
Compiled Low-Level Virtual Instruction Set Simulation and Profiling for
Code Partitioning and ASIP-Synthesis in Hardware/Software Co-Design

Carsten Gremzow
Faculty of Computer Science and Electrical Engineering

Berlin University of Technology
email: gosper@cs.tu-berlin.de
WWW: http://rt.cs.tu-berin.de

Keywords: Instruction Set Architecture Simulation,
Coarse-Grained Parallelism, Profiling, Hardware/Software
Co-Synthesis, LLVM, Quantitative Dataflow Analysis

Abstract
We present ongoing work and first results in static and de-
tailed quantitative runtime analysis of LLVM byte code for
the purpose of automatic procedural level partitioning and co-
synthesis of complex software systems. Runtime behaviour is
captured by reverse compilation of LLVM bytecode into aug-
mented, self-profiling ANSI-C simulator programs retaining
the LLVM instruction level. The actual global data flow is
captured both in quantity and value range to guide function
unit layout in the synthesis of application specific processors.
Currently the implemented tool LLILA (Low Level Interme-
diate Language Analyzer) focuses on static code analysis on
the inter-procedural data flow via e.g. function parameters
and global variables to uncover a program’s potential paths
of data exchange.

1. INTRODUCTION
In order to meet the increasing performance an energy

demands of current embedded systems applications, hard-
ware/software co-design approaches often partition critical
sections of software onto dedicated hardware serving as an
accelerator to standard microprocessor platforms. These ap-
plication specific processors (ASP) feature highly application
specific data- and control-paths whereas other approaches
generate VLIW-like co-processors from software binaries of
an application. Also, tuning the instruction set of an exist-
ing processor architecture into an application specific instruc-
tion processor (ASIP) to meet an application’s particular run-
time behavior and/or instruction level parallelism has been
shown to be very promising in the recent past yielding ex-
ecution speedups up to an order of magnitude compared to
standard RISC processors. Application execution profiles are
commonly used to identify critical regions of an application
and guide the hardware/software partitioning process. Note
however, that the term ’critical’ is regularly used to primar-
ily denote frequency of code execution. Following Amdahl’s
Law[2], selecting code regions based on percentage of execu-

tion time guarantees the largest potential speedup. However,
one critical aspect of runtime behavior for hardware/software
partitioning embedded applications to any particular system
architecture (Co-Processor, ASIPs or a generic distributed
system) is however seldom covered by traditional profiling
tools: Extending a profiler’s scope to capture the quantita-
tive data flow profile during program execution. This will un-
cover the application’s communication behavior and the ac-
tual amounts of data being transfered between various regions
of the application and the particular mode of transfer (e.g. via
stack, registers or global objects etc.).

1.1. Scope and Problem Outline
Our work has two primary goals: a) to provide the means to

perform data flow driven, multi-way partitioning of software
onto standard and custom application specific processors and
b) to construct ASPs and/or ASIPs from static as well as dy-
namic program properties. For construction of the later one
needs to perform static program analysis and high-level re-
construction (e.g. control-/data flow graphs) for the task of
high-level synthesis. This problem can be addressed either
from the source code level as well as the object code level (de-
compilation). In turn, profile driven partitioning depends on
executing and monitoring of binary level representations (ei-
ther simulated or on real hardware). Hence, the key objective
is to find a proper program representation suitable both for
the task of synthesis as well as the task of efficient run time
analysis while maintaining a reasonable degree of abstraction
from the actual target architecture. In the following we will
present an approach to automatically gather static as well as
dynamic runtime program behavior in detail by deriving self-
profiling instruction set simulators from arbitrary ANSI C and
C++ compiled to a low level virtual machine architecture. Ac-
quired data is used to perform ASP/ASIP synthesis as well as
software partitioning into coarse grained parallel units.

2. PREVIOUS WORK
In the next sections we will review recent achievements in

simulated program execution, dynamic and static analysis as
well as partitioning to distributed systems which we believe
are of relevance to this paper.

SCSC 2007 741 ISBN # 1-56555-316-0

2.1. Simulation, Augmentation and Profiling
An extensive body of recent work has addressed instruction

set architecture simulation. The wide spectrum of today’s in-
struction set simulation techniques include the most flexible
but slowest interpretive simulation and faster compiled sim-
ulation. Recent research addresses retargetability of instruc-
tion set simulators using machine description languages. Sim-
plescalar [9] is a widely used interpretive simulator that does
not have any performance optimization for functional simu-
lation. Shade[10], Embra [13] and FastSim [12] simulators
use dynamic binary translation and result caching to improve
simulation performance. Embra provides the highest flexibil-
ity with maximum performance but is not retargetable: it is re-
stricted to the simulation of the MIPS R3000/R4000 architec-
ture. A fast and retargetable simulation technique is presented
in [11] and improve on traditional static compiled simulation
by aggressive utilization of the host machine resources. This
is achieved by defining a lower level code generation inter-
face specialized for ISA simulation, rather then the traditional
approaches that use C as a code generation interface. Retar-
getable fast simulators based on an Architecture Description
Language (ADL) have been proposed within the framework
of FACILE [12], Sim-nML [14], ISDL [15], MIMOLA [16],
LISA [17][18][19] and EXPRESSION [20]. A simulator gen-
erated from a FACILE description utilizes the Fast Forward-
ing technique to achieve reasonable high performance. All of
aforementioned approaches assume that the program code is
run-time static.

The problem of gathering a program’s memory typical ac-
cess behavior and data layout in memory has been studied in-
tensively both in the parallel programming on shared memory
systems and cluster computing community as well as in the
computer architecture community for designing memory hi-
erarchy and cache layout. In the first case a significant amount
of projects has focused on improving the data locality of run-
ning programs and further minimizing the memory access la-
tency. The SIMT System [21] is a multiprocessor simulator
for PC based clusters with NUMA interconnection fabrics. It
simulates the parallel execution of shared memory programs
and provides extensive and detailed information about their
run-time data layout. This information allows users to ana-
lyze an application’s memory access behavior and to spec-
ify an optimized data placement within the source codes re-
sulting in a minimum of remote accesses at run-time. It is
an extended version of Augmint [5], a fast execution driven
multiprocessor simulation toolkit for Intel x86 architectures
which applies a code augmentation techniques by inserting
instrumentation code into the source object code effectively
turning it into a simulator executable.

The instrumentation code makes reference to any instruc-
tion causing direct or indirect memory read or write access
and forwards it to the simulator’s run-time environment. A

similar system for instrumenting binaries is the DIOTA sys-
tem [1], which also deals correctly with programs that con-
tain traditionally hard to instrument features such as data in
code and code in data. In contrast to the aforementioned ap-
proaches DIOTA performs dynamic instrumentation which
does not require reverse engineering, program understanding
tools or heuristics about the compiler or linker used. The in-
strumented code is generated on the fly and records faulty
memory accesses, data races, deadlocks as well as some basic
tracing of operations and memory accesses. Another instru-
mentation tool for the Intel A32 architecture is Valgrind [3]
which detects memory-management problems. When a pro-
gram is run under Valgrind’s supervision, all reads and writes
of memory are checked and calls to malloc(), new(), free()
and delete() are intercepted. Valgrind uses techniques that are
very similar to the above mentioned methods. Valgrind at-
taches itself to any dynamically-linked ELF x86 executable,
without modification, recompilation, or anything.

Conclusion. Using either compiling or interpretive ISA
simulators to perform quantitative data flow analysis on stan-
dard applications is complicated by the circumstance that ap-
plications either need modifications to run stand alone or they
need to be simulated in a complete, virtual system. Instru-
menting binaries by inserting supervision code can be used to
overcome this deficiency. Never the less the problem of as-
sociating objects on source code level (e.g. variables) with
corresponding objects on the binary level remains with all
profiling techniques on real architectures (without reverting
to the overhead of debugging data formats such as DWARF
and GNU STABS).

2.2. Decompilation
A decompiler, or reverse compiler, is a program that at-

tempts to perform the inverse process of the compiler. Given
an executable program compiled in any high-level language,
the aim is to produce a high-level language program that per-
forms the same function as the executable program. Thus,
the input is machine dependent, and the output is language
dependent. Decompilation was originally developed for pur-
poses of translating software binaries from one instruction
set architecture to another and for recovering high-level code
from legacy assembly code . In the following decompilation
is used for a different purpose, namely for converting a soft-
ware binary into a representation suitable for synthesis.

The FREEDOM Compiler [4] automatically translates
software assembly and binary codes targeted for general DSP
processors into Register Transfer Level (RTL) VHDL or Ver-
ilog code to be mapped onto commercial FPGAs. The Texas
Instruments C6000 DSP processor architecture has been used
as the DSP processor platform, and the Xilinx Virtex II as the
target FPGA. Various optimizations including loop unrolling,
induction variable analysis, memory and register optimiza-

ISBN # 1-56555-316-0 742 SCSC 2007

tions, scheduling and resource binding.
Recent work by Vahid and Stitt [6] also use existing de-

compilation methods and adapt them to to convert the soft-
ware binary into a control/data flow graph (CDFG) annotated
with high-level information. Initial binary parsing converts
the software binary into an instruction set independent rep-
resentation. Next, CDFG creation builds a control/data flow
graph (CDFG) for the application. Control structure recov-
ery analyzes the CDFG and determines high-level control
structures, such as loops and if statements. After recovering
a CDFG of the application, several optimizations need to be
applied to eliminate overhead introduced by the instruction
set.

Conclusion. Gathering high-level data from source code
level description of modern programming languages for
ASP/ASIP synthesis is a very complex and tedious task. Syn-
thesis from binary level descriptions is a true alternative and
while recovering the necessary high-level data it also intro-
duces an abstraction from language specific details to the syn-
thesis task. Yet, real general purpose and signal processing
architectures feature a multitude of instructions (more than
1000 for IA32) which obfuscate the process of high-level re-
construction from object code.

2.3. Source and Instruction Level Partitioning
Nearly all software/hardware partitioning approaches par-

tition at the source code level during or even before com-
pilation. Software partitioning at source code level is tradi-
tionally performed manually by use of co-design-centered
languages such as SystemC [8], HandleC, SiliconC, SA-C
[22] or StreamC. The majority of these systems and lan-
guages require either special notations or actions on behalf
of the programmer (e.g. pragmas) or a specific programming
paradigm which force the parallelism to be explicitly identi-
fied by the programmer. The actual granularity of parallelism
ranges from the instruction to procedural level. From an ana-
lytical point of view plain source code offers the highest de-
gree of freedom during design space exploration for hardware
synthesis (code re-timing, loop unrolling). Binary-level hard-
ware/software partitioning is the process of extracting com-
putational kernels of a software binary into regions that will
be implemented in custom hardware and regions that will ex-
ecute in the existing binary format and has been under inves-
tigation by [6] among others. Most of the current work on
partitioning for hardware/software co-design focuses on a bi-
partite partitioning modeling where the overall software sys-
tem is split into two parts: The majority of the code usually re-
sides on a general purpose processor whereas computational
intensive kernels are moved to dedicated hardware usually re-
siding on programmable logic fabric such as FPGAs either
configures statically or as currently intensively discussed in a
dynamic reconfiguration environment.

However, it has been proposed more than a decade ago that
a compiler can be used to detect which parts of a program,
written in a procedural language can be executed in parallel
[23]. Furthermore, it has been proposed that a compiler can
be used to detect when program synchronization should oc-
cur. Coarse-grained parallelism based upon the logical struc-
ture of a program’s components is required to get the optimal
performance of program in a distributed computing environ-
ment [24], while parallelism is normally based around loops
or some other programming constructs that involve iteration.

Conclusion. Identifying parallel sequences of execution
and estimating global data flow and associated throughput of
an application is a task usually performed manually by the
designer. For automatic software partitioning to go beyond a
bi-partit architecture, frequency of code execution needs to
be complemented by accurate figures for data production and
consumption of code as a partitioning metric.

3. LOW LEVEL VIRTUAL MACHINE SIM-
ULATION

In order to find a common basis of program representation
equally suitable for the problems mentioned above (simula-
tion/profiling, partitioning and ASP/ASIP synthesis) we have
turned to using virtual instruction set architectures as opposed
to real ones. Virtual machine instructions sets are usually lean
(≤ 255 instructions) and either stack based (Java Virtual Ma-
chine, CIL/.NET) or use no register files at all (LLVM, see
below). Hence, the reconstruction of high-level information
(control- and data flow) can easily be implemented. Also,
tracing data flow between instructions is not obfuscated by
direct or indirect memory or register file access as in the Aug-
mint approach. Also, execution environments for virtual ma-
chines are fairly easy to modify (excluding just-in-time code
transformations in preference of lower interpretive execution)
in order to extract the runtime behavior discussed above.

Our ASP/ASIP synthesis and runtime analysis environ-
ment Synphony is centered around two virtual architectures:
The ECMA-335 Common Language Infrastructure (CLI) -
also known as .NET - and the LLVM (Low Level Virtual
Machine) framework [26]. The latter is a compiler frame-
work designed to support program analysis and transforma-
tion for arbitrary programs, by providing high-level infor-
mation to compiler transformations. LLVM defines a com-
mon, low-level code representation in Static Single Assign-
ment (SSA) form with a simple, language-independent type-
system that exposes the primitives commonly used to imple-
ment high-level language features. In our work the LLVM
has been given preference over CLI due to its simplicity, the
notion of SSA representation and the possibility to compile
and analyze complex software systems through its seamless
integration into the GNU gcc tool chain.

SCSC 2007 743 ISBN # 1-56555-316-0

Figure 1. Schematic outline of the LLILA simulation, profiling and synthesis flow. The grey area denotes the our actual tool
flow boundary whereas program compilation is performed using the LLVM gcc tool chain.

3.1. System Outline
Our overall simulation and synthesis flow depicted in fig-

ure 1 consists of a number of stages which will be discussed
in the following.

The application’s source under investigation is compiled
into the LLVM’s bytecode representation using llvm-gcc.
Additional libraries in question need also be compiled into
LLVM code for proper static binding. As a result the com-
pilation process generates a single assembly suitable for ex-
ecution using LLVM’s runtime environment which was de-
signed to provide either Just-In-Time translation to the hosts
native binary format or plain interpretive execution. Note that
byte code references to the standard C library and systems
calls need to intercepted by the execution environment and
forwarded to the hosts native environment.

After close examination of the LLVM execution environ-
ment we chose not to take it as a starting point for our simu-
lation and profiling needs for a number of reasons: At the cur-
rent state of implementation (LLVM 1.8) the interpretive code
execution engine is incomplete with respect to the standard C
library. Hence, standard benchmark suits cannot be executed.
In that sense the just-in-time execution engine is complete but
far to complex for our purposes. Instead our LLVM Interme-
diate Language Analyzer (LLILA) has no LLVM dependen-
cies an was written from scratch to deal with LLVM bytecode
or assembly files.

3.2. Static Program Analysis
After parsing an LLVM byte code program static program

analysis starts with extracting type declarations and globally
defined memory and function objects which are held for later
reference.

3.2.1. Basic High-Level Reconstruction

From the instruction stream of each individual function, the
basic block structure and corresponding control flow graph
is reconstructed by correlation of basic block addresses with
conditional and unconditional jump instructions. To recon-
struct the data flow graph on a per basic block basis, each in-
struction’s data dependencies are computed and inbound flow
is connected to source instructions generating it. Source and
destination flow of an instruction can fairly easily be identi-
fied due to LLVM’s single static assignment notation. SSA
notation normally assigns unique identifiers for left hand side
data so tracking inter-instruction data flow should boil down
to tracking identifiers. Unfortunately this is not always the
case with LLVM: Variable identifiers must not be unique and
are frequently reused with different type signature. Therefor
LLILA also checks the type signature of each instruction and
performs variable renaming to unify identifiers whenever nec-
essary.

High-Level programming languages as well the LLVM as-
sembly language representation for virtual machines are not
suitable for expressing parallelisms. Detection and exploita-
tion of operator parallelisms on a basic block level can easily
accomplished by analysis of the above mentioned data flow
graphs. In order to gather the data flow on a procedural level
and to extend the detection and exploitation of operator par-
allelisms and movability beyond the scope of a single basic
block, LLILA folds the above control and data flow graphs
into a singular graph “flat” representation. This step is es-
sential for further analysis (see indirect data flow detection
below) as well as to create potential for increased throughput
during ASP/ASIP synthesis. For details on the graph folding
process please refer to [27] for it is beyond the scope of this
paper.

ISBN # 1-56555-316-0 744 SCSC 2007

3.2.2. Higher Order Data Structures
In order to track complete runtime behavior across the pro-

cedural data flow level, additional static data needs to be
retrieved from the LLVM byte code representation. Tradi-
tional inter-procedural dependencies are usually captured in
the static call graph which denotes a function’s procedural
dependencies in a directed acyclic graph which can easily be
extracted from the instruction flow by recording subprogram
call instructions.

For the purpose of partitioning a software system into a dis-
tributed system, a call graph is insufficient for it only states a
set of sub functions called by a parent.In order to discover the
actual flow of data in between function calls, we also need to
include the timely sequence in which subroutine calls can be
issued during program execution. For this purpose the LLILA
systems constructs a Call Sequence Graph (CSG), which rep-
resents a reduced version of a function’s control flow graph
only denoting all possible sequences of subprograms calls a
singular function can issue. During compiled program simu-
lation CSG edges will be annotated with the actual amounts
of data transfered between function caller and callee.

3.2.3. Indirect Dataflow Detection
As mentioned earlier, we wish to record byte accurate fig-

ures of the amounts of data transfered into and out of an in-
dividual function during the course of its execution. A func-
tion’s signature is a good starting point for pure static analysis
for it defines the amounts and types of data transfered via the
stack. Estimating the data flow is trivial when the program-
mer uses call by value only. This is of course seldom the case
and intensive use of pointers and variable size arguments are
used. The following piece of code which computes the sum
of an integer data array of variable size is a simple example
where a priori data flow estimation is impossible:

int simple (int len, int *buf) {
int i, sum = 0;
for (i = 0; i < len; i++)
sum += buf[i];

return sum;
}

In order to track the function’s actual indirect data flow we
need to analyze LLVM’s load and store instruction which are
the only means of accessing memory locations. Yet, relating
an access to a variable on the source code level (in the case
of the above example it would be the integer pointer “buf”)
with the corresponding load instruction on the assembly level
is somewhat obfuscated due to the pointer arithmetic over-
head inserted by the compiler. In the following lines of LLVM
assembly code one can see the instruction sequence of the
loop’s entry part and body statement, right hand side only:

entry:
store int* %buf, int** %buf_addr
[..]

b2:
[..]
%tmp.4 = load int** %buf_addr
%tmp.5 = load int* %i
%tmp.6 = gep int* %tmp.4, int %tmp.5
%tmp.7 = load int* %tmp.6
[..]

One can clearly see that looking at the load instructions dur-
ing loop execution does not reveal any direct relation to the
variable “buf”. In order to uncover any indirect read or write
data flow either through call by reference or global variables,
we employ backtracking on the flat control / data flow graph
gathered earlier during static program analysis for all load and
stores instructions. In the case of our example, the load in-
struction for “tmp.7” features a data dependency all the way
from the gep (get element pointer) instruction to the initial
pointer computation of “buf”. It will be marked as a read ref-
erence to “buf” as part of the runtime profiling process.

3.2.4. Instruction Scheduling
Without going into too much detail it should be noted,

that instruction scheduling is also performed as part of the
static analysis phase. LLILA can apply simple ASAP/ALAP
heuristics as well as Integer Linear Programming techniques
for optimal scheduling both with and without resource con-
straints. As a result instructions will be assigned a virtual in-
struction slot even though the compiled ISA simulator pro-
cesses them in strict sequential order. During program simu-
lation instruction level parallelism and hypothetical speedup
can thus be recorded and evaluated by the designer.

3.2.5. Static Feature Database
Static program analysis is completed by creating a graph

database for the extracted program features (flat control/data
flow graphs, call graph, call sequence graph etc.) as an XML
representation. Later on it will be reread by the monitoring
application of the runtime environment for annotation. The
database is not compiled into the simulator itself since the
enriched graphs are needed for partitioning based on the data
flow characteristics.

3.3. Compiled ISA Generation
We have mentioned earlier on, that our primary focus in

instruction set architecture simulation is detailed profiling of
runtime behavior with a minimum effort of moving an ap-
plication into the simulation and profiling environment. Also,
we need to achieve moderate to high executing performance
since an application may need to run on large amounts of
“test vector” data before the acquired profiling data can be
augmented to represent typical program behavior in a statical
sense.

SCSC 2007 745 ISBN # 1-56555-316-0

As a consequence, the LLILA tool will generate an ANSI
C Program from the instruction sequence earlier on and will
insert additional profiling code in the sense of augmentation
or instrumentation described in section two. Hence, it can
be said that LLILA generates a self profiling ISA simulator
from LLVM byte code. The main obstacles in the transla-
tional process from LLVM instruction level to a C program
have already be indicated earlier on: For producing correct,
compilable programs identifier name de-mangling needs to
be performed and function calls to external entities be iden-
tified. Note that LLILA treats external function calls in the
simplest of fashion by simply inlining them into the gener-
ated C program. The task of resolving them is left up to the
C compiler. In order to get an impression of the generated
C code we return to the above example and look at the loop
body:

bb2: {
__llila_lbid = __llila_cbid;
__llila_cbid = 2;
__llila_block_enter();
__llila_inc_cstep_counter(5);
__llila_inc_inst_counter(11);
__llila_prof_tab[441]++;
int* l0 = *&v1;
__llila_prof_tab[442]++;
int l1 = *&v3;
__llila_prof_tab[444]++;
int (*l2) = &(l0[l1]);
__llila_prof_tab[444]++;

/* argument variable traceback : int *buf */
__llila_arg_read(2);
int l3 = *l2;
[..]

}

The first three statements are used for recording the last ex-
ecuted basic block and the current basic block. The control
flow transition is then communicated to the runtime environ-
ment for profiling through the block enter library call. The
following statement advances the virtual parallel instruction
execution profiler by 5 control steps (the figure has been com-
puted during instruction scheduling based on the data flow
graph’s ILP) whereas strict sequential instruction execution
profiling is incremented by 11 (the number of instructions in
this basic block). Note that for all instruction prior to their
execution a global instruction profiling table is incremented.
This will yield a simple instruction execution distribution af-
ter the program has terminated and is used to gather traces
later on.

The case of indirect variable access by pointer arithmetic
obfuscation discussed earlier on can be seen in the last in-
struction where l3 is read by dereference of l2: Dataflow
traceback of this instruction indicates that function argument
number two (integer pointer “buf”) has been accessed. The
preceding profiler library call records this action.

4. EXPERIMENTAL RESULTS
Although the LLILA project is at a very early state of real-

ization, byte code and assembly analysis as well as compiled
instruction set simulator generation cover the full semantic
scope of the LLVM framework. In order to evaluate our ap-
proach of using virtual machine architectures for ASP/ASIP
synthesis and quantitative global data flow analysis for code
partitioning, several “real world” applications from the do-
main of digital video signal processing have been investi-
gated. Our main test-case is currently the MPEG2 video de-
code and encode reference implementation officially released
by the MPEG Software Simulation Group [28].

Program analysis, compiled ISA simulator generation and
simulator execution with all profiling options turned on were
performed on an AMD Athlon 64 3000+ machine with 1 Gi-
gabyte of main memory under Ubuntu Linux 6.10.

4.1. Compiled Simulator Size and Perfor-
mance

For the native MPEG2 decoder binary it takes 10.046 cpu
seconds (measured using unix command time(1)) to decode
and save 72 video frames from the sample elementary bit
stream. This averages to 0.139 seconds per frame and servers
as a performance reference. The decoder was compiled us-
ing a native ix86 gcc from 8694 lines of C source code. The
self profiling ISA simulator generated by LLILA from the
llvm-gcc compiled byte code of the MPEG2 decoder results
in 46797 lines of C source code. This equals an increase in
code size by a factor of roughly 5.4. When we look at LLVM
assembly file which amounts to an overall of 13625 instruc-
tions, we’re left with an overhead of 2.5 additional statements
for profiling for each instruction in the generated simula-
tor. Unfortunately we’re not able to provide execution per-
formance figures using LLVM’s own runtime engine (neither
JIT or interpretive) since it fails to run the MPEG2 decoder
completely. For the simulator to decode a single picture we
measured an average of 59.8 seconds. During that period, the
simulator executed on average over 256 million LLVM in-
structions which lead us to a simulation performance of over
4.2 million instructions per second on the test system with
all profiling options in place. When we compare the perfor-
mance of the native ix86 MPEG2 decoder to the compiled
instruction set simulator, we’re faced with an overall average
“speed-down” of factor 430. At first sight this figure may ap-
pear to be a bit of a disappointment since it suggest, that the
anticipated level of profiling detail comes at cost of 2.6 order
of magnitude in speed decrease. Traditional execution profil-
ing using gprof for example comes at a cost of only 1.7 per-
cent more execution time in case of the MPEG2 decoder, yet
it does not deliver the degree of profiling detail the compiled
instruction set architecture simulator offers.

ISBN # 1-56555-316-0 746 SCSC 2007

4.2. Tracking Global Dataflow
Figure 2 features the call sequence graph of the MPEG2

decoder’s main decoding loop with all its immediate callees.
It was annotated with runtime data from decoding exactly one
frame from the test data stream (generating a pictorial of the
flat call sequence graph is beyond the limits of the graph lay-
out program).

Figure 2. Call Sequence Graph of the MPEG2 decoder’s
main decoding loop DecodePicture which intially calls Flush-
Buffer. The bold directed edges denote the global flow trace
of a singular variable.

The boled directed edge denotes consecutive read after
read accesses and read after write accesses to data object
number 182 (an MPEG layer data descriptor structure) which
is passed from the main function onto the main decoding loop
all the way to the function writing out the decoded picture.
This is only an example of tracking one single variable in-
stance across multiple functions by profiling load and store
operations on call by reference or global objects. For the pur-
pose of data flow guided partitioning of course all exchanged
data - both global as well as all shared objects across the pro-
cedural level - will need to be considered for plotting a singu-
lar singular path of flow through the whole software system.
This has not yet been implemented.

4.3. ILP Estimation
In order to get a rough estimate of instruction level paral-

lelism of the LLVM byte code, ASAP scheduling was per-
formed without any resource constraints. The resulting peak
parallelism of 8 ALU operations (including multiplication)
with simultaneous 16 LOAD operations does not come as a
surprise, since it reflects the computationally most expensive
part of an MPEG decoder - the iDCT. Assuming a hypothet-

Figure 3. Average Instruction level parallelism measured for
the MPEG2 decoder over execution time. Integration period
has been set to 1 second.

ical ASIP layout suitable for the above mentioned peak in-
struction constellation, the instruction simulator records (see
figure 3) an overall average speedup of 2.6 for the decod-
ing the first frame (which is an I-frame) an then moves up
to an average speedup of 2.9 for the next less costly pre-
dicted frame which benefits from the 16 LOAD/STORE ports
for increased memory transfer during motion compensation.
Interestingly these speedup figures are also reported by [25]
who performed a bi-partit hardware/software co-design of a
H.264/AVC decoder. The system consisted of an ARM920
processor core where the computational intensive tasks (also
iDCT along with motion compensation) were partitioned onto
a XilinX Virtex2 FPGA.

5. CONCLUSION
First experiments show that virtual machine instruction set

architectures are a promising common basis for the purpose
of extensive runtime program analysis without the overhead
of full scale virtualization as well as the task of ASP synthe-
sis. Yet, effective software partitioning from the overwhelm-
ing amounts of data gathered from global data flow profiling
needs to be proved in the immediate future.

SCSC 2007 747 ISBN # 1-56555-316-0

REFERENCES
[1] J. Maebe, K. De Bosschere, Instrumenting self-modifying

code, Proceedings of the Fifth International Workshop on
Automated Debugging, 2003

[2] G. M. Amdahl, Validity of the single processor approach
to achieving large scale computing capabilities, AFIPS
Conference Proceedings, 1967

[3] N. Nethercote, J. Seward, Valgrind: A Program Supervi-
sion Framework, Electronic Notes in Theoretical Com-
puter Science, Volume 89, No.2, Elsevier Science, 2003

[4] G. Mittal, D.C. Zaresky, X. Tang, Automatic Translation
of Software Binaries onto FPGAs, Proceedings of Design
Automation Conference 2004, pp.389-394, 2004

[5] A. Nguyen, M. Michael, A. Sharma, J. Torellas, The
Augmint Multiprocessor Simulator Toolkit for Intel x86
Architectures, Proceedings International Confernce on
Computer Design, 1996

[6] G. Stitt, F. Vahid, A Decompilations Approach to Par-
titioning Software for Microprocessor/FPGA Platforms,
Proceedings of the Design, Automation and Test in Eu-
rope Conference, 2005

[7] T. Austin, E. Larson, D. Ernst, Simplescalar: an infras-
tructure for computer system modeling, IEEE Computer,
Volume35, Issue 2, pp.59-67, 2002

[8] T. Grotker, System Design with SystemC, Kluwer Aca-
demic Publishers, 2002.

[9] Simplescalar Home www.simplescalar.com.

[10] B. Cmelik et al., Shade: A Fast Instruction-Set Simu-
lator for Execution Profiling, ACM SIGMETRICS Per-
formance Evaluation Review, Volume 22(1), pp.128-137,
May 1994

[11] J. Zhu et al., A Retarggetable, Ultra-fast Instruction Set
Simulator, Proceedings of DATE, 1999

[12] E. Schnarr et al., FACILE: A Language and Compiler
for High-Performance Processor Simulators, PLDI, 1998

[13] E. Witchel et al., Embra: Fast and Flexible Machine
Simulation, MMCS, 1996

[14] M. Hartoog et al., Generation of Software Tool Sets fir
Application Specific Processor Descriptions for Hard-
ware/Software Codesign, Proceedings of DAC, 1997

[15] G. Hadjiyiannis et al., ISDL: An Instruction et Descrip-
tion Language for Retargetability, Proceedings of DAC,
1997

[16] R. Leupers et al., Generation of Interpretive and Com-
piled Instruction Set Simulators, Proceedings of DAC,
1999

[17] A. Nohl et al., A Universal Technique for fast and Flex-
ible Instruction-Set Architecture Simulation, Proceedings
of DAC, 2002

[18] S. Pees et al., Re targeting of Compiled Simulators for
Digital Signal Processing using a Machine Description
Language, Proceedings of DATE, 2000

[19] G. Braun et al., Using Static Scheduling Techniques for
the Re targeting of High Speed, Compiled Simulators for
Embedded Processors from Abstract Machine Descrip-
tion, Proceedings from ISIS, 2001

[20] P. Mishra et al., Functional Abstraction driven Design
Space Exploration of Heterogeneous Programmable Ar-
chitectures, Proceedings of ISSS, 2001

[21] J. Tao et al., SIMT/OMP: A Toolset to Study and Exploit
Memory Locality of OpenMP Applications on NUMA Ar-
chitectures, Springer Lecture Notes in Computer Science,
Volume 3349, pp.41-52, 2005

[22] W. Boehm et al., Mapping a Single Assignment Pro-
gramming Language to Reconfigurable Systems, The
Journal of Super computing, Volume 21, pp.117-130,
2002

[23] D. J. V. Evans, A. M. Goscinski Automatic Identifica-
tion of Parallel Units and Synchronization Points in Pro-
grams, International Journal of Computer Systems Sci-
ence and Engineering, 1997

[24] A. Goscinski et al., Towards a Global Computer: Im-
proving the Overall Distributed System Performance an
the Computational Services Provided to Users by Em-
ploying Global Scheduling and Parallel Execution, ARC
Large Grant Application, Deakin Univeristy, 1994

[25] G. Stitt, F. Vahid, Hardware/Software Partitioning of
Software Binaries: A Case Study of H.264 Decode, Pro-
ceedings of CODES+ISSS, pp.285-290, 2005

[26] C. Lattner et al., LLVM: A Compilation Framework
for Lifelong Program Analysis and Transformation, Pro-
ceedings of CGO, 2004

[27] C. Gremzow, High-Level Syntheses aus flachen
Kontroll-/Datenflussgraphe, Doctoral Thesis at Berlin
University of Technology, 2004

[28] MPEG Software Simulation Group, MPEG-2 Encoder /
Decoder, Version 1.2, http://www.mpeg.org/MSSG, 1996

ISBN # 1-56555-316-0 748 SCSC 2007

	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	Compiled Low-Level Virtual Instruction Set Simulation and Profiling for Code Partitioning and ASIP-Synthesis in Hardware/Software Co-Design

