
Improving Switch Lowering for
The LLVM Compiler System

Anton Korobeynikov
Saint Petersburg State University

Email: asl@math.spbu.ru

Abstract—Switch-case statements (or switches) provide a na-
tural way to express multiway branching control flow semantics.
They are common in many applications including compilers,
parsers, text processing programs, virtual machines. Various
optimizations for switches has been studied for many years. This
paper presents the description of switch lowering refactoring
recently made for the LLVM Compiler System [1].

I. INTRODUCTION

Many imperative high-level programming languages offer a
form of multiway branch statement. The examples are switch
statement in C/C++/Java, case in Pascal, etc. Switches can be
usually seen in many sophisticated programs like compilers,
virtual machines, parsers because these applications often use
some value to select an action among a large collection of
possible. Almost all finite state machines implementations uses
switches in order to translate from one state to another. Such
FSMs, for example, are generated on-the-fly in applications
doing any sort of pattern matching.

This is compiler task to examine the switch and emit the
most effective code for this platfrom to implement multiway
branches. The possible issues involved in producing such code
are non-trivial. The main tradeof is, as usual, size-speed. How-
ever, in most real-world cases small size of generated code for
multiway branch facility implies its big speed, since switches
are often used in the tight inner loops of the application.

This paper presents description of the switch lowering
refactoring made in the LLVM Compiler System recently.
Section II introduces briefly to the LLVM itself, its goals,
advantages and fields of use. Section III is devoted to the
miscellaneous strategies of switch emission and the concrete
description of the LLVM switch lowering algorithm.

II. THE LLVM COMPILER SYSTEM

The LLVM Compiler System was originally designed as a
compiler framework to support transparent, lifelong program
analysis and transformation for arbitrary programs, by pro-
viding high-level information to compiler transformations at
compile-time, link-time, run-time and in the idle time between
runs [2].

Currently the key features of LLVM are:
• Has many built-in sophisticated optimization algorithms.
• Can be used as a JIT compiler.
• It is retargettable, supports many targets.
• Has Link Time Optimization (LTO) support.

• Can be successfully used as a drop-in replacement for
GCC.

The LLVM code representation describes a program using
an abstract RISC-like instruction set but with key higher-
level information for effective analysis. This includes type
information, explicit control flow graphs, and an explicit
dataflow representation (using an infinite, typed register set in
Static Single Assignment form) [3]. LLVM provides equivalent
textual, binary and in-memory code representation.

Let’s see, how LLVM code looks like. Consider the naive
recursive function, which calculates the Fibonacci sequence:

unsigned f i b ( unsigned n ) {
i f ( n <= 2)

re turn 1 ;
re turn f i b ( n−1)+ f i b ( n−2);

}

The corresponding LLVM code is:

d e f i n e i 3 2 @fib ( i 3 2 %n ) {
e n t r y :

%tmp2 = icmp u l t i 3 2 %n , 3
br i 1 %tmp2 , l a b e l %r e t u r n , l a b e l %n e x t

n e x t :
%tmp6 = add i 3 2 %n , −1
%tmp7 = c a l l i 3 2 @fib ( i 3 2 %tmp6 )
%tmp9 = add i 3 2 %n , −2
%tmp10 = c a l l i 3 2 @fib ( i 3 2 %tmp9 )
%tmp11 = add i 3 2 %tmp7 , %tmp10
r e t i 3 2 %tmp11

r e t u r n :
r e t i 3 2 1

}

One can see here some of LLVM’s key features including
embedded type information and SSA form of the represen-
tation. LLVM’s built-in optimization passes can detect tail
recursion in this case and optimize it out.

All optimizations can be performed in LLVM in two ways:

1) As LLVM-to-LLVM pass taking LLVM code represen-
tation as input and producing LLVM code as output.

2) During codegeneration for target machine.

The second approach is more suitable for our work, since
it allows us to use some target machine information, resulting
to much better code. We cannot perform well with LLVM-
to-LLVM pass, since LLVM representation is target machine
independent.



The LLVM target-independent code generator is a frame-
work that provides a suite of reusable components for trans-
lating the LLVM internal representation to the machine code
for a specified target - either in assembly form (suitable for a
static compiler) or in binary machine code format (usable for
a JIT compiler). The LLVM target-independent code generator
consists of five main components:

1) Abstract target description interfaces which capture im-
portant properties about various aspects of the machine,
independently of how they will be used.

2) Classes used to represent the machine code being ge-
nerated for a target. These classes are intended to be
abstract enough to represent the machine code for any
target machine.

3) Target-independent algorithms used to implement vari-
ous phases of native code generation (register allocation,
scheduling, stack frame representation, etc). Switch low-
ering is also implemented here.

4) Implementations of the abstract target description inter-
faces for particular targets. These machine descriptions
make use of the components provided by LLVM, and
can optionally provide custom target-specific passes, to
build complete code generators for a specific target.

5) The target-independent JIT components. The LLVM JIT
is completely target independent (it uses special structure
to interface for target-specific issues).

Lowering is the process of turning one instruction (switch
in our case) into series of more low-level instructions. This
process surely depends on the target machine and the switch
itself.

III. SWITCH LOWERING IMPLEMENTATION

Switches are represented in the LLVM with the help of
switch instruction. The syntax for this instruction is:

sw i t ch < i n t t y > < va lue > , l a b e l < d e f a u l t d e s t > [
< i n t t y > < va l > , l a b e l < d e s t > . . .

]

The switch instruction uses three parameters: an integer
comparison value value, a default label destination, and an
array of pairs of comparison value constants and label’s. The
table is not allowed to contain duplicate constant entries.

Some examples will follow.

; Emula te a c o n d i t i o n a l b r i n s t r u c t i o n
%Val = z e x t i 1 %v a l u e to i 3 2
sw i t ch i 3 2 %Val , l a b e l %t r u e d e s t [

i 3 2 0 , l a b e l %f a l s e d e s t
]

; Emula te an u n c o n d i t i o n a l b r i n s t r u c t i o n
sw i t ch i 3 2 0 , l a b e l %d e s t [ ]

; Implement a jump t a b l e :
sw i t ch i 3 2 %va l , l a b e l %o t h e r w i s e [

i 3 2 0 , l a b e l %o nz e r o
i 3 2 1 , l a b e l %onone
i 3 2 2 , l a b e l %ontwo

]

Consider the following switch:

sw i t ch i 3 2 %va l , l a b e l %o t h e r w i s e [
i 3 2 −1, l a b e l %d e s t 1
i 3 2 0 , l a b e l %d e s t 1
i 3 2 1 , l a b e l %d e s t 1
i 3 2 2 , l a b e l %d e s t 1
i 3 2 3 , l a b e l %d e s t 2

]

One can see, that cases cases 0-2 goes to one destination
and case 3 – to another. So, we can ”compact” the switch
writing such LLVM ”pseudocode”:

sw i t ch i 3 2 %va l , l a b e l %o t h e r w i s e [
i 3 2 −1 . .2 , l a b e l %d e s t 1
i 3 2 3 , l a b e l %d e s t 2

]

We call this ”pseudocode”, because LLVM does not support
switches with ”compact” case ranges (like gcc trees, for
example) now. The main advantage of this representation is
that we can go to label dest1 just emitting range comparison
(so do only 2 comparisons) and not comparison per each case
entry. Internally we will operate on switches in this form. Also
we are assuming that cases are sorted withing switch.

This source will be used later as a source switch being low-
ered. It will be called ”example switch” everywhere, otherwise
explicitly mentioned.

We will use different metrics to examine switch. Two of
them are:

1) Switch density. The definition is straightforward.
2) Number of comparisons needed to emit all cases. This is

just sum of number of comparisons needed to emit each
switch case. One comparison is needed to emit single
case, two – for case range.

A. Different Strategies to Lower Switch

1) Small Switches: All other strategies involve some over-
head needed to prepare switch data for future use. This
overhead can be significant for small switches. We consider
(compacted) switch to be small, if it contains 3 or less cases.
In this case we’re just emitting series of branches. Also note,
even we are saying, that case range uses two comparisons,
actually, we need only one unsigned comparison plus some
additional arithmetical operations. This ”trick” is shown below
during lowering of our example switch.

e n t r y :
%tmp1 = add i 3 2 %va l , 1
%tmp2 = icmp u l e i 3 2 %tmp1 , 3
br i 1 %tmp2 , l a b e l %d e s t 1 , l a b e l %n e x t

n e x t :
%tmp3 = icmp eq i 3 2 %v a l 3
br i 1 %tmp3 , l a b e l %d e s t 2 , l a b e l %o t h e r w i s e

This strategy is just a linear search over all cases. So, its
runtime is linear on number of cases.



2) Bit Tests: This is actually a ”trick” strategy. Consider our
target machine has general purpose register of n bits length.
Also, let case set span of the switch is less than n and total
number of unique destinations of switch (excluding default
case) is not so big (we are using at most 3 unique destinations).
For each unique destination we can compute its own n bit
mask. Bit 0 of mask corresponds to the minimal case, bit 1 to
the next, etc. The bit of mask is set to ’1’ if corresponding case
goes to the selected destination and is set to ’0’ otherwise. As
the result we will have at most 3 ”orthogonal” masks. During
runtime we can shift 1 to the left by the value of the input
value, perform logical and with the mask and shifted 1 and
jump to the corresponding destination if the result is not zero.
This technique is shown in the code below:

e n t r y :
%tmp1 = add i 3 2 %va l , 1
%tmp2 = icmp ugt i 3 2 %tmp1 , 4
br i 1 %tmp2 , l a b e l %o t h e r w i s e , l a b e l %h e a d e r

h e a d e r :
%tmp3 = s h l i 3 2 1 , %tmp1
br l a b e l %c a s e 1

c a s e 1 :
%tmp4 = and i 3 2 %tmp3 , 16
%tmp5 = icmp ne i 3 2 %tmp4 , 0
br i 1 %tmp5 , l a b e l %d e s t 1 , l a b e l %c a s e 2

c a s e 2 :
%tmp6 = and i 3 2 %tmp3 , 15
%tmp7 = icmp ne i 3 2 %tmp6 , 0
br i 1 %tmp7 , l a b e l %d e s t 2 , l a b e l %o t h e r w i s e

We see, that this strategy has some overhead: it should perform
case set span comparison and shift before actual checks.
Checks itself are cheap: only one ’and’ operation and one
comparison for each unique destination. So, the running time
of the strategy is linear on number of unique destination. That
is why it is extremely useful, when we have switch with few
destinations and sparse case set, like the one shown below.

sw i t ch i 3 2 %va l , l a b e l %o t h e r w i s e [
i 3 2 1 , l a b e l %d e s t 1
i 3 2 5 , l a b e l %d e s t 1
i 3 2 9 , l a b e l %d e s t 1
i 3 2 12 , l a b e l %d e s t 1
i 3 2 30 , l a b e l %d e s t 1

]

This technique performs better on 64-bit targets, than on
32-bit targets, since maximum allowed case set span is more.
Such switches can be easily seen in different parsers after dead
code elimination.

3) Jump Tables: If switch is dense enough we can just emit
a jump table. Jump table consists of header, which subtracts
the minimal case from the input value, case set span check, an
array of addresses of all destinations and a branch instruction
which takes index and array of destinations as arguments.
Branch instruction jumps to the destination pointed by index
argument in the array.

LLVM IR does not contain any jump tables related instruc-
tions. Also, not all targets supports jump tables due to lack

of needed ”branch via index” hardware instructions. We are
showing x86 32-bit assembler code as an example.

e n t r y :
movl va l , %eax
i n c l %eax
cmpl $4 , %eax
ja o t h e r w i s e
jmpl ∗ JTI1 ( ,% eax , 4 )

JTI1 :
. long d e s t 1
. long d e s t 1
. long d e s t 1
. long d e s t 1
. long d e s t 2

4) Balanced Binary Tree: Balanced binary tree emission
is widely used technique for switch lowering. Almost every
compiler has some variant of this strategy implemented. The
idea is well-known: store case values somewhere in the sorted
order and use binary search to find needed case in logarithmic
of number of cases time. Being implemented at low level (with
the use of comparisons and branches) this strategy shows only
little overhead. The algorithm itself is:

1) Select middle case from the current case set. Call it
the ’pivot’. The pivot splits the whole case set into two
subsets: one with all elements less than pivot and other
with elements greater or equal than the pivot.

2) Emit signed comparison of input value with the pivot.
If less, let current case set be ”left” subset and ”right”
subset otherwise. Emit branches to the ”left” subtree
checking and the ”right” subtree checking.

3) Repeat steps until current case set contains exactly one
case.

4) Emit conditional branch: if current input value equals
the current case - branch to corresponding destination
or to default destination otherwise.

Example LLVM code is

e n t r y :
%p i v o t = icmp s l t i 3 2 %va l , 3
br i 1 %p i v o t , l a b e l %l e a f 1 , l a b e l %l e a f 2

l e a f 2 :
%tmp2 = icmp eq i 3 2 %va l , 3
br i 1 %tmp2 , l a b e l %d e s t 2 , l a b e l %o t h e r w i s e

l e a f 1 :
%o f f = add i 3 2 %va l , 1
%tmp1 = icmp u l e i 3 2 %o f f , 3
br i 1 %tmp1 , l a b e l %d e s t 1 , l a b e l %o t h e r w i s e

5) Binary Tree With Custom Pivot Selection: When we
try to stack different strategies the usual binary tree is not
smart enough. For example, if we are combining binary tree
and jump tables emission we are interested in the best pivot,
which maximizes densities of right and left subtrees. This,
heuristically, leads to denser subtrees, thus such pivot will
allow us to emit jump table for the whole subtree at some
step.

However, we should not split tree in trivial cases, for
example, in the middle of the dense case set, even if sum of



TABLE I
EXAMPLE CASE SET

Case Binary
0 0 00000 002

1 0 00000 012

129 1 00000 012

131 1 00000 112

densitites attends maximum at this pivot. Also, it will be better
to split switch maximizing the distance between subtrees.

Taking into account all mentioned arguments, we are as-
signing each pivot its own quality. Let li and ri denote the
densities of the left and right subtrees being split at pivot i.
Let ai denote the maximal case of the left subtree and bi –
minimal case of the right subtree. The quality qi of pivot i is
defined as

qi = (li + ri) log(bi − ai).

We are selecting pivot with maximum quality. All other details
are the same as for ordinary binary tree. Such pivot selection
procedure will surely ”throw out” trivial cases (splitting in the
middle of the dense block) and will prefer more far subtrees,
when sum of the densities for two different pivots are close.

Surely, resulting tree is not balanced any more, thus this
strategy should be used only in connection with other strate-
gies like jump tables emission.

6) Multiway Radix Search Trees: Multiway radix search
trees (or MRST for short) is a novel technique first presented in
[4]. In general it is a sort of non-perfect hashing but designed
specially for static sparse search trees. This is really important
method, since it can turn sparse case set into series of much
more denser sets suitable for applying of other strategies listed
here. We will cite the description from [4].

The algorithm looks at the input set of cases and finds a
short sequence, or window, of consecutive bits that distin-
guishes the cases into several subsets. The algorithm generates
code that branches on the value of the window in the run-time
input thus selecting a specific set of candidate cases based on
the input value. For empty sets, the branches lead to the default
handle; for sets containing one case, to simple comparison of
the case and the input value; and for larger sets, to recursive
invocations of the algorithm.

It is desirable to find long windows, in order to make the
search tree wide and shallow. However, the length of the
windows should be limited, since the branches require hash
tables that grow exponentially in the window length. The
simple greedy strategy of finding the longest critical window
that distinguishes the cases into more than a threshold number
of subsets relative to the window length is used. In [4] it is
proven, that average number of branches for MRST algorithm
is at most three.

Consider the table I. We see, that cases 0, 1, 129 and 131
are almost uniquely determined by their last two bits. The one
exception is the pair 1 and 129, where bit 7 can determine
the case. Therefore we can quickly narrow down the candidate

cases for a given run-time input by hashing first on the last two
bits and then, if necessary, on bit 7, the leftmost bit. Finally,
we can compare the input value with the unique remaining
candidate case. Note that the code should branch directly to
the default handler for any run-time input ending in 102 since
no case ends in this bit pattern.

MRST tends to be global switch rewriting strategy. That is
why it is hard to use it ”stacked” with other methods. Consider
the switch with two dense case sets separated far away. In most
cases, it will be better to split such switch into two case ranges
and emit two jump tables, not to apply MRST.

B. Switch Lowering

Before our work LLVM’s switch lowering algorithm was
simple: at first it tried to emit jump table, if the switch had been
dense enough. Otherwise the algorithm just emitted balanced
binary search tree. Also, algorithm operated on the switch
itself, not its ”compacted” form. This leads to inefficient code
in many cases.

Current LLVM switch lowering algorithm is simple
worklist-driven algorithm trying to apply different strategies
for case set popped from the worklist.

Algorithm 1 Current LLVM switch lowering algorithm
Require: Switch SI in ”compacted” form.
Ensure: Switch SI lowered with different strategies.

push SI to WorkList;
repeat

pop cSI out of WorkList;
if (case set span of cSI is small) & (number of unique
destinations of cSI is also small) then

emit bit tests;
else if (number of cases in cSI ≤ 3) then

emit series of branches; (”Small switch” strategy)
else if cSI is not less than 40% dense then

emit jump table;
else

let P be the pivot of maximum quality;
emit comparison with P ;
split cSI into two subswitches lSI and rSI at P ;
push lSI to WorkList;
push rSI to WorkList;

end if
until WorkList is not empty

IV. RELATED WORK

There have been a few papers discussing the issues arising
in optimizations of switches.

Different methods were studied by Bernstein in [5] inclu-
ding linear search, binary search and jump tables. He found,
that linear search is faster than the jump table for small
switches (when number of cases is 3 or less) and that binary
search is faster than linear search for big switches. The meth-
ods of breaking big switch into smaller and denser clusters
were also examined. He proposed, that optimal solution of the



TABLE II
COMPILATION TIMES

Case Old switch lowering New switch lowering
Mozilla Suite 37m47s 35m21s

Qt Library 28m54s 27m01s

clustering problem is NP-complete. However, in [6] Kannan
and Proebsting presented optimal clustering algorithm, which
runs in O(n2) time.

In [7] switch lowering problem was studied from the
position of a static search problem. A summary of the various
methods were presented, and these methods were analyzed
in terms of time and space complexity of the executable
code, and also compilation time. A general algorithm for
code generation was presented and was shown to improve
Bernstein’s algorithm in a number of ways.

MRST algorithm was firstly presented in [4]. Authors
discussed other possible switch lowering strategies including
linear search, balanced binary tree, combination of binary trees
and hash tables, and jump tables in comparison with MRST.
Also the implementation of MRST algorithm for lcc compiler
was presented.

In [8] the switch lowering problem was examined when
there are additional information about the case hit frequency.
Authors presented different strategies such as hot case hoisting
and switch case partitioning which lead to significant reduc-
tion of running time. So, actually, they are studied profile-
driven switch lowering.

Some approaches assume that switch cases have been trans-
formed to a series of conditional branches and try to reorder
these branches according to their importance [9] or convert
them into indirect jumps [10].

V. RESULTS, CONCLUSION AND FUTURE WORK

Unfortunately, SPEC testsuite was unavailable for author.
That is why we perform comparison in the following way:

• Perform llvm-gcc compiler bootstrap with and without
improving switch lowering algorithm.

• Build Mozilla Suite and Trolltech’ Qt library with both
compilers

• Compare build times.

All tests were performed on dual-core AMD Opteron 2210
workstation with 2Gb RAM. Only one core was used for tests.
The results are shown in the table II.

Possible future work is summarized below.

• We haven’t added MRST algorithm yet due to problems
noted in the section III-A6. Actually, we need to develop
some local sparseness metric, which can be used to
decide, whether MRST algorithm or other techniques
should be run on switch.

• We haven’t studied any profile-driven switch lowering.
We suppose, that impact from such optimization can be
significant.

• It can be interesting to try to implement switch case
clustering algorithm from [6] and compare it with another
strategies.
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