
();
£2.0);
}
}

int main() {
start_app ();

}

The problem is that the loop inside start_app is never exited. Thus the start_app
function is only called once, but executes throughout the whole life of the application.

Applying the following change (using the provider declaration as of Listing 5.10):

change instrProvider :: Before
/ instrProvider—>type = "call”/

io—=printf(”func: %s:_instr: %s\n”,
functionProvider —functionName ,
instrProvider —description

);

With the per function recompilation model the output should look like the following;:

[monitor—output] func: f1, isntr: call printf
[monitor—output] func: {2, isntr: call printf
[monitor—output] func: f1, isntr: call printf
[monitor—output] func: 2, isntr: call printf
[monitor—output] func: {1, isntr: call printf

The start_app function never gets recompiled, because it is not called anymore than
at the beginning. Additionally adding checkpoints when entering loops and after ba-
sicblocks, that are frequently re-executed, can lower the recompilation detection time
period At. When performing checks on a finer level than before function calls one has to
switch to the new machine code while the old machine code is executing. For example
after performing a recompilation in a loop header, the function currently executing is
still the old one. The new code never gets executed this way.

In this situation a migration of a running function to a new one is needed. The trickiest
part in migrating an executing function is to migrate the function’s activation record.
One technique that performs this is called on-stack-replacement (OSR). OSR was pio-
neered in the Self programming language implementation [Hoe94]. Dynamically replac-
ing methods in Java is discussed in Chapter 7 of [DmiO1]. Of interest are Chapter 7.3.1
"Dealing with Active Methods” as well as Chapter 7.5.3 "Multiple Policies for Dealing
with Active old Methods of Changed Classes”. Chapter 7.3.1 of [Dmi0O1] specifies one
method that is interesting for the change framework:

The Change Framework 75

”...Identify a point in the new method that corresponds to the current exe-
cution point in the old method, and switch execution straight from the old
method code to the new one. In certain cases, e.g. when a method being
evolved never terminates, and the changes are purely additive and free of
side effects (for example, trace printing statements are added), this can be
the desired and useful semantics. However, in more complex cases it may be
very hard for the developer to understand all of the implications of a tran-
sition from one code version to another at some arbitrary point. One other
application of the mechanism developed for this policy may be for dynamic
fine-grain profiling ...”

As can be seen above dynamically replacing running functions or methods is an ambiva-
lent topic. On the one hand does it provide very responsive instrumentation results, on
the other hand does it lead to undesired side effects, especially if the change is more
complex. A mixture of bytecode instrumentation and so called code patching would
serve as a good approach for performing whole function replacement. Please refer to
[Dyn06] for a code patching framework.

5.6 Change Protocol

5.6.1 Overview

send(begin-send

send(end-send)

Figure 5.6: Fundamental Channel State

As shown in Figure 2.1 the change framework runs across two distinct processes. One
is the application’s process the other the monitor process. Between these two processes
there is communication channel. Every tuple of (monitor, application) share one channel.
While an application process might have many monitors and a monitor process might
control many different applications, every two processes only use one channel.

Some general objectives of the communication system are:

e Only one bidirectional channel should be needed between one monitor and one
application process.

The Change Framework 76

e The system should work over the Transmission Control Protocol (TCP).
e 10 overhead should have almost no effect on the monitored application’s perfor-
mance.

Figure 5.6 shows the channel states. Every communication channel has two end points.

Every end point is in one of the states, shown in the figure. If one end is in the sending
state the other endpoint is in the receiving state and vice versa.

5.6.2 Communication Framework

Logical Communication Channels Phsyical Communication
Process A Process B Channels
A A B B Proc Proc
Thread1 || Thread2 Threadi Thread2 A B
| | : | | |
i [} I]]]
INVOKE 1 !		MSG "INVOKE"	
]	I		
]]]]			
! INVOKE 2] ! MSG "INVOKE" !			
: :			
]]			
RETURN 1 ! _MSG "RETURN"!			
. : '			
RETURN 2	MSG "RETURN"		
[]			
]			

Figure 5.7: ChangelO Communication Framework

The change protocol channel maps many logical channels to one physical channel. This
is done by turning blocking bidirectional sends into non blocking one-way sends. Figure
5.7 shows two types of communication channels. The left rectangle shows the logical
communication. The right rectangle shows the physical communication channel. In the
logical representation every two threads have their own blocking channel. In the logical
channel two processes share one channel. Every physical communication is done via a
one-way message.

5.6.2.1 Channel Message Handling

The messages are processed in so called nonblocking mode. The channel API provides a
blocking abstraction that waits when INVOKE messages are sent until a matching RETURN

The Change Framework 7

message is received. This is just for convenience as all messages are internally processed
in nonblocking mode.

The Channel class partially outlined in pseudo code below provides the API for sending
and receiving messages over the communication channel. The communication channel
can be any bidirectional reliable connection. This means the connection must support
read as well as write in both directions. In the current implementation the communica-
tion channel is carried out over a TCP or UNIX domain socket connection.

class Channel

The receivedReturns is a queue, for storing received return messages. It has a specified
capacity. If the queue is full the oldest entries are dropped. The waitList keeps track
of threads waiting for receiving return messages. The ChannelHandle abstracts the
concrete implementation of the IO operations.

var receivedReturns : LookupQueue[integer , ReturnMsg]
var waitList : HashMap[integer , Thread]
var handle : ChannelHandle

The sendOnewayInvoke method of the channel represents sending of simple oneway
messages.

method sendOnewaylInvoke(msg: InvokeMsg)
begin

sendMsg (msg)
end

On the other hand the sendInvoke method of the channel mimics a blocking invocation.
The message is sent and the calling thread is put to sleep until a matching return message
is received:

synchronized method sendInvoke(msg: InvokeMsg)
begin

sendMsg (msg) ;

return waitForReturn (msg.id);
end

The waitForReturn method blocks the calling thread until a return message with the
requested id is received. For this the Channel needs to keep track of listening threads to
notify, if a ReturnMsg is received. Additionally, the ReturnMsg are kept in a queue. The
queue has a specific max capacity. If the capacity is full, the oldest entry is dropped.

synchronized method waitForReturn(id : integer, timeout : long)
ReturnMsg
var returnMsg : ReturnMsg;
begin
if receivedReturns.find(id) != nil then
return receivedReturns.remove(id)
end

waitList.at(id) := Thread.currentThread ()

The Change Framework 78

while true
do

try

Thread . currentThread () . wait (timeout)

except InterrupedException => break

except Timeoutexception => raise Error(”Did not receive an
answer within the timeout period.”)

except Throwable => continue

end
end

waitList .remove(id)

returnMsg := receivedReturns.at(id)
raise Error if returnMsg = nil
return returnMsg

end

When a RETURN message is received by the system, the channel’s onReceiveReturn
method is invoked. This method first adds the ReturnMsg to the list of returns. Then
it looks whether there is a thread already waiting for this return. If yes, the thread that
is blocking is waked up.

synchronized method onReceiveReturn(msg : ReturnMsg)
begin
receivedReturns . add (msg)
if waitList.contains(msg.id) then
waitList.at(msg.id).interrupt ()
end
end

end Channel;

5.6.3 General Message Wire Format

Listing 5.12 shows the fundamental message type. The data types ul, u2, and ué rep-
resent an unsigned one-, two-, or four-byte quantity, respectively. Every message starts
with a tag byte. The tag byte indicates the type of the message. The tag is used to
interpret the rest of the message.

Message tag Value Description

INVOKE 1 This message indicates an invocation. When the client
has finished processing this message, it will send a RE-
TURN message.

INVOKE_ONEWAY 2 The message is a oneway message. The receiver does
not need to send anything back when finished with
processing.

RETURN 3 The message indicates the sender of an INVOKE mes-

sage that the callee has finished processing the mes-
sage. The RETURN message’s id has to match the id
of the INVOKE message.

The Change Framework 79

MSG {
ul tag;
ud id;
ud type;
ul data[];

}

enum MSG_Tag {
INVOKE = 1,
INVOKE_ONEWAY = 2,
RETURN = 3

}

Listing 5.12: Message Payload

5.6.3.1 Invoke Messages

INVOKE messages are sent from the caller to the callee to pass data from the one side of
the channel to the other. INVOKE messages are identified by the INVOKE tag as shown in
Listing 5.12. The type field of the message defines the type of INVOKE message that the
special message represents. The type field is used to interpret the message. Hence the
message is not self hosted. The other side needs to know what serialization format the
specific type conforms to.

5.6.3.2 Return Messages

RETURN messages always have a matching INVOKE message. A RETURN message is sent
by the callee after processing of the invoke message completes. The return message
payload contains the type of the RETURN message. One is indicating success, the other
is indicating failure.

Status Class Representation
SUCCESS is_success(code) := code >= 0
ERROR is_error(code) := code < 0

The status code is a signed 32 bit integer, using the twos complement representation.
A value of zero or greater denotes success. Negative values denote the processing of the
INVOKE yielded an error.

The following shows the layout of the RETURN message. The payload is passed as an
opaque array of bytes. The payload might be return values such as primitive types or
record values.

RETURN_MSG {

ul tag;

ud id;

ud type;
u4d status;
ul data[]:

The Change Framework 80

5.6.3.3 Oneway Invoke Messages

A special type of message is the INVOKE_ONEWAY message. The wire representation
of INVOKE_ONEWAY is identical to the INVOKE. These messages are especial useful for
providing a fast means to deliver data from one process to the other, without having to
wait for a return message. As we will see later the I0_OUTPUT message makes use of this
technique to provide fast processing of 10 data.

5.6.4 Well Known Change Specific Messages

The last section introduced the general communication framework, which consists of:

e The Channel abstraction
e The principal asynchronous message types: INVOKE, INVOKE_ONEWAY, and RETURN
e An abstraction for blocking INVOKE calls, that wait for RETURN.

This subsection shows the change specific message types, which are based on the com-
munication framework. As can be seen in Listing 5.12 the MSG representation contains
a 32 bit type information field. This type information is mapped to message types. The
following predefined messages are currently supported:

REGISTER_CHANGE
UNREGISTER_CHANGE
I0_OUTPUT

CLOSE

5.6.4.1 REGISTER_CHANGE Message

Description This message is sent from the change monitor to the application’s process
in order to register a change with that application. It is composed of a INVOKE and a
RETURN message:

e The INVOKE REGISTER_CHANGE message, sent from the monitor to the application.
e The RETURN REGISTER_CHANGE message, sent from the application to the monitor.

The message contains the compiled change script and change meta data. The return
message contains the unique change identifier and a cookie for reference to the registered
change. The following shows the wire representation of the REGISTER_CHANGE invoke as
well as the return message.

REGISTER_.CHANGE_INVOKE_MSG

{
ul tag; // INVOKE
ud id;
ud type; // REGISTER_CHANGE
u4 change_info_count;
ul change_info[change_info_count]; // Meta data of the change

u4 change_module_count;

The Change Framework

81

ul change_module[change_module_count];
change

}
REGISTER_CHANGE_RETURN_MSG
{

ul tag;

ud id;

ud type;

u4 status;

ud change_cookie;

ul change_id[16];
}

5.6.4.2 UNREGISTER_CHANGE Message

// LLVM bytecodes of the

// RETURN
// REGISTER_CHANGE

// Registration cookie
// Change ID

Description This messages is sent from the change monitor to the application’s process in
order to unregister a change with that application. It is composed of 2 message sends:

e INVOKE UNREGISTER_CHANGE message, sent from the monitor to the application.
e RETURN UNREGISTER_CHANGE message, sent from the application to the monitor.

The following shows the wire representation of the UNREGISTER_CHANGE invoke as well
as the return message.

UNREGISTER_CHANGE_INVOKE_MSG

{

ul tag;

ud id;

ud type;

u4d change_cookie;

change

ul change_id[16];
}
UNREGISTER_.CHANGE_RETURN_MSG
{

ul tag;

ud id;

ud type;

ud status;
}

5.6.4.3 I0_OUTPUT Message

// INVOKE

// UNREGISTER_CHANGE
// Cookie referring to the

// Change id (UUID)

// RETURN

// UNREGISTER_CHANGE
// Error code

Description This messages is sent from the application’s process to the change monitor
if output is to be redirected to the monitor. It is a oneway message. I0_OUTPUT invoke
messages do not have to be followed by return messages.

The Change Framework 82

The change script below results in I0_0UTPUT for every function entered:

change functionProvider :: OnEnter

/o
{

}

io—=>printf(”Entering, %s\n”, functionProvider—>FunctionName);

The following shows the wire representation of the I0_0UTPUT oneway invoke message.

IO_OUTPUT_INVOKE_ONEWAY_MSG

{

ul tag; // INVOKE ONEWAY

ud id;

ud type; // 10_-OUTPUT

u4d data_count;

ul data[data_count]; // 10_.OUTPUT Payload
}

5.6.4.4 CLOSE Message

Description The close message closes the current session between the application and the
monitor process. It can be either sent by the application or by the monitor. The CLOSE
message, if sent from the monitor to the application can contain optional information
for unapplying all the changes that client has registered with the server. This can be
handy if the monitor wants to make sure that all the changes that were registered, are
undone.

If a change remains in the application after the session is closed, further calls performed
on the io value will result in no-ops since the communication channel will be closed.
Normally the CLOSE invoke message has an accompanying return message, but it can
also be sent as a oneway message if the sender does not need the outcome of the call. In
order to make sure that the close message was received by the other end of the channel,
it is encouraged to process the return message.

CLOSE_INVOKE_MSG

{
ul tag; // INVOKE
ud id;
ud type; // CLOSE
ud cookie_count; // Number of changes to be
unapplied
ud cookies[cookie_count]; // Changes to be unapplied
}
CLOSE_RETURN_MSG
{
ul tag; // RETURN
ud id;
ud type; // CLOSE

ud status;

The Change Framework 83

ud unapplication_count; // Number of change
unapplication

This section introduced the change protocol. The change protocol defines both the logical
and physical channel abstraction. In addition the low level messages have been defined.
The last part showed well known message types related to the change framework.

5.7 Summary

This chapter introduced the change framework. First an overview was presented. Then
the overall architecture, including the change concept, and the application and unappli-
cation of changes was outlined. The framework consists of two processes. The application
under analysis as well as a monitor process. The infrastructure of the change framework
is the LLVM compiler infrastructure.

After the framework architecture the concept of change providers were introduced.
Change providers provide static context information and the ability to conditionally
transform the intermediate language at specific change points. This can be used by
change scripts. Change scripts are written in the change language and get compiled to
LLVM bytecodes by the monitor process.

In the forth section the change language was defined. The change language is a C like
language with domain specific support for expressing changes. After introducing the
change language, change detection and recompilation was introduced. After a change is
applied or unapplied the intermediate representation has to be recompiled and relinked
in order for the application to reflect the changes.

In the last section the change protocol was introduced. The change protocol abstracts the
I/0O between a monitor process and an application process running the change framework.
First an overview over the communication framework was provided. After that the
general message wire format was given. Eventually well known change specific messages
were presented.

To summarize the change framework is a flexible system for dynamically transforming
applications. Important properties of the change framework are:

Dynamic application/unapplication of changes.

Reversibility of changes.

Extensibility through change providers.

Interactivity through iterative application/unapplication of changes.
Portability through transformation on the intermediate level.
Network transparency through a communication framework.

Evaluation 84

Chapter 6
Evaluation

6.1 Overview

In this chapter, the change framework will be evaluated. The first part will be a general
analysis of the instrumentation done. The outcome of this evaluation will the theoretic
expectations of the change framework.

In the second part the existing prototype of the change framework will be evaluated.
First the LLVM framework’s execution engine will be discussed and evaluated. Further
the protoype implemenation will be discussed, based on the figures and numbers obtained
by the LLVM evaluation.

6.2 Analysis of the Change Framework

In the machine code execution model, the program representation can be directly exe-
cuted by the available processor. On GNU/Linux running on an Intel IA32 architecture,
an executable application helloworld compiled to 386 and represented in the exe-
cutable and link format (ELF) can be directly executed. The GNU compiler collection
(GCC) maintains a unique target string that identifies the processor and the operating
System.

The change framework is a system for dynamic program instrumentation and anlysis.
Such a framework allows one to reason about and change a program at run-time. While
there exist frameworks that instrument machine code executables [Dyn06], [CSL04], the
basis of the change framework is the higher level LLVM representation.

M L CGEG" »| Native Code
Representation ‘ode

[
Chanies R

Change |— | Change
Script Framework

Figure 6.1: Change Framework Overview

Evaluation 85

As can be seen in Figure 6.1 one key aspect of the change framework is that the LLVM
representation remains in memory during run-time and that change application first
transform the LLVM representation, which then forces the execution engine to recompile
and relink machine code. This is required in order to remain machine independent and
to view the program as a set of LLVM artefacts. While there exist instrumentation and
code patching frameworks that work on the machine code level (such as [Dyn06]) these
require additional information such as debug information. Otherwise these frameworks
would not be able to reproduce information about the source level program, such as type
information, variable declarations, and much more. The benefit of richer application
semantics encoded in the LLVM representation comes at the cost of execution time and
space requirements.

6.2.1 Analysis of LLVM

LLVM as opposed to higher level virtual machines does not require additional run-time
information on the application data structures itself. The memory requirements of the
program itself does not increase. The difference between the machine code compiled
application and an application dynamically executed using the LLVM execution engine
is that the LLVM bytecodes are not directly executable by the processor. Hence the
LLVM application needs both representations in memory, the LLVM bytecodes as well
as parts of the machine code representation. The processor executes the machine code.

The memory requirements of a dynamically executed LLVM application amounts in the
data memory requirements of a statically compiled application plus the memory require-
ments of the code and data of the just-in-time compiler. The data requirements of the
compiler are especially the code buffers from which the application gets executed from.
The reason why the memory overhead of the application’s data is the same regardless
of the compilation model, is that the data structures are layout equivalent in both the
static compiled GCC and the LLVM compiled version. More formally let M be the
memory requirement of an application. M of the machine code application is defined by
the requirements of the C'ode and the requirements of the Data of that program:

M(@machinecode) = COde(ngmachinecode)) Data(@machinecode)

Any program &£ in machine code form consists of its machine code, and its data.
A program in LLVM representation, if dynamically executed, needs another program
P yrr, which dynamically translates the LLVM representation to machinecode repre-
sentation. The application code’s data requirements are equal between an application in
machinecode and LLVM representation.

The following states that the LLVM version of a program has exactly the same data
structures as the machine code application code:

Data(P machinecode) = Data(Pyym) = Data()

Evaluation 86

Hence the following formula gives the additional overhead of a program in LLVM repre-
sentation, which is executed by & rr:

M(:@J]T) = COde(,@J[T) U Data(QJ[T)
M(Zgwm) = M(Z 1) U Data(Pypm)
M(f@llvm) = COd€(e@J[T) U Dat@(e@J[T> U Data(,@)

An application & in LLVM representation (Zj,m,) to be executed by Z;rr has the
memory requirements of &2 plus the data of &2. The performance of an application
is defined by many properties. Code quality and solid software engineering on the one
hand, as well as a good optimizing compiler can both improve the run time of the
application. An application & in LLVM representation that is binary translated by
P 1 to a machinecode representation on a just in time basis, basically consists of two
applications, namely & and &.

Just-in-time (JIT) translation means that a function if executed for the first time gets
translated to machinecode and then the machine code gets executed. If the function gets
called later the already compiled machine code gets executed. If a function is only called
once, the overhead imposed by &1 is relative high, whereas if a function is called very
often, the overhead might be negligible.

The execution time T' of a dynamic compiled application in LLV M representation can
be decomposed into:

T(f@llvm) = TEwectian + TTranslation

Tgrection 18 the time the applicaiton spends executing the application code, while
Trransiation 1S the time the virtual machines spends compiling the bytecodes to machine
code. Trransiation Only occurs for every function executed for the first time. The eval-
uation section observes T, qnsiation fOr two bytecode representations. One is a version
with heavy function inlining enabled. The other does not do inlining at all.

6.3 Evaluation of the Existing Prototype

Part of this thesis was the implementation of a prototype of the change framework.
The prototype originally was based on LLVM version 1.5, released in May 2005. The
LLVM framework, at the time of this writing, is in version 1.9. Because there where
many stability improvements between these two versions, version 1.9 will be used for
evaluation purposes.

This section is organized as follows. First the infrastructure is evaluated and the differ-
ences between a set of C programs, when executed as either a machine code executable
compiled by GCC, as a machine code executable compiled by the LLVM ahead of time
compiler, as a heavily inlined bytecode module executed by the JIT base, or as a non
inlined bytecode module executed by the JIT, are shown.

Evaluation 87

6.3.1 Evaluation of the LLVM Infrastructure

Evaluation of the LLVM infrastructure was done by extending the existing LLVM testing
infrastructure. The evaluation suite consists of a set of applications written in the C
programming language and compassing a single source file.

6.3.1.1 Common LLVM Suffixes

The LLVM infrastructure embeds itself seamlessly into the machine code toolchains.
It is often hard to differentiate various intermediate files, like machine code assembly,
machine code object files, LLVM assembly, or LLVM bytecode files. Here is a list of
suffix as well as their meaning in our evaluation.

e .s - Machine Code assembly. If the target is i386, this is [A32 assembler in AT&T
assembly syntax.

e .o - Machine Code object files. This files are individual translation units in machine
code. One or more .o files are linked together to one library or executable.

e .11 - LLVM assembler. This is the textual representation of LLVM.

e .bc - LLVM bytecode module. This is a program in binary LLVM representation.
This files can be dynamically executed using the interpreter or JIT. .bc files can
both represent a single translation unit, as well as a whole linked program.

6.3.1.2 The Test Suites

FEach C program belongs to one of the following test suites:

Coyote Benchmark

Dhrystone
McGill
ShootOut

The Coyote Benchmarks perform numeric calculations, data compression, and more.
According to the description of [Coy04] the benchmark is still in development. The
following tests were used:

e alma - Calculates the daily planetary ephemeris (at noon) for the years 2000-2099;
tests: array handling, floating-point math, and mathematical functions such as
sin() and cosQ).

e huff - Compresses a large block of data using the Huffmann algorithm; tests: string
manipulation, bit twiddling, and the use of large memory blocks.

e [p - A number-crunching benchmark that can be used as a fitness test for evolving
optimal compiler options via genetic algorithm.

The next test suite is the Dhrystone test suite. The following programs are part of the
Dhrystone suite:

Evaluation 88

dry - Contains statements of a high-level programming language (C) in a distri-
bution considered representative: assignments - 53 %, control statements - 32 %,
procedure, function calls - 15 %.

e fldry - Similar to the dry test, but uses floating points instead of integer data types.

The so called McGill test suite consists of the following test apps:

chomp - Solves a simple board game.

exptree - Given a set S of k nonzero numbers, labeled ni...n; and a total ¢t € N.
Find an expression tree, whose leaves are taken from S, and whose interior nodes
are each labeled € {+, —, x, /}, and that evaluates to t. There is the additional
restriction that any subtree must evaluate to a natural number greater than 0. The
program uses a brute force search, more precisely an iterative deepening depth-first
search.

misr - This program creates two multi input shift registers (MISR’s) one which
contains the true outputs and the other in which the outputs are not corrupted
with the probability given in the input.

queens - This program finds all the possible ways that N queens can be placed
on an N X N chess board so that the queens cannot capture one another, so that
no rank, file or diagonal is occupied by more than one queen. This is an example
of the utility of recursion. The algorithm uses recursion to drastically limit the
number of board positions that are tested.

The ShootOut test suite is called the Programming Language Shootout, it encompasses
the following test cases:

ackermann - Calculates the Ackermann series.

ary3 - Array test.

fib2 - Calcuates the Fibonacci series.

hash - Creates string hashes.

heapsort - Sorts a random array using heap sort.

hello - Simply prints *hello world’.

lists - Performs mutations on a double linked list.

matriz - Performs matrix arithmetic.

methcall - C program that emulates object oriented features.
nestedloop - Iterates over 6 levels of for loops.

objinst - C program that emulates object oriented features.
random - Generates many random numbers.

sieve - The Sieve of Eratosthenes for finding prime numbers.
strcat - String concatenation.

6.3.1.3 The Run-Time Environments

Every test application ${APP} was automatically compiled into the following targets:

${APP}.machine - Machine Code executable compiled with the GCC compiler
using -02 flags.

${APP}.11lvm.machine - Machine Code executable compiled with the 11vm-1d out
of bytecode.

Evaluation 89

e ${APP}.11vm.bc - LLVM bytecode module file, compiled using 11vm-gcc and gc-
cas utility.

e ${APP}.noinline.bc - LLVM bytecode module file, linked with the -disable-
inlining flag. The LLVM just-in-time compiler performs no further inlining.

The machine code applications are executed directly. The bytecode files are executed
using the LLVM just-in-time execution engine (111).

6.3.1.4 Testing Infrastructure

The test machine is an Apple MacBook Pro:

Computer MacBook Pro 15”
Computer Model MacBookPro (1.1)
Processor Intel Core Duo
Processor Speed 1.83 GHz

Number of CPUs 1

Number of Cores 2

L2-Cache (per CPU) | 2 MB

Main Memory 1 GB

Bus Speed 667 MHz

The operating system and system software information is:
Operating System | Mac OS X 10.4.8 (8L2127)
Kernel Version Darwin 8.8.1
GCC Version GCC version 4.0.1 (Apple Computer, Inc. build 5250)
LLVM Version LLVM v 1.9

6.3.1.5 Comparing Overall Run Time

The total run time of the programs is measured using the time(2) UNIX program.
Figure 6.2 shows the overall run time of the individual benchmarks, compared among
the four targets:

Figure 6.2 shows that the statically compiled LLVM version is often the fastest. The
exptree test compiled with 11c was about 15 times faster than the version compiled using
GCC with medium optimization turned on. Especially for short running applications,
the just-in-time overhead shows. The shorter the run time of the program is, the greater
is the relative impact of the translation time (Trransiation)-

The ackermann test only goes two recursions deep. In this test Triection is very small.
Here one can see that the impact of Tp,qnsiation 18 Visible. It can be seen the relationship
between the 1lc and the 11i compilers. For instance in the dry test, every LLVM
compiler outperformed the GCC compiler around 5 times. Here the non-inline version
has the worst speedup. In the sieve and the hufbench application the GCC is faster than
the LLVM compilers. Overall it can said that, if the LLVM compiled version is faster,
it is significantly faster than the GCC compiled application. The negative impact of
Trransiation does not show in most but very short tests.

FEvaluation 90

Total Execution Speedup, Baseline=GCC(02)

10000 - T T T T T T T T T T T T T T T
F GCC(02) mmmm
[LLVM_native
L LLVM_JIT s
t LLVM_JIT(noinine)
1000 |- 4
g 5]
o L
=]
3 L
@
Q
Q.
7]
100 b
10
o, S %% G Lo B Bs O B e s S M [V)
Y, B 8, /)’QX;A b Y% /b@; S Ry, Ry, o Qa@ /))’\S‘, “, Dy o Sy %, Yo, %
2 © g4 % % Wy 4 S e 0, W R, O % %,
e © %, e 5. S % s % s,
% % % (3

Figure 6.2: Execution Speedup Compared to the GCC(02) Version (Higher bars are better)

6.3.1.6 Translation Time vs Overall Execution Time

JIT Pass / Total Exec Time: JIT w/ Inlining (Baseline) to JIT w/o Inlining (Speedup)

250 T T T T T T T T, T T T T T T T T T T T T
Baseline w/ Inlining
Total Exec Speedup (%) w/o Inlining
JIT Exec Speedup (%) w/o Inlining
200 -
150 -

% Speedup

100

50

U U S D Bl D K Ba By % B R D By . B, S % Y,
Y T O W, R T, T % g R0y e Do T e, Vi U ey, S, e, K3
G 4+ PN S, ZNON (A 9, o o e e 2N
4 d %, 0 0, ",
% 2 %

Figure 6.3: Comparing of JITting With and Without Inlining (Higher bars are better)

The JIT was run with the -time-passes option. So it was possible to relate the time
spent in the JIT passes against the time the JI'T was executing the application code. In
Figure 6.3 one can see the toal and JIT exec time when executing ${APP}.11lvm.bc versus
the time when running ${APP}.noinline.bc. As already introduced, the difference
between these two versions is that in the first version, the bytecode compiler and linker

Evaluation 91

Total Exec Time (Baseline) Compared to JIT Exec Time (%).
70

T T T T T T T T T
JIT Exec Time (%) of Total Exec Time

% Of Total Exec Time

% % % % B % %, TG Gay o by e U Y B S %, % % % % % %
%, T Oy, Ry, @ %, U O Y A) CPRON 6@,) e, B Gy S, W 2 %
S 4 » %,) s % oy A e é&
4 * %, % % %

Figure 6.4: JIT Execution Time in % of Total Exec Time

heavily inlines functions, such that, for a single soucre application, the application often
consists of a large inlined function, while in the other version the functions are not inlined
at all. This resulted in two different bytecode files in use for testing. The inlined vs the
non-inlined.

The red bar gives the baseline (100%) of execution time. The baseline is the execution
time of the inlined version. Therefore the inlined version of the test application is only
represented by a single red bar, since both the total exec time (TEyecution) as well as
the JIT compile time (Trrqnsiation) have both 100%. The green bar shows the speedup
in total execution time (TEgzecution) using the non-inlined LLVM version. The blue bar
shows the speedup in JIT time (Trransiation), When using the non-inlined instead of the
inlined version.

The general trend is that the two versions are almost as fast as the other. There was not
much difference between using or omitting inlining. Exceptions are made by the fib2 as
well as the ackermann Trransiation times. Here the non-inlined version of the bytecode
compiles over two times faster than the inlined version.

As Figure 6.4 shows however, Trrqnsiation 18 much, much smaller than the Tggecution Of the
application. This has to be kept in mind when looking at 6.3. Speedups in Tr,qnsiation
have very little influence on typical Trgection times. All the higher bars in 6.4 reflect
short Trzection time. This is also true for the expriree example, where T ansiation Was
70% of Tezecution- The overall execution time in this case was only 0.110s, while the
TTrcmslation was 0.0775s.

Evaluation 92

6.3.1.7 Results of Run-Time Measurements

In summary one can say, for the tested programs, with some exceptions, LLVM com-
piled code outperformed tests compiled with GCC. For most dynamically compiled tests
Trransiation 18 only a very small part of the overall Trgecution. If the translation time
plays a bigger role in the overall execution time, it is often related to a very short exe-
cution time. For the tests T unsiation Never exceeded 100ms regardless if the bytecodes
were inlined or not.

One interpretation is that the LLVM bytecodes opposed to high level VMs, like CLR
or Java bytecodes are already very low level and targeted towards the machine code
execution engine. So translating is a more light weight process and the code generation
can be done efficiently.

6.3.1.8 Average Resident Set Size Memory

Another important issue in comparing the LLVM JIT vs machine code execution is
the memory footprint of the applications. For measuring the memory footprint of an
application the so called resident set size (RSS) was used.

RSS is resident memory size of the process. This is the amount of memory the operating
system is not allowed to swap out. The resident memory size of a process is the code
and data used most frequently. These are memory resident. Unfortunately there was
no simple tool, like the time (2) utility available for measuring the memory in a batch
fashion under the testing platform. In order to measure the average resident memory
consumed by a process the author created a tool called memmeter. memmeter is used as
shown below:

$ sudo memmeter /opt/llvimn—1.9/bin/11i myapp.bc
average rss size kb: 3132

In the listing above, memmeter will execute the 11i application with the argument
myapp.bc. It does this by creating a child process which executes the passed application.
The parent application waits for the child application to finish its work and periodically
(every 100 ms) wakes up to calculate the resident set size of the child application.

The obtained average size is printed to stderr when the child application has finished
executing. Figure 6.5 shows the percent in resident set size of the test applications
during execution. The baseline resident size form the applications when compiled with
the GCC suite. One can see that there is no difference between the memory usage
of applications compiled using the GCC compiler (red bar) and the LLVM ahead of
time compiler (green bar). The graph shows varying results for consumptions of the
just-in-time-compiled applications (blue and violet bars).

In fact the just-in-time-compiled applications always consumes relatively more memory if
the application itself does not consume much resident memory. This trend is comparable
to the overall execution time versus the translation time. This stems from the fact that
the just-in-time compiler has a certain fix cost. If the application itself consumes more

Evaluation 93

Memory Analysis

1100 T T T T T T T

T T T T T T T
GCC(02) Baseline Memory s

1000 - LLVM Static Compiler (lic) mmmmm N
LLVM JIT w/ Inlining (I1i)
900 |- LLVM JIT w/o Inlining (li) i

800 -

700 -

600 - -

500 -

% Memory Increase

400

300

200 (-

100 -

%

Sy
7S
//O

%, %%, B, % b, % %
£y (a Ry (SN)
” ¥ /éO' @0 //(b 2 2

.
S, %,
) 6,
S])
(o) 9 %,
%, % % (A

Figure 6.5: Resident Set Size of the Applications (Smaller bars are better)

time and memory the fix costs of the just-in-time environment are negligible. On the
other hand if the application is very small both in terms of time and space the relative
costs of the just-in-time environment are high.

The tests have also shown clearly that at minimum a machine code executable application
needs around 600K B, whereas the JIT processes at least needs around 3, 300K B of real
memory.

6.3.1.9 Conclusion of LLVM Run Time Infrastructure

In the tested application suites, the LLVM JIT has shown comparable performance to
that of the ahead of time compiled executables. It could be also shown that the JIT
has some fix costs both in time and space. The maximum translation time overhead in
the tests were around 100ms. On the other hand the memory overhead of the JIT were
around 2, 500K B.

6.3.2 Evaluation of the Change Framework

The change framework builds upon the LLVM JIT to be able to consume changes, dy-
namically transform the LLVM representation, recompile the machine code, and relink
the application so that the changed code gets executed. Additionally the changes have
to be logged, so that, when a change is not needed any more, the old representation can
be restored. The evaluation of the change framework builds on top of the performance
information collected by the evaluation of the LLVM infrastructure. The current imple-
mentation status of the change framework is a proof of concept prototype. Evaluation
will take the maturity of the implementation into account.

Evaluation 94

The evaluation of the change framework will be split into two parts: The parts of the
change framework that provide the core functionality and therefore is present as soon as
a program is run within the change framework are evaluated first. The other evaluation
consists of that parts that are added when changes are applied and unapplied.

6.3.2.1 Core Run-Time Overhead

At the basis the change framework adds the following overhead:

Instrument the code at load-time to add recompilation checkpoints.
Change detection routines at so called recompilation checkpoints (See Section 5.5).
Provider library.

Core data structures for keeping track of changes.

Additionally, depending on its use, the change framework imposes restriction on the
LLVM representation: For instance aggressive inlining is problematic if one wants to
have a high level program representation. Insertion of recompilation checkpoints in the
code is done by load time bytecode transformation. When the bytecode representation
gets loaded a bytecode transformer will instrument function call instructions, which, in
LLVM are the: call, and invoke instructions.

Currently a recompilation checkpoint is implemented as shown in Listing 6.1.

extern bool need_to_recompile;

void functionl ()

{
}

void function2 ()

{

if (need_to_recompile!=0)

{

need_to_recompile = 0;
recompile_handler_func ();

}

functionl ();

Listing 6.1: Simple Example of Recompilation Checkpoints

Listing 6.1 shows that before a function is called, the following has to be performed:

e Load a global variable into a register.
e Compare the register to 0.
e Perform a conditional jump.

On the test machine, the check for recompilation would take something around 5 nanosec-
onds. For reference Figure 6.6 shows the time scale on a 1 GHz processor. As the re-

Evaluation 95

compilation checkpoint is instrumented into the application at every call-site, care must
be taken, since even if the overhead is minimal it is nevertheless frequently executed.

Time Scale (1 GHz Machine)

Mlcroscoplc Macroscoplc
Integer Add DISk Access
FP Multiply Keystroke / Screen Refresh
FP Divide Interrupt / Keystroke
4 Handler o
1 ns 1 us 1ms 1 3
1.E-09 1.E-06__ 1.E-03 1.E+00
Time (seconds)

Figure 6.6: Time Scales, Lecture Notest for CSC 469H1F, [Bro06]

The execution time overhead, if no changes are applied, currently is negligible for most
applications. The memory requirements applications that get just-in-time compiled are
higher than the memory requirements for machine code executables. The change frame-
work in addition has to store the following run-time data: For instance providers have
to be registered, a change log has to be kept over registered changes, connected monitor
processes, and IO connections have to be maintained. At the current state of implemen-
tation these lists are often hash tables, for providing fast access to the data, by some
keys.

Change undo information has to be kept in memory as long as the changes are applied.
After unapplication of a change all the run-time overhead should be recycled, such that
other applications are able to register. In case no changes are applied/unapplied, the
main run-time overhead is only minimal in addition to the memory requirements of the

JIT.

6.3.2.2 Change Overhead

As documented in Subsection 5.2.2, when a change gets registered, the change provider
transforms the regions of the LLVM representation, where change points are identified.
This yields a recompilation of the LLVM representation and execution of the newly
compiled functions.

This means no generic handlers have to be called, and the changed is added as if the
application logic would be modified manually and recompiled. The performance impact
of such a generic system is hard to measure. If the added change is implemented poorly,
the application performance will go down dramatically. The change framework can be
extended on two axes: For performance sensitive operations, providers and so called
implicit values can be plugged into the virtual machine. For writing changes at certain
change points, change scripts can be written.

As an example of the performance impact we consider a monitoring application. The
output of measurements for instance has to be transported back to the monitor process.
If a change is performed by a specific monitor application, the output has to be seen on
that monitor’s output, and not on the applications console.

Evaluation 96

change functionProvider :: OnEnter

/]

{
io—>printf("=—>_Entering _function %s’\n”, functionProvider—>
functionName);

b))

Listing 6.2: Change to Print Out the Function Name.

Listing 6.2 shows a sample change script. The scripts prints every function that gets
called onto a monitor process’ output device. The io->printf is different than a local
printf. In the above case a message gets transmitted to the monitoring application over
the change framework’s communication framework. For more details refer to Subsection
9.6.2.

In essence the simple call to io->printf(...) imposes a lot of run-time overhead. Care
must be taken to implement this in an efficient manner. In a production system all
oneway messages, such as printf, could be implemented as non-blocking calls. Despite
the fact that implementations like that of implicit (or predefined) values are in principal
beyond the scope of the change framework core, they get called at run-time and therefore
have a noticeable impact on the overall performance. Well known values, such as for
instance the io and thread values, should be implemented as low level and efficient as
possible. [CSL04| implements a very efficient ring buffer in order to minimize run-time
overhead.

6.4 Summary

This chapter evaluated the LLVM infrastructure as well as the change framework and
the current prototype implementation. The performance data shows, that the LLVM
JIT is in most cases as fast as an ordinary machine code executable, compiled with GCC
using medium compiler optimizations (-02), which means the GCC performs nearly all
supported optimizations that do not involve a space-speed tradeoff, and does not do loop
unrolling or function inlining.

Also since the LLVM intermediate representation is already low level, JITing is negligible
for the execution time on the test cases performed. One drawback of dynamic compiled
system level code is the amount of memory needed by the user space process. The fix
cost overhead of the JITing the LLVM code is about 2.5M B. The more memory the
application itself requires, the less important are the dynamic execution engines’ memory
requirements.

The primary goal of the implemented prototype was to produce a working prototype with
a focus on producing high performance code. For most typical applications the primary
overhead of the current prototype is not in the execution time, but in the memory
consumption. Detecting whether a function needs recompilation takes about five to ten
nanoseconds on our test machine. On the other hand there are a lot information to
keep track of, which results in increasing memory consumption. Typical applications,
including server systems and interactive applications could be run under the change
framework on a modern system without noticeable performance impediments.

Related Work 97

Chapter 7

Related Work

7.1 Overview

In this chapter some influencing and related work are introduced. There are two kinds
of instrumentation systems in use. On the one hand there are binary code patching
systems and on the other hand there are virtual machine based bytecode transformation
systems. One can distinguish application level and operating system level transformation
systems.

Binary code patching systems work by using debug symbols of a program to disassemble
code into a higher representation. This information can be used to guide the system at
which points the code should be patched. We will show this system based on the Dyninst
API [Dyn06]. The Dyninst API is an application level transformation system. Solaris
DTrace [CSL04] is an operating system level dynamic instrumentation framework. It
also has the ability to patch binary code. Here the difference is that the framework
runs within the kernel level. Hence the framework has access to all applications and
the monitor interacts not directly with the transformed application, but uses a special
system call interface.

High level process virtual machines, such as the Microsoft CLI, or the Java virtual ma-
chine (JVM), dynamically execute an intermediate language. This intermediate language
typically has richer semantic information about the program being executed. Instrumen-
tation here is done by transforming the bytecodes before they are loaded into the virtual
machine. Dynamic instrumentation can be obtained by so called bytecode replacement
at run-time (also referred to as hot swapping). Java has a feature called class redefi-
nition. This works by telling the VM to redefine the bytecodes for the methods of a
specific class. The Java Virtual Machine Tool Interface (JVMTI) is introduced as an
example.

7.2 Dyninst API

The Dyninst [Dyn06] API was first described in [HMC94]. Dyninst is the infrastructure
behind the Paradyn [Par06] project for parallel performance tools. Instead of working
by transforming a V-ISA bytecode, Dyninst directly patches the machine code image
of a running application. This has the advantage of not having a specific prepared

Related Work 98

Mutator Application

_Mutator pDp!

doWork(int a, int b)
LA

Mutator App inti;

for (i=0;i<N;i++) {
—> bar(a,b);

o
Dyninst Machine Machine Code Snippets

Code Dependent compiled by the Mutator
Code

ptrace/procfs Run-time Library

Figure 7.1: The Dyninst API

application process. Any installed application software with debug information can be
instrumented.

As the change framework, the Dyninst API framework consists of two processes. There
is a mutator process and an application process. Figure 7.1 shows the Dyninst API
abstractions defined in [BH00]. The applications of the Dyninst API are closely related
to the one of the change framework:

Debugging

Performance monitoring
Altering application semantics
Manipulate application data

Though the Dyninst API patches native machine code, the internal representation is
machine independent. Every target machine reader provides almost the same abstract
intermediate representation. Thus a mutator application program, as in Figure 7.1,
can theoretically be used on all target machines simply by recompiling the application.
So in the Dyninst API the machine code is read and an intermediate code representa-
tion is built. This representation is then edited by a mutator application. The altered
intermediate representation is then compiled to native code again.

The steps of code patching are:

Attach to a running program.

Create a bit of machine code.

Insert it into the program.

The program being modified is able to continue execution, it does not have to be
re-compiled, re-linked, or re-started.

The Dyninst API abstracts a program and its state while executing. Like in the change
framework one primary abstraction is the point, another one is the snippet. Snippets are
like changes in the change framework. Snippets represent executable code to be inserted
into a program at a point. Furthermore the API provides abstractions for process images
and threads of execution.

To refer to types in the running application a simple type system is supported. The
simple type system provides support for integers, strings, and floating point values. In
addition, aggregated types including arrays and structures are also supported. Out of

Related Work 99

the box there is no way to create new types using the Dyninst API. Change framework
type system is that of the LLVM architecture. Since the change framework transforms
LLVM bytecode, it supports the LLVM type system. The current framework does not
support the creation of custom types.

Program Base Tramp Mini Tramp Snippet Function

3
@ Pre —g;e Registers @
Relocated Set Up Args 4 foo()

*_@ Instruction (8
Inst_i

Post

Snippet

S

Restore (7
Registers

Figure 7.2: Inserting Code into a Running Program

Figure 7.2 shows the insertion of a snippet into a running application. The function
foo is executed before the execution of an instruction inst;. According to [BHO00] the
most difficult part of inserting instrumentation is carefully modifying the original code
to branch into the newly generated code. As can be seen in Figure 7.2, the Dyninst API
use short sections of code called trampolines. Trampolines are the means to get from the
point where the instrumentation code should be inserted to the newly generated code.

So called mini trampolines are called from the base trampolines. Mini trampolines save
the appropriate machine state and contain the code for a single code snippet. In Figure
7.2 the code is executed before the instruction. If one wants to execute the change after
the instruction, the mini trampoline can be registered with in the Post list. Chaining of
code snippets can be done by chaining mini trampolines.

7.3 Solaris DTrace

Solaris DTrace [CSL04] aims at dynamic instrumentation of production systems. Both
user level and kernel level software can be instrumented in a safe and dynamic fashion.

The change framework is similar to DTrace with regard to safe and dynamic instru-
mentation of running applications. DTrace however is a kernel level instrumentation
application. All instrumentation, probe processing, and buffering resides in the ker-
nel space. Application processes running in user level can become DTrace consumers
via the DTrace library. The DTrace library initiates communication with the in kernel
DTrace subsystem. DTrace also has the concept of providers and its own instrumenta-
tion language. The framework itself performs no instrumentation. Providers have the
form of loadable kernel modules and communicate with the DTrace core module via a
well-defined API.

The DTrace framework instructs providers to determine potential instrumentation
points. For every point of instrumentation, providers call back into the DTrace frame-
work to create a probe. Hence a probe identifies a provider specific instrumentation

Related Work 100

point. A probe is composed of the defining provider name, the kernel module name,
the function name, and a probe name. The DTrace provider architecture influenced the
design of the change framework architecture.

7.4 Java Virtual Machine Tool Interface

The Java Virtual Machine Tool Interface (JVMTI) [JVMO6] is part of the Java Standard
Edition since version 1.5. JVMTI provides several interfaces to hook into the Java virtual
machine in a standardized way. JVMTI clients are so called agents. These agents use
interfaces provided by the JVMTI. The agents have to be registered with the JVM. The
JVM implements the JVMTI and hence provide the interface to the agents.

One can write JVMTI agents that gather information and extend the JVM behavior.
JVMTIT consists of a Java API as well as a native API. The change framework supports
extensions too. Opposed to JVMTI, the change framework allows one to extend the
functionality by writing a provider. In JVMTT the interface to the Java virutal machine
(JVM™) is fixed, such that one is restricted to the offered interface.

Since JVM™1 5 Java too is able to perform hot code replacement, called class redefi-
nition. This means as long as a Java class has no schema changes, the class can change
its behavior (methods) without stopping and reloading an application or a class. As
the JVMTI, the change framework is able to change code at run-time. In the change
framework changes can additionally be unapplied too. This is done by keeping a change
log on a LLVM instruction granularity. If a change is unregistered the bytecode again is
transformed and recompiled. This is not directly supported by the JVMTI. Furthermore
the granularity of redefinition in the JVMTI is that of a class. This makes keeping undo
logs more expensive. One has to keep the old version of the class bytes available, so that
one can revert to the old class files.

The main difference between the JVMTI and the change framework is that the primary
way of instrumentation in Java is load-time instrumentation. For instance one is not
allowed to perform so called schema changes to classes, that means to add or remove
methods or fields or to change the visibility of classes. Except for bootstrapping pur-
poses the change framework does not perform load-time transformation. In the change
framework the unit of replacement can be defined by providers.

Summary 101

Chapter 8

Summary

The main objective of this thesis is the description and specification of the change frame-
work. As detailed in Chapter 5 the change framework is a system for dynamic program
instrumentation and analysis based on the Low Level Virtual Machine (LLVM) archi-
tecture. This chapter will be organized as follows. First a conclusion is given, then
several sections discuss future work. Finally the last section shows some of the current
limitations of the change framework prototype.

8.1 Conclusions

The change framework offers the ability to dynamically change the behavior of a program
while being able to later revert the changes again. While there are many approaches for
this problem, the one chosen by this project was to dynamically compile an application
on a just-in-time basis. The representation and infrastructure is the Low Level Virtual
Machine (LLVM) project. Part of this project is a low level program representation that
makes it possible to represent C and C++ system level code efficiently, while remaining
more details of the program structure, such as high-level data types.

In order for the system to remain flexible and to separate the low level details of the
virtual machine from the authors of change scripts, the change language was defined. The
change language is itself compiled to LLVM, which makes the transformation process very
straightforward. The change framework by itself is very flexible. The main usage scenario
outlines in this thesis was interactive program analysis and program understanding.
However this is only one aspect of dynamic program transformation, and the change
framework is open to be used for different scenarios.

In the change framework system, a monitor processes compiles a change script, authored
by a change author. The change script is sent to the application process, that in turn
applies the changes and sends information back to the monitor process. The monitor
process can later revert any changes performed. This enables interactive usage patterns
where one first applies more generic instrumentation and later as the problem under-
standing grows, narrows the instrumentation towards the problem areas. In Chapter 6
the system was evaluated. One of the principal outcomes was that the run-time over-
head of the dynamic compiler is negligible. The biggest obstacle for dynamic compiling
programs is the additional memory requirements.

Summary 102

Nevertheless it was shown that the implementation of the change framework is feasible.
Especially long running applications would benefit from systems like the change frame-
work. Problems could be isolated without having to stop the application as a whole.

8.2 Future Work Overview

The next sections discuss future work of the change framework. For clarity purposes the
issues will be split into:

o LLVM enhancements: While the LLVM serves as a great platform for the change
framework, the more meta information available at change application time, the
easier change authoring gets. That means the more closely the intermediate lan-
guage resembles the original programs intent, the better it can be analyzed. This
is somewhat contradictive, since the LLVM tries to be a common program repre-
sentation.

e Language enhancements: The section discusses enhancing the change language.
Concepts such as provider inheritance, type variables, support for pattern matching
are discussed.

e Change framework enhancements: This section gives an overview of future work
on the change framework. Example enhancements are introduced and possible
implementations are discussed. Examples are: Separate program transformation
from information providers, provide an abstract language for defining providers,
allow the system to be used with ahead of time compiled applications, and provide
infrastructure for alternative backends other than LLVM.

8.3 LLVM Enhancements

While LLVM serves as a good platform for the change framework, there are some areas
which could be improved to provide more information for change points. In the following
subsection one specific issue will be discussed. The struct type is used to represent C
structs or Pascal record types. When for instance a C code snippet like the one in 8.1
is translated to LLVM, the symbolic information is completely lost.

struct Person {
char xfirstname;
char xlastname;
int age;

}s

Listing 8.1: Example C Structure

The translated LLVM struct is shown in 8.2. As can be seen the symbolic information
of fields is lost.

%struct . Person = type { sbytex, sbytex, int }
Listing 8.2: Example LLVM Structure

Summary 103

void person_set_name (Personx person, char xfirstname, char xlastname)

{

/x assert that the arguments are fitting ... %/
person—>firstname = strdup (firstname);
person—>lastname = strdup (lastname);

}

Listing 8.3: Using the Structure in C

Listing 8.4 shows the translation of the code of Listing 8.3 from C to the equivalent
LLVM representation. One can see that in the LLVM version, there is no symbolic
information of fields. The getelementptr instruction is used to obtain a pointer to the
fields. The pointer to a field of the struct will be obtained using its slot number in the
struct type. Since the type information of the fields is preserved the pointer can be
calculated by using the slot number of the field in question.

%struct . Person = type { sbytex, sbytex, int }
void %person_set_name(%struct .Personx %person, sbytex %firstname ,
sbytex %lastname)

%t = call sbytex strdup(%firstname)

Y%¢mp = getelementptr %struct.Person*x %person, int 0, uint 0 ; <sbyte
ok >

store sbytex %f, sbytexx %tmp

%l = call sbytex strdup(%lastname)

Y%tmpl = getelementptr %struct.Personx %person, int 0, uint 1
sbytesx>

store sbytex %l , sbytexx %tmpl

}

;<

Listing 8.4: Using the Structure in LLVM

As can be seen in Listing 8.4, the symbolic information of filed names is completely lost
in the LLVM representation. What is technically correct for low level representation can
be problematic for frameworks such as the change framework.

basicblock provider FieldStoreProvider

points {Before, After};
string structType;
string fieldName;

b

Listing 8.5: Provider exporting stores to fields

This low-level property of the LLVM makes it difficult to write change predicates that
filter for field names. The Listing 8.6 shows a change snippet, that uses the provider
from Listing 8.5. The change wants to intercept all writes to a field called "lastname”.
As can be seen this is would be an interesting question to ask about a program.

change FieldStoreProvider :: Before
/ FieldStoreProvider —fieldName =— ”lastname” /
{
io—>printf(”Before_storing _a_field %s,_on_struct %s”,
FieldStoreProvider —>fieldName ,
FieldStoreProvider—>structType);

Summary 104

Listing 8.6: Change Script That Uses the Field Store Provider

Without using additional meta information, for instance debug information, the code
above could not be realized. The lack of symbolic information in this case is problematic.
A possible enhancement of the LLVM would be to annotate the LLVM struct type to
include symbolic information. An augmented struct type is shown in Listing 8.7.

%struct . Person = type

("firstname” ;sbytex),
(”lastname” ;sbytex),
(7age” ,int)

}

Listing 8.7: Enhanced LLVM Struct Types

With a type representation as above, the provider in Listing 8.5 could be accomplished.
The getelementptr identifies the field slot. The provider could take the struct type and
look for a given symbolic name. If the struct contains the name, the provider calculates
the slot offset from the name. Then it instruments all the getelementptr instructions,
whose struct type is the struct observed, and the slot is the calculated.

8.4 Language Enhancements

The change language, discussed in Section 5.4 is used to create application changes. The
change language is based on the C language. It adds first class language support for
change constructs, such as:

e change providers,
e change predicates and change body, and
e implicit (predefined) values.

The change language is lacking some advanced features, which are important in order to
ease authoring of change scripts. Some of the improvement are:

Provider inheritance

Type variables

Pattern matching support

Separate provider name and exported variables

8.4.1 Provider Inheritance

Listing 8.8 shows a sample provider on an instruction granularity representing a generic
instruction:

instruction provider InstProvider

points {Before, After};

Summary 105

string name;
string type;

b

Listing 8.8: InstProvider - A Generic Instruction Provider

A refined provider based on the InstProvider, for instance for a special instruction class,
would be implemented by copying the InstProvider and adding the new functionality.
The derived provider shares no semantic relationship with the InstProvider. Listing
8.9 shows a MallocProvdier, which operates on instruction granularity and represents
the malloc instruction.

instruction provider MallocProvider

{

points {Before, After};
string name;

string type;

string allocatedType;

Listing 8.9: MallocProvider Refining InstProvider

If the InstProvider is changed, one has to keep track of the changes in all of the
manually refined providers. An improvement would be to derive from, refine, or sub
class an existing provider.

Listing 8.10 shows the provider from Listing 8.9 with provider inheritance. Only the
allocatedType was defined in the MallocProvider, the other properties are inherited
from the parent provider InstProvider.

instruction provider InstProvider

points {Before, After};
string name;
string type;

b

instruction provider MallocProvider refines InstProvider

{
string allocatedType;
b

Listing 8.10: Provider Showing Inheritance

8.4.2 Type Expressions and Variables

Currently types are encoded by a string representation. This is sufficient for primitive
types, such as int, float. When dealing with compound types, such as structs, arrays,
or even pointers, string representations become tedious. Some of the problems are: A
single type can have multiple valid string representations, the coding of compound types
is not unique. Type matching has to be done using substring searches. The compiler is
not able to understand the types, and therefore is not able to support the author.

Summary 106

In the C language, a type is used in declarations, but normally a type can not be stored
in a variable and can be queried explicitly. Languages with support for introspection,
like CLR, or Java, have a way to dynamically access the type of a class, field, or method.
The concept introduced here are type variables, and type expressions. This means that
one is able to build type values which can be stored in special variables, called type
variables. These variables represent the meta information of the type. Additionally type
expression can be used inside statements.

Listing 8.11 shows an example C program, Listing 8.13 gives an overview of a sample
change language fragment. In this fragment a change predicate is used to query for a
special kind of function based on the stringified type information exported by a provider
shown in Listing 8.12.

int rect_square(int length, int width)

{

return length x width;
}

Listing 8.11: Example Program

function provider functionProvider
{

points { OnEnter, OnLeave };

int id;

string functionName;

int argCount ;

bool isVarArg;

string signature;

string returnType;

string [|] argumentTypes;

Listing 8.12: Example Provider

functionProvider :: OnEnter
/ functionProvider—argCount — 2 &&

functionProvider —returnType = "int” &&
functionProvider —argumentTypes [0] = "int” &&
functionProvider —argumentTypes[1] = "int”

/
{
io—>printf(”Entering_function_ ’int %s(int ,int)’\n”, functionProvider
—>functionName) ;

Listing 8.13: Changes Using Stringified Types

Listing 8.13 shows the current change language. In this listing functions of signature
int (int,int) are matched and printed. Listing 8.16 shows the same listing with type
variables. A type variable is a variable of type type. A type expression is constructed
using a type constructor. A type constructor starts with type. Listing 8.14 gives some
examples of type expressions bound to type variables.

type intType = type int ;
type structType = type { int a; int b; int c¢; } ;

Summary 107

type funcType = type int (int a, int b);
Listing 8.14: Sample Type Expressions

Using type variables and type expression the code showed in Listing 8.11 can be trans-
formed to the concise form shown in Listing 8.15.

function provider functionProvider

{

points { OnEnter, OnLeave };
int id ;

string functionName;

type funcType;

Listing 8.15: Example Provider

As can be seen in Listing 8.15, all the string type helper fields are replaced by a single
field called funcType of type type.

Respectively the code in Listing 8.13 could be shortened to that of Listing 8.16.

functionProvider :: OnEnter
/ functionProvider —>funcType = type int (int, int) /

{
io—>printf(”Entering_function_’int %s(int ,int)’\n”,
functionProvider —functionName);

Listing 8.16: Changes Using Type Variables

Type variables would represent types as first class values in the change language. A type
variable is a uniform representation of a type, stored as an abstract syntax tree.

8.4.3 Type Expression Pattern Matching

With type expressions and type variables the change language gets more concise. Often
one is not interested in an exact type, but in a set of types. This subsection shortly
discusses adding pattern matching to type expression. This would allow to write even
more concise change scripts. Pattern matching is added to type expressions by allowing
concrete type expression and expression patterns. Expression patterns are distinguished
form type expressions by containing place holder elements. Pattern matching could be
performed at run-time, by comparing the concrete type and the type pattern. Since
patterns are static in nature, a more efficient way would be to compile the pattern into
primitive match operations, that can be inlined. Regardless of the kind of matching, the
implementation has to match a type T" against a pattern P and return true if T' matches
P, false otherwise.

match : (T x P) — {true, false}

Based on the change language grammar, introduced in Listing 5.4, Listing 8.17 shows a
type expression grammar in EBNF. As shown in the listing _ is the pattern matching
place holder. Such a place holder can represent any TypeExpr.

Summary 108

AnyType =’

SkipTypes ="...7 .

TypeExpr = ’type’ InnerTypeExpr.

InnerTypeExpr = AnyType | SkipTypes | TypeName | TypeEl | TypePattern
| TypeFunc | TypeStruct

TypeFunc = InnerTypeEpxr ’(’7 {InnerTypeExpr} 7).

TypeStruct = "{’ { InnerTypeExpr [ident] ;" } '}’

TypePattern = '/’ TypeExpr ’/’.

EqualityExpr = PatternMatchExpr { =’ PatternMatchExpr }.

PatternMatchExpr = RelationalExpr { ’matches’ TypePattern }.

Listing 8.17: Augmented Change Language Grammar

An example type declaration is shown in Listing 8.18.

type PointType = type { int x; int y ; };
Listing 8.18: An Example Type Declaration

Listing 8.19 shows the usage of pattern matching expression.

bool matchesPoint = PointType matches / type { - ; int ; } /
Listing 8.19: An Example Pattern Match

In Listing 8.19 above, the variable matchesPoint is true for the concrete type PointType.
More precisely the pattern / _; int ; / matches any struct with two fields. The
first field can be of any type, the second field has to be of type int. Listing 8.20 shows
pattern matching in the change language.

functionProvider :: OnEnter
/ functionProvider —>funcType matches / type - (int, ..., floatx) / /

{
io—>printf(”Entering_function_’int %s(int ,..., float*)’\n”,
functionProvider —functionName);

Listing 8.20: Change Using Type Patter Matching

In the above listing, the pattern _ (int, ..., foat*) matches any function type,
whose first argument is of type int, and whose last argument is of type pointer to
float. Further the function has to have at least 2 parameters, but can have more. The
return type can be any type including void.

8.5 Framework Enhancements

The change framework consists of

e a virtual execution engine that dynamically translates a virtual ISA into a native
ISA,
e a change manager as well as a set of providers,

Summary 109

e a monitor process, that sends and monitors changes, and
e a change written in the change language.

Among many other enhancements, the following future work would be useful:

Separate program transformation from information providers.

Provide an abstract language for defining providers.

Allow the system to be used with ahead of time compiled applications.
Alternative backends other than LLVM.

8.5.1 Separate Program Transformation and Information Providers

Currently a provider is implemented by a set of C++ classes as well as global registration
code. After a provider is loaded into the application process, it is accessible from within
the change language. Provider declarations represent providers in the change language.
Listing 8.21 shows such a provider declaration.

function provider functionProvider

{

points { OnEnter, OnLeave };

int id;

string functionName ;
int argCount ;

bool isVarArg;
string signature;
string returnType;
string [|] argumentTypes;

Listing 8.21: Example Function Provider

The provider above declares that it works on a function scope and identifies individual
functions. Especially the provider identifies the points OnEnter, and OnLeave. OnEn-
ter identifies entering the function, OnLeave identifies points in the function where the
function is exited. The information is collected by the provider, it can be used inside
change predicates and change statements. As explained in Chapter 5 every change uses
a change provider. Change providers are in one of the following granularity: module,
function, basicblock, and instruction. Changes that use a provider of a granularity g, au-
tomatically have access to all information exported by providers of a coarser granularity.
In case a provider is used that works at an instruction scope, all information from basic
block providers or function providers are accessible within the change fragment.

A future enhancement would be to separate the process of transformation and the process
of providing context information more clearly. The change point contains the scope
information implicitly. For instance in the current version a change point reference has
to use the transforming provider.

/x Current usage of change points x/
change functionProvider :: OnEnter
/ functionProvider —>functionName = ”"main” /

{
/x do something */

}

Summary 110

/x Future enhancement x/
change
/ function :: Enter && functionProvider—functionName = ”main” /

{
}

/x do something */

Listing 8.22: Separate Change Points and Change Providers

Listing 8.22 shows the difference between the current model and the separation of the
providers and the change point. The scope of the change and the transformation of the
IR would be guided by the change point. Providers export information to the change
framework. Listing 8.23 shows the new syntax for defining change points as well as
information providers. Listing 8.24 shows sample changes, that uses the new syntax. As
can bee seen the changes do not use change identifier anymore. Instead the change point
is part of the predicate and determines where the change should get applied.

/x Sample points */
function point Enter ;
function point Leave ;
function point EnterLoop;
function point LeaveLoop;
function point LoopHeader;
instruction point Before;
instruction point After;

/x Sample providers x/
function provider functionProvider {
string functionName;

Listing 8.23: Change Point Syntax

change
/ function :: Enter && functionProvider—functionName = ’main’ /
change
/ function :: BeforeLoop &&

functionProvider >functionName = ’do_work_a’ /
change
/ instruction :: Before && ... /

Listing 8.24: Usage of New Change Points

Listing 8.26 shows a change point identification in Java like pseudo code. An instruction
changepoint occurs at any single instruction, a change point simply returns true or false
for any instruction that is given as an input. For instance the FunctionOnEnterPoint
returns true for instructions that are not a special phi or alloca instruction and are in
the first basic block of the function. Since one is able to navigate the basic block and
the function from the instruction object, the instruction is sufficient as an argument.

Summary 111

enum Match {
NOMATCH,
BEFORE,
AFTER
b
enum Granularity {
MODULE,
FUNCTION,
BASIC_BLOCK,
INSTRUCTION

b

interface InstructionChangePoint

{

String getName() ;
Match identify (Instruction inst);
Granularity getGranularity () ;

}

Listing 8.25: Interface for Abstracting the Changepoint

class FunctionOnEnterPoint implements InstructionChangePoint

{
VT
x Qreturns the name of the change point.
St{ing getName () { return "Enter” }
/xx

x @returns true if inst is a function enter point
* false otherwise
*/

Match identify (Instruction inst)

BasicBlock firstBB = inst.getFunction (). getFirstBasicBlock ();
if (firstBB != inst.getBasicBlock()) return Match . NOMATCH;

return (Function.isEnterPoint (firstBB, inst) 7
Match .BEFORE : Match .NOMATCH) ;
}

/%

x @returns the granularity of the change point.
*/
Granularity getGranularity () { return Granularity .FUNCTION };

Listing 8.26: A Change Point Library

Such a changepoint implementation as shown in listing 8.26 could be used in the change
language as follows:

function point Enter;

change / function ::Enter / { /x x/ }

Summary 112

This separation between the identification of instructions which are a change points and
the information exporting providers, makes it easier to implement providers as well as
enables a generic weaver that could insert the change into the code transparent of the
provider implementation.

8.5.2 Abstract Provider Language

Most of the complexity of a provider lies in matching the right instruction to transform.
In the current model writing a provider imposes one to know the LLVM libraries. This
makes authoring providers harder than it should be. On the other hand providers are
the only way how changes are able to use new functionality. One way would be to
provide a language that builds upon the change language and the new features discussed
in Section 8.4. The provider language would make it possible to write providers with a
comfortable domain specific language without much knowledge of the underlying virtual
machine. The providers would have to be compiled to LLVM bytecode too, in order to
be usable.

8.5.3 Ahead Of Time Compiled Applications

The change framework is not limited to JIT compilation. Figure 8.5.3 shows the change
framework when running as dedicated service.

Application A
Process
(Native Code)

Application B
Process
(Native Code)

N

LLVM Bytecode Database

Instrument/
Patches/Intercep
Running Applicatjon —

Change Framework

Lookup Bytecode from
Machine Code / Replace
Bytecode

LLVM Infrastructure

Change Framework Service

compiled Change Instructions
(LLVM Bytecode)

Monitor Process
-

Apply Changes
Information Exchange

Change
Script

Figure 8.1: Change Framework as External Service

In this approach the applications are compiled to LLVM bytecode. Later the applications
are instrumented, and ahead of time compiled to native code. This means no dynamic
compilation is needed, if the application is not dynamically monitored using the change
framework. If a monitor process is used to change a running application it contacts
the change framework service that runs in a separated process. The change framework

Summary 113

service then uses a bytecode database in order to lookup the bytecode for the target
application process.

All the dynamic compiler infrastructure operates in the dedicated change framework
service process. If a change affects a function in an application process, the function
is transformed. The changed bytecode is stored again in the bytecode database. The
changed bytecodes are then compiled into native code using the LLVM infrastructure.
Changing the application process is done by injecting the compiled function into the
target application process and further by invalidating the old function. Technically
there are many possibilities to replace the function within the native code application.
One is by using toolkits such as [Par06].

The advantages of the external change framework service are that not each process under
analysis has to run within the execution engine yet that if one maintains the bytecode
database at installation time, any application that was ahead-of-time compiled to LLVM
bytecodes is subject to dynamic instrumentation. Thus one does not need to decide at
application start time, whether one wants to make use of the change framework.

8.6 Limitations of the Change Framework Prototype

This section will discuss some of the limitations of the current implementation of the
change framework. As described in Chapter 6, the current status of the change framework
is that of a prototype proof of concept. This section shortly discusses limitations based
on:

e Change framework limitations: These are limitations in the application process.
e Change language compiler limitations: Limitations of the change language com-
piler.

8.6.1 Change Framework Limitations

e The LLVM version used by the change framework is limited to version 1.5.

e ImplicitValues are hard coded. There is currently no API that enables a plug-
able interface for adding implicit values to the change language, such as io.

e Providers have to be declared in the change language as well as in C/C++ code.

e No standard provider attributes and naming schemes are documented.

e Checking for recompilation is done by checking for a shared global variable.

e The native code buffer is limited to 64 MB. If many changes are applied the buffer
could overflow.

e Relinking a function is done by adding a direct jump into the old function in order
to unconditionally jump to the new one. This results in a slow down of the call
chain.

e Detection of a change is only done on a per function basis. On stack replacement
[ES00] could drastically improve responsiveness.

e The monitor process does not provide an interactive shell for applying multiple
changes.

Summary 114

8.6.2 Change Language Compiler Limitations

The current change language parser lacks sophisticated error correction.

The error codes outputted from the compiler are currently not internationalized.
There is no way to dump the AST of the change language.

An application binary interface (ABI) check is missing for the current compiler.
There are no regression tests available for the change language.

The compiler was only tested under GNU /Linux.

8.6.3 Summary

Not all limitations are listed here. While the current framework is not production ready
the proof of concept was successful. Many of the limitations are out of the scope of this
master thesis, for which only a limited implementation time frame was available.

Bibliography 115

Bibliography

[ALB106] Vikram Adve, Chris Lattner, Michael Brukman, Anand Shukla, and Brian

[BHOO]

[Bri]

[Bro06]

Gaeke. Llva: A low-level virtual instruction set architecture, 2006.

Bryan Buck and Jeffrey K. Hollingsworth. An API for runtime code patch-
ing. The International Journal of High Performance Computing Applications,
14(4):317-329, Winter 2000.

Misha Brukman Brian. Cs 497yyz project report: Llva-emu.
Angela Demke Brown. Lecture 5: Performance Evaluation. WWW resource,

2006. http://www.cs.toronto.edu/ demke/469F.06/Lectures/Lecture5.
pdf.

[CFR'91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-

[Coy04]

[CPY5]

[CSLO4]

[CT04]

[Dmi01]

[Dyn06]

[ES00]

[Her91]

neth Zadeck. Efficiently computing static single assignment form and the con-
trol dependence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, October 1991.

Comparinng Linux Compilers. WWW page, 2004. http://wuw.coyotegulch.
com/reviews/linux_compilers/index.html.

C. Click and M. Paleczny. A simple graph-based intermediate representation.
In The First ACM SIGPLAN Workshop on Intermediate Representations, San
Francisco, CA, 1995.

Bryan Cantrill, Michael W. Shapiro, and Adam H. Leventhal. Dynamic instru-
mentation of production systems. In USENIX Annual Technical Conference,

General Track, pages 15-28, 2004.

Keith D. Cooper and Linda Torczon. Engineering a Compiler. Morgan Kauf-
mann, San Francisco, 2004.

M. Dmitriev. Safe class and data evolution in large and long-lived java[tm]
applications, 2001.

Dyninst API Website. WWW page, 2006. http://www.dyninst.org.

Matthias Ernst and Daniel Schneider. Konzepte und Implementierungen mod-
erner virtueller Maschinen. Master’s thesis, 2000.

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems, 13(1):124-149, January 1991.

http://www.cs.toronto.edu/~demke/469F.06/Lectures/Lecture5.pdf
http://www.cs.toronto.edu/~demke/469F.06/Lectures/Lecture5.pdf
http://www.coyotegulch.com/reviews/linux_compilers/index.html
http://www.coyotegulch.com/reviews/linux_compilers/index.html
http://www.dyninst.org

Bibliography 116

[HMC94]

[Hoe94]

[TVMO6]

[KR78]

[LAO4]

[Lat02]

[Lif06]

[LLV06a

[LLVOG6b]

[LLVO06c]

[LLV06d]

[LLVO0Ge]

[Moe03]

[Muc98|

[Par06)]

Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic pro-
gram instrumentation for scalable performance tools. Technical Report CS-
TR-1994-1207, 1994.

U. Hoelzle. Adaptive Optimization for Self: Reconciling High Performance
with Exploratory Programming. PhD dissertation, 1994.

JVM Tool Interface. WWW page, 2006. http://java.sun.com/j2se/1.5.
0/docs/guide/jvmti/jvmti.html.

Brian W. Kernighan and Dennis Ritchie. The C Programming Language.
Prentice-Hall, 1978.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04), Palo
Alto, California, Mar 2004.

Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization.
Master’s thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, Dec 2002. See http://1lvm.cs.uiuc.edu.

The Lifelong Code Optimization Project. WWW page, 2006. http://
www-faculty.cs.uiuc.edu/"vadve/lcoproject.html.

LLVM Bytecode Format. WWW page, 2006. http://1llvm.org/docs/
BytecodeFormat.html.

Extending LLVM: Adding instructions, intrinsics, types, etc. WWW page,
2006. http://11lvm.org/docs/ExtendingLLVM.html.

LLVM Assembly Language Reference Manual. WWW page, 2006. http:
//11lvm.org/docs/LangRef .html.

Writing an LLVM Pass. WWW page, 2006. http://1lvm.org/docs/
WritingAnlLLVMPass.html.

LLVM Website. WWW page, 2006. http://www.1llvm.org.

Hanspeter Moessenboeck. Unterlagen zur Vorlesung Ubersetzerbau, 2003.
http://www.ssw.uni-1linz.ac.at/Teaching/Lectures/UB/VL.

Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann, repr. edition, 1998.

Paradyn Parallel Performance Tools. WWW page, 2006. http://www.
paradyn.org.

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/jvmti.html
http://www-faculty.cs.uiuc.edu/~vadve/lcoproject.html
http://www-faculty.cs.uiuc.edu/~vadve/lcoproject.html
http://llvm.org/docs/BytecodeFormat.html
http://llvm.org/docs/BytecodeFormat.html
http://llvm.org/docs/ExtendingLLVM.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://www.llvm.org
http://www.ssw.uni-linz.ac.at/Teaching/Lectures/UB/VL
http://www.paradyn.org
http://www.paradyn.org

Bibliography 117

[SNO5] Jim Smith and Ravi Nair. Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture and
Design). Morgan Kaufmann, June 2005.

[Wir77] Niklaus Wirth. What can we do about the unecessary diversity of notation
for syntactic definitions? Comm. ACM, 20:822-823, November 1977.

FEidesstattliche Erklidrung 118

Eidesstattliche Erklarung

Ich erkldre hiermit an Eides statt, dass ich die vorliegende Arbeit selbststéndig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht beniitzt und die
den benutzten Quellen wortlich oder inhaltlich entnommenen Stellen als solche kenntlich
gemacht habe.

Linz Urfahr, am April 25, 2007

Jakob Praher

	1 Introduction
	1.1 Dynamic Program Instrumentation and Analysis
	1.2 Scenarios for Dynamic Program Analysis

	2 System Architecture
	2.1 A Framework for Program Analysis
	2.2 LLVM Intermediate Representation
	2.3 Change Framework Overview
	2.4 Compiling Applications to LLVM
	2.5 Recompiling Instrumented Program Fragments
	2.6 Summary

	3 Big Picture
	3.1 Overview
	3.2 Dynamic Program Analysis
	3.2.1 Example Code Fragment
	3.2.2 Program Analysis
	3.2.3 Function Call Sequence
	3.2.4 Loop Detection
	3.2.5 Memory Usage

	3.3 Summary

	4 The Low Level Virtual Machine
	4.1 Overview
	4.2 The History behind LLVM
	4.3 Computer Architecture
	4.3.1 Computing Machines and Machine Language
	4.3.2 Programs and Machine Language
	4.3.3 Program Machine Interfaces

	4.4 The Virtual Machine Concept
	4.4.1 Overview
	4.4.2 Process Virtual Machines
	4.4.2.1 Multiprogramming
	4.4.2.2 High Level Language Virtual Machines

	4.5 The Low Level Virtual Machine Architecture
	4.5.1 Overview
	4.5.2 Classifying the LLVM Architecture
	4.5.3 High-Level Type Information, Low-Level Intermediate Language
	4.5.3.1 High-Level Type Information

	4.5.4 LLVM Virtual Instruction Set Overview
	4.5.5 Three-address Code Architecture in SSA Form
	4.5.5.1 Typed Polymorphic Instructions
	4.5.5.2 Explicit Control Flow Information
	4.5.5.3 Static Single Assignment Form
	4.5.5.4 Type Information
	4.5.5.5 LLVM Memory Model
	4.5.5.6 Function Calls and Exception Handling

	4.5.6 Graph-Based In-Memory Representation
	4.5.7 Bytecode - Binary Virtual Object Code Representation
	4.5.8 Summary of the LLVA

	4.6 Summary

	5 The Change Framework
	5.1 Overview
	5.2 Change Framework Architecture
	5.2.1 The Change Concept
	5.2.2 Change Application Overview
	5.2.3 Change Unapplication Overview

	5.3 Change Provider Architecture
	5.3.1 A Sample Application
	5.3.2 Change Points and Change Point Trajectories
	5.3.3 Provider Context Information
	5.3.4 Summary

	5.4 Change Language
	5.4.1 Overview
	5.4.2 Syntax
	5.4.2.1 Lexical Structure
	5.4.2.2 Change Specific Syntactic Aspects

	5.4.3 Semantics
	5.4.3.1 Value Types
	5.4.3.2 The string Type
	5.4.3.3 Pointer Types
	5.4.3.4 Reference Types
	5.4.3.5 Implicit Values
	5.4.3.6 Predefined Values
	5.4.3.7 Literals
	5.4.3.8 Type Equality
	5.4.3.9 Type Compatibility
	5.4.3.10 Assignment Compatibility
	5.4.3.11 Implicit Type Conversions
	5.4.3.12 Lexical Scopes

	5.4.4 Context Conditions
	5.4.4.1 General Context Conditions
	5.4.4.2 Change Specific Context Conditions

	5.5 Change Detection and Recompilation
	5.5.1 Overview
	5.5.2 Recompilation Checkpoints
	5.5.2.1 Recompilation Detection Period

	5.5.3 Checkpoint Testing Overhead
	5.5.4 Alternatives to IR Transformation Based Checkpoints
	5.5.4.1 Write a LLVM MachineFunctionPass
	5.5.4.2 Implement an Intrisic Function or a Custom Bytecode

	5.5.5 Finer Recompilation Models

	5.6 Change Protocol
	5.6.1 Overview
	5.6.2 Communication Framework
	5.6.2.1 Channel Message Handling

	5.6.3 General Message Wire Format
	5.6.3.1 Invoke Messages
	5.6.3.2 Return Messages
	5.6.3.3 Oneway Invoke Messages

	5.6.4 Well Known Change Specific Messages
	5.6.4.1 REGISTER_CHANGE Message
	5.6.4.2 UNREGISTER_CHANGE Message
	5.6.4.3 IO_OUTPUT Message
	5.6.4.4 CLOSE Message

	5.7 Summary

	6 Evaluation
	6.1 Overview
	6.2 Analysis of the Change Framework
	6.2.1 Analysis of LLVM

	6.3 Evaluation of the Existing Prototype
	6.3.1 Evaluation of the LLVM Infrastructure
	6.3.1.1 Common LLVM Suffixes
	6.3.1.2 The Test Suites
	6.3.1.3 The Run-Time Environments
	6.3.1.4 Testing Infrastructure
	6.3.1.5 Comparing Overall Run Time
	6.3.1.6 Translation Time vs Overall Execution Time
	6.3.1.7 Results of Run-Time Measurements
	6.3.1.8 Average Resident Set Size Memory
	6.3.1.9 Conclusion of LLVM Run Time Infrastructure

	6.3.2 Evaluation of the Change Framework
	6.3.2.1 Core Run-Time Overhead
	6.3.2.2 Change Overhead

	6.4 Summary

	7 Related Work
	7.1 Overview
	7.2 Dyninst API
	7.3 Solaris DTrace
	7.4 Java Virtual Machine Tool Interface

	8 Summary
	8.1 Conclusions
	8.2 Future Work Overview
	8.3 LLVM Enhancements
	8.4 Language Enhancements
	8.4.1 Provider Inheritance
	8.4.2 Type Expressions and Variables
	8.4.3 Type Expression Pattern Matching

	8.5 Framework Enhancements
	8.5.1 Separate Program Transformation and Information Providers
	8.5.2 Abstract Provider Language
	8.5.3 Ahead Of Time Compiled Applications

	8.6 Limitations of the Change Framework Prototype
	8.6.1 Change Framework Limitations
	8.6.2 Change Language Compiler Limitations
	8.6.3 Summary

	Bibliography

