Structural Abstraction of
Software Verification Conditions *

Domagoj Babi¢ and Alan J. Hu

Department of Computer Science
University of British Columbia

Abstract. Precise software analysis and verification require trackive exact

path along which a statement is executed (path-sens)tiitg different con-

texts from which a function is called (context-sensitiyitgnd the bit-accurate
operations performed. Previously, verification with suobcgsion has been con-
sidered too inefficient to scale to large software. In thipgrawe present
a novel approach to solving such verification conditionsseldaon an auto-
matic abstraction-checking-refinement framework that@tgpnatural abstrac-
tion boundaries present in software. Experimental reshitsv that our approach
easily scales to over 200,000 lines of real C/C++ code.

1 Introduction

Verification conditions (VCs) are logical formulas, constied from a system and de-
sired correctness properties, such that the validity dfieation conditions corresponds
to the correctness of the system. Proving validity of veatifn conditions is an essen-
tial step in software verification, and is the focus of thipga

In general, proving software VCs requires interprocedamalysis, e.g. of the prop-
agation of data-flow facts. Some properties, like propetimg®f lock-unlock calls,
tend to be localized to a single function and are amenabl@ripler analysis. Many
others, especially pointer-related properties, tend &ms$hrough many function calls.

To handle the complexity of interprocedural analysis, thi#veare analysis com-
munity has developed a number of increasingly expensiveati®ns. For instance,
path-insensitive analysis does not track the exact patigalhich a certain statement
is executed, while context-insensitive analysis does iifgrdntiate the contexts from
which a function is called. These abstractions work well ptirizing compilers, but
are not precise enough for verification purposes. Softwardication analysis has to
be both path- and context-sensitive (*-sensitive) to kbemtumber of false errors low.

Precise *-sensitive software verification has two compdtsi€tt) we need an anal-
ysis that takes a piece of software as input and computes ¥@Gxgeal formulas in
some logic, and (2) once the VCs are computed, we need to ¢hetkvalidity. This
paper proposes a hovel approach to checking the validityseftsitive VCs.

Our approach is an abstraction-checking-refinement frarethat exploits the
natural function-level abstraction boundaries presersofitware. Programmers orga-
nize code into functions and use them as abstractions. Enejto ignore the details of

* Research supported by a Microsoft Graduate Fellowship adiSERC Discovery Grant.



the effects of the function on the caller's context — the estsinvariant to remember
is to remember no invariant at all. Analogously, our apphoadially treats individual
effects of a function call as unconstrained variables anceimentally adds constraints
corresponding to the effects of the function call. We denrans that such a structural
refinement approach works well, even on large general-merfdC++ applications.

1.1 Related Work

Interprocedural analysis can have many forms, and is coryni@sed on some form
of summarization. Usually, the more expressive the sunesarie, the higher the com-
putational complexity. For instance, if the set of data-ffaets is a finite set, and the
data-flow functions distribute over the confluence, intecgdural data-flow analysis
can be done in polynomial time [21]. If the summaries are cosep of predicates over
arbitrary logic the analysis gets more complex, dependintipe underlying logic.

If the number of predicates is relatively small, predicaisteaction [14] makes it
possible to represent summaries compactly as BDDs [5]. dyisoach has been ef-
fectively used in SLAM [3] and BLAST [15, 16]. Predicate atagtion is very coarse,
and hasn’t been shown to scale well to large applicationddta-intensive properties.
Its advantage is that the VCs given to the theorem provereatively simple, cor-
responding to a conjunction of conditions on some path inptlegram. Saturn [25]
handles lock-properties in a similar way — by computing siaries as projections
onto a set of predicates, with the difference that it doesbstract VCs before passing
them to the theorem prover. In contrast to the above-meati@pproaches, the tech-
nique presented in this paper allows summaries to be anpisgressions, rather than
just projections onto a set of predicates.

Livshits and Lam [20] proposed a path- and context-semsjpiwints-to analysis
and used it for simple security checks. Their summariesessgt definition-use chains
required for tracking pointers interprocedurally. Theymbmstrated their analysis on
small programs up to 13 thousand lines of code. Whaley and[R8hstressed the im-
portance of context-sensitive analysis and proposed & lfoute approach to context-
sensitive, inclusion-based pointer alias analysis. Thaalysis, implemented in the
bddbdd system, represents input-output relations as BDDs [5]. Bb®-based ap-
proach seems to work well for tracking a set of locationsjtistnot applicable to ver-
ification of assertions because BDDs are known to suffer gponential blow-up on
multiplication, division, and barrel shifters — all frequieperations in software. Both
works focused on the software analysis side, while our faga® proving *-sensitive
VCs. We believe that our results could improve the scalgtoli their approach.

The CBMC tool [7, 6] verifies C programs, to bounded depthhwit-accuracy and
*-sensitivity. The approach is direct symbolic executidrite C into a SAT instance,
unrolling all loops and inlining all function calls, so saig the generated VC is the
performance bottleneck for large software. Our resultseskithat bottleneck.

In the domain of programs limited to static memory allocatidstrée [4] has
been successfully applied to verification of mission-caltisoftware systems. Although
context-sensitive over the chosen abstract domain(sj)éAstas designed for systems
that contain no goto statements, no dynamic memory allmcatio recursive calls, no



recursive data structures, and no pointer arithmetic.eSta focus is verification of
assertions in general purpose software, these constvegmésnot acceptable.

Context-sensitivity is only one component of the problemthPsensitivity is the
other. The BLAST and SLAM software model checkers enumaratks one-by-one,
hoping that refinement will refute many paths with each agatedicate. For each path,
the model checker constructs an abstracted theorem prowegy,qvhich can corre-
spond to a path that spans through many functions. Such patheration during the
abstraction-checking-refinement loop seems wasteful —$iers are extremely ef-
ficient in path enumeration and refutation of infeasiblehpaso we believe that path
enumeration should be left to the SAT solver.

Others have realized the importance of letting the theoreswgs enumerate the
paths as well. For instance, software verification systémedoogie [18] and ESC/Java
[12] do construct a single formula and let the theorem pr@rarmerate the paths.
However, these systems rely on the user to provide intedhstactions, and do not
attempt to abstract the formulas before calling the theqreover.

Our approach to proving *-sensitive VCs merges both SAVembased path enu-
meration and abstraction, yielding a precise, but praltyiedficient alternative to pre-
vious methods.

2 A Review of Verification Condition Generation

Traditionally, VCs are computed by Dijkstra’s weakest pradition transformer [10],
as is done for example in ESC/Java [12] and Boogie [18]. Aenedpresentation of VCs
computed by the weakest precondition can be exponentibkisize of the code frag-
ment being checked, but this blow-up can be avoided by thedaottion of fresh vari-
ables to represent intermediate expressions [22, 13, E9¢, e give a quick overview
of weakest-precondition-based VC computation to illustthe process, some common
problems, and an efficient representation.

Consider the following simple program (modified from [19]):

S1: if (x < 0) {y=-2«x—y; }
S2: y =x +y;
S3: assert(0<=vy);

The VC can be computed as the weakest liberal preconditlpf) of a sequential
composition of those three statements with respettig giving:

wlp (S1;2;S3, true) = wlip (SL,wlp (S2,wlp (S3,true))) 1)
— wip(SLwlp(,0<y)) )
= wlp(SL,0< x+Y) (3)
=0<ITE(X<0,—(X+Y),x+Y) 4)

wherelTE is the if-then-else operator. Obviously, continuous aggtion ofwlp () can
lead to exponential blowup in the size of the formula. To eubie blowup, we can
perform renaming, which guarantees a single point of dedimfbor each variable (as in
Single Static Assignment (SSA) form [9]):



Fig. 1. Graph Representation of the Verification Condition. Noafleodes are labeled with op-
erators; leaf nodes, with variables and constants. Opanaties are connected to their operands
by edges.

S1: if (x0 < 0) { yl = —2xx0 — y0; } else { yl = y0; }
S2: y2 = x0 + y1;
S3: assert(0<= y2);

Since each variable has a single point of definition, assagrisican be replaced with
equivalencespassive commands [19]), and therwlp (S1;S2;S3,0 < y») boils down
to:

X <0= (YI=-2%—Y0)) A % >0=(y1=Y0)) A (Y2=X+Y1) A (0<y2)

Exponential blowup is avoided at the expense of introduatiofresh variables.

The same VC can be represented in the form of a graph. In pktiave simply
represent a logical formula as a directed, acyclic graphyhich non-leaf nodes are
labeled with operators, their children are their operaadd,the leaves are labeled with
variables or constants. A graph representation of a lofpcalula such that all common
subexpression nodes have been merged will be called a miaxishared graph. Figure
1 depicts a maximally shared graph representation of thepated VC in Eq. 4. The
advantage of using maximally-shared graphs for VC reptasien is that the elimina-
tion of common subexpressions is simple, while the graphilidisear in the size of
the code fragment.

The work in this paper is to support our static checker Y510, which is being
designed to be a general-purpose, bit-precise assertemkeh Q\LYSTO implements
an efficient interprocedural symbolic execution algoritfifthat converts SSA (com-
puted using the LLVM compiler framework [17]) into functieummaries and VCs in
the form of acyclic maximally-shared graphs. For each iocghat a function modifies,
CALYSTO computes the resulting expression in terms of the functipats (including
globals). Each such expression is represented as a sepanmatgary expression, which
gives fine-grained control during the refinement process.(38). Like other static
checkers, @LYSTO makes a few unsound approximations. For example, loopsrare u
rolled a fixed number of times, with the additional assumptluat the loop test fails
at the loop exit, as is done in ESC/Java [12], Saturn [25],@ddr versions of Boo-
gie [18]. We could also handle loops soundly by using loopiiants (computed by any



© ® N o 0 A W N B

11

12

13

14

15

16

17

18

19

20

21

22

23

24

technique), as is done in Boogie. SimilarlyaysTo handles non-constant array in-
dices by unsoundly replacing them with constant indiceadiition, GALYSTO makes
the unsound assumption that pointers passed as functiampgers are not aliased,
as in [20, 25]. However, £.YSTO’s computed VCs are *-sensitive, fully bit-accurate,
and support all standard operators (e.g., signed/unsidimiesion and multiplication on
bit-vectors, etc.), except that floating-point arithmégiaot yet implemented.

3 Exploiting Natural Abstraction Boundaries

We begin with an example that provides intuition about how approach solves *-
sensitive VCs. The code used in the example is a simplifiecsbgiotly modified piece

of code from a real applicatiohTo prove an assertion, we need to prove either that the
assertion itself is unreachable, or that it always evaisaterue. Through the example,
we shall follow a sequence of steps needed to prove the mssert line 22.

int globall, global2;

/1 1f xdata<O, returns true and computesdata=abs(data).
bool flip(int xdata) {
if (xdata< 0) {
xdata = —(xdata);
return true ;

}

return false;

}

/Il Assume init is a pure function (no sideffects).
int init(int x) {

/l Some expensive computation...
}

/I If globall is positive and global2 is negative, scales
/1 globall by abs(global2).
void scale () {
global2 = init(globall);
if (flip(&global2)) {
assert(global2 '= 0);// Div by zero.
globall /= global2;

}

As mentioned earlier, the symbolic execution will computgraph representing
each effect of each function in terms of its parameters (dololads). For example, the
functionf | i p has two effects: a boolean return value and its effect ondbation
pointed to by its parameter. At the caller’s side, the synat®tecution initially denotes
effects of a function call by a placeholder operator node gxample, the return value

1 The example is modified from our modular arithmetic theoreover SPEAR.



(©) (d

globall

e S
5
S
5

Fig. 2. Sequence of Refinements of the Computed VC. Summary nodssacturally refined in
the following sequencef:l i p: ret,fli p: gl obal 2, and finallyi ni t: ret. The subgraph
obtained by the refinement ohi t : r et is represented by a triangle. For simplicity, these fig-
ures do not show pointer references and dereferences.

of a call tof | i p will be an operator node labeldtip : ret whose child is the argument
toflip.

The VC will be an implication: if line 22 is reachable, therethsserted condition
must hold. Let us ponder the structure of the computed VC. drftecedent contains
two nested function calls. The consequentis a simple cosgaof zero with the effect
of f | i p on the global variable. Observe that the expression isexritt terms of the
initial values of all involved variables, facilitating coanon subexpression elimination
by simple graph rewriting. Graphically, the VC can be repréed as a maximally-
shared graph (Fig. 2a). Summaries of the individual effefoésch called function are at
first represented as unconstrained fresh variables. Thameswill be called summary
nodes. Interpretation of a summary node corresponds tadgiegl the node with a node
that represents the summarized expression. Such expawi@sponds to a round of
inlining.

To be fully context-sensitive, the obvious approach is tmpketely inline all calls.
Such inlining leads to exponential blow-up even on smalliappons. We found that
aggressive inlining of non-recursive function calls wodddy on several very small
applications, resulting in roughly 50-180X increase insfee of the code.

A better approach is to track the individual effects of a timtseparately. This fine-
grained approach makes it possible to expand only the dlitee@alled function that is
actually in the cone of influence of the verified property. Wasider this approach to be
the state of the art and shall use it as the base case for cizmparith our abstraction-
based approach in Sec. 4. Together with the common subeipmesdimination, this
approach is more scalable, but does not offer satisfactenfppnance.

The crux of the problem is that interprocedural analysistaatide when to stop
inlining. After only three refinements, *-sensitive anadysould expand computation-



ally expensive ni t , rendering the problem much harder for the decision proeedu
However, the VC can be proved to be valid after only two refiaeta

Letx = init : ret(globall)
X< 0= ITE(x<0,—Xx,X) # 0

which simplifies tatrue, no matter whait ni t returns. Cases like this appear frequently
in practice, especially during *-sensitive verificationdta-intensive properties, like
checking of assertions or global pointer properties.

Our approach gradually refines the maximally-shared graiptil,the VC becomes
valid, or the decision procedure finds a falsifying assignitieat does not depend on
any summary nodes. The rest of this section gives the defailsr approach.

3.1 Algorithm Overview

The proposed approach follows the general paradigm of attontounter-example-
guided, abstraction refinement [8], but unlike typical CH&GApproaches, our abstrac-
tion and refinement operations are entirely structural,thedefinement works incre-
mentally on abstract counterexamples (rather than cdntrgthe abstract counterex-
ample, proving it spurious, and then analyzing the proafkdtions modified by a func-
tion call (either indirectly through a pointer, or directlia returned values) are initially
considered to be unconstrained variables. Those uncaredireariables are incremen-
tally refined until the formula represented by the graph beeovalid, or the falsifying
assignment does not depend on any unconstrained varithlesr case, incremental
refinementis structural refinement on the maximally-shgragh. The refinement step
replaces an unconstrained variable with a subgraph thegsepts the summary expres-
sion and the edges that were pointing to the unconstraingblaare relinked to point
to the newly constructed expression. We shall say that meméexpandssummary
nodes.

Algorithm 1 Main abstraction-checking-refinement loop.

. LetF be a node in the maximally-shared graph representing some VC

2: f =encod¢F)

3: while —solveg f) do > solvereturnsfalse if a solution (falsifying assignment) is found.
4: if —REFINE(F,currentsolution) then
5
6

[EnY

Report solution and exit.
. Report VALID and exit.

An abstract rendition of our algorithm is given in Alg. 1. Toleecked verification
condition is represented by a rdetin the maximally-shared graph. The algorithm en-
codesF on the fly into formulaf and passes it to the decision proceds@\g)). In
our caseF is bit-accurately translated to CNF by the standard Ts&iéinsform [22],
but from the maximally shared graph after common subexjmes$iave been elimi-
nated. Summary nodes are encoded as unconstrained varittite decision proce-
dure proved valid, we are done. Otherwise, refinement takemnd the table of current



assignments to variables represented by nodes in the sugfgeorand returngrue if

the graph was refined, arfdlse otherwise. If the graph was not refined, then all the
summary nodes related to the falsifying assignment have &geanded, and the main
loop terminates. Otherwise, the abstraction-checkiffiggment cycle continues. Since
maximally-shared graphs are acyclic, the algorithm neségserminates.

The algorithm interacts gracefully with incremental derigprocedures — each ex-
pansion of a summary node replaces only a single node wittxbieession represented
by the summary node, monotonically increasing the set o§traimts.

Our lazy approach to interpretation of function summaresembles the intuition
behind lazy proof explication [11], a technique used to geithetween different theo-
ries in a theorem prover. The shared intuition is to abs@aety expensive reasoning
— expanding a function summary or solving a sub-theory quergs unconstrained
variables, and then constrain them lazily, only as neededftde solutions to the ab-
stracted problem. The specifics of what to abstract and hosefioe, of course, are
different, since we are solving different problems.

3.2 Checking

Since critical software bugs (e.g. [2]) are often causedkyfihite nature of bit-vector
arithmetic, it is important to maintain the bit-level belavof the verified software.
CALYSTO computes bit-precise VCs, which are translated to CNF tliree even ex-
pensive 64-bit arithmetic operations, like division ancheénder, are handled precisely.
The bit-vectors are represented with the same bit-width #sd compiled code. In our
case that means that integers and pointers are represettiegiivbits.

Path enumeration is completely left to the SAT solver. Wanfbthat it is important
for the SAT solver to process the variables in an order thagity corresponds to
reverse preorder traversal (all predecessors are visgéatdthe successors). If the
opposite traversal is used, the solving phase typicallyireg 7-10X more time. This
supports our conclusion that most of the paths become ibleadose to the VC root
node.

3.3 Structural Refinement

The first few iterations of the main loop of Alg. 1 will likelyeturn false counterexam-
ples, since the initial abstraction is usually very crud®.t8e refinement algorithm has
to identify very quickly a set of summary nodes that are ratévo the found solution.

The algorithm attempts to minimize the number of expandednsaries to avoid
expensive computation. Given a falsifying assignmentrefinement scheme searches
the graph and selects a single summary node to expand, yhexfihing the model.
In particular, the algorithm starts traversing the formfuéam the VC root. During the
traversal, the algorithm detects don’t-care values — \&athat are irrelevant to the
current solution and can therefore be ignofélh formalize the concept of don’t-care
values, we define absorptive element as:

2 The anonymous reviewers noted a connection between owsisiahd strictness analysis in
functional programming, as well as the work of Wilson andl [##]. The commonality is
the goal of finding cases in which a value is not used or nedemdexample, in an ITE in a



Definition 1 (Absorptive Element). If there exists an element a for some operatpr
such thatvx: axx=a, then a is an absorptive elementofenoted asbelem (x) = a.

For instanceabelem (A) = false, abelem (x) = 0, and so on.

If the decision procedure returns a falsifying assignmeath nodé in the graph
representing the checked VC has some assigned value, whishall denote asl (F).
If F is an operatox, our algorithm checkeal (x) for each operangdof F. If val (x) is an
absorptive element 6f, it is a sufficient explanation of the value Bfin the falsifying
assignment (the other operand is a don’t-care). Henceffitssi to refine only. Our
refinement procedure is given in Alg. 2. As is usual for graphdrsal, visited nodes
are marked during traversal to avoid re-visiting nodes;kingris not shown in the
pseudocode.

Algorithm 2 Structural Refinement Algorithni is a node in the maximally-shared
graph, and andy are its operands. The return value indicates whether a suyrtmaa
been expanded.

1: function REFINE(graph nodd-, values assigned to nodes)
2 if F is a summary nodthen

3 expand the summary fér; returntrue
4 else ifF is a leaf nodehen

5: returnfalse

6: else ifF = xxythen
7:

8

9

if val (x) = abelem (%) then
returnREFINE(X)
else ifval (y) = abelem (x) then

10: returnREFINE(Y)

11: else

12: returnREFINE(X) or REFINE(Y)

13: (Theor is lazy: if either call succeeds, the other is skipped.)
14: (The order is arbitrary. Eitheror y can be refined first.)

Some operators (like implication and if-then-else) do restehabsorptive elements,
but allow similar don’t-care analysis. Our implementatjperforms such reductions
according to the rules in Alg. 3.

Returning to the example in Fig. 2, in 2a, the checker tréetptaceholder nodes as
unconstrained variables and finds a falsifying assignméet@flip : retis true and the
I = is false. Alg. 3 will derive the refinementin 2b, where a pbkesfalsifying solution
gives theinit : ret node a negative value. Next, the algorithm might choose paued
the flip : global2 node, yielding the refinement in 2c, which is valid. We werkedo
avoid the expensive expansion of thé : ret node.

functional programming language, the condition argumestrict because it is always evalu-
ated, whereas the other two arguments are non-strict. lcase, we are refining a falsifying
solution, so we have much more don’t-care information atéd, e.g., we know the value of
the condition argument, so we know exactly which branch megdbe refined.



Algorithm 3 Additions to the Basic Refinement Algorithm
1: if F = (x=y) andval (x) = false then returnREFINE(X)

2: else ifF = (x=y) andval (y) = true then returnREFINE(Y)

3: elseifF = (x=y) returnREFINE(X) Or REFINE(Y)

4.

5: if F =ITE(c,x,y) andval (c) = true returnREFINE(C) Or REFINE(X)

6: else ifF =ITE(c,X,y) returnREFINE(C) or REFINE(Y) > val (C) must betrue or false.

Unlike other approaches, our approach to refinement doeseqgaire a theorem
prover. The downside is that our refinement might be lessiggeand result in more
refinement cycles. However, each refinement cycle only addgianal constraints to
the decision procedure incrementally, making the solvingse more efficient as well.

4 Experimental Results

To test our approach, we used¥sTo to generate VCs for six real-world, publicly-
available C/C++ applications, ranging in size from 9 to 2B8usand lines of code
(KLOC) before preprocessing. The benchmarks are the Dspam §lter, our boolean
satisfiability solver FFPERSAT, the Licq ICQ chat client, the OpenLDAP implemen-
tation of the Lightweight Directory Access Protocol, thend&iWindows OS emulator,
and the Xchat IRC client. For each program, for each poirgezférence, we generated
a VC to check that the pointer is non-NULL (omitting VCs thagne solved trivially
by our expression simplifier).

CALYSTO has a simple, non-recursive expression simplifier that duming sym-
bolic execution. The simplifier rules are numerous, buigtéorward. We noticed that
performing constant propagation during the simplificatieduces the memory foot-
print, but does not drastically speed-up the solving phasalbse our modular arith-
metic theorem prover=AR (like many others) performs aggressive constant propaga-
tion on its own. Other, slightly more complex rules, liIREE(c,x, -c Ay) = ITE(c, X, y)
do speed up the solving phase, but not drastically.

As the basis for comparison, we also solved the VCs usingexgansion of sliced
summaries (described in Sec. 3). The approaches were tastied equal conditions:
the same simplification and common subexpression elinginatiere applied to both
approaches after every summary expansion, before cahie@AT solver. The same
SAT solver was used for both the base case and our approach.

Table 1 and Fig. 3 summarize the results. In a large majofigases, the struc-
tural abstraction approach is superior to the eager appreddch suffers 81% more
timeouts, and 75% longer runtime. There are some cases,vbowehere the eager
approach performs significantly better. Analyzing thossesawe found that occasion-
ally our simplifier can simplify some expanded summariegitdal constants, which
in turn can make the VC trivially easy to solve. For examphe, most frequent case
we have seen is when an expanded summary, which is an antedaeda implication,
trivially simplifies tofalse, rendering the whole implicatiotrue. A priori, there is no
way to know whether or not an expanded summary will dradjicimplify the VC
(akin to the classic debate of eager vs. lazy constraintggation in SMT solvers).
Our experimental results, though, show that for solvingveafe VCs, laziness wins.



Benchmark KLOC| #VCs| Base Approach |lwith Struct. Abs./Ref.
Time (sec)Timeoutg| Time (sec) Timeouts
Dspam v3.6.5 37| 8003 4451 12 3758 10
HyperSAT v1.7 9| 427 32604 108 27025 81
Licqvl.3.4 20| 5165 24103 50 4072 4
OpenLDAP v2.3.3D 228 4935 738 0 572 0
Wine v0.9.27 126/ 8831 2598 0 2145 0
Xchat v2.6.8 762404 18914 13 10024 6
|Tota| | 496| 55583| 83406 183|| 47596 10]4

Table 1. The first column gives the name and version of the benchmdr®is the number of
source code lines (in thousands) before preprocessingf\é@d is the number of checked VCs.
The next four columns give the total run time in seconds (@diclg timeouts) and the number
of timeouts, for the base approach and for our new structilrstraction and refinement method.
The timeout limit was 300 seconds. Experiments were perddron a dual-processor AMD X2
4600+ machine with 2 GB RAM, running Linux 2.6.15.

Overall, our structural abstraction-checking-refinenagqroach is able to quickly
verify *-sensitive, bit-accurate VCs from large softwakéoving forward, we believe
there is additional structure to be exploited, and thatésdinection of future work.

5 Discussion

We believe there are two main reasons behind the success ajppwach: efficient
path enumeration and exploiting natural abstraction bartiad in software.

In our experience, path enumeration dominates the costfofia® verification,
even when the loops are abstracted away. In the worst caspatimsensitive analysis
has to analyze all the paths. We use our SAT-solver-basa@dip&EAR to enumer-
ate paths efficiently, but the order in which any SAT solvesgasses constraints is
important. Most solvers add variables to the decision quetlee order in which the
variables are found in the clauses. So, by starting the SMes@rom a root of the
VC graph and letting it enumerate paths, we explore pathshreadth-first manner.
In analyzing several open-source applications, we redlihat most paths in an av-
erage program are infeasible, and this breadth-first pgiloeation prunes more paths
more quickly. Contemporary software model checkers doxylbé this fact, but rather
rely on depth-first search, performing numerous calls talileerem prover through a
counterexample-driven refinement process, just to refpttathat is most likely to be
infeasible anyway. Similarly, the lazy summary expansiamps obviously infeasible
paths before function summaries are expanded and anajgedasing the number of
paths that need to be explored even further.

The proposed abstraction-refinement approach exploitsn#iaral abstraction
boundaries in software that correspond closely to the jarogrer’'s mental model. To
manage complexity, programmers tend to organize codetintotaral units (functions)
and use them as abstractions — whatever a function retinegest of the code should
work. This common programming tactic, which reduces the taldnad on the pro-
grammer, inspired our approach. To the extent that progrmsionse functions effec-



w
S
=

W
=}
=}

N
a
=}

N
a
o

N
=}
=}

N
=}
=}

=
a
=}
=
a
o

=
o
=}

=
o
=}

o
=}

w/ struct. abstraction/refinement
w/ struct. abstraction/refinement
w/ struct. abstraction/refinement

o &

0l 0 " 2 00 o o ° o
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Base approach Base approach Base approach

(a) Dspam (b) HyperSAT (c) Licq

w
o
=}

40
35
30

25

50

N
a
=)

40

N
=}
=)

30

-
3
=)

20
15
10

20

-
o
=}

10

3
=)

w/ struct. abstraction/refinement

w/ struct. abstraction/refinement
w/ struct. abstraction/refinement

5 o
o8 0 : 0 -
0 10 20 30 40 50 0 5 10 15 20 25 30 35 40 0 50 100 150 200 250 300
Base approach Base approach Base approach
(d) OpenLDAP (e) Wine (f) Xchat

Fig. 3. Results presented as scatter plots. Timeouts are plot@@Daecs.

tively as abstractions, our refinement algorithm can avejgbading the details that
were abstracted away.

Our simple abstraction does not rely on the standard alstnagdomains. Hence,

the contributions of this paper can be applied to a wide raigeftware analysis tools
that require interprocedural analysis and a decision phaee If further complexity re-

duction is needed, we believe our approach should be cobhatith classical abstract
domains and other abstraction techniques.

References

1

2.

3.

. D. Babit and A. Hu. Fast Symbolic Execution for Static €tieg. Submitted for publica-

tion.

D. Babit and M. Musuvathi. Modular Arithmetic DecisiomoPedure. Technical Report
TR-2005-114, Microsoft Research Redmond, 2005.

T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Autatic Predicate Abstraction of C
ProgramsProgramming Language Design and Implementatjgm 203—-213, 2001.

. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgnévling;, D. Monniaux, and

X. Rival. A static analyzer for large safety-critical sofive. Programming Language Design
and Implementatiorpp. 196-207, 2003.

. R. Bryant. Graph-based algorithms for boolean functi@mipulation. IEEE Trans. Com-

put, 35(8):677—-691, 1986.

. E. Clarke, D. Kroening, and F. Lerda. A tool for checking 3INC programs.Tools and

Algorithms for the Construction and Analysis of SystdoNCS 2988, pp. 168-176, 2004.

. E. Clarke, D. Kroening, and K. Yorav. Behavioral consisteof C and Verilog programs

using bounded model checkinBesign Automation Conferengep. 368-371, 2003.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Cetetample-guided abstraction

refinement.Computer Aided VerificatiQkNCS 1855, pp. 154-169, 2000.

. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F.&leck. Efficiently Com-

puting Static Single Assignment Form and the Control Depand Graph. ACM Trans
Programming Languages and Systei®(4):451-490, October 1991.

E. W. Dijkstra and C. S. ScholterRredicate Calculus and Program SemanticSpringer,
1990.

C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theoremrraxiing lazy proof explication.
Computer Aided VerificationNCS 2725, pp. 355-367, 2003.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,Bl. Saxe, and R. Stata. Extended
static checking for Javd?rogramming Language Design and Implementatjgm 234—-245,
2002.

C. Flanagan and J. B. Saxe. Avoiding exponential expiogjenerating compact verification
conditions.Principles of Programming Languagesp. 193—-205, 2001.

S. Graf and H. Saidi. Construction of abstract statelgapth PVS. Computer Aided
Verification LNCS 1254, pp. 72-83, 1997.

T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazstrébtion. Principles of Pro-
gramming Language®p. 58-70, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillaAbstractions from proofs.
Principles of Programming Languagesp. 232-244, 2004.

C. Lattner and V. Adve. LLVM: A Compilation Framework fbifelong Program Analysis
& Transformation. INCGO '04: Proceedings of the International Symposium on Gade-
eration and Optimizationpage 75, Washington, DC, USA, 2004. IEEE Computer Society.
K. R. M. Leino and P. Miller. A verification methodologgrfmodel fields. European
Symposium on ProgrammingNCS 3924, pp. 115-130, 2006.

K. R. M. Leino. Efficient weakest preconditiorisf. Process. Lett.93(6):281-288, 2005.

V. B. Livshits and M. S. Lam. Tracking Pointers with PatidaContext Sensitivity for
Bug Detection in C ProgramsEuropean Software Engineering Conference/International
Symposium on Foundations of Software Engineeipg 317-326, 2003.

T. Reps, S. Horwitz, and M. Sagiv. Precise interprocalddataflow analysis via graph
reachability.Principles of Programming Languagesp. 49-61, 1995.

G. S. Tseitin. On the complexity of derivation in propiosial calculus. In J. Siekmann
and G. Wrightson, editorgyutomation of Reasoning 2: Classical Papers on Computation
Logic 1967-1970pp. 466—483. Springer, 1983.

J. Whaley and M. S. Lam. Cloning-based context-seegiiinter alias analysis using binary
decision diagram$rogramming Language Design and Implementatgm 131-144, 2004.
C. Wilson and D. L. Dill. Reliable verification using syoile simulation with scalar values.
In 37th Design Automation Conferengages 124-129. ACM/IEEE, 2000.

Y. Xie and A. Aiken. Scalable error detection using baaleatisfiability. Principles of
Programming Languagegp. 351-363, 2005.



