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Problem

How many real users does your STM have?
Can real users easily try out your STM?

Lack of users is a major problem
= | ack of workloads

= No education of users, no feedback from
them

Not just technical reasons (slow STM), also:
= Availability, ease-of-use, lock-in"?, costs, ...



Our contributions

= Tanger
= Open source compiler support

= Application code with transaction boundary
declarations is transformed to real transactional code
that uses an STM

» Uses LLVM’s compiler framework

= Tarifa

= Transforms declared transactions in IA32 assembler
code to transactional asm code

= More detail: ask me (later)

= License: GPL



What Tanger does

= Application code uses minimal declaration API:
* pbegin, commit, init/shutdown function calls
= |Language syntax not changed, tools continue to work

= Tanger transforms code to use word-based STM API:
* Find transactional code (bounded by begin/commit)
» Redirect to STM functions (begin, commit, malloc, ...)
= Memory accesses to STM load/store
= Redirect calls to transactional versions of functions




Usage (build cycle)
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Executable app

11vm-gcc (LLVM frontend):
« compile to intermediate representation (IR)
(.bc = bitcode)

11vm-1d (LLVM linker/optimizer):
* link and optimize (potentially whole-program)

Tanger (compiler pass)
e transform/create transactional code

TTvm-1d:
* link in STM, optimize

11c (LLVM backend):
» create target architecture asm or C code

gcc:
» compile and link with remaining blnary
objects or libraries



Why LLVM?

= LLVM (Low Level Virtual Machine):

= Good intermediate representation (IR) for code
(see next slide)

Very modular compiler
Link-time optimizations
JIT compilation support

Generates native code (e.g., x86, PowerPC, ARM, ...)
and C code (gcc)

= Alternatives:
= Source to source translation: Easier? Optimizations?
= gcc: Easier?



LLVM Intermediate
Representation (IR)

Sufficiently low-level (few dependencies), but still
platform-independent and light-weight

Can express C/C++ programs (important applications!)
On-disk (.bc) and human-readable representations
API for modifying IR is good and quick to learn

IR uses types from source code (e.g., C structs)

SSA

Memory accesses are explicit (load/store)

Stack contents in virtual registers unless accessed via
pointers (fewer load/stores transformed!)



Current performance
(tinySTM, single thread)

# calls in executable
RBTree (STAMP) Throughput
Load Store
Manual, gcc 11
Manual, llvm-gcc 9.4 156 81
Tanger 8.8 127 77
Global lock, llvm 19
_ _ # calls in executable
Linked list Throughput
Load Store
Manual, gcc 1.8
Manual, llvm-gcc 1.3 16 3
Tanger 1.3 10 6




Things we’d like to build/have

= QOur goals for Tanger: An STM environment:
= Easy to use, practical: attract users!
= Not just a research prototype
= But allow plugging in research prototypes
= Compiler-based optimizations
= More features / subsystems:
= Privatization, external actions, ...
= STM support code (tracing, statistics, ...)
* |[f you have ideas/plans, please talk to me



Benefits for users

= Decreases initial hurdles significantly

= Minimal instrumentation overhead
(parallelization, begin/commit, external
actions)

= Only have to select an STM
» Performance is likely to get better, not worse

= Can get TM experience earlier
= Can follow research progress more easily
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Benefits for research community

User feedback: usability, workloads, ...
Smaller time-to-benchmark
Environment for evaluation of your STM
Comparing STMs gets easier (e.g., TL2 with tinySTM)
Reference implementations for
» | anguage integration proposals
= Compiler support
Benchmark writers could target Tanger instead of STM

Download Tanger, tinySTM, Tarifa at
http://tinystm.org
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