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IIABSTRACTTAMPERE UNIVERSITY OF TECHNOLOGYDegree Programme in Information Te
hnologyJääskeläinen, Veli-Pekka: Retargetable Compiler Ba
kend for TransportTriggered Ar
hite
turesMaster of S
ien
e Thesis: 57 pagesMar
h 2010Major subje
t: Software EngineeringExaminers: Prof. Hannu-Matti Järvinen and Prof. Jarmo TakalaKeywords: transport triggered ar
hite
ture, 
ompilerEmbedded 
omputer systems 
an be found everywhere as the result of the needto develop ever more intelligent and 
omplex ele
troni
 devi
es. To meet require-ments for fa
tors su
h as power 
onsumpiton and performan
e these systems oftenrequire 
ustomized pro
essors whi
h are optimized for a spe
i�
 appli
ation. How-ever, designing an appli
ation spe
i�
 pro
essor 
an be time-
onsuming and 
ostly,and therefore the toolset used for pro
essor design has an important role.TTA Codesign Environment (TCE) is a semi-automated toolset developed at theTampere University of Te
hnology for designing pro
essors based on an easily 
us-tomizable Transport Triggered Ar
hite
ture (TTA) pro
essor ar
hite
ture template.The toolset provides a 
omplete 
o-design tool
hain from program sour
e 
ode tosynthesizable hardware design and program binaries.One of the most important tools in the tool
hain is the 
ompiler. The 
ompileris required to adapt to 
ustomized target ar
hite
tures and to utilize the availablepro
essor resour
es as e�
iently as possible and still produ
e programs with 
orre
tbehavior. The 
ompiler is therefore the most 
ompli
ated and 
hallenging tool todesign in the toolset.The work 
ompleted for this thesis 
onsists of the design, implementation andveri�
ation of a retargetable 
ompiler ba
kend for the TCE proje
t. This thesisdes
ribes the role of the 
ompiler in the tool
hain and presents the design of theimplemented 
ompiler ba
kend. In addition, the methods and ben
hmark results ofthe 
ompiler veri�
ation are presented.



IIITIIVISTELMÄTAMPEREEN TEKNILLINEN YLIOPISTOTietotekniikan koulutusohjelmaJääskeläinen, Veli-Pekka: Retargetable Compiler Ba
kend for TransportTriggered Ar
hite
turesDiplomityö: 57 sivuaMaaliskuu 2010Pääaine: OhjelmistotuotantoTarkastajat: prof. Hannu-Matti Järvinen ja prof. Jarmo TakalaAvainsanat: transport triggered ar
hite
ture, 
ompilerSeurauksena tarpeesta kehittää yhä älykkäämpiä ja monimutkaisempia laitteita,sulautettuja tietokonejärjestelmiä on nykyään kaikkialla. Nämä järjestelmät vaativatusein käyttötarkoitusta varten optimoituja mikroprosessoreita, jotta esimerkiksi vir-rankulutukseen ja suorituskykyyn liittyvät vaatimukset saataisiin täytettyä. Sovel-luskohtaisten prossessoreiden suunnittelu voi kuitenkin olla aikaa vievää ja kallista,joten prosessorien suunniteluun käytetyllä ohjelmistolla on tärkeä rooli.TTA Codesign Environment (TCE) on Tampereen teknillisellä yliopistol-la kehitetty kokoelma ohjelmistotyökaluja, joka perustuu helposti muokattavaan�transport triggered ar
hite
ture� (TTA) -suoritinarkkitehtuurimalliin. TCE:ntyökalut tarjoavat puoliautomatisoidun prosessoreiden suunniteluvuon alkaenohjelmien lähdekoodista päätyen syntetisoitavaan prosessorikuvaukseen ja proses-sorilla suoritettavaan binäärimuotoiseen ohjelmaan.Yksi tärkeimmistä suunniteluvuon työkaluista on kääntäjä. Kääntäjän onmukauduttava räätälöityyn kohdearkkitehtuuriin, käytettävä prosessorin resursse-ja mahdollisimman tehokkaasti hyväkseen ja tuotettava ohjelma, jonka toiminta onoikea. Tämän takia kääntäjä on TCE:n monimutkaisin ja toteutukseltaan haastavintyökalu.Tämän diplomityön taustalla oleva työ koostui valmiiseen kääntäjäympäristöönsuunnitellusta ja toteutetusta TCE-kohtaisesta moduulista, sen testaamisesta jaoikean toiminnan varmentamisesta. Diplomityössä esitellään kääntäjän rooli TCE:ntyökaluketjussa ja kuvataan toteutetun kääntäjämoduulin arkkitehtuuri. Lisäksidiplomityössä kuvataan kääntäjän testauksessa ja suorituskyvyn mittauksessa käyte-tyt menetelmät tuloksineen.
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1
1. INTRODUCTION
Pro
essors for embedded systems often have stri
t requirements limiting their design.Fa
tors su
h as power 
onsumption, performan
e, and produ
tion 
osts pla
e mu
hstronger restri
tions for the pro
essor ar
hite
ture when 
ompared to, for example,general-purpose pro
essors (GPPs) in desktop 
omputers. However, embedded sys-tems are typi
ally required to run only a very limited set of programs, allowing thepro
essor design to be optimized for the appli
ation.Appli
ation Spe
i�
 Pro
essors (ASPs) are pro
essors that are 
ustomized forexe
uting spe
i�
 software. They 
an, therefore, be mu
h more e�e
tive solutionsfor embedded systems than GPPs, but still retain more �exibility than an Appli
a-tion Spe
i�
 Integrated Cir
uit (ASIC) designed for only one task. When an ASPis designed, the hardware and software parts of the system are developed simulta-neously by 
odesigning the pro
essor and software to bene�t from the tailoring ofthe system for the spe
i�
 appli
ation. The instru
tion set of an ASP is 
ustomizedby removing any instru
tions that are not needed by the software and by adding
ustom instru
tions that in
rease performan
e of the system.Designing an appli
ation spe
i�
 pro
essor is a demanding and time 
onsum-ing task. A software toolset for designing Transport Triggered Ar
hite
ture (TTA)ASPs 
alled TTA-based Codesign Environment (TCE) was implemented at Tam-pere University of Te
hnology to 
hallenge this problem. TTA is a pro
essor designparadigm for designing ASPs based on a modular ar
hite
ture template, whi
h al-lows 
ustomization of a pro
essor by adding and removing basi
 building blo
ks ofthe ar
hite
ture template su
h as fun
tion units, register �les, and transport buses.TCE provides a full toolset 
ontaining all tools required to 
odesign a TTA pro
essorand software for it.A 
ru
ial part of the toolset is the 
ompiler. Implementing a 
ompiler for a
ustomizable ar
hite
ture template is an espe
ially demanding task be
ause the
ompiler has to adapt to the available resour
es in the 
ustomized target pro
essor.The TCE 
ompiler is implemented as a ba
kend for the Low Level Virtual Ma
hine(LLVM) 
ompiler framework whi
h provides the high-level language frontends andtarget independent analysis and optimization 
omponents. This thesis des
ribes therequirements, design, and veri�
ation of a LLVM 
ompiler ba
kend for the TCEtoolset.



1. Introdu
tion 2The thesis is divided into the following 
hapters. Chapter 2 introdu
es the TTApro
essor ar
hite
ture and des
ribes the method of programming TTAs. The 
hapteralso presents the TTA Codesign Environment and des
ribes the role of the 
ompilerin the toolset. Chapter 3 des
ribes the basi
 stru
ture of typi
al 
ompilers and in-trodu
es basi
 
ompiler 
on
epts. In addition, the 
hapter gives an overview of theLLVM 
ompiler infrastru
ture and ba
kend framework. The design and implemen-tation of the TCE 
ompiler ba
kend is presented in Chapter 4. Chapter 5 
ontainsthe 
ompiler test results and des
ribes the testing methods used for veri�
ation andben
hmarking. Chapter 6 
on
ludes the thesis.



3
2. CODESIGN ENVIRONMENT FORAPPLICATION SPECIFIC PROCESSORS
This 
hapter gives a brief overview of appli
ation spe
i�
 pro
essors (ASPs) andtheir design pro
ess. In addition, the Transport Triggered Ar
hite
ture (TTA) pro-
essor ar
hite
ture paradigm for designing ASPs is introdu
ed. This 
hapter alsointrodu
es the TTA Codesign Environment (TCE), whi
h is a toolset for designingTTA pro
essors.2.1 Appli
ation Spe
i�
 Pro
essor DesignAppli
ation Spe
i�
 Pro
essors (ASPs) are pro
essors whi
h are 
ustom designedto run a spe
i�
 set of software e�
iently. When the target appli
ation is wellde�ned with limited fun
tionality, a pro
essor 
an be designed with resour
es thatare 
ustomized to bene�t the appli
ation. For example, any unne
essary operations
an be removed from the operation set and highly spe
ialized 
ustom operations 
anbe added to improve performan
e. This way the power 
onsumption, 
hip area, andmanufa
turing 
osts 
an be minimized while still ful�lling the program exe
utionspeed requirements.ASPs 
an have signi�
antly better e�
ien
y when 
ompared to using generalpurpose pro
essors for the same task, but as a trade-o� the design pro
ess 
an betime-
onsuming and 
ostly. Therefore the 
hoi
e of an ASP ar
hite
ture with a goodtoolset to assist and automate the design pro
ess is important.In order to design an ASP, a toolset is required for modeling, evaluating, and 
om-piling software for the 
ustomized pro
essor ar
hite
ture. Ea
h tool in the toolsetmust be able to adapt to di�erent ar
hite
ture variations and, therefore, the ar
hi-te
ture design spa
e has to be limited to an ar
hite
ture template. The templatedes
ribes general 
hara
teristi
s of the pro
essor ar
hite
ture, but 
an allow 
us-tomization of di�erent resour
es, su
h as the instru
tion set, register �les and theinter
onne
tion network.When an ar
hite
ture template is used, pro
essors 
an be designed by means ofdesign spa
e exploration. Design spa
e exploration is a pro
ess where a pro
essoris designed iteratively. First, an initial ar
hite
ture is designed and evaluated witha simulator. Based on the evaluation results, the design is then improved and re-evaluated until a satisfa
tory design is found. The pro
ess 
an be done manually



2. Codesign Environment for Appli
ation Spe
i�
 Pro
essors 4or by using varying degrees of automation with a toolset 
apable of improving andevaluating ar
hite
tures automati
ally.2.2 Transport Triggered Ar
hite
tureAn important way to improve program exe
ution speed is to take advantage of In-stru
tion Level Parallelism (ILP). ILP is a term for the �ne grained independen
yof operations, whi
h allows multiple operations to be exe
uted simultaneously. Su-pers
alar pro
essor ar
hite
tures, su
h as modern desktop CPUs exploit ILP withinthe pro
essor hardware by dete
ting the operation dependen
ies during run time.Operation exe
ution order 
an then be reorganized, and multiple operations s
hed-uled to be exe
uted in parallel. However, this approa
h requires additional logi
 inthe pro
essor hardware to dete
t operation dependen
ies and allo
ating pro
essorresour
es for the exe
uted operations.Very Long Instru
tion Word (VLIW) is a pro
essor ar
hite
ture whi
h utilizesILP by parallelizing instru
tions at 
ompile time [1℄. In VLIW ar
hite
ture one in-stru
tion 
onsists of multiple operations whi
h are stati
ally s
heduled to pro
essorexe
ution units by the 
ompiler. Pro
essor hardware is therefore freed from thedependen
y dete
tion logi
, redu
ing the hardware 
omplexity and lowering power
onsumption. In VLIWs, the inter
onne
tion network between exe
ution units andother pro
essor resour
es needs to be designed for all possible 
on
urrent data trans-ports. The growing 
omplexity of the inter
onne
tion network therefore limits thes
alability of VLIWs.Transport Triggered Ar
hite
ture is a pro
essor ar
hite
ture template similar tothe VLIW ar
hite
ture. TTA takes the VLIW idea of moving 
omplexity fromthe hardware to the 
ompiler even further, by also assigning data paths used byinstru
tions at 
ompile time. This is done by programming the individual datatransports between pro
essor 
omponents instead of the traditional approa
h ofprogramming whole operations. In TTAs, the operations are exe
uted as side e�e
tsof the data transports. Be
ause the data paths are assigned at 
ompile time andthe 
ompiler is aware of the limitations, the inter
onne
tion network 
an be keptrelatively simple when new resour
es are added. [2℄The stati
 s
heduling of data transports has some drawba
ks when 
ompared tosupers
alar ar
hite
tures. The 
ode density is lower, be
ause more bits are requiredto en
ode data transports to a TTA instru
tion than en
oding an operation in atraditional operation triggered ar
hite
ture. Additionally, TTA performan
e is verydependent on the 
ompiler quality, and sin
e all ILP logi
 is in the 
ompiler it 
anbe
ome very 
omplex.[3℄
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Figure 2.1: Module diagram of a simple TTA pro
essor.TTA Pro
essor Organization. One of the main goals of TTA is to allow easy
ustomization of pro
essors with a templated ar
hite
ture design. TTAs are builtfrom 
omponents that 
an have pre-existing hardware implementation. Components
alled so
kets and buses form the inter
onne
tion network whi
h 
onne
ts four dif-ferent types independent units providing resour
es for operation exe
ution. Theseunit types are fun
tion unit (FU), register �le (RF), immediate unit (IU) and 
ontrolunit (CU). Figure 2.1 shows a 
omponent diagram of a simple TTA pro
essor withtwo fun
tion units, one register �le, one immediate unit and a 
ontrol unit.Fun
tion units are the exe
ution units of a TTA pro
essor. One fun
tion unit
ontains logi
 to exe
ute one or more operations. These operations 
an be simpleoperations su
h as addition of integers, or more 
omplex operations that do 
ompu-tation spe
i�
 to the appli
ation that the ar
hite
ture is 
ustomized for. Usually atleast one of the fun
tion units in a TTA pro
essor is a spe
ial load and store unitthat 
an a

ess data memory. Fun
tion units read and write operands using inputand output ports that are 
onne
ted to the inter
onne
tion network. The operationset of a TTA pro
essor 
an be 
ustomized by adding fun
tion units that provide thedesired set of operations.Register �les are units that 
ontain arrays of registers with same bit width. Regis-ters are used for storing temporary values su
h as operation operands for fast a

essinside the pro
essor. Registers are also used for spe
ial purposes su
h as storingthe sta
k pointer and fun
tion return value. A TTA pro
essor 
an have multipleregister �les with di�erent bit widths. Register �les 
an have multiple input andoutput ports to allow multiple register a

esses in one instru
tion 
y
le.Immediate units 
ontain spe
ial registers to store long 
onstant values that 
annot be en
oded in instru
tions as literal 
onstant values.A TTA pro
essor 
ontains a 
ontrol unit whi
h is responsible for 
ontrolling the
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ation Spe
i�
 Pro
essors 6pro
essor operation. It fet
hes and de
odes instru
tions and generates signals toexe
ute them. The 
ontrol unit also 
ontains 
ontrol �ow operations so it 
an alsobe seen as a spe
ial fun
tion unit.So
kets and buses form the inter
onne
tion network that is utilized to transportdata between the units. The number of buses limits the number of 
on
urrent datatransports in a TTA pro
essor. One bus 
an 
omplete one data transport in ea
hinstru
tion 
y
le between unit ports that are 
onne
ted to it by so
kets. So
ketshave a dire
tion whi
h determines if the ports 
onne
ted to it 
an read or writethe transport bus. Conne
tions between so
kets and buses are usually optimized to
ontain only the 
onne
tions that are needed for fast pro
essor operation. A fully
onne
ted inter
onne
tion network with multiple buses 
onne
ted to all ports willusually have poor utilization and high 
ost in terms of 
hip area.2.3 TTA Pro
essor ProgrammingTraditional pro
essors are programmed by de�ning operations and their operands.For example, in the assembly language of a traditional RISC ar
hite
ture, simpleoperation like addition of two operands in registers r1 and r2 to register r3 mightlook like this:add $r3, $r1, $r2The RISC pro
essor will generate the required signals to exe
ute the operation.In 
ontrast, TTA pro
essors are programmed by de�ning the data transports thatare required to perform the desired behavior. The a
tual operations are exe
utedas side e�e
ts of the data transports when a data transport o

urs to an operationtriggering port of a fun
tion unit.The same example in TTA assembly would look something like this:r1 -> add.1r2 -> add.2add.3 -> r3To exe
ute the add operation, three data transports 
alled moves are de�ned.The �rst move de�nes a data transport from register r1 to the input port 1 of afun
tion unit 
ontaining the add operation. The se
ond move de�nes another movefrom register r2 to the input port 2 whi
h triggers the exe
ution of the add operation.Finally, the result is moved from the output port of the fun
tion unit to the registerr3. This example is sequential TTA 
ode. Operation laten
ies are not yet taken toa

ount, the moves are not parallelized and the required target resour
es are not yetassigned.



2. Codesign Environment for Appli
ation Spe
i�
 Pro
essors 7To assemble a real TTA program for a spe
i�
 target TTA pro
essor, the programmust be s
heduled for the target ar
hite
ture and the pro
essor resour
es must beallo
ated. Registers must be bound to spe
i�
 registers in the register �les of thetarget TTA. Operations must be also bound to spe
i�
 fun
tion units of the targetar
hite
ture 
ontaining the 
orresponding operations. Finally, the moves must bes
heduled while 
onsidering operation laten
ies and parallelized to spe
i�
 transportbuses to exploit ILP.S
heduling TTA programs for target ar
hite
ture. The following is a smallsequential TTA program with a 
onditional jump at the end. The syntax �!bool� inmove 12 denotes that the move is 
onditional and will o

ur only if the value in theregister �bool� is FALSE (binary value zero). This program also 
ontains 
onstantliteral values whi
h 
an be en
oded in the instru
tions as short immediates.1: 1 -> r1 [initialize variables in registers℄2: 0 -> r23: r1 -> add.14: r2 -> add.25: add.3 -> r26: r1 -> eq.17: 1024 -> eq.28: eq.3 -> bool [bool = boolean register℄9: r1 -> add.110: 1 -> add.211: add.3 -> r112: !bool 3 -> jump.1 [jump to 3: if bool equals zero℄The following TTA program is what this example might look like after allo
atingresour
es and s
heduling moves to the buses of a target TTA. This parallel TTAprogram is target-dependent and 
an be assembled only for the target TTA it wasparallelized for.1: 1 -> RF1.1 0 -> RF1.22: RF1.1 -> FU1.add.i1 RF1.2 -> FU1.add.i23: FU1.add.o1 -> RF1.2 RF1.1 -> FU2.eq.i14: 1024 -> FU2.eq.i2 1 -> FU1.add.i15: FU2.eq.o1 -> RF2.1 RF1.2 -> FU1.add.i26: FU1.add.o1 -> RF1.1 !RF2.1 2 -> GCU.jump.1Registers r1 and r2 are allo
ated to registers 1 and 2 in a general purpose register�le RF1. Boolean register bool is allo
ated to register 1 of a 1-bit register �le RF2.
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i�
 Pro
essors 8Operations are also bound to fun
tion units 
ontaining the 
orresponding operations,and the operand ports are spe
i�ed to 
orrespond the 
orre
t operand ports of theoperations. Moves are then s
heduled to two buses of the target TTA.The 
onditional move in instru
tion 6 is done by utilizing a register guard onthe se
ond bus. This bus must therefore have a guard that 
an exe
ute the move
onditionally depending on the value of register 1 in RF2.The instru
tion s
heduler in a TTA 
ompiler must also take operation laten
iesinto a

ount. Results 
an be read only when the fun
tion unit has done the 
al
u-lation and the result is ready. Operation laten
y determines the number of 
y
lesrequired by the fun
tion unit to 
ompute the result of the operation.2.4 TTA Codesign EnvironmentTTA-based Codesign Environment (TCE) is a set of tools developed at TampereUniversity of Te
hnology for designing and programming TTA pro
essors. The goalof the TCE proje
t is to provide an easy to use tool
hain for TTA pro
essor design,aiming to minimize the time and 
ost of design by automating the design pro
essas mu
h as possible [4℄.The TCE pro
essor design tool
hain 
ontains all tools required to design andsimulate TTA pro
essors and programs. The pro
essor design starting point isusually the sour
e 
ode for an appli
ation, and a set of performan
e requirementsand design limitations that must be met by the designed pro
essor. The pro
essor isdesigned with an iterative design spa
e exploration pro
ess. The exploration beginswith an initial ar
hite
ture a
ting as a starting point for the pro
essor design. Theprogram sour
e 
ode is 
ompiled for the pro
essor ar
hite
ture, and a model of the
ompiled program is simulated on a simulator for the pro
essor ar
hite
ture. Thesimulator produ
es a tra
e of the program exe
ution, whi
h is examined to improvethe ar
hite
ture design. This pro
ess is repeated until a satisfa
tory design is found.The design spa
e exploration 
an be done either manually, or at di�erent levelsof automation. In the manual design pro
ess, the di�erent tools of the pro
essordesign tool
hain are used manually, and the pro
essor design is modi�ed by hand.The fully automati
 design spa
e exploration has only the program sour
e 
ode andthe design requirements as input, and does not require any user intera
tion for theexploration pro
ess. A user's guide to di�erent TCE tools and the design pro
ess
an be found in the TCE User Manual [5℄.2.4.1 Automati
 Design Spa
e ExplorationThe automated design spa
e exploration is driven by the Explorer tool. The Ex-plorer is a highly modular tool whi
h 
an be programmed to explore the design spa
e
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Figure 2.2: TCE design �ow.a

ording to any user 
riteria. The design spa
e explorer works in 
onjun
tion withthe TCE 
ompiler and simulator, whi
h are used to test di�erent ar
hite
ture 
on-�gurations. The explorer itself is responsible for estimating the 
ost of the di�erent
on�gurations, and modifying the ar
hite
ture to di�erent points of the design spa
ein order to �nd an improved design. The design 
ost is measured in terms of the
hip area required to implement the pro
essor, and the total energy 
onsumption torun the desired program. The pro
essor performan
e is measured as the number of
lo
k 
y
les required to run the program. The automated exploration design �ow isillustrated in Figure 2.2.The exploration begins with an initial pro
essor ar
hite
ture model, whi
h 
an befor example the minimal required 
on�guration needed by the 
ompiler to 
ompilearbitrary programs. The sour
e program is 
ompiled for the initial ar
hite
ture.The 
ompiler produ
es a model of a parallel TTA program whi
h 
an be simulated.The simulator is invoked to simulate the parallel program model on a model of the
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essor ar
hite
ture. The simulator result is a simulation tra
e database. Thetra
e 
ontains detailed information about the program simulation, su
h as the total
lo
k 
y
le 
ount of the simulation and the utilization of di�erent ar
hite
ture 
om-ponents. The explorer will then generate a new 
on�guration point in the exploreddesign spa
e whi
h is tested. The pro
ess of exploring di�erent 
on�gurations in thedesign spa
e is repeated until the user de�ned 
riteria is ful�lled.In order to estimate the power 
onsumption and 
hip area, the explorer has togenerate an implementation model of the pro
essor. The implementation is gener-ated by 
hoosing implementations for the ar
hite
ture 
omponents from a databaseof pre-existing hardware 
omponents with known 
hara
teristi
s.When the �nal 
on�guration is found, it 
an be prepared for implementation.TCE in
ludes tools for generating a HDL des
ription of the pro
essor from thepro
essor ar
hite
ture and implementation models. The pro
essor implementationmodel is also used for generating a bit image of the 
ompiled program model.2.4.2 CompilerThe TCE 
ompiler is the subje
t of this thesis. The 
omplier is a retargetable 
odegenerator, whi
h 
an adapt to di�erent ar
hite
tures designed with the TCE ar-
hite
ture template. It gets the program sour
e 
ode and a pro
essor ar
hite
turemodel as input. The output is a model of a parallel program for the target pro-
essor ar
hite
ture. The design and implementation of the 
ompiler is dis
ussed inChapter 4.2.4.3 SimulatorIn order to verify and ben
hmark an ar
hite
ture 
on�guration, the program exe
u-tion must be simulated on a software model of the pro
essor. The toolset 
ontainsa pro
essor simulator with two simulation engines for this purpose. The simulationengines are a 
y
le-a

urate interpretive simulator, and a faster but less a

urate
ompiled simulator.The interpretive simulator simulates an ar
hite
tural model of the pro
essor. Thesimulation model 
ontains only ar
hite
tural 
omponents, whi
h are visible to theprogrammer. However, the simulation is 
y
le-a

urate, and all ar
hite
tural 
om-ponents 
ontain 
orre
t data on ea
h 
y
le [6℄. The interpretive simulator enginesimulates an assembly-level model of the program, not the exe
ution of an a
tualbit image of the program. The interpretive simulator is useful for veri�
ation of anar
hite
ture with 
lo
k 
y
le level tra
ing and debugging of the program exe
ution.The 
ompiled simulator engine generates exe
utable simulation 
ode from a paral-lel program model 
ompiled for the target pro
essor [7℄. Individual 
lo
k 
y
les and
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hite
ture 
omponents are not simulated. The simulation 
ode also has limitederror dete
tion 
apabilities 
ompared to the interpretive simulation. The redu
edsimulation overhead results in mu
h faster simulation, whi
h is useful for qui
kben
hmarking of a target ar
hite
ture.2.4.4 Program Image and Pro
essor GenerationThe �nal step in the TCE tool
hain is the generation of a pro
essor implementationdes
ription whi
h 
an be synthesized for the 
hosen hardware te
hnology, and thegeneration of a program bit image whi
h 
an be exe
uted on the pro
essor.The pro
essor implementation des
ription is generated from the ar
hite
ture andimplementation models of the pro
essor with the Pro
essor Generator [8℄ tool. Thetool produ
es a VHDL hardware des
ription of the pro
essor.In order to generate a program image, a Binary En
oding Map (BEM) is generatedfor the pro
essor implementation. The BEM 
ontains the information required toen
ode instru
tions for the pro
essor. A Program Image Generator (PIG) [8℄ tooluses the BEM to generate a bit image from a parallel program model 
ompiled forthe pro
essor.



12
3. COMPILERS
A 
ompiler is a software system that translates programs between sour
e and tar-get representations, typi
ally 
onverting programs written in a high level language(HLL) to a target ma
hine spe
i�
 representation. Compilers 
an be implementedusing a 
ompiler infrastru
ture whi
h provides modular and reusable 
omponentsfor 
ompiler implementation.This 
hapter introdu
es general 
ompiler 
on
epts and the typi
al stru
ture of
ompilers. In addition, the Low Level Virtual Ma
hine (LLVM) 
ompiler infrastru
-ture, whi
h is the basis of the TCE 
ompiler is introdu
ed.3.1 Compiler Stru
tureTypi
ally, 
ompiler infrastru
tures have modular ar
hite
tures where di�erent pro-gramming language frontends and 
ompilation target ba
kends 
an be added asindependent modules as illustrated in Figure 3.1. In order to a
hieve modularity,the 
ompiler must have a well de�ned Intermediate Representation (IR) of programsthat di�erent modules use to 
ommuni
ate programs between 
ompilation phases.Intermediate representation. An IR of a 
ompiler is a data stru
ture that rep-resents the 
ompiled program to the 
ompiler. Intermediate representation uses anintermediate language that targets an abstra
t target ma
hine. The intermediatelanguage 
onsists of a virtual operation set of primitive operations. The virtual oper-ation set and the stru
ture of the IR are designed to aid in the analysis, optimizationand 
ode generation for target ma
hines.In generi
 
ompiler frameworks that are not designed for a spe
i�
 target ar
hi-te
ture, the intermediate language usually has a virtual instru
tion set of primitiveoperations that are generi
 to most pro
essors. The virtual instru
tion set 
an alsohave abstra
t operations that are not spe
i�
 to any ma
hine, but represent a target-dependent operation sequen
e su
h as a fun
tion 
all or dynami
 memory allo
ationfor temporary values. The abstra
t representation of these operations allows high-level optimizations to be done in the 
ompiler middle-end, but leaves the low level
ode generation the responsibility of the target spe
i�
 ba
kend.The intermediate language operations usually perform operations on operandsstored in virtual registers. The number of virtual registers available in the abstra
t
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Figure 3.1: Stru
ture of a typi
al 
ompiler.IR ma
hine is usually very high or pra
ti
ally unlimited.Compilers often use more than one form of intermediate representation. Di�erentIRs are used for di�erent phases of the 
ompilation that are easier to perform on
ertain type of IR than another. For example, some optimizations and programanalysis require a graph representation of the program where program operationsand operands are represented as nodes of a tree graph exposing the program data�ow. On another hand, some optimizations and 
ompilation phases are mu
h easierto implement using a stati
 single assignment form (SSA) of the program. In SSAevery variable is assigned only on
e, whi
h simpli�es the analysis of variables. If thesame variable is assigned multiple times it is split to multiple versions that de�ne anew variable. [9℄Frontend. A 
ompiler frontend is responsible for parsing programs written infrontend-spe
i�
 HLL and translating it to the IR of the 
ompiler. In a standardorganization, frontend stru
ture is divided to three main parts [10℄. First, lexi
alanalysis is performed on the input data, whi
h tokenizes the input string of 
har-a
ters to syntax spe
i�
 tokens of the programming language stru
ture, su
h as akeyword or a parenthesis. Next, the parser performs syntax analysis on the tokenstream, dete
ts syntax errors and 
onstru
ts a parse tree of the program. Finally,the semanti
 analyzer 
he
ks the program for stati
-semanti
 validity and an IRof the program is 
onstru
ted. The IR produ
ed by a frontend is usually sour
elanguage independent.Middle-end. The 
ompiler middle-end is the sour
e language and target ma
hineindependent part of the 
ompiler. Middle-end is responsible for analyzing and opti-mizing the IR before passing it to a target ba
kend. Compiler middle-ends usuallyperform data and 
ontrol �ow analysis on the IR. The resulting data �ow graph(DFG) 
ontains interdependen
ies between operations. Control �ow graph (CFG)
ontains the basi
 blo
k stru
ture of the program and identi�es 
ontrol �ow transfers
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Figure 3.2: Four instru
tion patterns available for instru
tion sele
tion.between basi
 blo
ks. A basi
 blo
k is a sequen
e of instru
tions that has a singleentry and exit point, whi
h 
an be treated as a single entity when the 
ontrol �owof a program is analyzed.These graphs are used as a basis for di�erent optimizations done in the middle-end. Optimizations are usually implemented as modules, so that the sequen
eof optimizations 
an be 
ustomized. The resulting optimized IR is still target-independent, but the sequen
e of di�erent optimizations 
an be 
hosen to bene�tsome spe
i�
 target.Ba
kend. Compiler ba
kends are target spe
i�
 
ode generators, whi
h translatethe target independent IR to target spe
i�
 
ode. The most important tasks fora ba
kend is to perform instru
tion sele
tion, register allo
ation and instru
tions
heduling on the IR. Ba
kends 
an also perform target spe
i�
 optimizations. Theoutput of a 
ompiler ba
kend is usually assembly 
ode or binary obje
t 
ode for thetarget ma
hine.3.1.1 Instru
tion Sele
tionAn instru
tion sele
tor maps IR operations to operations supported by the targetpro
essor. A single IR operation 
an be expanded to a sequen
e of target operationsor an emulation fun
tion 
all if an IR operation is not in
luded in the operationset of the target ma
hine. In the opposite situation, the target ma
hine might haveoperations that 
ombine a sequen
e of IR operations to a single target operation.Instru
tion sele
tion is usually done on a DFG representation of the IR. Aninstru
tion sele
tor has tree patterns of the target ma
hine instru
tions de�ning thebehavior of the instru
tions to perform instru
tion sele
tion on a DFG. The patterns
an also be asso
iated with a 
ost. The task of instru
tion sele
tor is to 
over the
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LDWFigure 3.3: Two possible ways of 
overing a simple DFG with ADD, LDW, MAC and MULpatterns.program DFG using the ma
hine instru
tion patterns. There are usually multipledi�erent ways to 
over even a very simple DFG. In Figure 3.2 there are four di�erentinstru
tion patterns that are available to 
over a simple subgraph of a program inFigure 3.3.A simple instru
tion sele
tion method is to rewrite the IR operation tree bymat
hing subtrees with the instru
tion patterns of the target ma
hine. In the ex-ample in Figure 3.3, the only available pattern to mat
h the load operation subtreeis the LDW pattern. The remaining subtrees are mat
hed from bottom to up. Thereare two possible ways to 
over the add operation as illustrated in Figure 3.3. Usually,an instru
tion sele
tor would try to mat
h a subtree starting from the pattern that
overs the largest subtree. In this example, the MAC pattern is mat
hed beforethe ADD pattern and the remaining graph is 
overed with a MAC operation. Ifthe instru
tion sele
tion patterns are asso
iated with a 
ost, a linear time dynami
programming algorithm 
an be utilized to �nd the optimal solution [11℄.3.1.2 Register Allo
ationA register allo
ator maps the variables in the IR to real registers in target hardware.The virtual register utilization in the program is �rst analyzed to determine liveranges of the values in the registers. The live range of a value in register determineswhen it is safe to assign a register for a new variable. If the number of simultaneouslive values in virtual registers is greater than the number of physi
al registers, theregister allo
ator must spill values to memory. The register allo
ator 
an do thisby inserting spill 
ode whi
h stores a live register value to memory. The register
an then be used for a new variable, and the old variable 
an be restored later frommemory when it is needed again.
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auses load and store overhead, so the task of a registerallo
ator is to minimize register spilling by maximizing the use of physi
al registersfor frequently used variables. Register allo
ation is a 
omputationally intensive NP-
omplete [10℄ problem and there is no known e�
ient algorithm to �nd the optimalsolution.3.1.3 Instru
tion S
hedulingPro
essors 
an be pipelined to improve their instru
tion throughput. An instru
tionpipeline splits the exe
ution of an instru
tion to a sequen
e of independent steps.Multiple instru
tions 
an therefore be pro
essed in parallel by exe
uting di�erentstages of instru
tions at the same time in the pipeline. However, pipelining intro-du
es hazards to the 
omputation when simultaneously exe
uted instru
tions haveinterdependen
ies. Hazards are usually avoided by stalling the pipeline.Instru
tion s
heduling is a 
ompiler optimization whi
h reorganizes the exe
u-tion order of instru
tions to avoid pipeline stalls for improving performan
e. Somema
hines also expose instru
tion pipeline resour
es to the 
ompiler and expe
t the
ompiler to take 
are of operation timing issues by always s
heduling instru
tions.Instru
tion s
heduling is espe
ially important for VLIWs and TTAs. Both ar
hi-te
tures have programmer visible operation laten
y that has to be taken into a

ountby the 
ompiler. Instru
tion s
heduling is therefore always needed for VLIWs andTTAs to maintain 
orre
t behavior of programs. On TTAs, the quality of the in-stru
tion s
heduling is also very important to the program exe
ution performan
e.In TTA pro
essors individual fun
tion units 
an be pipelined with resour
es thatare visible to the 
ompiler. Other pro
essor resour
es su
h as buses, guards andports are also visible to TTA 
ompilers. Instru
tion s
heduling is therefore a more
omplex and important problem for TTA pro
essors than for example supers
alarar
hite
tures. A TTA instru
tion s
heduler has to allo
ate pro
essor resour
es toexe
uted instru
tions and take operation laten
ies into a

ount while pa
king max-imum number of moves to instru
tions to improve ILP. More information on TTAinstru
tion s
heduling 
an be found in [12℄.3.2 Compiler RetargetingThe easiest way to implement a 
ompiler for a pro
essor ar
hite
ture is to imple-ment a ba
kend for an existing 
ompiler infrastru
ture. Compiler infrastru
turesusually aim to minimize the manual work required for writing new ba
kends. Ba
k-ends are typi
ally implemented using a framework whi
h provides a formal ma
hinedes
ription language. The purpose of ma
hine des
ription languages is to 
apturethe 
ompilation related details of the pro
essor and allow reuse of generi
 ba
kend
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ode.Modeling languages vary on the approa
h they take to model a pro
essor. Behav-ioral modeling languages su
h as ISDL are more 
ompiler-oriented and allow easierimplementation of the ba
kend but require more knowledge of 
ompilers. Stru
turalmodeling languages su
h as MIMOLA des
ribe the stru
ture and ar
hite
tural de-tails of the pro
essors and are therefore easier for users that are not familiar with
ompilers. A good overview of 
ustomizable pro
essor ar
hite
ture des
ription lan-guages 
an be found in [13℄. Depending on the 
ompiler framework and the modelinglanguage, ba
kend generation 
an be fully automated from the modeling languagedes
ription, or might require some parts of the ba
kend to be manually programmed.Stati
 
ompiler ba
kends are limited to a single target pro
essor or a family ofsimilar pro
essors. The ba
kends have hard-
oded models of the target pro
essorar
hite
ture, and exa
t properties of the pro
essors must be known when imple-menting the ba
kend. This poses a problem for 
ustomizable pro
essor ar
hite
turetemplates where the pro
essor is designed for a spe
i�
 task. Implementing a newba
kend for ea
h new ar
hite
ture would be time-
onsuming and it would make fastpro
essor prototyping and e�e
tive design spa
e exploration impossible.A solution presented in this thesis to this problem is to implement a dynami
allyretargetable ba
kend, whi
h only 
ontains general aspe
ts of the ar
hite
ture tem-plate as a hard 
oded model. The a
tual target pro
essor model is given as an inputfor the ba
kend at runtime, and the ba
kend adapts to the properties of the targetpro
essor 
on�guration.3.3 Appli
ation Binary Interfa
eA 
ompiler ba
kend is responsible for implementing 
ode generation 
orrespondingto the target spe
i�
 appli
ation binary interfa
e (ABI), whi
h de�nes the low-levelinterfa
e of program 
omponents.An important aspe
t of an ABI is the memory organization of the target ar-
hite
ture. To a
hieve 
ompatibility between di�erent program 
omponents, the
ompiler ba
kend has to implement a 
onsistent memory allo
ation s
heme de�nedin the ABI. A ba
kend follows the ABI 
onventions, whi
h de�ne memory stru
turedetails su
h as the size and alignment of di�erent data types in memory, and thestru
ture of the 
all sta
k.The 
all sta
k is a data stru
ture whi
h stores information about a
tive fun
tionsin the program in sta
k frames. A sta
k frame has a 
onsistent stru
ture withprede�ned areas for fun
tion return address, fun
tion parameters, lo
al variablesand similar data spe
i�
 to the state of an individual fun
tion invo
ation. Thisallows the fun
tion to a

ess the lo
al state data using a sta
k pointer, whi
h pointsto the end address of the sta
k frame of the a
tive fun
tion.
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alling 
onvention. Calling 
onventiondetermines how the fun
tion arguments are passed and how the return value is re-trieved when a 
all to a fun
tion is invoked. The task of the ba
kend is to 
onvert theabstra
t 
all and return instru
tions to 
ode sequen
es whi
h implement the 
alling
onvention. On the 
aller side, a 
ode sequen
e inserted to �rst store the fun
tionparameters to argument registers or the 
all sta
k, and another 
ode sequen
e toretrieve the return value after the 
all has returned. On the 
allee side, the ba
kendgenerates a fun
tion prologue to read the fun
tion arguments and an epilogue tostore the return value in appropriate lo
ations before returning from the fun
tion
all.The 
alling 
onvention also de�nes the responsibility of saving and restoring reg-isters whi
h must preserve their values. Caller saved registers are saved to the sta
kby the 
alling fun
tion before the fun
tion 
all and restored after the 
all returns.Callee saved registers are saved in the 
alled fun
tion prologue and restored in theepilogue before the fun
tion returns.3.4 LLVM Compiler Infrastru
tureLow Level Virtual Ma
hine [14℄ is an open sour
e 
ompiler infrastru
ture based onlow level virtual ma
hine 
ode representation of 
ompiled programs. The goal of theLLVM proje
t is to provide a robust platform for 
ompiler development using a 
oderepresentation whi
h allows reuse of 
ompiler 
omponents a
ross di�erent targets.LLVM has a modular design, allowing new language frontends, target ma
hine ba
k-ends, and optimizations to be easily in
orporated in the existing framework. LLVMalso aims to provide a �exible framework for program analysis and transformation,in
luding 
ompile-time, link-time, and run-time optimization and pro�ling [15℄. Itis therefore well suited for developing a 
ompiler and resear
hing new optimizationmethods for TTA pro
essors.LLVM is the 
ompiler infrastru
ture 
hosen for TTA Codesign Environment(TCE). This se
tion serves as a basis for the TCE 
ompiler implementation pre-sented in Chapter 4.3.4.1 Compilation work�owLLVM 
ompilation work�ow begins with 
ompiler frontends for di�erent sour
e lan-guages. Frontends emit bit
ode whi
h is linked together by a bit
ode linker. Thebit
ode linker performs link-time optimizations, in
luding inter-pro
edural analysisand optimization. The linked bit
ode 
an then be optimized by an o�ine optimizer.Finally, a 
ode generator writes the target assembly or binary ma
hine 
ode fromthe optimized IR.
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ompilation work�ow.LLVM also allows native exe
ution of bit
ode using Just-In-Time (JIT) 
ompilerwith runtime pro�ler and optimizer. However, the runtime optimizer and JIT 
annotbe used when LLVM is used as a stati
 
ross-
ompiler generating 
ode for non-nativema
hines. Figure 3.4 shows the stati
 
ompilation work�ow, when LLVM is used asa stati
 
ross-
ompiler.The most popular of the 
urrent frontend implementations is a GNU CompilerColle
tion (GCC) [16℄ based LLVM-GCC frontend. The LLVM-GCC frontend in-
ludes support, among others, for C and C++ programming languages.Optimization, analysis, and 
ode generation are implemented as passes in theLLVM 
ompiler. Ea
h pass implements one analysis or transformation of the IR.LLVM has di�erent types of passes working on di�erent s
opes, ranging from generalmodule passes transforming or analyzing whole 
ompilation units at a time to basi
blo
k passes that are limited to s
ope of a single basi
 blo
k. Passes are organizedwith a PassManager, whi
h manages pass dependen
ies and the exe
ution order ofpasses. All passes use the LLVM IR as input and output.3.4.2 Program representationLLVM 
ode representation is based on a sour
e language and target ma
hine inde-pendent RISC-like virtual instru
tion set. The virtual instru
tion set also in
ludesinstru
tions that expose high level language features to the 
ompiler middle-end fore�e
tive optimization. LLVM 
ode 
an be represented as human readable assemblylanguage, as on-disk binary bit
ode and as in-memory obje
t model IR, whi
h areall equivalent and use the same virtual ma
hine as an intermediate target ma
hine.At a high level, LLVM programs are 
omposed of modules whi
h are the 
ompila-tion units of the LLVM 
ompiler. Modules 
onsist of fun
tions, global variables andsymbol table entries. LLVM fun
tions 
onsist of basi
 blo
ks whi
h in turn 
ontaininstru
tions. An instru
tion 
ontains an op
ode and a ve
tor of operands.The LLVM operands are strongly typed. The type system in
ludes primitive typesfor �xed point integers with di�erent bit-widths (i1, i8, i16, i32, ...), and �oatingpoint types of varying pre
ision (f32 , f64, ...). The type system also 
ontains moreabstra
t types, su
h as 
ode labels, pointers and di�erent kinds of stru
tured types.
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 LLVM 
ode generator layout [18℄.The primary representation of LLVM 
ode is in Stati
 Single Assignment (SSA)form [15℄. The LLVM SSA form uses a virtual register set that 
ontains an in�nitenumber of typed virtual registers. Full spe
i�
ation of the LLVM language 
an befound in the LLVM Language Referen
e Manual [17℄.3.4.3 Code generatorLLVM provides a framework for 
ode generator implementation. The framework
onsists of multiple passes that have LLVM IR as input and target ma
hine 
ode asoutput. The high-level stru
ture of a basi
 LLVM 
ode generator is illustrated inFigure 3.5.The �rst 
ode generation phase is instru
tion sele
tion. The instru
tion sele
tionpro
ess starts with building of an initial instru
tion sele
tion DAG, followed by DAGoptimizations to simplify it. The sele
tion DAG operand types are then legalized bytransformations that 
onvert any unsupported types to types whi
h are supportedby the target ma
hine. After the legalize stage and additional optimizations, thesele
tion DAG is ready for the a
tual instru
tion sele
tion. The �nal stage of theinstru
tion sele
tion phase is formation of an SSA-representation of the intermediatema
hine 
ode.Instru
tion sele
tion is followed by three phases, whi
h have target independentimplementations available in the LLVM framework. First, the ma
hine 
ode SSA
an be optimized with optional SSA-based optimizations. The SSA is then regis-ter allo
ated, transforming the virtual registers to 
on
rete registers in the targetma
hine. LLVM libraries in
lude multiple di�erent built in register allo
ation algo-rithms that 
an be used. After register allo
ation, fun
tion prologue and epilogue
ode is inserted, the instru
tions are s
heduled and late ma
hine 
ode optimizationsare done to ready the program for 
ode emission. The 
ode emission is typi
allydone by an assembly writer, whi
h produ
es assembly 
ode for the target pro
essor.
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kend ImplementationBa
kends utilizing the LLVM 
ode generator framework are implemented as targetma
hines of the LLVM framework. The target ma
hine interfa
e allows 
ustomimplementation of all di�erent 
ode generation related passes. However, the 
odegenerator framework provides implementations for instru
tion sele
tion and registerallo
ation, whi
h 
an be used by des
ribing the related properties of the targetma
hine using LLVM 
lasses.Target ma
hine. Target ma
hine en
apsulates all properties and 
ode genera-tion methods of a target ma
hine behind one interfa
e. The LLVM 
ode generatorframework uses the interfa
e to provide a ba
kend for the target ma
hine. Codegenerator passes are also 
reated through this interfa
e allowing full 
ustomizationof the 
ode generator.Data layout. Data layout of a target ma
hine des
ribes the endianess and pointersize as well as sizes and alignments of di�erent data types in the target ma
hinememory.Frame info. Frame info des
ribes the basi
 properties of the target ma
hine sta
kand sta
k frame layout. It also holds information about the dire
tion of sta
k growthin the memory and sta
k frame alignment.Register set. Target ma
hine registers and register types are de�ned in the targetma
hine register set. It des
ribes all registers of the target ma
hine and propertiesof di�erent register types. The register set implements TargetRegisterInfo interfa
e,whi
h 
ontains various methods utilized by the 
ode generator to handle registerand sta
k frame a

ess. TargetRegisterInfo is also responsible for emitting prologueand epilogue 
ode into fun
tions.Instru
tion set. Target ma
hine instru
tion set 
ontains des
riptors of all sup-ported instru
tions and de�nes their operand types. The operand types de�ne di�er-ent memory addressing modes and immediate operands. Register operand types arede�ned by referring to the register set. Instru
tion des
riptors de�ne the followingproperties of supported target instru
tions:
• Input and output operand lists, de�ning the operand types and number ofoperands,
• Instru
tion pattern whi
h de�nes the behavior of the instru
tion as a DAG ofLLVM instru
tions,
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• Additional predi
ates and 
onstraints for mat
hing the instru
tion pattern,
• An assembly string template for printing the instru
tion as target assembly
ode,
• List of registers impli
itly used and modi�ed,
• Target-independent �ags that de�ne properties su
h as if the instru
tion is
ommutable or if it may read or write memory, and
• Target-spe
i�
 �ags and properties.One target ma
hine instru
tion requires typi
ally more than one des
riptor todes
ribe the di�erent 
ombinations of operand types it 
an have and di�erent in-stru
tion patterns it 
an be mat
hed with.Instru
tion sele
tor. LLVM provides a base implementation for an instru
tionsele
tor. A skeleton of the instru
tion sele
tor is implemented as base 
lasses in theLLVM 
ode generator library and part of the instru
tion sele
tor 
an be automat-i
ally generated from the instru
tion des
riptors. Some of the instru
tion sele
tormethods have to be manually implemented be
ause the behavior of all instru
tions
annot be fully expressed with the instru
tion des
riptors.The manually implemented parts of the instru
tion sele
tor in
lude a legalizephase whi
h 
onverts unsupported types and operations to ones supported by thetarget ma
hine. The legalize phase 
an either promote, expand, or implement a
ustom lowering for operations that are not supported. If an operation is supportedfor larger operand types, the unsupported operands 
an be promoted to supportedtypes. Expand breaks an LLVM instru
tion to a 
ombination of other instru
tionsthat perform the same operation. If promotion or expansion is not su�
ient, thetarget legalizer 
an implement a 
ustom 
ode generation method for the unsupportedoperation.The instru
tion sele
tor also in
ludes methods to support target 
alling 
onven-tions. Di�erent 
alling 
onventions 
an be implemented by writing methods thatgenerate 
ode for passing arguments and handling return values of fun
tion 
alls.Register allo
ator. LLVM 
ode generator in
ludes multiple register allo
atorsthat implement di�erent register allo
ation algorithms as 
ode generator passes.The register allo
ator implementations are target independent and do not requireany target spe
i�
 modi�
ations. They utilize the target ma
hine interfa
e to a

esstarget register set model and use virtual 
ode generation methods implemented inthe target ma
hine to generate 
ode for spilling values to memory.
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ontains a par-tial implementation of an assembly printer pass. The assembly printer 
an be utilizedby providing information about the target assembly dire
tives and by implementingrequired assembly printing methods manually. Part of the assembly printing meth-ods 
an be automati
ally generated from the assembly string templates de�ned inthe target instru
tion des
riptors.3.6 Target Des
riptor FilesOne of the goals of the LLVM proje
t is to minimize the manual programming workrequired to implement a new ba
kend. A ba
kend has to model the target ma
hinewhi
h in
ludes repetitive des
riptions of di�erent target ar
hite
ture resour
es. Inorder to make the target ar
hite
ture modeling easier, LLVM in
ludes a generalpurpose TableGen tool for pro
essing re
ords of domain-spe
i�
 information. Themain use of the TableGen tool is the LLVM 
ode generator, whi
h allows part ofthe ba
kend C++ 
ode to be generated from target des
riptor �les whi
h 
ontainre
ords of a target ma
hine properties. The target des
riptor �les 
an be pro
essedby target des
ription TableGen ba
kends whi
h generate 
ode for essential parts ofthe ba
kend.The automati
ally generated 
ode in
ludes data stru
tures that are required bythe 
ode generator framework to handle target ma
hine instru
tions and registers,as well as methods for instru
tion sele
tion and assembly 
ode emission.TableGen �les 
onsist of 
lass and de�nition re
ords. Classes are the abstra
tre
ords that des
ribe the stru
ture of 
on
rete re
ords belonging to the same 
on-
eptual 
lass. New TableGen 
lasses 
an be derived from existing 
lasses inheritingtheir properties. De�nitions are the 
on
rete re
ords that de�ne the properties ofa domain-spe
i�
 obje
t. TableGen �les 
an also 
ontain multi
lasses, whi
h allowinstantiation of group of 
lasses in a single re
ord resulting in multiple de�nitions.The following part of this 
hapter is an introdu
tory des
ription of some of the keyelements in typi
al target des
riptor �les. TableGen has a versatile and expressivesyntax, whi
h is not 
overed by this thesis. A 
omprehensive explanation of theTableGen syntax 
an be found in [19℄. The TableGen target des
riptor �le ba
kendis do
umented in [20℄.
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lass for register re
ords. It 
ontains attributes de�ningthe register properties and relationship to overlapping registers. The Register 
lassde�ned in the target des
riptor TableGen ba
kend has the following stru
ture:
lass Register<string n> {string Namespa
e = "";string AsmName = n;int SpillSize = 0;int SpillAlignment = 0;list<Register> Aliases = [℄;list<Register> SubRegs = [℄;list<int> DwarfNumbers = [℄;}This base 
lass 
an be sub
lassed to de�ne 
omplex target registers with minimalrepetition as is done in the following example taken from the Spar
 ba
kend inLLVM:
lass Spar
Reg<string n> : Register<n> {field bits<5> Num;let Namespa
e = "SP";}
lass Rd<bits<5> num, string n, list<Register> subregs> :Spar
Reg<n> {let Num = num;let SubRegs = subregs;}The �rst de�nition introdu
es a new 
lass Spar
Reg whi
h is derived from theRegister base 
lass. It adds a new 5-bit identi�er �eld to store the register identi�ernumber and assigns register instan
es to the SP namespa
e. This 
lass is sub
lassedfurther with 
lass Rd to de�ne 64-bit slots in a �oating point register �le where ea
hslot 
an 
onsist of sub-registers. Finally, a 64-bit register D0 
onsisting of twosubregisters F0 and F1 
an be de�ned with the following simple de�nition, givingarguments to the Rd 
lass template:def D0 : Rd< 0, "F0", [F0, F1℄>, DwarfRegNum<[32℄>;The de�nition in
ludes the Dwarf number of the register, whi
h is used as anregister identi�er by debugging tools.
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ontains registers, whi
h are grouped as members of the 
lass. Aregister 
lass re
ord de�nes the supported types of the member registers, whi
h mustbe the same for all registers of the 
lass. The supported types are de�ned as LLVMIR value types. Register 
lasses 
an be instantiated by de�ning a RegisterClassre
ord. For example, the Spar
 ba
kend de�nes the following register 
lass, whi
h
ontains 64-bit registers, su
h as the D0 register de�ned in the previous example:def DFPRegs : RegisterClass<"SP", [f64℄, 64, [D0, D1, D2, D3,D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15℄>;The �rst argument of the RegisterClass template is the namespa
e of the de�ni-tion. The se
ond argument is a list of LLVM value types that 
an be stored in theregisters of this register 
lass. The third argument is the alignment in bits that isrequired when loading or storing register values to memory. The last argument is alist of registers belonging to the 
lass. The order of the list is used as the preferredregister allo
ation order by LLVM register allo
ators.Instru
tion is the target des
riptor base 
lass for de�ning the instru
tion re
ords.The base 
lass 
ontains an extensive set of attributes to de�ne behaviour of instru
-tions. Similarly to register re
ords, the Instru
tion 
lass 
an be sub
lassed to allowgroups of similar instru
tions to be expressed in a 
ompa
t form. The following 
odeis part of the Instru
tion base 
lass de�nition. Most of the �ags and attributes thatde�ne detailed properties of the instru
tion are omitted:
lass Instru
tion {string Namespa
e = "";dag OutOperandList;dag InOperandList;string AsmString = "";list<dag> Pattern;list<Register> Uses = [℄;list<Register> Defs = [℄;list<Predi
ate> Predi
ates = [℄;bit mayLoad = 0;bit mayStore = 0;// Rest of attributes omitted}The input and output operand lists are de�ned as strings that represent DAGsthat model the operands. The DAG representation allows 
omplex operand types,su
h as operands of di�erent memory addressing modes to be expressed as in the
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h operand is named so it 
an be referen
ed by the instru
tionpatterns and assembly string.The instru
tion patterns are also de�ned as DAGs. The patterns are used togenerate 
ode for the DAG to DAG instru
tion sele
tor. The patterns are de�nedusing prede�ned pattern fragments that 
orrespond to di�erent LLVM instru
tionnodes in a sele
tionDAG. The DAG fragments 
an be nested to express 
omplexoperation patterns. The DAG operands refer to operand re
ords in a similar wayas the input and output operand lists. The operands are mapped to the input andoutput lists by the operand names. The following example is a typi
al sub
lassedinstru
tion re
ord, taken from the Spar
 ba
kend:def FDIVD : F3_3<2, 0b110100, 0b001001110,(outs DFPRegs:$dst), (ins DFPRegs:$sr
1, DFPRegs:$sr
2),"fdivd $sr
1, $sr
2, $dst",[(set DFPRegs:$dst, (fdiv DFPRegs:$sr
1, DFPRegs:$sr
2))℄>;This re
ord de�nes an instru
tion for double pre
ision �oating point division.The F3_3 instru
tion format is sub
lass of the Instru
tion 
lass. The templatehas six arguments that instantiate an instru
tion re
ord. The �rst three argu-ments 2, 0b110100, 0b00100110 are values for Spar
 spe
i�
 instru
tion en
oding�elds. The fourth and �fth arguments (outs DFPRegs:$dst), (ins DFPRegs:$sr
1,DFPRegs:$sr
2) are the output and input operand lists. The lists de�ne that the in-stru
tion has one input and two output operands stored in DFPRegs 
lass registers.The lists also assign names $dst, $sr
1and $sr
3 for the operands.The sixth argument is an assembly string template used by the assembly printer.The template uses operand names de�ned in the input and output operand lists to
reate slots for the operand assembly strings.The �nal argument is a pattern for the instru
tion, whi
h uses two prede�nedpattern fragments. The fdivd fragment mat
hes a sele
tionDAG node whi
h 
orre-sponds to the LLVM double pre
ision �oating point division operation. The out-ermost set fragment makes the whole pattern mat
h to a DAG where a result of adivision of two DFPRegs values is stored to a DFPRegs 
lass register.
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it sele
tion DAG patterns. Typi
ally, most instru
tions are sele
ted us-ing the instru
tion sele
tion patterns de�ned in instru
tion re
ords. However, insome 
ases, an expli
it instru
tion sele
tion pattern is required. The expli
it se-le
tion DAG patterns mat
h an instru
tion pattern, and produ
e a DAG of targetma
hine instru
tions as a result. The patterns are de�ned using the following 
lasstemplate:
lass Pattern<dag patternToMat
h, list<dag> resultInstrs> {dag PatternToMat
h = patternToMat
h;list<dag> ResultInstrs = resultInstrs;list<Predi
ate> Predi
ates = [℄;int AddedComplexity = 0;}In most 
ases, only a simple result with one DAG is required. A pattern withone result DAG 
an be de�ned using the following sub
lass:
lass Pat<dag pattern, dag result> : Pattern<pattern, [result℄>;The �rst template parameter is the mat
hing pattern used in instru
tion sele
tion.The se
ond parameter is a DAG of target ma
hine instru
tions whi
h is the resultof the instru
tion sele
tion for the pattern. The following is an example of expli
itsele
tion DAG pattern, taken from the LLVM Mips ba
kend.def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;This sele
tion DAG pattern mat
hes greater-or-equal instru
tions, and sele
tsthem to a DAG whi
h performs the operation with a less-than SLT operation fol-lowed by negation of the result with an ex
lusive-or XOR operation.



28
4. IMPLEMENTATION
The TCE 
ompiler is based on the LLVM 
ompiler infrastru
ture. Due to spe
ialrequirements of TCE, the 
ompiler is not implemented as an ordinary stati
 LLVM
ompiler ba
kend.The most important requirement for the TCE 
ompiler is retargetability. Thisposes a problem with LLVM 
ompiler infrastru
ture where properties of the targetma
hine are hard-
oded in the ba
kend. TCE requires a 
ompiler whi
h 
an adaptto templated ar
hite
tures automati
ally without building a new 
ompiler for ea
hTTA.Due to limited proje
t resour
es, another requirement for the 
ompiler imple-mentation was to reuse LLVM libraries as e�
iently as possible. This requirementruled out a 
ompletely 
ustomized LLVM ba
kend with TCE-spe
i�
 dynami
allyretargetable instru
tion sele
tor and register allo
ator.LLVM ba
kends are normally implemented dire
tly into LLVM sour
e 
ode treeand built as a stati
 part of a 
ustomized LLVM build. In TCE, the automati
design spa
e exploration tools have to invoke the 
ompiler within the program 
ode.It is also desired that the TCE ba
kend is kept as loosely tied to a spe
i�
 version ofLLVM as possible to ease portability to future versions of LLVM. For these reasonsthe TCE 
ompiler is not implemented dire
tly as a part of a LLVM build. Instead,the TCE 
ompiler is implemented as a library in the TCE sour
e tree whi
h utilizesunmodi�ed LLVM libraries and tools installed in the host system.4.1 TCE Data Stru
tures Used by the CompilerThis se
tion presents the data stru
tures and �le formats of TCE whi
h are used bythe 
ompiler.4.1.1 Pro
essor Ar
hite
ture ModelThe pro
essor ar
hite
ture template of TCE is modeled with the Ma
hine Obje
tModel (MOM) data stru
ture [21℄. A MOM instan
e de�nes the ar
hite
tural lay-out of a TCE pro
essor and 
ontains all the information required to program thepro
essor. The pro
essor is modeled as ar
hite
tural 
omponents su
h as fun
tionunits, register �les, and transport buses.The instru
tion set of an ar
hite
ture is visible through the fun
tion units in the
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tion units are referen
es to Operation Set Abstra
tionLayer operation des
riptions, des
ribed in Se
tion 4.1.2.The register �le 
omponents in the MOM de�ne the properties of all registers inthe ar
hite
ture. The 
ompiler 
an use this information to build a list of availablegeneral purpose registers and their properties.Ma
hine obje
t models 
an be serialized to XML-based Ar
hite
ture De�nitionFiles (ADF)s. ADF �les are used to pass ar
hite
ture models of pro
essors betweendi�erent tools of the TCE toolset.4.1.2 Operation Set Abstra
tion LayerOperation Set Abstra
tion Layer (OSAL) is a library for de�ning properties andsemanti
s of operations in TCE ma
hines. The operation properties are stored inXML-format �les.Ea
h OSAL operation de�nes the name, the number of input operands, the num-ber of output operands, and the operand types of the operation. OSAL operationsalso have additional attributes whi
h de�ne properties su
h as whi
h input operandsare 
ommutable, and �ags whi
h tell if the operation may read or write memory.An operation may also in
lude one or more data �ow graphs de�ning the operationsemanti
s with other OSAL operations.TCE 
ontains a database of basi
 operations, whi
h are 
ommonly used in thedesigned pro
essors. New operations 
an be added by writing a des
ription of theoperation properties in a XML-�le. The following is an example of a user de�nedANDN operation:<operation><name>ANDN</name><inputs>2</inputs><outputs>1</outputs><in id="1" type="UIntWord"/><in id="2" type="UIntWord"/><out id="3" type="UIntWord"/><trigger-semanti
s>SimValue negResult;EXEC_OPERATION(not, IO(2), negResult);EXEC_OPERATION(and, IO(1), negResult, IO(3));</trigger-semanti
s></operation>This operation des
ription de�nes a 
ombined bitwise AND-NOT operation. Theoperation is de�ned to have two unsigned integer input operands and one unsignedinteger output operand.
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s se
tion des
ribes the operation semanti
s withexisting OSAL operations. The 
ompiler 
an use the semanti
s de�nition to au-tomati
ally exploit a user de�ned operation during 
ompilation. The semanti
s ofthe ANDN example de�ne that the operation is inter
hangeable with a sequen
e ofoperations, where the se
ond input operand bits are �rst negated with a not opera-tion, and the negation result is then passed to an and operation with the �rst inputoperand.4.1.3 Program ModelProgram Obje
t Model is an assembly-level intermediate representation of programsused by TCE tools [22℄. POMs 
an represent parallel programs instru
tion s
heduledfor a target ar
hite
ture, or sequential programs whi
h are instru
tion sele
ted andregister allo
ated for a target ar
hite
ture, but not yet s
heduled. A POM 
onsistsof an obje
t hierar
hy representing the program 
ode and data de�nitions whi
hmodel the program and data memory 
ontents.The program 
ode hierar
hy 
onsists of pro
edures, whi
h 
ontain basi
 blo
ks ofinstru
tions. An instru
tion in a parallel POM 
onsists of moves whi
h de�ne thedata transports for ea
h transport bus of the target ma
hine on the instru
tion 
y
le.A sequential POM instru
tion 
onsists of a single move, whi
h is not yet allo
atedto a spe
i�
 transport bus or s
heduled relative to other moves in the program.The data de�nitions 
onstitute the data memory 
ontents and the symbol tableof the data memory. Data de�nitions represent dis
rete obje
ts in the memory, su
has individual global variables or more 
omplex data stru
tures. A data de�nitionmay 
ontain initialization data, whi
h is used as the initial 
ontents of the de�nedmemory area. POMs 
an be read and written to binary TTA Program Ex
hangeFormat (TPEF) �les to pass programs between di�erent tools of the TCE toolset.4.2 Minimum Target Ma
hine Con�gurationAn important aspe
t of the 
ompiler retargetability is the ability to 
ompile arbitraryC language sour
e 
ode for target ma
hine 
on�gurations with minimal resour
es.The main 
on
erns from the 
ode generation perspe
tive are the minimum register�le 
on�guration and the minimum operation set.The required number of registers is largely determined by the reserved registersneeded for the 
alling 
onvention and the registers required for exe
ution of oper-ations. The 
urrent implementation requires at least �ve 32-bit registers and twoboolean predi
ate registers.The minimal operation set 
onsists of operations required by the instru
tion se-le
tor to mat
h any LLVM instru
tions and the operations that 
an be inserted by
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Figure 4.1: TCE Compiler Tool
hain.the 
ode generator after instru
tion sele
tion. Currently, the following operationsare required:
• Addition (ADD) and subtra
tion (SUB) integer arithmeti
 operations.
• Greater than (GT), equal (EQ) and unsigned greater than (GTU) integer
omparison operations.
• AND, in
lusive-or (IOR) and ex
lusive-or (XOR) logi
al operations.
• Arithmeti
 bit shift operations to left and right.
• Logi
al bit shift to right operation.
• Load and store memory operations for word, half-word, and byte bit widths.
• CALL and JUMP 
ontrol �ow operations.4.3 Compiler Tool
hainThe TCE 
ompiler tool
hain 
onsists of a 
ompiler frontend, a set of target inde-pendent LLVM tools and a TCE 
ode generator. The TCE 
ode generator is imple-mented as a library whi
h is part of the TCE proje
t and separate from the LLVMtools. High level organization of the 
ompiler tool
hain is illustrated in Figure 4.1.The �rst step in the tool
hain is the LLVM-GCC frontend. LLVM-GCC is amodi�ed version of g

 distributed with LLVM, used as a frontend to produ
e theinitial byte
ode. The LLVM-GCC frontend has a disadvantage of not being 
om-pletely target independent. The frontend must be 
on�gured to output byte
odethat is 
ompatible with the target 
ode generator. In pra
ti
e this means that sour
e



4. Implementation 32language data type sizes and endianess must be de�ned to be 
ompatible with thetarget ma
hine. The 
ompiler tool
hain in
ludes a version of the LLVM-GCC fron-tend with target ma
hine 
on�guration for the TCE 
ode generator.The next steps of 
ompilation are linking and optimization. Both steps are donewith unmodi�ed LLVM tools. The 
ompiler expe
ts these tools to be found in thehost system and they are not in
luded in the TCE 
ompiler. All 
ompiled 
ode mustbe fully linked as one byte
ode module before 
ode generation be
ause TCE doesnot 
urrently support linking of binary ma
hine 
ode.The �nal step in the 
ompiler tool
hain is the LLVM-TCE 
ode generator. LLVM-TCE is a TCE ba
kend implementation for LLVM. Unlike traditional LLVM ba
k-ends, LLVM-TCE is implemented as a stand-alone 
ode generator whi
h utilizesLLVM 
ode generation libraries instead of being implemented as a stati
 part ofthe LLVM 
ompiler. The 
ode generator has two input �les: a fully linked andoptimized byte
ode of the 
ompiled program and the ar
hite
ture de�nition of thetarget ma
hine. The ba
kend is able to dynami
ally retarget itself to the targetma
hine without the need of re
ompiling the whole 
ode generator.The whole tool
hain 
an be invoked from 
ommand line using the t
e

 
ompilerdriver s
ript. The s
ript aims to be 
ompatible with 
ommonly used g

 
ompilerswit
hes to minimize work when porting build s
ripts to TCE.4.4 Calling ConventionTCE does not spe
ify a 
alling 
onvention s
heme that the 
ompiler has to follow.The 
ompiled programs are fully linked and there are no system 
alls or externallibraries. Therefore the 
ompiler 
an use any 
alling 
onvention, whi
h 
an be
hanged without any binary 
ompatibility issues.The 
urrent implementation uses a 
alling 
onvention whi
h is outlined in thefollowing rules.
• All parameters are stored in the sta
k by the 
aller. Parameters of type i1,i8 and i16 are always promoted to 32 bits to avoid problems with variadi
fun
tion 
alls.
• All general purpose registers are 
aller-saved, i.e., the 
aller is responsible forsaving all registers it has live values into the sta
k before a 
all.
• The return address of a 
all is stored in the return address register by hardwarewhen a 
all instru
tion is invoked. The return address is saved to the beginningof the sta
k frame in fun
tion prologue.
• Fun
tion return value is stored in the return value register by the fun
tionepilogue. 64-bit return values are split into two 32-bit parts, one of whi
h
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Figure 4.2: TCE Ba
kend.is returned in a se
ondary return value register. Returning of values that donot �t in the return value registers is handled by the LLVM 
ode generatorframework.
• Callee is responsible for restoring the sta
k pointer and return address registersto the state they had on fun
tion entry.4.5 TCE Ba
kendOne of the main design goals of the TCE ba
kend is to reuse as mu
h 
ode from theLLVM 
ode generator framework as possible. However, modeling a 
ustomizablear
hite
ture template as a target ma
hine and the use of an external s
heduler setlimitations requiring a design that di�ers from the standard LLVM 
ode generationorganization.TCE 
ode generation 
an be 
onsidered to 
onsist of two main phases. First, theLLVM 
ode generator framework is utilized to produ
e a sequential target ma
hineprogram. The sequential program is then s
heduled to a parallel program usinga TCE instru
tion s
heduler. The main 
ode generation passes are illustrated inFigure 4.2.The instru
tion sele
tor, register allo
ator and prologue/epilogue 
ode inserterpasses are based on the LLVM 
ode generator framework. These passes produ
e asequential program where all instru
tions are sele
ted as target ma
hine instru
tionsand all registers are allo
ated to physi
al registers.The sequential program is represented as an LLVM data stru
ture, whi
h mustbe 
onverted to a TCE program obje
t model for the s
heduler. The 
onversionis handled by LLVMPOMBuilder, whi
h is implemented as a separate LLVM 
odegenerator pass. The sequential POM 
an then be s
heduled and a parallel TPEFwritten for simulation and binary program image generation. The TCE instru
tions
heduler [23℄ is implemented as an independent library and not 
overed in thisthesis.The main design problem of the 
ode generator is the requirement for retargetabil-ity. The LLVM part of the 
ode generator only generates a sequential program whi
hsimpli�es the adaptation to the target ma
hine. The s
heduler is responsible for al-lo
ating most of the physi
al resour
es while taking 
are of low level limitations
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TargetDataFigure 4.3: TCE Target Ma
hine.of the ar
hite
ture su
h as operation laten
ies. This means that the LLVM partof the 
ode generator is only required to retarget itself at an abstra
t level to theinstru
tion and register sets of the target ma
hine. The rest of the LLVM targetma
hine properties, su
h as type sizes and 
alling 
onventions are stati
 a
ross thear
hite
ture template.The dynami
 retargeting of the ba
kend is a
hieved by implementing the TCEtarget ma
hine as a wrapper, whi
h loads the target instru
tion and register setmodels from a target ma
hine spe
i�
 plugin. The plugins are generated at 
ompileruntime from a ma
hine obje
t model of the target ar
hite
ture.4.6 TCE Target Ma
hineThe TCE ba
kend implements an LLVMTargetMa
hine that models the templatedTCE ar
hite
ture. The target ma
hine implementation is divided to a stati
 partwhi
h models the hard
oded properties of the ar
hite
ture template, and a dynami
part whi
h models the 
ustomizable properties of 
on
rete TCE ma
hines. Onlythe stati
 part of the target ma
hine is 
ompiled to the TCE ba
kend library. Thema
hine spe
i�
 dynami
 part is loaded from a plugin, whi
h 
an be 
ompiled inde-pendently for ea
h target ma
hine without re
ompiling the whole ba
kend library.High level design of the TCE target ma
hine is illustrated in Figure 4.3.TCETargetMa
hine implements the LLVMTargetMa
hine interfa
e whi
h is usedby the 
ode generator to a

ess the target ar
hite
ture model and to 
reate aninstru
tion sele
tor pass. Only the data memory layout and frame information ofthe ma
hine model are implemented in the stati
 ba
kend and returned dire
tly.The 
ustomizable part of the ar
hite
ture model is 
ontained in ma
hine spe
i�
plugins whi
h implement the TCETargetMa
hinePlugin interfa
e. The instru
tionsele
tor pass is generated from the instru
tion set des
riptors of the target ma
hineand therefore it is also implemented in the target ma
hine plugin.
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Figure 4.4: Target Ma
hine Plugin.TargetData de�nes the data memory layout of the TCE ar
hite
ture template.The layout is hard
oded and does not 
hange between individual ma
hines. Thememory layout is de�ned to have the following properties:
• Pointer size is 32 bits,
• Data memory is big-endian,
• LLVM i1 and i8 types have 8 bit size and alignment in memory,
• LLVM i32 and f32 types have 32 bit size and alignment in memory, and
• LLVM i64 and f64 types have 64 bit size and 32 bit alignment in memory.TargetFrameInfo is also equal to all ma
hines. It de�nes that the sta
k growsdown, sta
k 
ontents are aligned to 32 bits on entry to fun
tions, and the o�set tolo
al area of a sta
k frame is -4 bytes.4.7 Target Ma
hine PluginWhen the TCE ba
kend library is instantiated, a ma
hine obje
t model of the targetma
hine is passed to the ba
kend 
onstru
tor. The ba
kend generates sour
e 
odefor a plugin 
ontaining the part of the target ma
hine model whi
h varies betweenindividual ma
hines. The plugin is then 
ompiled and loaded to 
omplete the targetma
hine model. Figure 4.4 shows a 
lass diagram of the generated plugin.GeneratedTCEPlugin is the main 
lass of the plugin. It implements the TCE-TargetMa
hinePlugin interfa
e, whi
h is used by the TCETargetMa
hine 
lass toa

ess the plugin.
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lass models the tar-get ma
hine instru
tion set and implements various 
ode generation methods of theTargetInstrInfo interfa
e. The 
ode generation methods do not 
hange between tar-get ma
hines and are therefore stati
 sour
e 
ode for the plugin. The implementedvirtual 
ode generation methods of the base 
lass are:
• 
opyRegToReg: Generates 
ode for 
opying values between registers by insert-ing move instru
tions,
• loadRegFromSta
kSlot: Inserts a load instru
tion for loading value in sta
k toa register,
• storeRegToSta
kSlot: Inserts a store instru
tion for storing value in a registerto sta
k, and
• InsertBran
h: Inserts un
onditional bran
h instru
tions.The 
ode generated by these methods only use instru
tions that are part of theminimal required opset. The same 
ode 
an therefore be generated for all targetma
hines.The 
lass also has methods for querying properties of target instru
tions, su
has if an instru
tion is a move between registers, or a load or store to sta
k. Thesemethods are related to 
ode that is generated by the stati
 
ode generation methodsusing the minimal operation set, and do not require ma
hine spe
i�
 implementation.The instru
tion set model 
onsists of instru
tion des
riptions and enumerationsgenerated from target des
riptor �les of the target ma
hine by the TableGen 
odegenerator tool, des
ribed in Se
tion 3.6.TCERegisterInfo 
lass models the target ma
hine register set and 
ontains var-ious 
ode generation methods related to sta
k frame handling. The 
lass is derivedfrom the LLVM TargetRegisterInfo base 
lass. The following virtual 
ode generationmethods of the base 
lass are implemented.
• eliminateFrameIndex generates 
ode to repla
e abstra
t frame index operandswith 
ode that 
al
ulates absolute addresses of items in sta
k from the sta
kpointer register and an o�set operand.
• eliminateCallFramePseudoInstr repla
es pseudo instru
tions adjusting sta
kframe size with 
ode that adjusts the sta
k pointer register value.
• emitPrologue is used by the prologue and epilogue 
ode insertion pass to gen-erate fun
tion prologue 
ode. The generated 
ode initializes fun
tion sta
kframes by saving return address register value to the sta
k and reserving spa
efor lo
al variables.
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• emitEpilogue is used by the prologue and epilogue 
ode insertion pass to gen-erate fun
tion epilogue 
ode. The generated 
ode restores the saved returnaddress register value from sta
k, frees spa
e reserved by the sta
k frame andreturns from the fun
tion 
all.These fun
tions generate 
ode using only instru
tions that are part of the minimalrequired opset. The generated 
ode is therefore same for all target ma
hines andthe fun
tions have an implementation whi
h is stati
 sour
e 
ode for the plugin.The register set model 
onsists of register info des
riptions generated from targetdes
riptor �les of the target ma
hine by the TableGen tool.TCEDAGToDAGISel implements an LLVM DAG to DAG instru
tion sele
torfor the target ma
hine. The derived 
lass implements sele
tion methods whi
h 
on-vert Sele
tionDAG nodes to target instru
tion nodes. Most of the nodes 
an besele
ted with instru
tion sele
tion methods whi
h are generated from the target de-s
ription �les of the target ma
hine. The methods are generated from the instru
tionpatterns whi
h are part of the target instru
tion des
riptors. The Sele
tionDAGnodes that are not sele
ted by the TCEDAGToDAGIsel methods are lowered totarget instru
tions with TCETargetLowering phase. The following instru
tion andoperand nodes are sele
ted to temporary target nodes whi
h are lowered to targetinstru
tions later.
• Conditional bran
h instru
tions are sele
ted to pseudo instru
tions, whi
h are
onverted to guarded jumps in the LLVMPOMBuilder pass,
• Un
onditional bran
h instru
tions are sele
ted to pseudo instru
tions, whi
hare 
onverted to jumps in the LLVMPOMBuilder pass,
• Frame index operands are sele
ted to target frame index operands, whi
h arelowered by the eliminateFrameIndex method of the TCERegisterInfo 
lass,and
• Memory address operands are sele
ted to target 
onstants and addressoperands whi
h are lowered in later phases of 
ode generation.TCETargetLowering is an implementation of LLVMTargetLowering base 
lass.Target lowering is the se
ond phase of instru
tion sele
tion, whi
h lowers Sele
-tionDAG nodes that were not sele
ted by DAGToDAGISel phase. The 
lass 
on-stru
tor also initializes available register types and whi
h nodes are expanded andpromoted by the 
ode generator framework. The following lowerings are initializedin the 
onstru
tor.
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• General purpose register 
lasses for i1, i32 and f32 types are de�ned, allowingLLVM to use operands of these types in the target 
ode. Operands of othertypes are lowered to instru
tions using these types.
• Various instru
tions are expanded and promoted to instru
tions that are easierto lower.
• Integer division, modulo, rotate and multipli
ation instru
tions are set to beexpanded to emulation fun
tion 
alls if the target ma
hine does not have the
orresponding instru
tions available.The 
lass implements the following fun
tions to lower instru
tions that requireTCE spe
i�
 
ustom lowering.
• LowerCallTo lowers fun
tion 
all instru
tions. First, the sta
k spa
e requiredby the fun
tion 
all arguments is 
al
ulated. The 
al
ulated spa
e is set asargument size for a CALLSEQ_START pseudo instru
tion node whi
h isinserted to mark the start of a 
all sequen
e. Next, a sequen
e of stores areinserted to store the 
all arguments to sta
k. Arguments of types i1, i8 andi16 are extended to 32 bits. The a
tual target 
all instru
tion is inserted afterthe stores. The 
all instru
tion is followed by a move whi
h 
opies the returnvalue from the return value register. Finally, a CALLSEQ_END node withthe argument size operand is inserted to mark the end of the 
all sequen
e.
• LowerArguments lowers FORMAL_ARGUMENTS nodes whi
h have the in-
oming arguments of fun
tions as operands. The node is lowered to a sequen
eof loads whi
h loads the fun
tion arguments from the sta
k. Arguments of typei1, i8 and i16 are trun
ated to their original bit width from the extended 32-bitvalue passed in the sta
k.
• LowerRET lowers LLVM return instru
tions in fun
tions having a returnvalue. The instru
tion is lowered to a move whi
h 
opies the return valueto the return value register followed by a target return instru
tion. Return in-stru
tions in fun
tions that do not have a return value are instru
tion sele
tedin the TCEDAGToDAGISel phase.
• LowerSele
t lowers SELECT instru
tions, whi
h sele
t result between true andfalse value operands based on a boolean 
ondition operand. The instru
tionis lowered to a pseudo instru
tion node whi
h is 
onverted to guarded movesin the LLVMPOMBuilder pass.
• LowerOperation lowers global addresses and fun
tion 
onstant pool entries totarget nodes that are handled by the LLVMPOMBuilder pass.
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Figure 4.5: Target Ma
hine Plugin Generation.4.8 Plugin GenerationThe target ma
hine plugins are generated by the ba
kend when a new ba
kend isinstantiated. Sour
e 
ode for a target ma
hine plugin 
onsists of stati
 skeletons forea
h LLVM target ma
hine 
lass. The skeletons 
ontain all 
ode generation methodsthat 
an have the same implementation for ea
h ma
hine. The rest of the methodsare generated by the TDGen 
ode generator whi
h generates target des
riptor �les ofthe target ma
hine instru
tion and register sets. The des
riptors �les are pro
essedwith the LLVM TableGen tool, whi
h generates implementations for various 
odegenerator 
allba
k fun
tions and data stru
tures. The 
ode generated by TableGenis added to the skeletons as prepro
essor in
ludes. The plugin generation phasesand intermediate �les are illustrated in the Figure 4.5.TDGen generates two target des
riptor �les: GenInstrInfo.td, whi
h 
ontainsthe instru
tion set des
riptors and GenRegisterInfo.td whi
h 
ontains the registerdes
riptors. The generated �les are pro
essed by TableGen along with three stati
 .td�les: TCEInstrFormats.td 
ontains the TCE instru
tion 
lass re
ords, TCEInstrInfo
ontains instru
tion re
ords required by all target ma
hines and a top level TCE.tdwhi
h in
ludes all des
riptor �les and required LLVM header �les to one entity.In addition to the two .td �les, TDGen generates sour
e 
ode for various helpermethods in Ba
kend.in
.The generated sour
e 
ode �les are in
luded in the 
lass skeletons and 
ompiledwith a native 
ompiler to a plugin, whi
h 
an be loaded by the TCETargetMa
hine.
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riptorsThe whole register set des
ription 
onsists of one autogenerated GenRegisterInfo.td�le. Seven general purpose register 
lasses are always de�ned: Ri1, Ri8, Ri16, Ri32and Ri64 for integers, and Rf32 and Rf64 for �oating point values. The register
lasses are divided to integer and �oating point register types be
ause LLVM doesnot 
urrently support de
laring one register 
lass for both integer and �oating pointvalues of equal width. Only the Ri1, Ri32 and Rf32 register 
lasses are added inTCETargetLowering as register 
lasses that are available for the 
ode generator, restof the 
lasses are 
urrently unused. All TCE register 
lasses are derived from theTCEReg base 
lass, whi
h de�nes 
lasses as a member of the TCE name spa
e, andallows passing a list of register aliases.The register set des
ription is generated by �rst analyzing the register set of thetarget ma
hine. TDGen iterates through all register �les and registers in the targetma
hine ar
hite
ture model. Registers are added to register 
lasses of 
orrespondingwidth with the following ex
eptions.
• If a register has a guard on a target ma
hine bus, it is added as a member ofthe Ri1 register 
lass so it 
an be used as a 
ondition for 
onditional moves.This is done even if the register �le is wider than one bit.
• If the ma
hine is not fully 
onne
ted, the last register of ea
h register �le isreserved for s
heduler to route values between ports with missing 
onne
tion.The generated register 
lasses have the following registers reserved for spe
ial use:
• One 32-bit register is reserved to be the sta
k pointer register.
• One 32-bit register is reserved to be the return value register.
• One 32-bit register is reserved to be always available for the 
ode generator.It is used for 
al
ulating absolute address values from memory operands withbase address and an o�set operand. The register is also used when half of a64-bit return value has to be returned in an additional register with the returnvalue register.
• One 64-bit register is reserved for 64-bit return values if a 64-bit register �leexists.In addition to the general purpose register 
lasses, a spe
ial register 
lass is de�ned
ontaining one register for the return address port of the target ma
hine 
ontrolunit. The register re
ords do not have any TCE spe
i�
 attributes. The re
ordsare enumerated, and an external helper fun
tion is generated in the Ba
kend.in
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h maps the register enumerations to target ma
hine register �le names andregister indi
es.4.8.2 Instru
tion Set Des
riptorsThe instru
tion set is de�ned in three target des
riptor �les. TCEInstrFormats.tdand TCEInstrInfo.td 
ontain the stati
 des
riptors, whi
h stay the same for ea
htarget ma
hine. TCEInstrFormats.td 
ontains the instru
tion format 
lass tem-plate of TCE instru
tions. TCEInstrInfo.td 
ontains des
riptors for instru
tionsand operand types that are always required by the 
ode generator. The two stati
�les are installed as sour
e 
ode �les whi
h are used when a ba
kend plugin is 
om-piled. The third �le, GenInstrInfo.td whi
h 
ontains the target ma
hine spe
i�
instru
tion des
riptors is generated at 
ompiler runtime by the TDGen 
ode gener-ator of the TCE ba
kend library.Instru
tion format. Sin
e most of the instru
tion des
riptors are automati
allygenerated, there is no need to utilize any 
omplex instru
tion format stru
tureswhi
h redu
e repetition of manually written patterns. A �at hierar
hy of des
rip-tors is easier to generate automati
ally. Only one simple instru
tion format 
lassInstTCE is de�ned and used by all instru
tions. The 
lass is de�ned in the stati
TCEInstrFormats.td �le to have the following stru
ture:
lass InstTCE<dag outOps, dag inOps, string asmstr,list<dag> pattern> : Instru
tion {let Namespa
e = "TCE";dag InOperandList = inOps;dag OutOperandList = outOps;let AsmString = asmstr;let Pattern = pattern;}The InstTCE instru
tion format has the usual input and output operand listsand an instru
tion sele
tion pattern. The assembly string is optional and onlyused for debugging purposes be
ause an assembler is not used. The instru
tionformat does not 
ontain any TCE spe
i�
 attributes. The mapping of instru
tionenumerations to the OSAL instru
tions is handled by an external helper fun
tion,whi
h is generated in the TCEBa
kend.in
 �le.The operation pattern is also optional. It is required by the instru
tion sele
torto be able to automati
ally exploit the instru
tion, but 
an be omitted if automati
instru
tion sele
tion is not needed for the instru
tion. For example, an instru
tion
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h is only inserted by the 
ode generation methods of TCETargetLowering doesnot require a pattern.The Instru
tion base 
lass attributes of an instru
tion re
ord that are not in theinstru
tion 
lass template are de�ned by en
losing the instru
tion re
ord in a letblo
k. The following example sets a 
onditional bran
h instru
tion re
ord to havethe bran
h and terminator �ags set to true:let isTerminator = 1, isBran
h = 1 in {def TCEBRCOND : InstTCE<(outs), (ins I1Regs:$gr, i32imm:$dst),"? $gr $dst -> jump.1;", [℄>;}Stati
 instru
tion des
riptors. TCEInstrInfo.td 
ontains instru
tion re
ordswhi
h are always required for 
ode generation, but 
annot be easily generated au-tomati
ally. The instru
tion re
ords 
onsist mainly of pseudo instru
tions that donot have 
orresponding instru
tions in a target ma
hine fun
tion unit. The pseudoinstru
tions are 
onverted to target ma
hine moves in the LLVMPOMBuilder pass.The pseudo instru
tions in
lude the following re
ords:
• Move instru
tion re
ords for all legal 
ombinations of sour
e and destinationoperand types,
• Various 
ontrol �ow instru
tions of the target ma
hine 
ontrol unit,
• Pseudo instru
tions whi
h adjust sta
k frame size, and
• SELECT pseudo instru
tions whi
h sele
t one of two operands 
onditionally,based on a 
ondition operand.In addition to the pseudo instru
tion re
ords, the �le in
ludes patterns whi
hsele
t load and store instru
tions for operands that require extension or type 
on-version. The stati
 des
riptors also in
lude patterns for memory address operands.The memory address operands are sele
ted to target ma
hine nodes, whi
h are 
on-verted to absolute addresses in the LLVMPOMBuilder pass after the program datamemory has been laid out.Generated instru
tion des
riptors. GenInstrInfo.td 
ontains the targetma
hine spe
i�
 instru
tion des
riptors whi
h are generated by the TDGenmodule. The ma
hine spe
i�
 instru
tion re
ords 
onsist of re
ords for all targetma
hine instru
tions whi
h have known semanti
s. The �le also 
ontains emulationpatterns for instru
tions that are required, but not supported by the target ma
hine.The instru
tion des
riptor generation is done in the following main steps.
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tion units of the target ma
hine are examined to 
reate a list ofsupported abstra
tion layer operations.2. A list of required operations is initialized with a hard-
oded set of abstra
tionlayer operation names.3. Instru
tion re
ords with all 
ombinations of legal operand types are generatedfor ea
h target ma
hine operation having known semanti
s. The operation isremoved from the list of required operations initialized in the previous step ifit is on the list.4. The remaining operations in the required operation list are the missing oper-ations whi
h must be emulated. An emulation pattern is generated for ea
hmissing operation.5. A spe
ial instru
tion re
ord is generated for the CALL instru
tion of the targetma
hine 
ontrol unit.Instru
tion re
ords of the target ma
hine operations are generated from OSALoperation des
riptions. The �rst step is to 
he
k if the operation has known seman-ti
s. TDGen 
ontains a hard-
oded list of primitive OSAL operations whi
h haveknown semanti
s mapped to LLVM instru
tion patterns. In order to generate aninstru
tion re
ord, the OSAL operation must be part of the hard-
oded primitiveset, or the operation must have a data �ow graph 
onsisting of known primitiveoperations. Operations with unknown semanti
s are skipped and 
annot be usedautomati
ally by the 
ompiler. These 
ustom operations 
an only be used expli
itlyin the 
ompiled program sour
e 
ode by invoking them with prepro
essor ma
ros aswill be des
ribed in Se
tion 4.10.The se
ond step is to determine legal 
ombinations of operand types. OSAL doesnot de�ne bit-width for integer operands, so additional logi
 is required to determinethe 
ombinations of operand types that 
an be used in the instru
tion re
ords.Instru
tion patterns with an output operand in Ri32 register and input operandsin 
ombinations of Ri32 registers and 32-bit immediates are always generated foroperations with integer operands. Instru
tion re
ords with operands in Ri1 registersand as 1-bit immediate values are restri
ted to a hard-
oded set of operations, whi
hare known to work with 1-bit input and output operands.The third and �nal step is to generate an instru
tion sele
tion pattern and writean instru
tion re
ord for all 
ombinations of legal operand types. The primitiveOSAL operations are mapped to 
orresponding LLVM instru
tion pattern tem-plates. The templates are hard-
oded strings whi
h 
an be formatted by pla
ingoperand strings in the template. The template strings 
an also be nested to gener-ate instru
tion sele
tion patterns from OSAL operation semanti
s DFGs.
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h is one of the primitiveoperations with known semanti
s. The 
orresponding instru
tion pattern templateis "add %1%, %2%"where %1% and %2% mark the positions for the input operand strings. One ofthe legal operand 
ombinations for ADD has one input in Ri32 register and oneas a 32-bit immediate. The instru
tion pattern template is formatted with strings
orresponding to the operand types, resulting in the following pattern fragment:"add I32Regs:$op1, (i32 imm:$op2)"The result of the add operation is written in a Ri32 register, whi
h has to bede�ned in the instru
tion sele
tion pattern. This is a
hieved by wrapping the gen-erated pattern fragment in a pattern whi
h sets the result in the 
orre
t type ofoperand. The 
omplete instru
tion sele
tion pattern for ADD with the 
hosen typesof operands is:"(set I32Regs:$op3, (add I32Regs:$op1, (i32 imm:$op2)))"The instru
tion re
ord input and output operand lists are generated a

ordingto the operand types. The assembly string is not required and it is 
urrently leftempty for all generated instru
tion re
ords. Now the whole instru
tion re
ord 
anbe written, taking the following form:def ADDri : InstTCE<(outs I32Regs:$op3), (ins I32Regs:$op1,i32imm:$op2), "",[(set I32Regs:$op3, (add I32Regs:$op1, (i32 imm:$op2)))℄>;The instru
tion re
ord name ADDri is generated by 
ombining the operationname with a letter for ea
h input operand type. The generated name is added toa helper fun
tion in Ba
kend.in
 �le, whi
h maps the instru
tion re
ords ba
k toOSAL operation names. The helper fun
tion is used by the LLVMPOMBuilder passto invoke 
orre
t OSAL operations when building a POM.The same pro
ess is repeated for all operations with known semanti
s havingany 
ombination of legal operand types, aiming to generate as e�e
tive instru
tionsele
tor from the instru
tion re
ords as possible.Emulation patterns. An instru
tion sele
tion pattern must be generated for allOSAL operations that are required, but not supported by the target ma
hine. Theemulation patterns are generated as sele
tion DAG patterns whi
h mat
h the LLVM
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Figure 4.6: An emulation DFG for the GE operation.instru
tion 
orresponding to the missing operation to a 
ombination supported op-erations.The generation of an emulation pattern is based on the OSAL semanti
s DFGs ofthe missing operation. In order to write an emulation pattern, the missing operationmust have a DFG whi
h de�nes the semanti
s of the operation with operations thatare supported by the target ma
hine.An emulation pattern is generated by �rst requesting an emulation DFG fromthe OperationDAGSele
tor module. A list of supported operations and the name ofthe missing operation are passed to the module. The module returns the semanti
sDFG with the least number of operations that are supported by the target ma
hine.As an example, let us assume that a target ma
hine is missing the requiredgreater-or-equal GE operation. A list of supported operations, in
luding the sup-ported ex
lusive-or XOR and greater-than GT operations are passed to the Opera-tionDAGSele
tor, whi
h returns a DFG illustrated in Figure 4.6 (note the reversedoperands for GT ).Emulation patterns for all required operand type 
ombinations are generatedfrom this DFG. The patterns to mat
h the missing operation are generated usingthe same method whi
h is used when generating instru
tion patterns of supportedoperations. The pattern of resulting instru
tions is generated from the DFG in asimilar manner, with the ex
eption of using the generated names of the supportedoperations instead of LLVM instru
tion names.
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lassregisters has the following �nal form:def : Pat<(setge I32Regs:$op1, I32Regs:$op2),(XORrr (GTrr I32Regs:$op2, I32Regs:$op1), 1)>;A similar sele
tion DAG pattern is generated for all required 
ombinations ofoperand types.CALL Instru
tion. The 
alling 
onvention des
ribed in Se
tion 4.4 states that allgeneral purpose registers are 
aller-saved. The Instru
tion base 
lass for instru
tionre
ords has a Defs attribute, whi
h is a list of registers that the instru
tion maymodify. The register saving is a
hieved by en
losing all CALL instru
tion re
ordsin a let blo
k, whi
h sets the Defs list to 
ontain all general purpose registers. Thisfor
es the 
ode generator to save any live values in GPRs before invoking a 
all, andto restore the values after the 
all. The register list is target ma
hine dependentand must be generated dynami
ally for ea
h target ma
hine.4.9 LLVMPOMBuilderLLVMPOMBuilder is a pass whi
h 
onverts LLVM target dependent representationof a program to a TCE Program Obje
t Model for s
heduling. The pass is im-plemented as an LLVM Ma
hineFun
tionPass. LLVM Ma
hineFun
tionPasses are
ode generator passes that are exe
uted on ea
h fun
tion of the target dependentrepresentation of the 
ompiled program. The passes are exe
uted in three stages.First the pass is initialized with a doInitialization() method. Next, runOnMa
hine-Fun
tion() is 
alled for ea
h fun
tion of the program module. Finally, the passexe
ution is �nalized with the doFinalization() method.The 
onversion pro
ess 
onsists of laying out the program global variables in thedata memory, and 
onverting the program instru
tions to a POM fun
tion by fun
-tion. The 
onverted representation is already using target ma
hine instru
tions andregisters, so individual instru
tions and operands 
an be 
onverted in a straight-forward manner. The only problem building the POM are the referen
es betweenthe program data, fun
tions, basi
 blo
ks, instru
tions and operands. For example,a global variable in the data memory might be initialized with a fun
tion pointer,or an instru
tion might have a basi
 blo
k label as an operand. For this reason,the program is built using pla
eholders for the elements that 
an not be initializeduntil the whole program is built. The pla
eholders are �xed to referen
e to 
orre
tentities when the 
onversion is being �nalized and all symbol lo
ations are resolved.The 
onversion is done in the following order:
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ation addressesare added to bookkeeping.2. Global uninitialized data is laid out to data memory and lo
ations are addedto bookkeeping.3. The program instru
tions are 
onverted fun
tion by fun
tion to POM repre-sentation. Instru
tion addresses of �rst instru
tions in fun
tions and basi
blo
ks are added to bookkeeping.4. POM data de�nitions are built for initialized and uninitialized global data.5. An end symbol is generated at the end of the reserved data memory area.6. Referen
es to the end symbol are �xed.7. Referen
es to basi
 blo
ks are �xed a

ording to bookkeeping.8. Referen
es to 
ode labels are �xed a

ording to bookkeeping.9. Sta
k pointer initialization 
ode is inserted to the beginning of the program.Phases 1 and 2 are done in the doInitialization() method. Phase 3 is done bythe runOnMa
hineFun
tion() method. Phases 4-9 are done in the doFinalization()method.4.10 Operation Ma
rosAn assembler is not part of the TCE 
ompiler tool
hain, and therefore inline-assembly is not supported. However, low level programming is often required, es-pe
ially when a programmer wants to use 
omplex 
ustom operations that 
annotbe exploited automati
ally by the instru
tion sele
tor. TCE 
ir
umvents the la
k ofinline assembler by de�ning prepro
essor ma
ros, whi
h allow hardware operationsto be invoked dire
tly in C sour
e 
ode.The operation ma
ros 
an be used by in
luding the t
eops.h header �le. Theheader is automati
ally generated during 
ompilation and 
ontains ma
ros for alltarget ma
hine operations. The syntax to invoke an operation is_TCE_opname (input operand 1 , ..., output operand 1 , ...);For example, some TCE test suite target ma
hines 
ontain an address generatoroperation �AG� with four input operands i1, i2, i3, i4 and two output operands o1,o2. The operation 
an be invoked with the following syntax:_TCE_AG(i1, i2, i3, i4, o1, o2);
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ros are de�ned as dummy inline-assembly blo
ks, where theassembly string 
ontains only the operation name. The ma
ro parameters are set asinput and output variables for the inline assembly blo
k a

ording to OSAL des
rip-tion of the operation. The inline assembly is passed as an LLVM inline assemblyinstru
tion to the LLVMPOMBuilder pass where it is 
onverted to a sequen
e ofmoves invoking the operation 
orresponding to the name in the assembly string.
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5. VERIFICATION AND BENCHMARKING
The 
ompiler was veri�ed and ben
hmarked using the Embedded Mi
ropro
essorBen
hmark Consortium (EEMBC) Digital Entertainment Ben
hmark (DENBen
h)software suite [24℄. The ben
hmark suite 
onsists mainly of video, audio, and imagede
oding and en
oding ben
hmarks written in the C programming language.The ben
hmarks were run with several TTA ma
hines, starting with a near-minimal ar
hite
ture 
on�guration. The ar
hite
ture was then expanded by addingmore registers and operations in
rementally, to verify 
orre
t 
ompilation and toben
hmark the ability of the 
ompiler to exploit additional registers and operations.5.1 Testing SetupThe testing was performed using a development version of the TCE tool
hain witha llvm-g

-4.2.1 -based 
ompiler frontend and a LLVM-2.5 -based 
ompiler ba
kend.The 
ompiled programs were simulated using the 
ompiled simulation engine of theTCE ar
hite
ture simulator.The DENBen
h test programs produ
e output that 
an be veri�ed for 
orre
t
ompilation with two types of veri�
ation data. The programs that only use integerarithmeti
 produ
e an easily veri�able 
he
ksum, but the tests that use �oatingpoint arithmeti
 have results that depend on the �oating point presentation andpre
ision of the target ma
hine. The �oating point tests were therefore veri�ed by
al
ulating the peak signal-to-noise ratio (PSNR) of the output data 
ompared tothe original data that was en
oded and de
oded. The results were 
ompared to theresults of a native GCC-
ompilation.A subset of the DENBen
h ben
hmark suite was 
hosen for ben
hmarking. Thewhole ben
hmark 
ontains multiple datasets for ea
h test program, but due to thelong simulation and s
heduling times, only one dataset of ea
h test 
ase was 
hosenfor the �nal ben
hmarking.5.1.1 Test Ma
hine Ar
hite
turesThe �rst test ma
hine ar
hite
ture 8reg.adf 
ontained the minimal operation setrequired by the 
ompiler to 
ompile arbitrary C-programs. The number of registerswas nearly minimum, divided to two register �les, one having eight 32-bit registersand the other two 1-bit registers having transport bus guards to support 
onditional
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ution.The �rst test ma
hine is expanded to 16reg.adf, 24reg.adf and 32reg.adf by addingone additional register �le of ea
h type on ea
h in
rement. Consequently, the lastregister set expansion test ma
hine has 32 32-bit registers divided to four register�les and eight 1-bit registers divided to four register �les.The 32reg.adf was then expanded by in
rementally adding operations and fun
-tion units to the previous test ma
hine 
on�guration. The �fth test ma
hine alu.adfadds integer operations, su
h as half- and quarter-word sign-extension integer 
om-parison operations. The sixth test ma
hine mul.adf adds a fun
tion unit with MULinteger multipli
ation operation. The seventh test ma
hine div.adf adds a fun
tionunit with signed and unsigned integer division and modulo operations. The eightand �nal test ma
hine 
on�guration fpu.adf adds a single-pre
ision �oating-pointfun
tion unit for hardware �oating-point arithmeti
 support.The automati
 utilization of 
ustom operations was tested as a separate test 
asewith ama
.adf ar
hite
ture. The ar
hite
ture was based on the div.adf ar
hite
ture,with an addition of a MAC fun
tion unit. The fun
tion unit 
ontains a 
ustommultiply-a

umulate (MAC) operation, whi
h 
omputes the produ
t of two integeroperands summed to a third integer operand.5.1.2 Test CasesThe veri�ed and ben
hmarked DENBen
h test suite is divided to the following mini-suites:MPEG The MPEG algorithmmini-suite in
ludes a MP3 audio de
oder, a MPEG-2 video en
oder and de
oder and a MPEG-4 video en
oder and de
oder. The en
od-ing and de
oding algorithms use �xed-point integer fun
tions, ex
ept for a separateMPEG-2 video en
oding algorithm, whi
h uses single-pre
ision �oating-point en
od-ing.Cryptography The 
ryptography mini-suite in
ludes the Advan
ed En
ryptionStandard (AES) algorithm for publi
-key 
ryptography, and a Hu�man data de
om-pression test.Digital Image Pro
essing The digital image pro
essing mini suite in
ludes 
olorspa
e 
onversion tests and JPEG image 
ompress and de
ompress tests. The 
olorspa
e 
onversions tested are Red-Green-Blue to Cyan-Magenta-Yellow-Key (RGB-CMYK), Red-Green-Blue to luminan
e-
hrominan
e (RGB-YIQ), and Red-Green-Blue high-pass grey-s
ale �lter (RGB-HPG).
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hmarking 51Test Case 8reg.adf 16reg.adf 24reg.adf 32reg.adfAES En
ryption 6,264,499,994 4,466,047,052 4,486,888,618 4,281,280 926Hu�man de
oder 17,171,346 13,237,365 12,074,356 11,999,862MP3 De
oder 80,917,223,868 52,849,307,890 53,404,066,109 52,226,334 542MPEG2 FixedPoint De
oder 9,546,900,307 6,918,972,000 6,324,530,344 6,303,739,676MPEG2 FixedPoint En
oder 31,721,047,907 14,995,595,434 12,837,263,273 12,420,274,298MPEG2 FloatingPoint De
oder 9,484,689,575 6,878,763,327 6,284,616,128 6,263,998,257MPEG2 FloatingPoint En
oder 92,748,324,214 59,332,178,569 56,909,735 974 56,126,620,307MPEG4 De
oder 7,899,586,664 5,840,422,082 5,259,561,810 5,260,183 293MPEG4 En
oder 9,671,106,214 5,096,814,413 4,479,466,232 4,384,969 549JPEG De
ompress 70,237,028 47,393,649 46,715,535 46,430,077JPEG Compress 92,048,335 57,095,334 54,867,017 53,941,416RGB-CMYK Con-version 81,920,332 63,978,956 61,688,361 61,934,927RGB-HPG Conver-sion 42,399,960 28,952,858 28,723,261 28,729,041RGB-YIQ Conver-sion 144,035,421 102,770,795 101,462,594 101,080,386Table 5.1: Total 
y
le 
ounts while extending the register set.5.2 ResultsThe total 
y
le 
ount results of register set extension test ma
hines are shown inTable 5.1, and the total 
y
le 
ount results of operation set extension test ma
hinesare shown in Table 5.2. All tests were run with full 
ompiler optimizations (-O3).The 
ombined ben
hmark results of the register and operation set extension arevisualized in Figure 5.1. The 
y
le 
ounts of ea
h test are normalized to a per
entageof the 
y
le 
ount of the �rst 8reg.adf test ma
hine to give a 
omparative view ofthe e�e
ts of expanding the pro
essor ar
hite
ture with di�erent test 
ases.The register set extension results of the 8reg.adf to 32reg.adf show that the
ompiler was 
apable of utilizing the additional registers. However, the registerswere added in large in
rements and only the �rst step shows a major bene�t inthe 
y
le 
ounts, and only some test 
ases had de
reased 
y
le 
ounts with highnumber of registers. This was an expe
ted result sin
e spilling of register valuesto the memory with the tested programs be
omes negligible after the addition ofthe se
ond register �le of ea
h type. With additional register �les the 
ompilationbe
omes 
onstrained by other fa
tors limiting the program parallelization.Some tests had even a slightly in
reased 
y
le 
ount with additional registers.This is due to the sensitivity of the TCE s
heduling algorithm to the input program.Even a minor modi�
ation to the input program 
an a�e
t the s
hedule greatly,sometimes worsening the results slightly.
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ation and Ben
hmarking 52Test Case alu.adf mul.adf div.adf fpu.adfAES En
ryption 4,542,904,024 4,540,030,984 1,160,345,306 1,160,345 255Hu�man De
oder 11,642,552 8,825,467 9,052,383 8,985,644MP3 De
oder 48,520,367,083 9,059,358,249 1,479,281,602 1,467,197,925MPEG2 FixedPoint De
oder 6,137,917,674 5,084,777,212 5,085,924,323 5,066,232,403MPEG2 FixedPoint En
oder 11,911,073,035 5,836,516,113 5,054,462,375 4,938,783,751MPEG2 FloatingPoint De
oder 6,101,594,728 5,080,679,371 5,081,818,369 5,062,126,469MPEG2 FloatingPoint En
oder 52,457,356,242 24,456,512,313 23,701,893 525 5,245,135,767MPEG4 De
oder 5,111,721,660 4,766,445,482 4,762,085,052 4,752,243 766MPEG4 En
oder 4,183,065,148 1,446,986,368 1,439,220,215 1,439,114 164JPEG Compress 44,264,615 17,368,372 17,464,110 17,467,953JPEG De
ompress 50,905,910 16,753,591 15,646,123 15,646,056RGB-CMYK Con-version 58,911,880 48,194,394 48,424,460 48,147,588RGB-HPG Conver-sion 26,920,175 9,715,088 9,637,959 9,637,905RGB-YIQ Conver-sion 94,255,793 24,339,522 24,339,195 24,108,743Table 5.2: Total 
y
le 
ounts while extending the operation set.The �rst operation set extension step with the alu.adf test ma
hine added op-erations whi
h 
an be emulated with simple patterns of operations existing in theprevious test ma
hine. The 
ompiler was able to utilize the new operations, butmost test 
ases showed only small improvements in the 
y
le 
ounts.The se
ond operation set extension test ma
hine added an integer multipli
ationoperation. The operation is used heavily by most of the test programs and theemulation of it is slow. As expe
ted, the e�e
t of the 
ompiler utilizing the operation
an be 
learly seen from the diagram. For example, the MP3 test 
ase had a 
y
le
ount de
reasing more than 80% 
ompared to the previous test ma
hine.The div.adf added a divisor fun
tion unit to the mul.adf ar
hite
ture. Thedivision operation is slow to emulate, but only the AES and MP3 test programsrely on it in their 
ore algorithm loops. However, the results show that the 
ompilerutilized the divisor fun
tion unit operations and the two test 
ases relying on theoperations had major de
reases in the 
y
le 
ounts.The �nal fpu.adf added �oating point operations. The MPEG-2 �oating pointen
oder was the only test 
ase that utilizes �oating point values in the ben
hmarkedalgorithm and 
onsequently it was the only test 
ase whi
h had 
learly de
reased
y
le 
ount. However, the test 
ase proved that the 
ompiler is 
apable of utilizing�oating point operations.Utilization of the MAC operation in the ma
.adf ar
hite
ture was tested as a
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Figure 5.1: Ben
hmark results normalized to the �rst test ma
hine.separate test 
ase with a di�erent version of the TCE tool
hain. The results aretherefore only 
ompared with the div.adf results with the same tool
hain version.The highest utilization of the operation was a
hieved with the MP3 de
oder ben
h-mark, where the instru
tion pattern mat
hed operations in the main de
oding loop.Results for other test 
ases are omitted.To analyze the e�e
ts of the addition of the MAC operation, the number of exe
u-tions of ea
h operation in the ma
.adf was 
ompared with the 
orresponding resultswith the div.adf ar
hite
ture. As expe
ted, only the MUL and ADD operations hadsigni�
ant di�eren
es in the exe
ution 
ounts. The number of these operations andthe total number of all exe
uted operations are presented in the Table 5.3.The 
omparison of the results shows that approximately 192 million multiplya

umulations were performed using the MAC operation. However, the total numberof operations exe
uted de
reased by less than 140 million operations, be
ause partof the mat
hed multiply-a

umulate patterns had an intermediate multipli
ationresult whi
h was used as an input operand for more than one ADD operation.The bene�t of having the MAC operation was further diminished by the lesserdegree of parallelization a
hieved by the instru
tion s
heduler. The program exe-
ution time de
reased by approximately 2.1 %, from 1,576,173,008 to 1,543,460,040
lo
k 
y
les.The purpose of this test was to demonstrate the ability of the 
ompiler to auto-
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hmarking 54div.adf ma
.adf di�eren
eMUL 268,469,874 133,805,319 -134,664,555ADD 841,446,719 646,930,374 -194,516,345MAC - 191,858,218 +191,858,218Other operations 1,297,327,995 1,294,872,357 -2,455,638Total 2,407,244,588 2,267,466,268 -139,778,320Table 5.3: Operation exe
ution 
ounts for the MP3 de
oder test 
ase with andwithout the MAC operation.mati
ally utilize operations de�ned with 
ustom operation patterns. The results ofthe MP3 de
oder test 
ase show that the 
ompiler ba
kend 
an a
hieve relativelyhigh utilization of a simple operation pattern in realisti
 programs. In general, theben
hmark results show that the 
ompiler is 
apable of adapting itself to ar
hite
-tures with varying operation and register sets, and it 
an exploit additional resour
esof the target ma
hines.
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6. CONCLUSIONS
This thesis introdu
ed a new 
ompiler for the TCE tool
hain, ex
luding the in-stru
tion s
heduler whi
h is designed and do
umented separately. The 
ompiler wasimplemented as a ba
kend for the LLVM 
ompiler infrastru
ture.The thesis gave a brief introdu
tion to the TTA 
on
ept and des
ribed the TCE
odesign tool
hain for designing and programming TTA pro
essors. The des
riptionof the role of the 
ompiler in the toolset was followed by a des
ription of the relevant
ompiler 
on
epts and the introdu
tion of the LLVM 
ompiler infrastru
ture.The main part of this thesis is the do
umentation of the implementation detailsof the TCE-LLVM 
ompiler ba
kend. The ba
kend di�ers from most 
ompiler ba
k-ends by the 
ompilation target ma
hine, whi
h is a pro
essor ar
hite
ture templateinstead of a stati
 pro
essor design. The ba
kend was required to adapt to di�erentTTA ar
hite
tures derived from the TCE ar
hite
ture template, whi
h introdu
ed
omplex design problems having to be solved.In addition to the retargetability, the requirements for the 
ompiler were 
orre
t-ness of 
ompiled programs and the requirement of providing a reliable and extensiblebase for further 
ompiler development. The 
ompiler design also aimed to providepowerful modern 
ompiler optimizations, whi
h was a
hieved by 
hoosing the LLVMas the basis for the 
ompiler.The 
ompiler was veri�ed with various test 
ases and ben
hmarks. The resultsfor the most important ben
hmark, the EEMBC DENBen
h Digital EntertainmentBen
hmark Suite are presented in this thesis. All test results were su

essfullyveri�ed and produ
ed either the 
orre
t 
he
ksum, or PSNR result similar to thenative ben
hmark results. The results also 
on�rmed that the 
ompiler was able toadapt to di�erent templated ar
hite
tures and was able to utilize additional resour
esin the pro
essor ar
hite
tures.The su

essful ben
hmarks and 
orre
t results show that the 
ompiler ful�llsthe original requirements. However, the 
ompiler leaves mu
h room for furtherimprovements and optimizations.
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