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Abstract

Instruction selection is a compiler optimisation that
translates the intermediate representation of a program into
a lower intermediate representation or an assembler pro-
gram. We use the SSA form as an intermediate representa-
tion for instruction selection. Patterns are used for transla-
tion and are expressed as production rules in a graph gram-
mar. The instruction selector seeks for a syntax derivation
with minimal costs optimising execution time, code size, or
a combination of both. Production rules are either base
rules which match nodes in the SSA graph or chain rules
which convert results of operations.

We present a new algorithm for placing chain rules in a
control flow graph. This new algorithm places chain rules
optimally for an arbitrary cost metric. Experiments with
the MiBench and SPEC2000 benchmark suites show that
our proposed algorithm is feasible and always yields better
results than simple strategies currently in use. We reduce
the costs for placing chain rules by 25% for the MiBench
suite and by 11% for the SPEC2000 suite.

1. Introduction

Instruction selection is a transformation step in a com-
piler which translates the intermediate code representation
to a low-level intermediate representation or to machine
code. Instruction selection has received a lot of atten-
tion [7, 11, 4, 16, 6, 20, 17, 9, 1] and its performance con-
tributes significantly to the overall performance of a com-
piler.

∗This work has been supported by ARC Grant DP 560190 and the Sun
Microsystems Research Labs, CA.

Traditional instruction selection techniques confine their
scope to statements or basic blocks. Hence, they achieve
locally optimal code only. Recently, a new approach [4, 12]
has been introduced which is able to perform instruction
selection for whole functions in SSA form [10, 3]. This ap-
proach delegates the problem of instruction selection to a
discrete optimisation problem solver. Similar to tree pattern
matching [6, 9], this approach maps the instruction selec-
tion problem to the problem of parsing a graph grammar,
whose production rules have associated costs. The parser
seeks for a cost-minimal syntax derivation for a given input
graph, which is the SSA graph representation [10] of the
data flow of a whole function. The nodes represent simple
operations such as load/store operations, arithmetic opera-
tions, ϕ-functions, calls, etc. The incoming edges consti-
tute the arguments of an operation and are ordered. The
outgoing edges denote the transfer of the operation’s results
whereas each operation has one result at most. This SSA
graph is matched against a graph grammar that consists of
base rules and chain rules. Base rules are matched to opera-
tions and have argument and result types. A type mismatch
occurs where a node needs the result of another node, but
the argument and result types are not the same. A chain
rule converts the result to the right type. The approach in [4]
did not address this problem of placing conversions between
operations in the control flow graph optimally in the control
flow graph.

To overcome this problem, we introduce an algorithm to
place chain rules optimally in polynomial time. We achieve
an optimal placement by mapping the chain rule placement
problem to ans− t-min-cut problem. Experiments with the
MiBench and SPEC2000 benchmark suites show that our
algorithm selects always more cost-efficient code if possi-
ble, but never more expensive code. The execution time for
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s − t-min-cuts is acceptable because it is only performed
on fragments of the control flow graph. The contribution of
this work is as follows:

• introducing the problem of placing chain rules cost-
efficient for whole functions,

• devising an optimal algorithm which has polynomial
runtime,

• conducting experiments with the MiBench and
SPEC2000 benchmark suites and showing the effec-
tiveness and efficiency of the new algorithm in com-
parison with trivial strategies.

Placing chain rules optimally is related to the code motion
problem and to partial redundancy elimination (PRE) [14].
However, PRE is performed in a prior phase as part of ma-
chine independent optimisations. PRE and code motion dif-
fer from the problem of placing chain rules as they consider
different types of statements and optimise the computations
on all paths whereas the problem of placing chain rules con-
siders specific paths only and aims to place conversions cor-
rectly and optimally according to a cost metric, which is
independent from any optimisation done by PRE or code
motion algorithms.

This paper is organized as follows: In Section 2 we pro-
vide the background and notations. We motivate our ap-
proach in Section 3 by giving an example while in Section 4
we introduce the algorithm. In Section 5 we discuss exper-
imental results. We conclude in Section 6.

2. Background

A control flow-graph(CFG) is a directed graphG =
〈N, E, r〉 whereN is the set of nodes representing basic
blocks in a function or procedure andE is the set of edges
modeling the transfer of control flow between basic blocks.
The noder ∈ N is the entry node of the CFG. In a CFG, all
nodes are reachable, i.e., there exists a path fromr to every
other node inN . The set of predecessorspreds(u) of a node
u is defined as{w|(w, u) ∈ E}.

A path π is a sequence of nodesu1, . . . , uk such that
(ui, ui+1) ∈ E for all 1 ≤ i < k. The length ofπ is
given by|π|. We denote the set of all paths fromu to v by
paths(u, v). The ith node inπ is written asπ(i), and the
notationπ(i, j) denotes the sub-path from theith to thejth
node ofπ. A nodeu dominates a nodev if every path from
r to v containsu. A sub-graphG(S) of a CFG is a directed
graph such that the nodes areS and the edges areE∩S×S.

The Static Single Assignment(SSA) form guarantees
that program variables have only a single assignment in
the source code [3]. Let us consider the following example
program:

x:=f();
if (x>0) then

i:=1;
else

i:=2;
endif
print(x,i);

This program has two assignments for variablei . There-
fore, it is not in SSA form. We transform the code to SSA
form by splitting variablei into variablesi 1 and i 2 as
follows:

x0:=f();
if (x 0>0) then

i 1:=1;
else

i 2:=2;
endif
i 3:= ϕ(i 1,i 2);
print(x 0,i 3);

A ϕ-function merges the values ofi 1 andi 2. The merged
value is assigned to variablei 3. To make assignments and
uses of variables unique, all program variables are extended
with an index. For example, variablex has only one as-
signment but it is changed tox0. In this paper, we refer to
assignments or statements which modify the value of a vari-
able asdefinitionsand the occurrence of program variables
on the right-hand side of an assignment asuse.

SSA graphs introduced in [10] are an abstraction rep-
resentation of operations within the SSA form where the
nodes represent operations and the edges correspond the
data dependencies of the program. The SSA graph of the
above example is depicted in Fig. 1. Note that the incom-
ing edges have an order which reflects the argument order
of the operation. The instruction selection technique in [4]

Figure 1. An Example SSA Graph

uses normalised graph grammars. A graph grammar is nor-
malised when it consists of only two types of rules:

1. A base ruleA → op(B1, . . . , Bk)[c] whereA andBi
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are non-terminals,op is a terminal and[c] is the cost
vector of the rule.

2. A chain rule A → B[c] whereA and B are non-
terminals and[c] is the cost vector of the rule.

The transitive hull→+ of the derivation relation→ contains
all possible conversion chain of a graph grammar. At first,
we will focus on conversion chains consisting of a single
chain rule only, i.e., those who are element of→.

3. Motivation

The discrete optimisation problem in [4] selects the base
and chain rules optimally with respect to a given cost met-
ric. However, that approach assumed that a chain rule is
placed in the same statement of the use whose input value
is to be converted. By relaxing this assumption, more ag-
gressive translations are possible if chain rules are placed in
statements between the definition and uses. Trivial place-
ment strategies for the relaxed assumption would be to place
chain rules

• after the definition, or

• immediately before uses, as in [4], or

• either after the definition or prior to all uses depending
on a local costs analysis.

However, all three strategies are not optimal. Consider the
example in Fig. 2. It shows a fragment of thematch -

Figure 2. CFG for a Motivation Example

function in 197.parser that is part of the SPEC2000
benchmark suite. Fig. 2 depicts a sub-graph of the CFG.
Instead of considering the whole CFG for a definition and
its uses, it is sufficient to analyse a sub-graph where chain

Figure 3. The Corresponding SSA Graph

rules can be beneficially placed. Let us focus on a defini-
tion residing in statementb1, which is acast -operation.
This definition has three uses in statementsb14, b11 andb12,
which areadd -operations as shown in Fig. 3.

The instruction selection is performed as outlined in [4].
The base and chain rules are selected to find a minimal
syntactical derivation for the SSA graph in Fig. 3 according
to the following graph grammar:

reg → add(reg, reg) [10.0,1.0]
sreg → cast(sreg) [10.0,1.0]
reg → sreg [10.0,1.0]
sreg → reg [10.0,1.0]

This graph grammar uses registers and shifted registers as
data types. Shifted registers are featured by many embed-
ded systems as they allow a quick multiplication or division
by a power of 2 by shifting a value from a normal register
into a shifted register or vice versa.

The definition and the uses are matched to the first and
second base rule, respectively. Because the non-terminal
of the result issreg and the uses requirereg , the chain
rule reg → sreg is selected to be placed between the
definition and the uses in the CFG. Note that each rule has a
cost vector shown in brackets. In our example, the first cost
vector represents the number of cycles needed to execute the
conversion and the second elements refers to needed code
space. With the notion of a cost vector, several trade-offs
can be realised when combining the costs in a weighted sum
where the factors of the weighted sum are chosen arbitrarily.
To have a uniform notion of cost we introduce cost vectors
for nodes in the CFG that reflect the cost properties of the
actual node. For example, the first component in the cost
vector shown in Fig. 2 represents the execution frequency of
the node and the second component is a uniform cost factor
determining the space requirements of a rule matched to a
node.1

1For the sake of readability we omitted entry and exit edges Fig. 2.
Therefore the execution frequencies shown in the graph seem to not obey
Kirchhoff’s Law. For instance, there is an edge to areturn -node from
b2 which is not drawn in the figure.
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To show the impact of our placement strategy, we
demonstrate the placing of the chain rulereg → sreg
with several objectives. If we wanted to optimise for space,
the best strategy would be to place the chain rule after the
definitionb1. If we wanted to optimise for speed, we would
place the chain rule in the blocksb5, b9 andb10. Both strate-
gies ensure that the chain rule is executed on all paths from
the definition to the uses, which preserves the program se-
mantics. A trade-off weighting speed and space with a ratio
of 20 : 80 yields a placement inb5 and b7. The follow-
ing table shows the costs for optimally placing the chain
rule using speed, space and a mixed strategy in comparison
with trivial placement strategies. The example shows that
the trivial placement strategies fails to deliver an optimal
placement except for pure space considerations.

strategy space time trade-off
def (b1) 1 30140 6028.8
uses (b11, b12, b14) 3 19300 3862.4
def/uses 1 19300 3862.4
optimal 1 3510 704
placed at b1 b5, b9, b10 b5, b7

3.1. Problem Definition

Given a derivation for an SSA graph. Letd ∈ N be a
definition. We denote the result non-terminal ofd by nt d.
For an arbitrary non-terminalnt , we denote the set of uses
that use the result ofd atnt by Ud

nt .2 We seek for acorrect
andoptimalplacement for all chain rules for all setsUd

nt .

Definition 1. Given a definitiond and a non-terminalnt .
LetP ∈ N be a subset of the node set of a CFG.P is said
to be aplacementfor Ud

nt if for all u ∈ P a chain rule
nt → nt d is inserted beforeu or, if P = {d} holds, after
u.

Definition 2. A placementP is correctiff

∀u ∈ Ud
nt : ∀π ∈ paths(d, u) :

∃1 < i ≤ |π| : π(i) ∈ P ∧ d 6∈ π(i, |π|) (1)

A correct placement ensures that there is a chain rule placed
prior to the execution of the uses.

Definition 3. The costs for placementP are defined as

f(P ) =
∑

u∈P

n∑

i=0

αi × costsi(u) × costsi(nt → nt d) (2)

wherecosts(u) is the cost vector of nodeu, costs(nt →
nt d) is the cost vector of chain rulent → nt d, α is the

2The set of uses of definitiond is the union of allUd
nt over all non-

terminalsnt in the grammar.

weight vector of the cost model expressing the trade-offs
betweenn different optimisation objectives. The sub-script
notation denotes the vector components.

We are seeking for an optimal placement in terms of this
definition of optimality.

Definition 4. A placementP is optimal iff f(P ) ≤ f(P ′)
holds for all possible placementsP ′ for Ud

nt .

4. Chain Rule Placement

The algorithm for placing chain rules considers all def-
initions and their uses for which chain rules were se-
lected, i.e., the algorithm iterates over all setsUd

nt that are
not empty. For each setUd

nt , the algorithm performs four
steps: The first step computes a sub-graph of the CFG such
that an optimal and correct placement can be still found.
Though this step is not essential for the correctness and op-
timality, performing this step achieves practical runtimes for
the second and third step. The second step maps this sub-
graph to a directed weighted network. In the third step a
minimum cut of the network is computed. In the last step
the chain rules are inserted in the CFG.

Step 1: Reducing the CFG. The first step of the
algorithm removes all nodes in the CFG that are of no
interest for a specific setUd

nt since they reside before the
first execution ofd or after the last execution of each use
u ∈ Ud

nt . This is done by applying a recursive graph
traversal procedure for each use as follows:

GETSUBGRAPH(d, nt )
1 S ← {d}
2 for all u ∈ Ud

nt do
3 TRAVERSE(S, u)
4 endfor
5 return S
TRAVERSE(S, u)
1 S ← S ∪ {u}
2 for all v ∈ preds(u) \ S do
3 TRAVERSE(S, v)
4 endfor

The setS ⊆ N induces a sub-graphG(S). We have to en-
sure thatGETSUBGRAPH does not remove nodes such that
the correctness and optimality is destroyed. The algorithm
returns a set that includes at least all nodes on the paths
between definitiond and its usesu ∈ Ud

nt . Given a cor-
rect and optimal placementP , we claim that the procedure
GETSUBGRAPH leaves this placement correct and optimal.
Since each use is dominated by its definitions in an SSA
graph, this can be easily proven.
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Step 2: Mapping to a Network. The second step of our
placement algorithm maps a sub-graphG(S) to a directed
network〈V, R, w, s, t〉 whereV is the set of vertices of the
network,R is the set of edges in the network,w : R → N0

is the capacity function that maps edges to their capacities,
s ∈ V is the source andt ∈ V is the sink of the network.
The mapping splits all nodesu ∈ S \ {d} except the defini-
tion into its entry nodeun ∈ V and its exit nodeux ∈ V .
We introduce a vertexdx for noded and a sink nodet. As a
vertex set for the network we have following set:

V
def= {un : u ∈ S \ {d}}

∪ {ux : u ∈ S}
∪ {t :6 ∃u ∈ S : t ∈ {un, ux}}

For each nodeu ∈ S we introduce an edge(un, ux) ∈ R.
Its capacity is determined by the cost of placing the chain
rulent → nt d atu, i.e. ,

∑

i

αi × costsi(u) × costsi(nt → nt d) .

We note that the sum of all capacities for a placement deter-
mines its costs, see Eqn. 2.

We also introduce an edge(ux, vn) ∈ R for each CFG
edge(u, v) ∈ E. Its capacity becomes infinite. The con-
struction of the network for nodeu ∈ S \ {d} and the
associated edges are depicted in Fig. 4. To terminate the

Figure 4. Network Construction

network, we add an edge(ux, t) from each useu ∈ Ud
nt

to a pseudo-sinkt. The pseudo-code of the algorithm is as
follows:
MAPTONETWORK(S, E, d, nt)
1 for all u ∈ S \ {d} do
2 R← R ∪ {(un, ux)}
3 w(un, ux)←P

i αi × costsi(u)× costsi(nt → nt d)
4 endfor
5 R← R ∪ {t}
6 for all (u, v) ∈ E ∩ S × S do
7 R← R ∪ {(ux, vn)}
8 w(ux, vn)←∞
9 endfor
10 for all u ∈ Ud

nt do
11 R← R ∪ {ux, t}
12 w(ux, t)←∞
13 endfor
14 return (V, R, w, dx, t) // w is the capacity function

Fig. 5 shows the network of our motivation example
(cf. Fig. 2). The gray and black edges represent the edges
induced by CFG edges and CFG nodes, respectively. The
figure shows the flows and capacities for a trade-off between
execution time and space usage (20 : 80). We remark that
the maximum flow is704, which is exactly the costs for this
trade-off for the optimal placement inb5 andb7 as outlined
in table 3. The flow equals the capacity in exactly these
nodes.

Figure 5. The Network for the Example

Step 3: Computing a Minimum Cut. Once the network
is set up, the third step computes ans − t min-cut C ⊆
R such that

∑
(un,ux)∈C w(un, ux) becomes minimal. The

first observation is that only edges(un, ux) for u ∈ S \ {d}
can be in the cut set because all other edges in the network
have∞ weights. The resulting placementP is determined
by

P = {u ∈ N : (un, ux) ∈ C} .

The network reflects the sub-graph of the control flow
graph. The cut disconnects the definition from its uses. Ev-
ery path from the definition to a use passes at least one node
in the cut setC ensuring that the conversion is executed
prior to the execution of each use. Thes − t min-cut al-
gorithms seeks for the minimal cut, i.e., for the locations in
the sub-graph that are cost-minimal in terms of the chosen
metric.

There are various algorithms to obtain ans − t min-cut
of a given network. Since the minimum cut is the dual prob-
lem [8] to the max-flow problem, the min-cut is commonly
computed by a max-flow algorithm. A simple max-flow
algorithm is given by Edmonds and Karp [5], employing
breath-first-search (BFS) for finding augmenting paths. A
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push-relabeling algorithm [2] is more efficient. However,
most of our networks are very sparse because of the sparsity
of CFGs. If runtime complexity is an issue, a probabilistic
max-flow algorithm can be used (cf. [13]) that has a linear
complexity in the number of edges of the network. In this
work we have used Edmonds and Karp [5] because it re-
sulted in acceptable runtimes for thes − t min-cut and is
yet easy to implement.

Step 4: Placement. The overall algorithm is as follows:

PLACECHAIN RULEFOR((N, E, r), d, nt )
1 for all Ud

nt 6= ∅ do
2 S ← GETSUBGRAPH(d, nt )
3 C ← GETMINCUT(MAPTONETWORK(S, E, d, nt ))
4 for all u : (un, ux) ∈ C do
5 emit code for chain rulent → nt d atu
6 endfor
7 endfor

The algorithm traverses through all non-empty setsUd
nt .

For each such set the steps one to three are performed.

4.1. Worst-Case Complexity

We remark that, for a given pair(d, nt ), the reduction
procedureGETSUBGRAPH visits each node in the worst
case; therefore its runtime complexity isO(|N |). The pro-
cedureMAPTONETWORK processes each node and each
edge in the sub-graphG(S) once. Additionally, it pro-
cesses all uses of a given definition once in order to con-
nect them to the pseudo-sink. This results in a complexity
of O(|N | + |E|). Our implementation uses Edmonds and
Karp’s BFS max-flow algorithm for, which has a worst-case
complexity ofO(|N | × |E|2). In the average case their al-
gorithm finishes inb × |N |2 whereb is the “breadth” of a
network, i.e., the maximum number of cutting edges. In our
experiments,b is almost always less than10, and the re-
duced graphs (and networks) are significantly smaller than
the original CFG. Note that the complexity of thes − t
min-cut algorithm is the dominating complexity of the al-
gorithm. However, using a probabilistic algorithm (cf. [13])
reduces the tõO(|E|). If we assume that we use the best
known algorithm for solving thes− t min-cut problem and
the number of non-empty setsUd

nt is l, then the overall com-
plexity is Õ(l× (|N |+ |E|)) with l ≤ |N | ×m wherem is
the number of non-terminals in the given graph grammar.

4.2. Extending to Conversion Chains

So far, we considered simple chain rulesA → B only.
Chain rules can be concatenated in order to convert a value
indirectly. For instance, a graph grammar may have the
chain rules

reg → sreg [10.0,1.0]
sreg → const [10.0,1.0]

In this case, the graph grammar implicitly contains a chain
rule reg →+ const [20.0,2.0] . Extending our
approach to such conversion chains

A1 → A2 → . . . → An

is straight-forward as our approach is performed recur-
sively, starting withA1 → A2 and stopping withAn−1 →
An.

5. Experimental Results

Our approach is a designed to be used in a compiler
back-end that uses the approach in [4] for instruction se-
lection. However, this back-end has not been implemented
yet. Therefore, we conducted synthetic experiments, asking
the following questions:

• How costly is the optimal placement of chain rules?

• What is the optimisation potential of our algorithm in
comparison with trivial strategies?

We implemented a generic instruction selector generator
that generates, with the help of given graph grammars,
instruction selectors based on the technique introduced
in [4, 12]. We ran one of these instruction selectors with the
programs of the MiBench (cf. [18]) and Spec2000 (cf. [15])
benchmark suites as input. We have chosen the LLVM
framework (cf. [19]) as a compiler front-end in order to
generate the intermediate representations of the programs
in SSA form, to translate them into the SSA graphs and to
obtain dynamic profiling data.3 We use a simple grammar
with four nonterminals (representing registers, shifted
registers, void values and the top element of the grammar).
All rules have a two-dimensional cost vector representing
clock cycles and space usage. Beside76 base rules, our
example rule grammar contains two chain rules

reg → sreg [2.0,1.0]
sreg → reg [2.0,1.0]

to reflect the transport operations from shifted registers to
registers and vice versa.

3Note that LLVM refused to profile the253.perlbmk program and
does not support Fortran. Programs written in Fortran77 could be compiled
to C using f2c (cf.http://www.netlib.org/f2c/ ), but Fortran90
programs could not be processed. Also, LLVM cannot handle the inline
assembly code of the MiBench programslame andmad. The programs
blowfish andrsynth crashed during profiling.
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Program CFGs Nodes CFG SSA tIS tNetwork tMin−Cut tmisc ttotal
Edges Edges (%) (%) (%) (%) (s)

rawdaudio 1 219 229 286 5.07 19.15 18.58 57.18 0.09
rawcaudio 1 234 242 321 4.74 44.12 18.37 32.75 0.10
basicmath 2 595 622 873 5.68 22.68 39.97 31.66 0.22
bitcnts 8 452 452 564 6.19 40.70 12.74 40.35 0.23
patricia 2 694 718 1001 5.26 20.91 42.95 30.86 0.24
crc 1 147 153 188 13.02 29.55 22.55 34.86 0.04
dijkstra 3 430 446 560 8.36 25.35 26.09 40.18 0.13
tiff2bw 174 59151 61159 104549 4.32 13.05 66.05 16.56 43.25
tiff2rgba 222 76800 79174 134690 4.34 15.54 61.62 18.49 48.97
tiffdither 173 58751 60754 103770 4.94 12.61 65.52 16.90 42.11
tiffmedian 177 62350 64511 110253 4.00 12.77 66.69 16.53 45.77
fft 2 951 981 1591 5.15 21.00 46.77 27.06 0.32
gs 2612 412055 428748 626859 7.19 22.35 44.27 26.17 199.13
ispell 52 23776 25564 33439 2.89 8.53 78.00 10.55 22.13
lout 253 224434 235010 372412 4.81 11.11 70.65 13.42 221.16
pgp 188 65451 69367 93540 4.19 12.60 68.15 15.04 47.75
qsort 2 187 192 252 2.85 10.07 15.05 72.00 0.18
rijndael 5 4466 4523 7517 2.45 17.23 60.59 19.71 1.68
sha 3 643 660 973 5.20 20.50 12.63 61.65 0.36
search 1 257 275 348 4.72 48.56 21.22 25.48 0.10
susan 7 8167 8523 12952 11.12 14.60 63.68 10.57 5.27
toast 29 10257 10701 14588 2.85 13.22 73.55 10.36 9.58
untoast 29 10257 10701 14588 4.25 11.32 73.59 10.83 9.21
cjpeg 131 27743 29021 41381 6.49 22.81 47.65 23.03 13.09
djpeg 151 32409 33879 47900 5.55 21.98 42.43 30.02 13.82
total 4229 1080876 1126605 1725395 5.31 15.35 60.96 18.36 725.05

Table 1. Problem Sizes and Runtimes for MiBench

Program CFGs Nodes CFG SSA tIS tNetwork tMin−Cut tmisc ttotal
Edges Edges (%) (%) (%) (%) (s)

164.gzip 24 6247 6774 9257 4.51 22.07 46.38 27.01 3.12
168.wupwise 58 15161 16436 24184 7.56 21.65 46.40 24.37 6.34
171.swim 44 9778 10742 14935 5.80 24.97 26.96 42.25 3.12
172.mgrid 63 12239 13450 18331 6.29 25.02 28.57 40.10 4.05
173.applu 49 17449 18628 28619 11.08 12.05 64.95 11.90 12.34
175.vpr 77 24874 27176 39952 5.46 15.74 56.94 21.84 13.41
176.gcc 1434 353423 395731 580250 4.69 23.72 46.55 25.03 159.62
177.mesa 557 104980 112597 178924 6.64 26.97 35.16 31.21 39.44
179.art 10 2522 2734 3694 5.21 36.18 37.95 20.64 1.05
181.mcf 6 2031 2237 3385 13.86 9.72 50.28 26.13 1.11
183.equake 1 2823 2964 4592 11.68 7.27 69.71 11.32 1.48
186.crafty 72 41306 45235 64455 3.61 10.22 75.26 10.90 31.02
188.ammp 148 25864 27597 42005 8.53 25.36 26.74 39.36 9.74
197.parser 132 24991 27775 39637 4.96 29.07 38.70 27.25 10.50
200.sixtrack 184 156614 166211 293797 5.75 4.52 85.08 4.63 214.21
252.eon 1048 97785 103637 175966 6.35 23.19 40.68 29.76 49.64
254.gap 749 134616 146667 200147 4.35 19.16 54.39 22.09 77.29
255.vortex 317 74832 84001 118843 2.26 19.62 59.08 19.02 46.45
256.bzip2 13 4560 4962 7071 5.88 27.55 46.00 20.55 1.65
300.twolf 142 48411 52724 78228 7.82 26.32 37.36 28.48 15.23
301.apsi 93 30089 32020 48589 6.37 13.85 66.85 12.92 23.24
total 5221 1190595 1300298 1974861 5.35 16.30 60.23 18.09 724.16

Table 2. Problem Sizes and Runtimes for SPEC2000

Objective Nodes Edges Pairs Eff. Pairs Cut
Space Usage 2464685 3021608 1725395 838663 301599
0.05 vs. 0.95 2490681 3027528 1725395 844479 327206
0.1 vs. 0.9 2492470 3029568 1725395 846518 329009
0.15 vs. 0.85 2493370 3030538 1725395 847486 329914
0.2 vs. 0.8 2493962 3031255 1725395 848216 330694
Exec. Time 2499118 3036694 1725395 853662 335939

Table 3. Network Statistics for MiBench

Objective Nodes Edges Pairs Eff. Pairs Cut
Space Usage 2675818 3353661 1974861 884175 292342
0.05 vs. 0.95 2748074 3379565 1974861 910002 364301
0.1 vs. 0.9 2751080 3383342 1974861 913785 367357
0.15 vs. 0.85 2752617 3385417 1974861 915860 368986
0.2 vs. 0.8 2753689 3386941 1974861 917504 370293
Exec. Time 2759242 3393677 1974861 924230 376331

Table 4. Network Statistics for SPEC2000

97



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

Figure 6. Placement Strategies for MiBench Figure 7. Placement Strategies for SPEC2000

Figure 8. Placement Strategies for MiBench Programs (Optimising for Execution Time Only)
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Figure 9. Placement Strategies for SPEC2000 Programs (Optimising for Execution Time Only)

The Tables 1 and 2 show the number of graphs (func-
tions), nodes, CFG and SSA edges of each program. Both
benchmark suites consist of approx.4000 and5000 CFGs,
respectively. The number of CFG nodes and edges in both
benchmark is between1.1 and1.3 million. The number of
SSA edges is between1.7 and2 million.

The instruction selection was executed on a2.5 GhZ
Pentium computer and the seconds for running the instruc-
tion selection is shown in columnttotal of Tables 1 and 2.
The columnstIS to tmisc give the percentage of the execu-
tion time for performing the base and chain rule selection,
as introduced in [4], setting up the network, performing the
s − t min-cut algorithm, and performing the actual place-
ment. Considering the size of the benchmark, the runtime
is still in acceptable bounds of725 seconds, using ineffi-
cient data structures in our current implementation. How-
ever, the fraction spent solving thes − t min-cut problem
is 60% in both benchmark suites, which indicates that the
currently useds − t min-cut algorithm dominates the over-
all time. The variation of thes − t min-cut runtime is also
an indication that breadthsb of the CFGs vary. By using
better algorithms for max-flow such as [13, 2] the total time
of computing optimal placements will be significantly re-
duced. The cumulative sizes of the networks, numbers of
use-def pairs, the sizes of the setsUd

nt , and the number of
placements (i.e. size of the cuts) are given for various lin-
ear combinations in Tables 3 and 4. Because of the differ-
ent objectives the instruction selector choses different base
and chain rules, which alters the size of the networks. We
remark that the cumulative network size slightly increases
when the emphasis is more on execution time because the
main weight of the chain rules is on execution time, and

the instruction selector chooses, when optimising for speed,
rules that require more chain rules to be placed due to their
result non-terminal.

To answer the second question of our experiments we
evaluate the quality improvement of the optimal placement
strategy in comparison with trivial placement strategies. We
observed that placing all conversions at the uses, as outlined
in [4], causes the greatest costs. All other strategies cause
less costs. Figures 6 and 7 depict the gain as percentage.
The trivial placement strategies, placing the chain rules at
the definition site (def) or performing a local cost analysis
for either the definition site or the uses (def-use), are always
performing worse than our new approach (min-cut). The
figures show that if we optimise for space usage only, we
barely benefit from our new approach in comparison with
trivial strategies. However, when we optimise for speed, we
reduce the costs by25% for the MiBench suite and by11%
for the SPEC2000 suite in comparison to a local cost analy-
sis (def-use). The marginal reduction of costs we achieved
by optimising for speed in comparision to the20 : 80 is a
result of the assumption that each node uses1 unit of space
uniformly, whereas the profiled execution frequencies are in
the magnitude of1000000 and above.

6. Conclusion

We demonstrate that the placement of chain rules influ-
ences the performance of programs. We present an algo-
rithm that places chain rules optimally. Experimental re-
sults show that the optimal algorithms performs better than
trivial chain rule placement strategies. We reduce the costs
for placing chain rules by25% for the MiBench suite and

99



10th International Workshop on Software & Compilers for Embedded Systems (SCOPES) 2007

by 11% for the SPEC2000 suite.
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