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What is Heap Cloning?

Distinguish objects by acyclic call path

void foo() { list* mkList(int num) {
cl: list* L1 = mkList(10); list* L = NULL;
c2: list* L2 = mkList(10); while (--num)
} list 1: L = new list(L);
}
Without heap cloning: With heap cloning:

Lists are allocated in a common Disjoint data structure
place so they are the same list  instances are discovered

list 1 cl/list 1 | |c2/list 1

CloCIo




Why Heap Cloning?

Discover disjoint data structure instances
- able to process and/or optimize each instance

More precise alias analysis
Important in discovering coarse grain parallelism*
More precise shape analysis?

But widely considered
non-scalable and rarely used

* Ryoo et. al., HIPEAC '06



Some Uses of Our Analysis

Data Structure Analysis (DSA) is well tested,
used for major program transformations

Automatic Pool Allocation
- PLDI 2005 - Best Paper

Pointer Compression
- MSP 2005

SAFECode
- PLDI 2006

Less conservative GC
Per-instance profiling

Alias Analysis
- optimizations that use alias results

Avalilable at llvm.org



I Key Contributions

I Heap cloning (with unification)
can be scalable and fast

I « Many algorithmic choices, optimizations necessary
- We measure several of them
« Sound and useful analysis on incomplete programs
« New techniques
- Fine-grained completeness tracking solves 3 practical issues

- Call graph discovery during analysis, no iteration
- New engineering optimizations



I Outline

 Algorithm overview
I « Results summary
» Optimizations and their effectiveness



Common Design of
Scalable Algorithms

Design Decisions

Fast analysis and scalable for production compilers!

Improves Speed,
Hurts Precision

Improves Precision

Unification based

Flow insensitive

Drop context-sensitivity
iIn SCCs of call graph

Field sensitive
Context sensitive
Heap cloning

Fine-grained
completeness
Use-based type
iInferencing for C




DS Graph Properties

I int 7; Each pointer field hasa {G,H,S,U} : Storage

vold twolLists () {

class

int: GMRC
Z

single outgoing edge

list *X = makelList (10);
list *Y = makeList (100) ;
addGToList (X) ;
addGToList (Y) ;
freelList (X) ;
freelList (Y) ;

Object ty /F,Iist:HMRC\W (list:HMRC\W
ject type . .

L\Iist* in L\J};f* int ,J
Field-sensitive for

“type-safe” nodes These data have been proven
(a) disjoint ;
(b) confined within twolLists()




| Algorithm Fly-by

I 3 Phase Algorithm

I e Local

- Field-sensitive intra-procedural summary graph

« Bottom-up on SCCs of the call graph
- Clone and inline callees into callers
- summary of full effects of calling the function

e Top-down on SCCs of the call graph
— Clone and inline callers into callees



Completeness

A graph node is complete if we can prove we
have seen all operations on its objects

1. Support incomplete programs
2. Safely speculate on type safety

3. Construct call graph incrementally



Incompleteness - Sources

Incompleteness is a transitive closure
starting from escaping memory:

list* ExternGV; - Externally visible globals
static int LocalGV;

| | Return values and arguments
int* escaplng_fun (llSt*) { 5 0 o }4— Of escaping functions

static int* local fun(list*) ({

x = extern fun(Ll); - Return value and arguments
‘.. of external or unresolved
} Indirect calls




I Call Graph Discovery

I * Incompleteness ensures correctness of points-to
graphs with unresolved call sites

« Discover call targets in a context-sensitive way

« SCCs may be formed by resolving an indirect call
- Key insight: safe to process SCC even if some of its
functions are already processed
— See paper for details



Methodology
» Benchmarks: Benchmark| kLOC
- SPEC 95 and 2000 siod 12.8
- Linux 2.4.22 134.perl 26.9
- povray 3.1 252.eo0n 35.8
- Ptrdist 255.vortex 67.2
» Presenting 9 benchmarks with 254.9ap 71.3
slowest analysis time 253'per'br2'1< 182-%
- Except 147.vortex and 126.gcc pi\;r(%cc 222'2
— Lots more in paper umlinux 355 4

« Machine: 1.7 Ghz AMD Athlon,
1 GB Ram




Results - Speed

< 5% of GCC -O3 time

3.5
3

(SPu023s) QI ],

XDUI[WA

993°9L1

[ cAeaaod

yuqrad ¢z

de3 6g

X9)I0A GG

u0d'ZET

[1d ¢

POIS

Benchmark by increasing LOC



Results - Memory Usage
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Avoiding Bad Behavior

Equivalence classes
- Avoid N™2 space and time for globals not used in most
functions

Globals Graph*

- Avoid N” 2 replication of globals in nodes

SCC collapsing*

- Avoid recursive inlining

- hurts precision

Optimized Cloning and Merging*
- Avoid lots of allocation traffic

* used by others also
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Effects
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Results - By Size

Speedup due to optimizations
grows as program size does

Average LOC|Average Speedup
Largest 4 programs 280k 10.8x
Second largest 4 712K 4.4x
Third largest 4 52Kk 2.7X

Optimizations are essential for
scalability, not just speed




I Summary

« Context sensitive analyses with heap cloning can
I be efficient enough for production compilers

e Sound and useful analysis is possible on
iIncomplete programs

« Many optimizations necessary for speed and
scalability



Questions?

Rob: Why heap cloning?
Andrew: It's better than sheep cloning.
Rob: Yes, heap cloning raises none of the ethical concerns of

sheep cloning, and sometimes the sheep have strange
developmental issues that you don't get with heap cloning.



Related - Ruf

Similarities
Unification

Heap cloning
-leld sensitive
Globals graph
Intelligent inlining
Drop context
sensitivity in SCC

Differences

« Requires whole
orogram
« For type safe language

Requires call graph
- used context insensitive




I Related - Liang (FICS)

I Similarities Differences
 Unification * |terates during Bottom Up
I e Context sensitive « No heap cloning
 Field sensitive « Requires call graph



Related - Liang (MOPPA)

Similarities Differences

Unification e |terates during Bottom Up
Context sensitive * Requires call graph or
Field sensitive iterates to construct it
Globals graph « Memory intensive

Heap Cloning



Related - Whaley-Lam

Similarities
« Context sensitive

Differences

Constraint solving
algorithm

Call graph is input to
context-sensitive alg

- discovered by context-
iInsensitive alg

For type safe language
No heap cloning

Much slower on similar
hardware



I Related - Bodik

I Similarities Differences

« Context sensitive Subset based
I « Heap cloning Requires call graph

« SCC collapsing Demand driven
Requires whole
orogram
« For type safe language
 Much slower on similar

hardware




Related -

Top-down, bottom-up
structure

Context sensitive

Heap cloning

SCC collapsing
Behavior of Globals
stored in side structure

Nystron

e Subset based
e Some codes cause
runtime explosion



I Why Heap Cloning? Part 2!

« Rob: Why heap cloning?
I  Andrew: It's better than sheep cloning.
* Rob: Yes, heap cloning raises none of the

ethical concerns of sheep cloning, and sometimes
the sheep have strange developmental issues that

you don't get with heap cloning.



