
Making Context-sensitive Points-to
Analysis with Heap Cloning

Practical For The Real World

Chris Lattner
Apple

Andrew Lenharth
UIUC

Vikram Adve
UIUC

What is Heap Cloning?

Distinguish objects by acyclic call path

void foo() {
c1: list* L1 = mkList(10);
c2: list* L2 = mkList(10);
}

L1 L2

list_1

Without heap cloning:
Lists are allocated in a common
place so they are the same list

L1 L2

c1/list_1 c2/list_1

With heap cloning:
Disjoint data structure
instances are discovered

list* mkList(int num) {
 list* L = NULL;
 while (--num)
list_1: L = new list(L);
}

Why Heap Cloning?

● Discover disjoint data structure instances
– able to process and/or optimize each instance

● More precise alias analysis
● Important in discovering coarse grain parallelism*
● More precise shape analysis?

But widely considered
non-scalable and rarely used

* Ryoo et. al., HiPEAC '06

Some Uses of Our Analysis

● Automatic Pool Allocation
– PLDI 2005 – Best Paper

● Pointer Compression
– MSP 2005

● SAFECode
– PLDI 2006

● Less conservative GC
● Per-instance profiling
● Alias Analysis

– optimizations that use alias results

Data Structure Analysis (DSA) is well tested,
used for major program transformations

Available at llvm.org

Key Contributions

● Many algorithmic choices, optimizations necessary
– We measure several of them

● Sound and useful analysis on incomplete programs
● New techniques

– Fine-grained completeness tracking solves 3 practical issues
– Call graph discovery during analysis, no iteration
– New engineering optimizations

Heap cloning (with unification)
can be scalable and fast

Outline

● Algorithm overview
● Results summary
● Optimizations and their effectiveness

Design Decisions

● Field sensitive
● Context sensitive
● Heap cloning

Fast analysis and scalable for production compilers!

● Unification based
● Flow insensitive
● Drop context-sensitivity

in SCCs of call graph

Improves PrecisionImproves Speed,
Hurts Precision

● Fine-grained
completeness

● Use-based type
inferencing for C

C
om

m
on

 D
es

ig
n

of
C

om
m

on
 D

es
ig

n
of

Sc
al

ab
le

 A
lg

or
it

hm
s

Sc
al

ab
le

 A
lg

or
it

hm
s

DS Graph Properties

int Z;

void twoLists() {
 list *X = makeList(10);
 list *Y = makeList(100);
 addGToList(X);
 addGToList(Y);
 freeList(X);
 freeList(Y);
}

Object type

{G,H,S,U} : Storage
class

list: HMRC

list* int

X

list: HMRC

list* int

Y int: GMRC
Z

Field-sensitive for
“type-safe” nodes

Each pointer field has a
single outgoing edge

These data have been proven
(a) disjoint ;

(b) confined within twoLists()

Algorithm Fly-by

● Local
– Field-sensitive intra-procedural summary graph

● Bottom-up on SCCs of the call graph
– Clone and inline callees into callers
– summary of full effects of calling the function

● Top-down on SCCs of the call graph
– Clone and inline callers into callees

3 Phase Algorithm

Completeness

1. Support incomplete programs

2. Safely speculate on type safety

3. Construct call graph incrementally

A graph node is complete if we can prove we
have seen all operations on its objects

Incompleteness - Sources

list* ExternGV;
static int LocalGV;

int* escaping_fun(list*) {...}

static int* local_fun(list*) {
...
x = extern_fun(L1);
...
}

Externally visible globals

Return values and arguments
of escaping functions

Return value and arguments
of external or unresolved
indirect calls

Incompleteness is a transitive closure
starting from escaping memory:

Call Graph Discovery

● Discover call targets in a context-sensitive way

● Incompleteness ensures correctness of points-to
graphs with unresolved call sites

● SCCs may be formed by resolving an indirect call
– Key insight: safe to process SCC even if some of its

functions are already processed
– See paper for details

Methodology

● Benchmarks:
– SPEC 95 and 2000
– Linux 2.4.22
– povray 3.1
– Ptrdist

● Presenting 9 benchmarks with
slowest analysis time
– Except 147.vortex and 126.gcc
– Lots more in paper

● Machine: 1.7 Ghz AMD Athlon,
1 GB Ram

Benchmark
siod

134.perl
252.eon

255.vortex
254.gap

253.perlbmk
povray31

176.gcc
vmlinux

kLOC
12.8
26.9
35.8
67.2
71.3
85.1

108.3
222.2
355.4

Results - Speed

< 5% of GCC -O3 time

Results – Memory Usage

Avoiding Bad Behavior

● Equivalence classes
– Avoid N^2 space and time for globals not used in most

functions
● Globals Graph*

– Avoid N^2 replication of globals in nodes
● SCC collapsing*

– Avoid recursive inlining
– hurts precision

● Optimized Cloning and Merging*
– Avoid lots of allocation traffic

* used by others also

Slowdowns – No Optimizations

`

1x == fully optimized 21.8x

7.5x

Optimizations Effects

N
o

Eq
ui

va
le

nc
e

C
la

ss
es

N
o

G
lo

ba
ls

 G
ra

ph

N
ai

ve
 M

er
gi

ng
N

o
SC

C
 C

ol
la

ps
in

g

Results – By Size

 Largest 4 programs
 Second largest 4
 Third largest 4

 Average LOC
280k
72k
52k

 Average Speedup
10.8x
4.4x
2.7x

Optimizations are essential for
scalability, not just speed

Speedup due to optimizations
grows as program size does

Summary

● Context sensitive analyses with heap cloning can
be efficient enough for production compilers

● Sound and useful analysis is possible on
incomplete programs

● Many optimizations necessary for speed and
scalability

Questions?

Rob: Why heap cloning?
Andrew: It's better than sheep cloning.
Rob: Yes, heap cloning raises none of the ethical concerns of
 sheep cloning, and sometimes the sheep have strange
 developmental issues that you don't get with heap cloning.

Related – Ruf

● Unification
● Heap cloning
● Field sensitive
● Globals graph
● Intelligent inlining
● Drop context

sensitivity in SCC

● Requires whole
program

● For type safe language
● Requires call graph

– used context insensitive

Similarities Differences

Related – Liang (FICS)

● Unification
● Context sensitive
● Field sensitive

● Iterates during Bottom Up
● No heap cloning
● Requires call graph

Similarities Differences

Related – Liang (MOPPA)

● Unification
● Context sensitive
● Field sensitive
● Globals graph
● Heap Cloning

● Iterates during Bottom Up
● Requires call graph or

iterates to construct it
● Memory intensive

Similarities Differences

Related - Whaley-Lam

● Context sensitive ● Constraint solving
algorithm

● Call graph is input to
context-sensitive alg
– discovered by context-

insensitive alg
● For type safe language
● No heap cloning
● Much slower on similar

hardware

Similarities Differences

Related - Bodik

● Context sensitive
● Heap cloning
● SCC collapsing

● Subset based
● Requires call graph
● Demand driven
● Requires whole

program
● For type safe language
● Much slower on similar

hardware

Similarities Differences

Related - Nystron

● Top-down, bottom-up
structure

● Context sensitive
● Heap cloning
● SCC collapsing
● Behavior of Globals

stored in side structure

● Subset based
● Some codes cause

runtime explosion

Why Heap Cloning? Part 2!

● Rob: Why heap cloning?
● Andrew: It's better than sheep cloning.
● Rob: Yes, heap cloning raises none of the

ethical concerns of sheep cloning, and sometimes
the sheep have strange developmental issues that
you don't get with heap cloning.

