Transactifying Applications
Using an Open Compiler
Framework

Torvald Riegel

Joint work with

Pascal Felber, Christof Fetzer, Ulrich
Muller, Martin SUBkraut, Heiko Sturzrehm

(Dresden University of Technology, Germany, and
University of Neuchatel, Switzerland)

Problem

How many real users does your STM have?
Can real users easily try out your STM?

Lack of users is a major problem
= | ack of workloads

= No education of users, no feedback from
them

Not just technical reasons (slow STM), also:
= Availability, ease-of-use, lock-in"?, costs, ...

Our contributions

= Tanger
= Open source compiler support

= Application code with transaction boundary
declarations is transformed to real transactional code
that uses an STM

» Uses LLVM’s compiler framework

= Tarifa

= Transforms declared transactions in IA32 assembler
code to transactional asm code

= More detail: ask me (later)

= License: GPL

What Tanger does

= Application code uses minimal declaration API:
* pbegin, commit, init/shutdown function calls
= |Language syntax not changed, tools continue to work

= Tanger transforms code to use word-based STM API:
* Find transactional code (bounded by begin/commit)
» Redirect to STM functions (begin, commit, malloc, ...)
= Memory accesses to STM load/store
= Redirect calls to transactional versions of functions

Usage (build cycle)

.C .Cpp

-

A 4 A 4 \ 4

.bc .bc .bc
bc
—

Transactional .bc

'
STM .bc .bc :

A\ 4

—
STM .o .C .S

Executable app

11vm-gcc (LLVM frontend):
« compile to intermediate representation (IR)
(.bc = bitcode)

11vm-1d (LLVM linker/optimizer):
* link and optimize (potentially whole-program)

Tanger (compiler pass)
e transform/create transactional code

TTvm-1d:
* link in STM, optimize

11c (LLVM backend):
» create target architecture asm or C code

gcc:
» compile and link with remaining blnary
objects or libraries

Why LLVM?

= LLVM (Low Level Virtual Machine):

= Good intermediate representation (IR) for code
(see next slide)

Very modular compiler
Link-time optimizations
JIT compilation support

Generates native code (e.g., x86, PowerPC, ARM, ...)
and C code (gcc)

= Alternatives:
= Source to source translation: Easier? Optimizations?
= gcc: Easier?

LLVM Intermediate
Representation (IR)

Sufficiently low-level (few dependencies), but still
platform-independent and light-weight

Can express C/C++ programs (important applications!)
On-disk (.bc) and human-readable representations
API for modifying IR is good and quick to learn

IR uses types from source code (e.g., C structs)

SSA

Memory accesses are explicit (load/store)

Stack contents in virtual registers unless accessed via
pointers (fewer load/stores transformed!)

Current performance
(tinySTM, single thread)

calls in executable
RBTree (STAMP) Throughput
Load Store
Manual, gcc 11
Manual, llvm-gcc 9.4 156 81
Tanger 8.8 127 77
Global lock, llvm 19
_ _ # calls in executable
Linked list Throughput
Load Store
Manual, gcc 1.8
Manual, llvm-gcc 1.3 16 3
Tanger 1.3 10 6

Things we’d like to build/have

= QOur goals for Tanger: An STM environment:
= Easy to use, practical: attract users!
= Not just a research prototype
= But allow plugging in research prototypes
= Compiler-based optimizations
= More features / subsystems:
= Privatization, external actions, ...
= STM support code (tracing, statistics, ...)
* |[f you have ideas/plans, please talk to me

Benefits for users

= Decreases initial hurdles significantly

= Minimal instrumentation overhead
(parallelization, begin/commit, external
actions)

= Only have to select an STM
» Performance is likely to get better, not worse

= Can get TM experience earlier
= Can follow research progress more easily

10

Benefits for research community

User feedback: usability, workloads, ...
Smaller time-to-benchmark
Environment for evaluation of your STM
Comparing STMs gets easier (e.g., TL2 with tinySTM)
Reference implementations for
» | anguage integration proposals
= Compiler support
Benchmark writers could target Tanger instead of STM

Download Tanger, tinySTM, Tarifa at
http://tinystm.org

11

