Degree Programme in Information Technology

$ TAMPERE UNIVERSITY OF TECHNOLOGY

VELI-PEKKA JAASKELAINEN
RETARGETABLE COMPILER BACKEND FOR
TRANSPORT TRIGGERED ARCHITECTURES

Master of Science Thesis

Examiners: Prof. Hannu-Matti Jarvinen
and Prof. Jarmo Takala

Examiners and subject approved by
Department Council

October 15 2007

IT

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Degree Programme in Information Technology

Jaaskeldinen, Veli-Pekka: Retargetable Compiler Backend for Transport
Triggered Architectures

Master of Science Thesis: 57 pages

March 2010

Major subject: Software Engineering

Examiners: Prof. Hannu-Matti Jarvinen and Prof. Jarmo Takala

Keywords: transport triggered architecture, compiler

Embedded computer systems can be found everywhere as the result of the need
to develop ever more intelligent and complex electronic devices. To meet require-
ments for factors such as power consumpiton and performance these systems often
require customized processors which are optimized for a specific application. How-
ever, designing an application specific processor can be time-consuming and costly,
and therefore the toolset used for processor design has an important role.

TTA Codesign Environment (TCE) is a semi-automated toolset developed at the
Tampere University of Technology for designing processors based on an easily cus-
tomizable Transport Triggered Architecture (TTA) processor architecture template.
The toolset provides a complete co-design toolchain from program source code to
synthesizable hardware design and program binaries.

One of the most important tools in the toolchain is the compiler. The compiler
is required to adapt to customized target architectures and to utilize the available
processor resources as efficiently as possible and still produce programs with correct
behavior. The compiler is therefore the most complicated and challenging tool to
design in the toolset.

The work completed for this thesis consists of the design, implementation and
verification of a retargetable compiler backend for the TCE project. This thesis
describes the role of the compiler in the toolchain and presents the design of the
implemented compiler backend. In addition, the methods and benchmark results of

the compiler verification are presented.

I1I

THVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

Jaaskeldinen, Veli-Pekka: Retargetable Compiler Backend for Transport
Triggered Architectures

Diplomityd: 57 sivua

Maaliskuu 2010

Padaine: Ohjelmistotuotanto

Tarkastajat: prof. Hannu-Matti Jarvinen ja prof. Jarmo Takala

Avainsanat: transport triggered architecture, compiler

Seurauksena tarpeesta kehittdd yha dlykkdampia ja monimutkaisempia laitteita,
sulautettuja tietokonejirjestelmia on nykyéan kaikkialla. Nama jarjestelmét vaativat
usein kiyttotarkoitusta varten optimoituja mikroprosessoreita, jotta esimerkiksi vir-
rankulutukseen ja suorituskykyyn liittyvit vaatimukset saataisiin tiytettyd. Sovel-
luskohtaisten prossessoreiden suunnittelu voi kuitenkin olla aikaa vievaé ja kallista,
joten prosessorien suunniteluun kiytetylla ohjelmistolla on tarkea rooli.

TTA Codesign Environment (TCE) on Tampereen teknilliselld yliopistol-
la kehitetty kokoelma ohjelmistotyokaluja, joka perustuu helposti muokattavaan
“transport triggered architecture” (TTA) -suoritinarkkitehtuurimalliin. TCE:n
tyokalut tarjoavat puoliautomatisoidun prosessoreiden suunniteluvuon alkaen
ohjelmien ldhdekoodista padtyen syntetisoitavaan prosessorikuvaukseen ja proses-
sorilla suoritettavaan bindirimuotoiseen ohjelmaan.

Yksi téarkeimmistd suunniteluvuon tyokaluista on kiddntdja. Kadntdjan on
mukauduttava raatiloityyn kohdearkkitehtuuriin, kiytettiva prosessorin resursse-
ja mahdollisimman tehokkaasti hyvikseen ja tuotettava ohjelma, jonka toiminta on
oikea. Taméan takia kddntidja on TCE:n monimutkaisin ja toteutukseltaan haastavin
tyokalu.

Tamén diplomityon taustalla oleva tyo koostui valmiiseen kiadntajaympéaristoon
suunnitellusta ja toteutetusta TCE-kohtaisesta moduulista, sen testaamisesta ja
oikean toiminnan varmentamisesta. Diplomity0ssi esitellddn kddntajin rooli TCE:n
tyokaluketjussa ja kuvataan toteutetun kidntdjimoduulin arkkitehtuuri. Lisdksi
diplomityossi kuvataan kidntajian testauksessa ja suorituskyvyn mittauksessa kéyte-

tyt menetelmét tuloksineen.

IV

PREFACE

The work for this thesis was done in the Department of Computer Systems at
Tampere University of Technology as a part of the Flexible Design Methodologies
for Application Specific Processors (FlexASP) project.

[would like to thank prof. Jarmo Takala for giving me the chance to work on
an interesting and challenging project, which was a great learning experience and
gave me a good perspective of the software and hardware development as a whole.
I am also very grateful for Pekka Jéadskeldinen, M.Sc., Pertti Kelloméki, Dr.Tech.,
and Prof. Hannu-Matti Jirvinen for their invaluable feedback and ideas on how to
improve my work. I would also like to thank my coworkers at the TCE project for
creating an excellent working atmosphere and giving me the helping hand whenever
it was needed.

Finally, I would like to thank my friends and family for their support throughout

my studies and life.

Tampere, February 11 2010

Veli-Pekka Jaidskeldinen

CONTENTS

1. Introduction 1
2. Codesign Environment for Application Specific Processors 3
2.1 Application Specific Processor Design 3
2.2 Transport Triggered Architecture 4
2.3 TTA Processor Programming 6
2.4 TTA Codesign Environment 8
2.4.1 Automatic Design Space Exploration 8
242 Compiler 10
24.3 Simulator.o 10
2.4.4 Program Image and Processor Generation 11
3.Compilers 12
3.1 Compiler Structure 12
3.1.1 Instruction Selection 14
3.1.2 Register Allocation L. 15
3.1.3 Imstruction Scheduling 16

3.2 Compiler Retargeting L. 16
3.3 Application Binary Interface 17
3.4 LLVM Compiler Infrastructure 18
3.4.1 Compilation workflow00 18
3.4.2 Program representation 19
3.4.3 Code generator 20

3.5 Backend Implementation 21
3.6 Target Descriptor Files 23
4. Implementationo 28
4.1 TCE Data Structures Used by the Compiler 28
4.1.1 Processor Architecture Model 28
4.1.2 Operation Set Abstraction Layer 29
4.1.3 Program Model 30

4.2 Minimum Target Machine Configuration 30
4.3 Compiler Toolchain 31
4.4 CQalling Convention Lo 32
4.5 TCE Backend 33
4.6 TCE Target Machine 34
4.7 Target Machine Plugin L. 35
4.8 Plugin Generation L Lo 39
4.8.1 Register Set Descriptors L. 40

4.8.2 Instruction Set Descriptors L. 41

4.9 LLVMPOMBuilder oo 46
4.10 Operation Macros o 47
5. Verification and Benchmarking 49
5.1 Testing Setup 49
5.1.1 Test Machine Architectures 49
5.1.2 Test Cases e 50

5.2 Results 51
6. Conclusions 55

Bibliography 56

VII

LIST OF ABBREVIATIONS

ABI Application Binary Interface
ADF Architecture Definition File
AES Advanced Encryption Standard
ASIC Application-Specific Integrated Circuit
ASP Application Specific Processor
BEM Binary Encoding Map

CFG Control Flow Graph

CU Control Unit

DAG Directed Acyclic Graph

DFG Data Flow Graph

FU Function Unit

GCC GNU Compiler Collection

GPP General Purpose Processor
GPR General Purpose Register

HLL High Level Language

HDL Hardware Description Language
ILP Instruction Level Parallelism
IR Intermediate Representation

U Immediate Unit

JIT Just-In-Time Compilation
JPEG Joint Photographic Experts Group
LLVM Low Level Virtual Machine
MOM Machine Object Model

OSAL Operation Set Abstraction Layer

PIG

POM

PSNR

RF

RISC

SSA

TCE

TPEF

TTA

VHDL

VLIW

XML

VIII

Program Image Generator
Program Object Model

Peak Signal-to-Noise Ratio
Register File

Reduced Instruction Set Computer
Static Single Assignment Form
TTA-Based Codesign Environment
TTA Program Exchange Format
Transport Triggered Architecture
VHSIC Hardware Description Language
Very Long Instruction Word

Extensible Markup Language

1. INTRODUCTION

Processors for embedded systems often have strict requirements limiting their design.
Factors such as power consumption, performance, and production costs place much
stronger restrictions for the processor architecture when compared to, for example,
general-purpose processors (GPPs) in desktop computers. However, embedded sys-
tems are typically required to run only a very limited set of programs, allowing the
processor design to be optimized for the application.

Application Specific Processors (ASPs) are processors that are customized for
executing specific software. They can, therefore, be much more effective solutions
for embedded systems than GPPs, but still retain more flexibility than an Applica-
tion Specific Integrated Circuit (ASIC) designed for only one task. When an ASP
is designed, the hardware and software parts of the system are developed simulta-
neously by codesigning the processor and software to benefit from the tailoring of
the system for the specific application. The instruction set of an ASP is customized
by removing any instructions that are not needed by the software and by adding
custom instructions that increase performance of the system.

Designing an application specific processor is a demanding and time consum-
ing task. A software toolset for designing Transport Triggered Architecture (TTA)
ASPs called TTA-based Codesign Environment (TCE) was implemented at Tam-
pere University of Technology to challenge this problem. TTA is a processor design
paradigm for designing ASPs based on a modular architecture template, which al-
lows customization of a processor by adding and removing basic building blocks of
the architecture template such as function units, register files, and transport buses.
TCE provides a full toolset containing all tools required to codesign a TTA processor
and software for it.

A crucial part of the toolset is the compiler. Implementing a compiler for a
customizable architecture template is an especially demanding task because the
compiler has to adapt to the available resources in the customized target processor.
The TCE compiler is implemented as a backend for the Low Level Virtual Machine
(LLVM) compiler framework which provides the high-level language frontends and
target independent analysis and optimization components. This thesis describes the
requirements, design, and verification of a LLVM compiler backend for the TCE

toolset.

1. Introduction 2

The thesis is divided into the following chapters. Chapter 2 introduces the TTA
processor architecture and describes the method of programming TTAs. The chapter
also presents the TTA Codesign Environment and describes the role of the compiler
in the toolset. Chapter 3 describes the basic structure of typical compilers and in-
troduces basic compiler concepts. In addition, the chapter gives an overview of the
LLVM compiler infrastructure and backend framework. The design and implemen-
tation of the TCE compiler backend is presented in Chapter 4. Chapter 5 contains
the compiler test results and describes the testing methods used for verification and

benchmarking. Chapter 6 concludes the thesis.

2. CODESIGN ENVIRONMENT FOR
APPLICATION SPECIFIC PROCESSORS

This chapter gives a brief overview of application specific processors (ASPs) and
their design process. In addition, the Transport Triggered Architecture (TTA) pro-
cessor architecture paradigm for designing ASPs is introduced. This chapter also
introduces the TTA Codesign Environment (TCE), which is a toolset for designing
TTA processors.

2.1 Application Specific Processor Design

Application Specific Processors (ASPs) are processors which are custom designed
to run a specific set of software efficiently. When the target application is well
defined with limited functionality, a processor can be designed with resources that
are customized to benefit the application. For example, any unnecessary operations
can be removed from the operation set and highly specialized custom operations can
be added to improve performance. This way the power consumption, chip area, and
manufacturing costs can be minimized while still fulfilling the program execution
speed requirements.

ASPs can have significantly better efficiency when compared to using general
purpose processors for the same task, but as a trade-off the design process can be
time-consuming and costly. Therefore the choice of an ASP architecture with a good
toolset to assist and automate the design process is important.

In order to design an ASP, a toolset is required for modeling, evaluating, and com-
piling software for the customized processor architecture. Each tool in the toolset
must be able to adapt to different architecture variations and, therefore, the archi-
tecture design space has to be limited to an architecture template. The template
describes general characteristics of the processor architecture, but can allow cus-
tomization of different resources, such as the instruction set, register files and the
interconnection network.

When an architecture template is used, processors can be designed by means of
design space exploration. Design space exploration is a process where a processor
is designed iteratively. First, an initial architecture is designed and evaluated with
a simulator. Based on the evaluation results, the design is then improved and re-

evaluated until a satisfactory design is found. The process can be done manually

2. Codesign Environment for Application Specific Processors 4

or by using varying degrees of automation with a toolset capable of improving and

evaluating architectures automatically.

2.2 Transport Triggered Architecture

An important way to improve program execution speed is to take advantage of In-
struction Level Parallelism (ILP). ILP is a term for the fine grained independency
of operations, which allows multiple operations to be executed simultaneously. Su-
perscalar processor architectures, such as modern desktop CPUs exploit ILP within
the processor hardware by detecting the operation dependencies during run time.
Operation execution order can then be reorganized, and multiple operations sched-
uled to be executed in parallel. However, this approach requires additional logic in
the processor hardware to detect operation dependencies and allocating processor
resources for the executed operations.

Very Long Instruction Word (VLIW) is a processor architecture which utilizes
ILP by parallelizing instructions at compile time [1]. In VLIW architecture one in-
struction consists of multiple operations which are statically scheduled to processor
execution units by the compiler. Processor hardware is therefore freed from the
dependency detection logic, reducing the hardware complexity and lowering power
consumption. In VLIWs, the interconnection network between execution units and
other processor resources needs to be designed for all possible concurrent data trans-
ports. The growing complexity of the interconnection network therefore limits the
scalability of VLIWs.

Transport Triggered Architecture is a processor architecture template similar to
the VLIW architecture. TTA takes the VLIW idea of moving complexity from
the hardware to the compiler even further, by also assigning data paths used by
instructions at compile time. This is done by programming the individual data
transports between processor components instead of the traditional approach of
programming whole operations. In TTAs, the operations are executed as side effects
of the data transports. Because the data paths are assigned at compile time and
the compiler is aware of the limitations, the interconnection network can be kept
relatively simple when new resources are added. [2]

The static scheduling of data transports has some drawbacks when compared to
superscalar architectures. The code density is lower, because more bits are required
to encode data transports to a TTA instruction than encoding an operation in a
traditional operation triggered architecture. Additionally, TTA performance is very
dependent on the compiler quality, and since all ILP logic is in the compiler it can

become very complex.|3|

2. Codesign Environment for Application Specific Processors 5)

Function Unit Function Unit Register File Immediate Unit Gobal Control Unit

FU: : IMM: GCU:
MM GCU

Socket direction

/

Figure 2.1: Module diagram of a simple TTA processor.

Socket-Bus connection Socket

TTA Processor Organization. One of the main goals of TTA is to allow easy
customization of processors with a templated architecture design. TTAs are built
from components that can have pre-existing hardware implementation. Components
called sockets and buses form the interconnection network which connects four dif-
ferent types independent units providing resources for operation execution. These
unit types are function unit (FU), register file (RF), immediate unit (IU) and control
unit (CU). Figure 2.1 shows a component diagram of a simple TTA processor with
two function units, one register file, one immediate unit and a control unit.

Function units are the execution units of a TTA processor. One function unit
contains logic to execute one or more operations. These operations can be simple
operations such as addition of integers, or more complex operations that do compu-
tation specific to the application that the architecture is customized for. Usually at
least one of the function units in a TTA processor is a special load and store unit
that can access data memory. Function units read and write operands using input
and output ports that are connected to the interconnection network. The operation
set of a TTA processor can be customized by adding function units that provide the
desired set of operations.

Register files are units that contain arrays of registers with same bit width. Regis-
ters are used for storing temporary values such as operation operands for fast access
inside the processor. Registers are also used for special purposes such as storing
the stack pointer and function return value. A TTA processor can have multiple
register files with different bit widths. Register files can have multiple input and
output ports to allow multiple register accesses in one instruction cycle.

Immediate units contain special registers to store long constant values that can
not be encoded in instructions as literal constant values.

A TTA processor contains a control unit which is responsible for controlling the

2. Codesign Environment for Application Specific Processors 6

processor operation. It fetches and decodes instructions and generates signals to
execute them. The control unit also contains control flow operations so it can also
be seen as a special function unit.

Sockets and buses form the interconnection network that is utilized to transport
data between the units. The number of buses limits the number of concurrent data
transports in a TTA processor. One bus can complete one data transport in each
instruction cycle between unit ports that are connected to it by sockets. Sockets
have a direction which determines if the ports connected to it can read or write
the transport bus. Connections between sockets and buses are usually optimized to
contain only the connections that are needed for fast processor operation. A fully
connected interconnection network with multiple buses connected to all ports will

usually have poor utilization and high cost in terms of chip area.

2.3 TTA Processor Programming

Traditional processors are programmed by defining operations and their operands.
For example, in the assembly language of a traditional RISC architecture, simple
operation like addition of two operands in registers rl and r2 to register r3 might
look like this:

add $r3, $ri1, $r2

The RISC processor will generate the required signals to execute the operation.
In contrast, TTA processors are programmed by defining the data transports that
are required to perform the desired behavior. The actual operations are executed
as side effects of the data transports when a data transport occurs to an operation
triggering port of a function unit.

The same example in TTA assembly would look something like this:

rl -> add.1
r2 -> add.?2
add.3 -> r3

To execute the add operation, three data transports called moves are defined.
The first move defines a data transport from register r1 to the input port 1 of a
function unit containing the add operation. The second move defines another move
from register r2 to the input port 2 which triggers the execution of the add operation.
Finally, the result is moved from the output port of the function unit to the register
r3. This example is sequential TTA code. Operation latencies are not yet taken to
account, the moves are not parallelized and the required target resources are not yet

assigned.

2. Codesign Environment for Application Specific Processors 7

To assemble a real TTA program for a specific target TTA processor, the program
must be scheduled for the target architecture and the processor resources must be
allocated. Registers must be bound to specific registers in the register files of the
target TTA. Operations must be also bound to specific function units of the target
architecture containing the corresponding operations. Finally, the moves must be
scheduled while considering operation latencies and parallelized to specific transport

buses to exploit ILP.

Scheduling TTA programs for target architecture. The following is a small
sequential TTA program with a conditional jump at the end. The syntax “!bool” in
move 12 denotes that the move is conditional and will occur only if the value in the
register “bool” is FALSE (binary value zero). This program also contains constant

literal values which can be encoded in the instructions as short immediates.

1 ->r1 [initialize variables in registersl]
0 -> r2

rl -> add.1

r2 -> add.2

add.3 -> r2

rl -> eq.1

1024 -> eq.2

eq.3 -> bool [bool = boolean register]

rl -> add.1

1 -> add.2

add.3 -> ri1

'bool 3 -> jump.1 [jump to 3: if bool equals zerol

© 00 N O O A W N -

= e
N = O

The following TTA program is what this example might look like after allocating
resources and scheduling moves to the buses of a target TTA. This parallel TTA
program is target-dependent and can be assembled only for the target TTA it was

parallelized for.

1: 1 -> RF1.1 0 -> RF1.2

2: RF1.1 -> FUl.add.il RF1.2 -> FUl.add.i?2

3: FUl.add.ol -> RF1.2 RF1.1 -> FU2.eq.1il

4: 1024 -> FU2.eq.1i2 1 -> FUl.add.i1l

5: FU2.eq.01 -> RF2.1 RF1.2 -> FUl.add.i2

6: FUl.add.ol -> RF1.1 'RF2.1 2 -> GCU. jump.1

Registers r1 and r2 are allocated to registers 1 and 2 in a general purpose register
file RF1. Boolean register bool is allocated to register 1 of a 1-bit register file RF2.

2. Codesign Environment for Application Specific Processors 8

Operations are also bound to function units containing the corresponding operations,
and the operand ports are specified to correspond the correct operand ports of the
operations. Moves are then scheduled to two buses of the target TTA.

The conditional move in instruction 6 is done by utilizing a register guard on
the second bus. This bus must therefore have a guard that can execute the move
conditionally depending on the value of register 1 in RF2.

The instruction scheduler in a TTA compiler must also take operation latencies
into account. Results can be read only when the function unit has done the calcu-
lation and the result is ready. Operation latency determines the number of cycles

required by the function unit to compute the result of the operation.

2.4 TTA Codesign Environment

TTA-based Codesign Environment (TCE) is a set of tools developed at Tampere
University of Technology for designing and programming TTA processors. The goal
of the TCE project is to provide an easy to use toolchain for TTA processor design,
aiming to minimize the time and cost of design by automating the design process
as much as possible [4].

The TCE processor design toolchain contains all tools required to design and
simulate TTA processors and programs. The processor design starting point is
usually the source code for an application, and a set of performance requirements
and design limitations that must be met by the designed processor. The processor is
designed with an iterative design space exploration process. The exploration begins
with an initial architecture acting as a starting point for the processor design. The
program source code is compiled for the processor architecture, and a model of the
compiled program is simulated on a simulator for the processor architecture. The
simulator produces a trace of the program execution, which is examined to improve
the architecture design. This process is repeated until a satisfactory design is found.

The design space exploration can be done either manually, or at different levels
of automation. In the manual design process, the different tools of the processor
design toolchain are used manually, and the processor design is modified by hand.
The fully automatic design space exploration has only the program source code and
the design requirements as input, and does not require any user interaction for the
exploration process. A user’s guide to different TCE tools and the design process
can be found in the TCE User Manual [5].

2.4.1 Automatic Design Space Exploration

The automated design space exploration is driven by the Fzxplorer tool. The Ex-

plorer is a highly modular tool which can be programmed to explore the design space

2. Codesign Environment for Application Specific Processors 9

< >

Program Performance and cost
source code requirements

Processor design space

explorer Simulation trace

Processor architecture
and implementation model

— ’

Compiler Simulator

Compiled program
model

Program image and
processor generation

Processor Program
HDL description bit image

Figure 2.2: TCE design flow.

according to any user criteria. The design space explorer works in conjunction with
the TCE compiler and simulator, which are used to test different architecture con-
figurations. The explorer itself is responsible for estimating the cost of the different
configurations, and modifying the architecture to different points of the design space
in order to find an improved design. The design cost is measured in terms of the
chip area required to implement the processor, and the total energy consumption to
run the desired program. The processor performance is measured as the number of
clock cycles required to run the program. The automated exploration design flow is
illustrated in Figure 2.2.

The exploration begins with an initial processor architecture model, which can be
for example the minimal required configuration needed by the compiler to compile
arbitrary programs. The source program is compiled for the initial architecture.
The compiler produces a model of a parallel TTA program which can be simulated.

The simulator is invoked to simulate the parallel program model on a model of the

2. Codesign Environment for Application Specific Processors 10

processor architecture. The simulator result is a simulation trace database. The
trace contains detailed information about the program simulation, such as the total
clock cycle count of the simulation and the utilization of different architecture com-
ponents. The explorer will then generate a new configuration point in the explored
design space which is tested. The process of exploring different configurations in the
design space is repeated until the user defined criteria is fulfilled.

In order to estimate the power consumption and chip area, the explorer has to
generate an implementation model of the processor. The implementation is gener-
ated by choosing implementations for the architecture components from a database
of pre-existing hardware components with known characteristics.

When the final configuration is found, it can be prepared for implementation.
TCE includes tools for generating a HDL description of the processor from the
processor architecture and implementation models. The processor implementation

model is also used for generating a bit image of the compiled program model.

2.4.2 Compiler

The TCE compiler is the subject of this thesis. The complier is a retargetable code
generator, which can adapt to different architectures designed with the TCE ar-
chitecture template. It gets the program source code and a processor architecture
model as input. The output is a model of a parallel program for the target pro-
cessor architecture. The design and implementation of the compiler is discussed in
Chapter 4.

2.4.3 Simulator

In order to verify and benchmark an architecture configuration, the program execu-
tion must be simulated on a software model of the processor. The toolset contains
a processor simulator with two simulation engines for this purpose. The simulation
engines are a cycle-accurate interpretive simulator, and a faster but less accurate
compiled simulator.

The interpretive simulator simulates an architectural model of the processor. The
simulation model contains only architectural components, which are visible to the
programmer. However, the simulation is cycle-accurate, and all architectural com-
ponents contain correct data on each cycle [6]. The interpretive simulator engine
simulates an assembly-level model of the program, not the execution of an actual
bit image of the program. The interpretive simulator is useful for verification of an
architecture with clock cycle level tracing and debugging of the program execution.

The compiled simulator engine generates executable simulation code from a paral-

lel program model compiled for the target processor [7|. Individual clock cycles and

2. Codesign Environment for Application Specific Processors 11

architecture components are not simulated. The simulation code also has limited
error detection capabilities compared to the interpretive simulation. The reduced
simulation overhead results in much faster simulation, which is useful for quick

benchmarking of a target architecture.

2.4.4 Program Image and Processor Generation

The final step in the TCE toolchain is the generation of a processor implementation
description which can be synthesized for the chosen hardware technology, and the
generation of a program bit image which can be executed on the processor.

The processor implementation description is generated from the architecture and
implementation models of the processor with the Processor Generator (8] tool. The
tool produces a VHDL hardware description of the processor.

In order to generate a program image, a Binary Encoding Map (BEM) is generated
for the processor implementation. The BEM contains the information required to
encode instructions for the processor. A Program Image Generator (PIG) [8] tool
uses the BEM to generate a bit image from a parallel program model compiled for

the processor.

12

3. COMPILERS

A compiler is a software system that translates programs between source and tar-
get representations, typically converting programs written in a high level language
(HLL) to a target machine specific representation. Compilers can be implemented
using a compiler infrastructure which provides modular and reusable components
for compiler implementation.

This chapter introduces general compiler concepts and the typical structure of
compilers. In addition, the Low Level Virtual Machine (LLVM) compiler infrastruc-
ture, which is the basis of the TCE compiler is introduced.

3.1 Compiler Structure

Typically, compiler infrastructures have modular architectures where different pro-
gramming language frontends and compilation target backends can be added as
independent modules as illustrated in Figure 3.1. In order to achieve modularity,
the compiler must have a well defined Intermediate Representation (IR) of programs

that different modules use to communicate programs between compilation phases.

Intermediate representation. An IR of a compiler is a data structure that rep-
resents the compiled program to the compiler. Intermediate representation uses an
intermediate language that targets an abstract target machine. The intermediate
language consists of a virtual operation set of primitive operations. The virtual oper-
ation set and the structure of the IR are designed to aid in the analysis, optimization
and code generation for target machines.

In generic compiler frameworks that are not designed for a specific target archi-
tecture, the intermediate language usually has a virtual instruction set of primitive
operations that are generic to most processors. The virtual instruction set can also
have abstract operations that are not specific to any machine, but represent a target-
dependent operation sequence such as a function call or dynamic memory allocation
for temporary values. The abstract representation of these operations allows high-
level optimizations to be done in the compiler middle-end, but leaves the low level
code generation the responsibility of the target specific backend.

The intermediate language operations usually perform operations on operands

stored in virtual registers. The number of virtual registers available in the abstract

3. Compilers 13

Source code Target code

: Source language : : Target processor :

. frontend : : backend .

: : Compiler : :
Middle-end

Source code Target code

: Source language : : Target processor :
. frontend : : backend .
' ' Source and target ' '
: i independent middle-end. | .

Frontends for different i E Backends for different |
! programming languages. ! ! processor architectures. |

Figure 3.1: Structure of a typical compiler.

IR machine is usually very high or practically unlimited.

Compilers often use more than one form of intermediate representation. Different
IRs are used for different phases of the compilation that are easier to perform on
certain type of IR than another. For example, some optimizations and program
analysis require a graph representation of the program where program operations
and operands are represented as nodes of a tree graph exposing the program data
flow. On another hand, some optimizations and compilation phases are much easier
to implement using a static single assignment form (SSA) of the program. In SSA
every variable is assigned only once, which simplifies the analysis of variables. If the
same variable is assigned multiple times it is split to multiple versions that define a

new variable. [9]

Frontend. A compiler frontend is responsible for parsing programs written in
frontend-specific HLL and translating it to the IR of the compiler. In a standard
organization, frontend structure is divided to three main parts [10|. First, lexical
analysis is performed on the input data, which tokenizes the input string of char-
acters to syntax specific tokens of the programming language structure, such as a
keyword or a parenthesis. Next, the parser performs syntax analysis on the token
stream, detects syntax errors and constructs a parse tree of the program. Finally,
the semantic analyzer checks the program for static-semantic validity and an IR
of the program is constructed. The IR produced by a frontend is usually source

language independent.

Middle-end. The compiler middle-end is the source language and target machine
independent part of the compiler. Middle-end is responsible for analyzing and opti-
mizing the IR before passing it to a target backend. Compiler middle-ends usually
perform data and control flow analysis on the TR. The resulting data flow graph
(DFG) contains interdependencies between operations. Control flow graph (CFG)

contains the basic block structure of the program and identifies control flow transfers

3. Compilers 14

reg reg reg reg reg
(load) add mul
reg reg reg
reg
LDW ADD MUL
MAC

Figure 3.2: Four instruction patterns available for instruction selection.

between basic blocks. A basic block is a sequence of instructions that has a single
entry and exit point, which can be treated as a single entity when the control flow
of a program is analyzed.

These graphs are used as a basis for different optimizations done in the middle-
end. Optimizations are usually implemented as modules, so that the sequence
of optimizations can be customized. The resulting optimized IR is still target-
independent, but the sequence of different optimizations can be chosen to benefit

some specific target.

Backend. Compiler backends are target specific code generators, which translate
the target independent IR to target specific code. The most important tasks for
a backend is to perform instruction selection, register allocation and instruction
scheduling on the IR. Backends can also perform target specific optimizations. The
output of a compiler backend is usually assembly code or binary object code for the

target machine.

3.1.1 Instruction Selection

An instruction selector maps IR operations to operations supported by the target
processor. A single IR operation can be expanded to a sequence of target operations
or an emulation function call if an IR operation is not included in the operation
set, of the target machine. In the opposite situation, the target machine might have
operations that combine a sequence of IR operations to a single target operation.
Instruction selection is usually done on a DFG representation of the IR. An
instruction selector has tree patterns of the target machine instructions defining the
behavior of the instructions to perform instruction selection on a DFG. The patterns

can also be associated with a cost. The task of instruction selector is to cover the

3. Compilers 15

Figure 3.3: Two possible ways of covering a simple DFG with ADD, LDW, MAC and MUL
patterns.

program DFG using the machine instruction patterns. There are usually multiple
different ways to cover even a very simple DFG. In Figure 3.2 there are four different
instruction patterns that are available to cover a simple subgraph of a program in
Figure 3.3.

A simple instruction selection method is to rewrite the IR operation tree by
matching subtrees with the instruction patterns of the target machine. In the ex-
ample in Figure 3.3, the only available pattern to match the load operation subtree
is the LDW pattern. The remaining subtrees are matched from bottom to up. There
are two possible ways to cover the add operation as illustrated in Figure 3.3. Usually,
an instruction selector would try to match a subtree starting from the pattern that
covers the largest subtree. In this example, the MAC pattern is matched before
the ADD pattern and the remaining graph is covered with a MAC operation. If
the instruction selection patterns are associated with a cost, a linear time dynamic

programming algorithm can be utilized to find the optimal solution [11].

3.1.2 Register Allocation

A register allocator maps the variables in the IR to real registers in target hardware.
The virtual register utilization in the program is first analyzed to determine live
ranges of the values in the registers. The live range of a value in register determines
when it is safe to assign a register for a new variable. If the number of simultaneous
live values in virtual registers is greater than the number of physical registers, the
register allocator must spill values to memory. The register allocator can do this
by inserting spill code which stores a live register value to memory. The register
can then be used for a new variable, and the old variable can be restored later from

memory when it is needed again.

3. Compilers 16

Spilling register values causes load and store overhead, so the task of a register
allocator is to minimize register spilling by maximizing the use of physical registers
for frequently used variables. Register allocation is a computationally intensive NP-
complete [10| problem and there is no known efficient algorithm to find the optimal

solution.

3.1.3 Instruction Scheduling

Processors can be pipelined to improve their instruction throughput. An instruction
pipeline splits the execution of an instruction to a sequence of independent steps.
Multiple instructions can therefore be processed in parallel by executing different
stages of instructions at the same time in the pipeline. However, pipelining intro-
duces hazards to the computation when simultaneously executed instructions have
interdependencies. Hazards are usually avoided by stalling the pipeline.
Instruction scheduling is a compiler optimization which reorganizes the execu-
tion order of instructions to avoid pipeline stalls for improving performance. Some
machines also expose instruction pipeline resources to the compiler and expect the
compiler to take care of operation timing issues by always scheduling instructions.
Instruction scheduling is especially important for VLIWs and TTAs. Both archi-
tectures have programmer visible operation latency that has to be taken into account
by the compiler. Instruction scheduling is therefore always needed for VLIWs and
TTAs to maintain correct behavior of programs. On TTAs, the quality of the in-
struction scheduling is also very important to the program execution performance.
In TTA processors individual function units can be pipelined with resources that
are visible to the compiler. Other processor resources such as buses, guards and
ports are also visible to TTA compilers. Instruction scheduling is therefore a more
complex and important problem for TTA processors than for example superscalar
architectures. A TTA instruction scheduler has to allocate processor resources to
executed instructions and take operation latencies into account while packing max-
imum number of moves to instructions to improve ILP. More information on TTA

instruction scheduling can be found in [12].

3.2 Compiler Retargeting

The easiest way to implement a compiler for a processor architecture is to imple-
ment a backend for an existing compiler infrastructure. Compiler infrastructures
usually aim to minimize the manual work required for writing new backends. Back-
ends are typically implemented using a framework which provides a formal machine
description language. The purpose of machine description languages is to capture

the compilation related details of the processor and allow reuse of generic backend

3. Compilers 17

code.

Modeling languages vary on the approach they take to model a processor. Behav-
ioral modeling languages such as ISDL are more compiler-oriented and allow easier
implementation of the backend but require more knowledge of compilers. Structural
modeling languages such as MIMOLA describe the structure and architectural de-
tails of the processors and are therefore easier for users that are not familiar with
compilers. A good overview of customizable processor architecture description lan-
guages can be found in [13|. Depending on the compiler framework and the modeling
language, backend generation can be fully automated from the modeling language
description, or might require some parts of the backend to be manually programmed.

Static compiler backends are limited to a single target processor or a family of
similar processors. The backends have hard-coded models of the target processor
architecture, and exact properties of the processors must be known when imple-
menting the backend. This poses a problem for customizable processor architecture
templates where the processor is designed for a specific task. Implementing a new
backend for each new architecture would be time-consuming and it would make fast
processor prototyping and effective design space exploration impossible.

A solution presented in this thesis to this problem is to implement a dynamically
retargetable backend, which only contains general aspects of the architecture tem-
plate as a hard coded model. The actual target processor model is given as an input
for the backend at runtime, and the backend adapts to the properties of the target

processor configuration.

3.3 Application Binary Interface

A compiler backend is responsible for implementing code generation corresponding
to the target specific application binary interface (ABI), which defines the low-level
interface of program components.

An important aspect of an ABI is the memory organization of the target ar-
chitecture. To achieve compatibility between different program components, the
compiler backend has to implement a consistent memory allocation scheme defined
in the ABI. A backend follows the ABI conventions, which define memory structure
details such as the size and alignment of different data types in memory, and the
structure of the call stack.

The call stack is a data structure which stores information about active functions
in the program in stack frames. A stack frame has a consistent structure with
predefined areas for function return address, function parameters, local variables
and similar data specific to the state of an individual function invocation. This
allows the function to access the local state data using a stack pointer, which points

to the end address of the stack frame of the active function.

3. Compilers 18

Another important part of the ABI is the calling convention. Calling convention
determines how the function arguments are passed and how the return value is re-
trieved when a call to a function is invoked. The task of the backend is to convert the
abstract call and return instructions to code sequences which implement the calling
convention. On the caller side, a code sequence inserted to first store the function
parameters to argument registers or the call stack, and another code sequence to
retrieve the return value after the call has returned. On the callee side, the backend
generates a function prologue to read the function arguments and an epilogue to
store the return value in appropriate locations before returning from the function
call.

The calling convention also defines the responsibility of saving and restoring reg-
isters which must preserve their values. Caller saved registers are saved to the stack
by the calling function before the function call and restored after the call returns.
Callee saved registers are saved in the called function prologue and restored in the

epilogue before the function returns.

3.4 LLVM Compiler Infrastructure

Low Level Virtual Machine [14] is an open source compiler infrastructure based on
low level virtual machine code representation of compiled programs. The goal of the
LLVM project is to provide a robust platform for compiler development using a code
representation which allows reuse of compiler components across different targets.
LLVM has a modular design, allowing new language frontends, target machine back-
ends, and optimizations to be easily incorporated in the existing framework. LLVM
also aims to provide a flexible framework for program analysis and transformation,
including compile-time, link-time, and run-time optimization and profiling [15]. It
is therefore well suited for developing a compiler and researching new optimization
methods for TTA processors.

LLVM is the compiler infrastructure chosen for TTA Codesign Environment
(TCE). This section serves as a basis for the TCE compiler implementation pre-
sented in Chapter 4.

3.4.1 Compilation workflow

LLVM compilation workflow begins with compiler frontends for different source lan-
guages. Frontends emit bitcode which is linked together by a bitcode linker. The
bitcode linker performs link-time optimizations, including inter-procedural analysis
and optimization. The linked bitcode can then be optimized by an offline optimizer.
Finally, a code generator writes the target assembly or binary machine code from
the optimized IR.

3. Compilers 19

Bytecode Offline
Libraries Optimizer

Linker -
PO/ IPA LLVM Bytecode Code Generator

Compiler FE 1
.

Bytecode
object files

.
Compiler FE N

Figure 3.4: LLVM static compilation workflow.

LLVM also allows native execution of bitcode using Just-In-Time (JIT) compiler
with runtime profiler and optimizer. However, the runtime optimizer and JIT cannot
be used when LLVM is used as a static cross-compiler generating code for non-native
machines. Figure 3.4 shows the static compilation workflow, when LLVM is used as
a static cross-compiler.

The most popular of the current frontend implementations is a GNU Compiler
Collection (GCC) [16] based LLVM-GCC frontend. The LLVM-GCC frontend in-
cludes support, among others, for C and C++ programming languages.

Optimization, analysis, and code generation are implemented as passes in the
LLVM compiler. Each pass implements one analysis or transformation of the IR.
LLVM has different types of passes working on different scopes, ranging from general
module passes transforming or analyzing whole compilation units at a time to basic
block passes that are limited to scope of a single basic block. Passes are organized
with a PassManager, which manages pass dependencies and the execution order of
passes. All passes use the LLVM IR as input and output.

3.4.2 Program representation

LLVM code representation is based on a source language and target machine inde-
pendent RISC-like virtual instruction set. The virtual instruction set also includes
instructions that expose high level language features to the compiler middle-end for
effective optimization. LLVM code can be represented as human readable assembly
language, as on-disk binary bitcode and as in-memory object model IR, which are
all equivalent and use the same virtual machine as an intermediate target machine.

At a high level, LLVM programs are composed of modules which are the compila-
tion units of the LLVM compiler. Modules consist of functions, global variables and
symbol table entries. LLVM functions consist of basic blocks which in turn contain
instructions. An instruction contains an opcode and a vector of operands.

The LLVM operands are strongly typed. The type system includes primitive types
for fixed point integers with different bit-widths (i1, i8, 116, 132, ...), and floating
point types of varying precision (f32 , 64, ...). The type system also contains more

abstract types, such as code labels, pointers and different kinds of structured types.

3. Compilers 20

LLVM Instruction Machine Register Instruction Code Target
> Selection > SSA Optimizations > Allocator > Scheduler > Emission > Code

Target Target
Specific Specific

Target Independent

Figure 3.5: Basic LLVM code generator layout [18].

The primary representation of LLVM code is in Static Single Assignment (SSA)
form [15]. The LLVM SSA form uses a virtual register set that contains an infinite
number of typed virtual registers. Full specification of the LLVM language can be
found in the LLVM Language Reference Manual [17].

3.4.3 Code generator

LLVM provides a framework for code generator implementation. The framework
consists of multiple passes that have LLVM IR as input and target machine code as
output. The high-level structure of a basic LLVM code generator is illustrated in
Figure 3.5.

The first code generation phase is instruction selection. The instruction selection
process starts with building of an initial instruction selection DAG, followed by DAG
optimizations to simplify it. The selection DAG operand types are then legalized by
transformations that convert any unsupported types to types which are supported
by the target machine. After the legalize stage and additional optimizations, the
selection DAG is ready for the actual instruction selection. The final stage of the
instruction selection phase is formation of an SSA-representation of the intermediate
machine code.

Instruction selection is followed by three phases, which have target independent
implementations available in the LLVM framework. First, the machine code SSA
can be optimized with optional SSA-based optimizations. The SSA is then regis-
ter allocated, transforming the virtual registers to concrete registers in the target
machine. LLVM libraries include multiple different built in register allocation algo-
rithms that can be used. After register allocation, function prologue and epilogue
code is inserted, the instructions are scheduled and late machine code optimizations
are done to ready the program for code emission. The code emission is typically

done by an assembly writer, which produces assembly code for the target processor.

3. Compilers 21

3.5 Backend Implementation

Backends utilizing the LLVM code generator framework are implemented as target
machines of the LLVM framework. The target machine interface allows custom
implementation of all different code generation related passes. However, the code
generator framework provides implementations for instruction selection and register
allocation, which can be used by describing the related properties of the target

machine using LLVM classes.

Target machine. Target machine encapsulates all properties and code genera-
tion methods of a target machine behind one interface. The LLVM code generator
framework uses the interface to provide a backend for the target machine. Code
generator passes are also created through this interface allowing full customization

of the code generator.

Data layout. Data layout of a target machine describes the endianess and pointer
size as well as sizes and alignments of different data types in the target machine

memory.

Frame info. Frame info describes the basic properties of the target machine stack
and stack frame layout. It also holds information about the direction of stack growth

in the memory and stack frame alignment.

Register set. Target machine registers and register types are defined in the target
machine register set. It describes all registers of the target machine and properties
of different register types. The register set implements TargetRegisterInfo interface,
which contains various methods utilized by the code generator to handle register
and stack frame access. TargetRegisterInfo is also responsible for emitting prologue

and epilogue code into functions.

Instruction set. Target machine instruction set contains descriptors of all sup-
ported instructions and defines their operand types. The operand types define differ-
ent memory addressing modes and immediate operands. Register operand types are
defined by referring to the register set. Instruction descriptors define the following

properties of supported target instructions:

e Input and output operand lists, defining the operand types and number of

operands,

e Instruction pattern which defines the behavior of the instruction as a DAG of
LLVM instructions,

3. Compilers 22

e Additional predicates and constraints for matching the instruction pattern,

e An assembly string template for printing the instruction as target assembly

code,
e List of registers implicitly used and modified,

e Target-independent flags that define properties such as if the instruction is

commutable or if it may read or write memory, and

e Target-specific flags and properties.

One target machine instruction requires typically more than one descriptor to
describe the different combinations of operand types it can have and different in-

struction patterns it can be matched with.

Instruction selector. LLVM provides a base implementation for an instruction
selector. A skeleton of the instruction selector is implemented as base classes in the
LLVM code generator library and part of the instruction selector can be automat-
ically generated from the instruction descriptors. Some of the instruction selector
methods have to be manually implemented because the behavior of all instructions
cannot, be fully expressed with the instruction descriptors.

The manually implemented parts of the instruction selector include a legalize
phase which converts unsupported types and operations to ones supported by the
target machine. The legalize phase can either promote, expand, or implement a
custom lowering for operations that are not supported. If an operation is supported
for larger operand types, the unsupported operands can be promoted to supported
types. Expand breaks an LLVM instruction to a combination of other instructions
that perform the same operation. If promotion or expansion is not sufficient, the
target legalizer can implement a custom code generation method for the unsupported
operation.

The instruction selector also includes methods to support target calling conven-
tions. Different calling conventions can be implemented by writing methods that

generate code for passing arguments and handling return values of function calls.

Register allocator. LLVM code generator includes multiple register allocators
that implement different register allocation algorithms as code generator passes.
The register allocator implementations are target independent and do not require
any target specific modifications. They utilize the target machine interface to access
target register set model and use virtual code generation methods implemented in

the target machine to generate code for spilling values to memory.

3. Compilers 23

Target assembly information and assembly printer. LLVM contains a par-
tial implementation of an assembly printer pass. The assembly printer can be utilized
by providing information about the target assembly directives and by implementing
required assembly printing methods manually. Part of the assembly printing meth-
ods can be automatically generated from the assembly string templates defined in

the target instruction descriptors.

3.6 Target Descriptor Files

One of the goals of the LLVM project is to minimize the manual programming work
required to implement a new backend. A backend has to model the target machine
which includes repetitive descriptions of different target architecture resources. In
order to make the target architecture modeling easier, LLVM includes a general
purpose TableGen tool for processing records of domain-specific information. The
main use of the TableGen tool is the LLVM code generator, which allows part of
the backend C-++ code to be generated from target descriptor files which contain
records of a target machine properties. The target descriptor files can be processed
by target description TableGen backends which generate code for essential parts of
the backend.

The automatically generated code includes data structures that are required by
the code generator framework to handle target machine instructions and registers,
as well as methods for instruction selection and assembly code emission.

TableGen files consist of class and definition records. Classes are the abstract
records that describe the structure of concrete records belonging to the same con-
ceptual class. New TableGen classes can be derived from existing classes inheriting
their properties. Definitions are the concrete records that define the properties of
a domain-specific object. TableGen files can also contain multiclasses, which allow
instantiation of group of classes in a single record resulting in multiple definitions.

The following part of this chapter is an introductory description of some of the key
elements in typical target descriptor files. TableGen has a versatile and expressive
syntax, which is not covered by this thesis. A comprehensive explanation of the
TableGen syntax can be found in [19]. The TableGen target descriptor file backend

is documented in [20].

3. Compilers 24

Register is the base class for register records. It contains attributes defining
the register properties and relationship to overlapping registers. The Register class
defined in the target descriptor TableGen backend has the following structure:

class Register<string n> {
string Namespace = "";
string AsmName = n;
int SpillSize = 0;
int SpillAlignment = 0;

list<Register> Aliases = [];
list<Register> SubRegs = [];
list<int> DwarfNumbers = [];

}

This base class can be subclassed to define complex target registers with minimal
repetition as is done in the following example taken from the Sparc backend in
LLVM:

class SparcReg<string n> : Register<n> {
field bits<5> Num;

let Namespace = "SP";

class Rd<bits num, string n, list<Register> subregs>
SparcReg<n> {

let Num = num;
let SubRegs = subregs;
3

The first definition introduces a new class SparcReg which is derived from the
Register base class. It adds a new 5-bit identifier field to store the register identifier
number and assigns register instances to the SP namespace. This class is subclassed
further with class Rd to define 64-bit slots in a floating point register file where each
slot can consist of sub-registers. Finally, a 64-bit register D0 consisting of two
subregisters F0 and FI can be defined with the following simple definition, giving

arguments to the Rd class template:
def DO : Rd< 0, "FO", [FO, F1]>, DwarfRegNum<[32]>;

The definition includes the Dwarf number of the register, which is used as an

register identifier by debugging tools.

3. Compilers 25

RegisterClass contains registers, which are grouped as members of the class. A
register class record defines the supported types of the member registers, which must
be the same for all registers of the class. The supported types are defined as LLVM
IR value types. Register classes can be instantiated by defining a RegisterClass
record. For example, the Sparc backend defines the following register class, which

contains 64-bit registers, such as the D0 register defined in the previous example:

def DFPRegs : RegisterClass<"SP", [f64], 64, [DO, D1, D2, D3,
D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, Di5]>;

The first argument of the RegisterClass template is the namespace of the defini-
tion. The second argument is a list of LLVM value types that can be stored in the
registers of this register class. The third argument is the alignment in bits that is
required when loading or storing register values to memory. The last argument is a
list of registers belonging to the class. The order of the list is used as the preferred

register allocation order by LLVM register allocators.

Instruction is the target descriptor base class for defining the instruction records.
The base class contains an extensive set of attributes to define behaviour of instruc-
tions. Similarly to register records, the Instruction class can be subclassed to allow
groups of similar instructions to be expressed in a compact form. The following code
is part of the Instruction base class definition. Most of the flags and attributes that

define detailed properties of the instruction are omitted:

class Instruction {
string Namespace = "";
dag OutOperandList;
dag InOperandList;
string AsmString = "";
list<dag> Pattern;

(1;
(1;

list<Predicate> Predicates = [];

list<Register> Uses
list<Register> Defs

bit mayLoad = 0;

bit mayStore = 0;

// Rest of attributes omitted
}

The input and output operand lists are defined as strings that represent DAGs
that model the operands. The DAG representation allows complex operand types,

such as operands of different memory addressing modes to be expressed as in the

3. Compilers 26

operand list. Each operand is named so it can be referenced by the instruction
patterns and assembly string.

The instruction patterns are also defined as DAGs. The patterns are used to
generate code for the DAG to DAG instruction selector. The patterns are defined
using predefined pattern fragments that correspond to different LLVM instruction
nodes in a selectionDAG. The DAG fragments can be nested to express complex
operation patterns. The DAG operands refer to operand records in a similar way
as the input and output operand lists. The operands are mapped to the input and
output lists by the operand names. The following example is a typical subclassed

instruction record, taken from the Sparc backend:

def FDIVD : F3_3<2, 0b110100, 0b001001110,
(outs DFPRegs:$dst), (ins DFPRegs:$srcl, DFPRegs:$src2),
"fdivd $srcl, $src2, $dst",
[(set DFPRegs:$dst, (fdiv DFPRegs:$srcl, DFPRegs:$src2))]>;

This record defines an instruction for double precision floating point division.
The F3_ & instruction format is subclass of the Instruction class. The template
has six arguments that instantiate an instruction record. The first three argu-
ments 2, 0b110100, 0b00100110 are values for Sparc specific instruction encoding
fields. The fourth and fifth arguments (outs DFPRegs:$dst), (ins DFPRegs:$srcl,
DFPRegs:$src2) are the output and input operand lists. The lists define that the in-
struction has one input and two output operands stored in DFPRegs class registers.
The lists also assign names $dst, $srcland $src3 for the operands.

The sixth argument is an assembly string template used by the assembly printer.
The template uses operand names defined in the input and output operand lists to
create slots for the operand assembly strings.

The final argument is a pattern for the instruction, which uses two predefined
pattern fragments. The fdivd fragment matches a selectionDAG node which corre-
sponds to the LLVM double precision floating point division operation. The out-
ermost set fragment makes the whole pattern match to a DAG where a result of a

division of two DFPRegs values is stored to a DFPRegs class register.

3. Compilers 27

Explicit selection DAG patterns. Typically, most instructions are selected us-
ing the instruction selection patterns defined in instruction records. However, in
some cases, an explicit instruction selection pattern is required. The explicit se-
lection DAG patterns match an instruction pattern, and produce a DAG of target
machine instructions as a result. The patterns are defined using the following class

template:

class Pattern<dag patternToMatch, list<dag> resultInstrs> {

dag PatternToMatch = patternToMatch;
list<dag> ResultInstrs = resultlnstrs;
list<Predicate> Predicates = [1;

int AddedComplexity = O0;

In most cases, only a simple result with one DAG is required. A pattern with

one result DAG can be defined using the following subclass:
class Pat<dag pattern, dag result> : Pattern<pattern, [result]>;

The first template parameter is the matching pattern used in instruction selection.
The second parameter is a DAG of target machine instructions which is the result
of the instruction selection for the pattern. The following is an example of explicit
selection DAG pattern, taken from the LLVM Mips backend.

def : Pat<(setge CPURegs:$lhs, CPURegs:$rhs),
(XORi (SLT CPURegs:$lhs, CPURegs:$rhs), 1)>;

This selection DAG pattern matches greater-or-equal instructions, and selects
them to a DAG which performs the operation with a less-than SLT operation fol-

lowed by negation of the result with an exclusive-or XOR operation.

28

4. IMPLEMENTATION

The TCE compiler is based on the LLVM compiler infrastructure. Due to special
requirements of TCE, the compiler is not implemented as an ordinary static LLVM
compiler backend.

The most important requirement for the TCE compiler is retargetability. This
poses a problem with LLVM compiler infrastructure where properties of the target
machine are hard-coded in the backend. TCE requires a compiler which can adapt
to templated architectures automatically without building a new compiler for each
TTA.

Due to limited project resources, another requirement for the compiler imple-
mentation was to reuse LLVM libraries as efficiently as possible. This requirement
ruled out a completely customized LLVM backend with TCE-specific dynamically
retargetable instruction selector and register allocator.

LLVM backends are normally implemented directly into LLVM source code tree
and built as a static part of a customized LLVM build. In TCE, the automatic
design space exploration tools have to invoke the compiler within the program code.
It is also desired that the TCE backend is kept as loosely tied to a specific version of
LLVM as possible to ease portability to future versions of LLVM. For these reasons
the TCE compiler is not implemented directly as a part of a LLVM build. Instead,
the TCE compiler is implemented as a library in the TCE source tree which utilizes
unmodified LLVM libraries and tools installed in the host system.

4.1 TCE Data Structures Used by the Compiler

This section presents the data structures and file formats of TCE which are used by

the compiler.

4.1.1 Processor Architecture Model

The processor architecture template of TCE is modeled with the Machine Object
Model (MOM) data structure [21]. A MOM instance defines the architectural lay-
out of a TCE processor and contains all the information required to program the
processor. The processor is modeled as architectural components such as function
units, register files, and transport buses.

The instruction set of an architecture is visible through the function units in the

4. Implementation 29

MOM. The operations in function units are references to Operation Set Abstraction
Layer operation descriptions, described in Section 4.1.2.

The register file components in the MOM define the properties of all registers in
the architecture. The compiler can use this information to build a list of available
general purpose registers and their properties.

Machine object models can be serialized to XML-based Architecture Definition
Files (ADF)s. ADF files are used to pass architecture models of processors between
different tools of the TCE toolset.

4.1.2 Operation Set Abstraction Layer

Operation Set Abstraction Layer (OSAL) is a library for defining properties and
semantics of operations in TCE machines. The operation properties are stored in
XML-format files.

Each OSAL operation defines the name, the number of input operands, the num-
ber of output operands, and the operand types of the operation. OSAL operations
also have additional attributes which define properties such as which input operands
are commutable, and flags which tell if the operation may read or write memory.
An operation may also include one or more data flow graphs defining the operation
semantics with other OSAL operations.

TCE contains a database of basic operations, which are commonly used in the
designed processors. New operations can be added by writing a description of the
operation properties in a XML-file. The following is an example of a user defined
ANDN operation:

<operation>

<name>ANDN</name>

<inputs>2</inputs>

<outputs>1</outputs>

<in id="1" type="UIntWord"/>

<in id="2" type="UIntWord"/>

<out id="3" type="UIntWord"/>

<trigger-semantics>
SimValue negResult;
EXEC_OPERATION(not, I0(2), negResult);
EXEC_OPERATION(and, IO(1), negResult, I0(3));

</trigger-semantics>

</operation>

This operation description defines a combined bitwise AND-NOT operation. The
operation is defined to have two unsigned integer input operands and one unsigned

integer output operand.

4. Implementation 30

The optional trigger-semantics section describes the operation semantics with
existing OSAL operations. The compiler can use the semantics definition to au-
tomatically exploit a user defined operation during compilation. The semantics of
the ANDN example define that the operation is interchangeable with a sequence of
operations, where the second input operand bits are first negated with a not opera-
tion, and the negation result is then passed to an and operation with the first input

operand.
4.1.3 Program Model

Program Object Model is an assembly-level intermediate representation of programs
used by TCE tools [22]. POMs can represent parallel programs instruction scheduled
for a target architecture, or sequential programs which are instruction selected and
register allocated for a target architecture, but not yet scheduled. A POM consists
of an object hierarchy representing the program code and data definitions which
model the program and data memory contents.

The program code hierarchy consists of procedures, which contain basic blocks of
instructions. An instruction in a parallel POM consists of moves which define the
data transports for each transport bus of the target machine on the instruction cycle.
A sequential POM instruction consists of a single move, which is not yet allocated
to a specific transport bus or scheduled relative to other moves in the program.

The data definitions constitute the data memory contents and the symbol table
of the data memory. Data definitions represent discrete objects in the memory, such
as individual global variables or more complex data structures. A data definition
may contain initialization data, which is used as the initial contents of the defined
memory area. POMs can be read and written to binary TTA Program FExchange
Format (TPEF) files to pass programs between different tools of the TCE toolset.

4.2 Minimum Target Machine Configuration

An important aspect of the compiler retargetability is the ability to compile arbitrary
C language source code for target machine configurations with minimal resources.
The main concerns from the code generation perspective are the minimum register
file configuration and the minimum operation set.

The required number of registers is largely determined by the reserved registers
needed for the calling convention and the registers required for execution of oper-
ations. The current implementation requires at least five 32-bit registers and two
boolean predicate registers.

The minimal operation set consists of operations required by the instruction se-

lector to match any LLVM instructions and the operations that can be inserted by

4. Implementation

Source Code Files

\—/

Bytecode Libraries

\—/

Standard LLVM Tools

LLVM-GCC

LLVM

Frontend

.bc
.bc

Linker

.bc

LLVM
Optimizer

=

LLVM-TCE

Target Machine ADF

TCE B

Figure 4.1: TCE Compiler Toolchain.

be v
'

ackend

Program TPEF

the code generator after instruction selection. Currently, the following operations

are required:

e Addition (ADD) and subtraction (SUB) integer arithmetic operations.

e Greater than (GT), equal (EQ) and unsigned greater than (GTU) integer

comparison operations.

e AND, inclusive-or (IOR) and exclusive-or (XOR) logical operations.

e Arithmetic bit shift operations to left and right.

e Logical bit shift to right operation.

e Load and store memory operations for word, half-word, and byte bit widths.

e CALL and JUMP control flow operations.

4.3 Compiler Toolchain

The TCE compiler toolchain consists of a compiler frontend, a set of target inde-

pendent LLVM tools and a TCE code generator. The TCE code generator is imple-

mented as a library which is part of the TCE project and separate from the LLVM

tools. High level organization of the compiler toolchain is illustrated in Figure 4.1.

The first step in the toolchain is the LLVM-GCC frontend. LLVM-GCC is a
modified version of gce distributed with LLVM, used as a frontend to produce the
initial bytecode. The LLVM-GCC frontend has a disadvantage of not being com-
pletely target independent. The frontend must be configured to output bytecode

that is compatible with the target code generator. In practice this means that source

4. Implementation 32

language data type sizes and endianess must be defined to be compatible with the
target machine. The compiler toolchain includes a version of the LLVM-GCC fron-
tend with target machine configuration for the TCE code generator.

The next steps of compilation are linking and optimization. Both steps are done
with unmodified LLVM tools. The compiler expects these tools to be found in the
host system and they are not included in the TCE compiler. All compiled code must
be fully linked as one bytecode module before code generation because TCE does
not currently support linking of binary machine code.

The final step in the compiler toolchain is the LLVM-TCE code generator. LLVM-
TCE is a TCE backend implementation for LLVM. Unlike traditional LLVM back-
ends, LLVM-TCE is implemented as a stand-alone code generator which utilizes
LILVM code generation libraries instead of being implemented as a static part of
the LLVM compiler. The code generator has two input files: a fully linked and
optimized bytecode of the compiled program and the architecture definition of the
target machine. The backend is able to dynamically retarget itself to the target
machine without the need of recompiling the whole code generator.

The whole toolchain can be invoked from command line using the tcecc compiler
driver script. The script aims to be compatible with commonly used gcc compiler

switches to minimize work when porting build scripts to TCE.
4.4 Calling Convention

TCE does not specify a calling convention scheme that the compiler has to follow.
The compiled programs are fully linked and there are no system calls or external
libraries. Therefore the compiler can use any calling convention, which can be
changed without any binary compatibility issues.

The current implementation uses a calling convention which is outlined in the

following rules.

e All parameters are stored in the stack by the caller. Parameters of type il,
i8 and 116 are always promoted to 32 bits to avoid problems with variadic

function calls.

e All general purpose registers are caller-saved, i.e., the caller is responsible for

saving all registers it has live values into the stack before a call.

e The return address of a call is stored in the return address register by hardware
when a call instruction is invoked. The return address is saved to the beginning

of the stack frame in function prologue.

e Function return value is stored in the return value register by the function

epilogue. 64-bit return values are split into two 32-bit parts, one of which

4. Implementation 33

LLVM Code Generator Framework H TCE 4
' ' '

'
' '
: H H !
' ' '
< > i | instruction Register Prolog/Epilog : Lmirce | TCE >
Bytecode T Selector > Allocator Inserter H > Conversion H > Scheduler 0 Program TPEF
'
H H H :
' ' ' '
' H ' '
' ' ' '

Figure 4.2: TCE Backend.

is returned in a secondary return value register. Returning of values that do
not fit in the return value registers is handled by the LLVM code generator

framework.

e Callee is responsible for restoring the stack pointer and return address registers

to the state they had on function entry.

4.5 TCE Backend

One of the main design goals of the TCE backend is to reuse as much code from the
LILVM code generator framework as possible. However, modeling a customizable
architecture template as a target machine and the use of an external scheduler set
limitations requiring a design that differs from the standard LLVM code generation
organization.

TCE code generation can be considered to consist of two main phases. First, the
LLVM code generator framework is utilized to produce a sequential target machine
program. The sequential program is then scheduled to a parallel program using
a TCE instruction scheduler. The main code generation passes are illustrated in
Figure 4.2.

The instruction selector, register allocator and prologue/epilogue code inserter
passes are based on the LLVM code generator framework. These passes produce a
sequential program where all instructions are selected as target machine instructions
and all registers are allocated to physical registers.

The sequential program is represented as an LLVM data structure, which must
be converted to a TCE program object model for the scheduler. The conversion
is handled by LLVMPOMBuilder, which is implemented as a separate LLVM code
generator pass. The sequential POM can then be scheduled and a parallel TPEF
written for simulation and binary program image generation. The TCE instruction
scheduler [23] is implemented as an independent library and not covered in this
thesis.

The main design problem of the code generator is the requirement for retargetabil-
ity. The LLVM part of the code generator only generates a sequential program which
simplifies the adaptation to the target machine. The scheduler is responsible for al-

locating most of the physical resources while taking care of low level limitations

4. Implementation 34

M

{ |

N
LLVMTargetMachine

| _
TargetFrameinfo TCETargetMachine < >
TCETargetMachinePlugin
TargetData

Figure 4.3: TCE Target Machine.

of the architecture such as operation latencies. This means that the LLVM part
of the code generator is only required to retarget itself at an abstract level to the
instruction and register sets of the target machine. The rest of the LLVM target
machine properties, such as type sizes and calling conventions are static across the
architecture template.

The dynamic retargeting of the backend is achieved by implementing the TCE
target machine as a wrapper, which loads the target instruction and register set
models from a target machine specific plugin. The plugins are generated at compile

runtime from a machine object model of the target architecture.

4.6 TCE Target Machine

The TCE backend implements an LLVMTargetMachine that models the templated
TCE architecture. The target machine implementation is divided to a static part
which models the hardcoded properties of the architecture template, and a dynamic
part which models the customizable properties of concrete TCE machines. Only
the static part of the target machine is compiled to the TCE backend library. The
machine specific dynamic part is loaded from a plugin, which can be compiled inde-
pendently for each target machine without recompiling the whole backend library.
High level design of the TCE target machine is illustrated in Figure 4.3.
TCETargetMachine implements the LLVMTargetMachine interface which is used
by the code generator to access the target architecture model and to create an
instruction selector pass. Only the data memory layout and frame information of
the machine model are implemented in the static backend and returned directly.
The customizable part of the architecture model is contained in machine specific
plugins which implement the TCETargetMachinePlugin interface. The instruction
selector pass is generated from the instruction set descriptors of the target machine

and therefore it is also implemented in the target machine plugin.

4. Implementation 35

\‘/h\

N
TCETargetMachinePlugin

creates GeneratedTCEPlugin creates

1

1

[TCEDAGToDAGIsel | [TCEInstrinfo | [TCEAsmPrinter
1 I | 1 |
1 1
1 1

TCETargetLowering | | TCERegisterinfo |
\ | | \
L I |

Figure 4.4: Target Machine Plugin.

TargetData defines the data memory layout of the TCE architecture template.
The layout is hardcoded and does not change between individual machines. The

memory layout is defined to have the following properties:

e Pointer size is 32 bits,

e Data memory is big-endian,

LLVM il and i8 types have 8 bit size and alignment in memory,

LLVM i32 and {32 types have 32 bit size and alignment in memory, and

LILVM i64 and 64 types have 64 bit size and 32 bit alignment in memory.

TargetFramelnfo is also equal to all machines. It defines that the stack grows
down, stack contents are aligned to 32 bits on entry to functions, and the offset to

local area of a stack frame is -4 bytes.

4.7 Target Machine Plugin

When the TCE backend library is instantiated, a machine object model of the target
machine is passed to the backend constructor. The backend generates source code
for a plugin containing the part of the target machine model which varies between
individual machines. The plugin is then compiled and loaded to complete the target

machine model. Figure 4.4 shows a class diagram of the generated plugin.

Generated TCEPlugin is the main class of the plugin. It implements the TCE-
TargetMachinePlugin interface, which is used by the TCETargetMachine class to

access the plugin.

4. Implementation 36

TCEInstrInfo derived from the LLVM TargetInstrinfo base class models the tar-
get machine instruction set and implements various code generation methods of the
TargetInstrInfo interface. The code generation methods do not change between tar-
get machines and are therefore static source code for the plugin. The implemented

virtual code generation methods of the base class are:

e copyRegToReg: Generates code for copying values between registers by insert-

ing move instructions,

e loadRegFromStackSlot: Inserts a load instruction for loading value in stack to

a register,

e storeReqToStackSlot: Inserts a store instruction for storing value in a register

to stack, and

o InsertBranch: Inserts unconditional branch instructions.

The code generated by these methods only use instructions that are part of the
minimal required opset. The same code can therefore be generated for all target
machines.

The class also has methods for querying properties of target instructions, such
as if an instruction is a move between registers, or a load or store to stack. These
methods are related to code that is generated by the static code generation methods
using the minimal operation set, and do not require machine specific implementation.

The instruction set model consists of instruction descriptions and enumerations
generated from target descriptor files of the target machine by the TableGen code

generator tool, described in Section 3.6.

TCERegisterInfo class models the target machine register set and contains var-
ious code generation methods related to stack frame handling. The class is derived
from the LLVM TargetRegisterInfo base class. The following virtual code generation

methods of the base class are implemented.

o climinateFramelndex generates code to replace abstract frame index operands
with code that calculates absolute addresses of items in stack from the stack

pointer register and an offset operand.

o climinateCallFramePseudolnstr replaces pseudo instructions adjusting stack

frame size with code that adjusts the stack pointer register value.

e emitPrologue is used by the prologue and epilogue code insertion pass to gen-
erate function prologue code. The generated code initializes function stack
frames by saving return address register value to the stack and reserving space

for local variables.

4. Implementation 37

o emitEpilogue is used by the prologue and epilogue code insertion pass to gen-
erate function epilogue code. The generated code restores the saved return
address register value from stack, frees space reserved by the stack frame and

returns from the function call.

These functions generate code using only instructions that are part of the minimal
required opset. The generated code is therefore same for all target machines and
the functions have an implementation which is static source code for the plugin.

The register set model consists of register info descriptions generated from target

descriptor files of the target machine by the TableGen tool.

TCEDAGToDAGISel implements an LLVM DAG to DAG instruction selector
for the target machine. The derived class implements selection methods which con-
vert, SelectionDAG nodes to target instruction nodes. Most of the nodes can be
selected with instruction selection methods which are generated from the target de-
scription files of the target machine. The methods are generated from the instruction
patterns which are part of the target instruction descriptors. The SelectionDAG
nodes that are not selected by the TCEDAGToDAGIsel methods are lowered to
target instructions with TCETargetLowering phase. The following instruction and
operand nodes are selected to temporary target nodes which are lowered to target

instructions later.

e Conditional branch instructions are selected to pseudo instructions, which are
converted to guarded jumps in the LLVMPOMBuilder pass,

e Unconditional branch instructions are selected to pseudo instructions, which
are converted to jumps in the LLVMPOMBuilder pass,

e Frame index operands are selected to target frame index operands, which are
lowered by the eliminateFramelndex method of the TCERegisterInfo class,

and

e Memory address operands are selected to target constants and address

operands which are lowered in later phases of code generation.

TCETargetLowering is an implementation of LLVMTargetLowering base class.
Target lowering is the second phase of instruction selection, which lowers Selec-
tionDAG nodes that were not selected by DAGToDAGISel phase. The class con-
structor also initializes available register types and which nodes are expanded and
promoted by the code generator framework. The following lowerings are initialized

in the constructor.

4. Implementation 38

e General purpose register classes for i1, i32 and 32 types are defined, allowing
LLVM to use operands of these types in the target code. Operands of other

types are lowered to instructions using these types.

e Various instructions are expanded and promoted to instructions that are easier

to lower.

e Integer division, modulo, rotate and multiplication instructions are set to be
expanded to emulation function calls if the target machine does not have the

corresponding instructions available.

The class implements the following functions to lower instructions that require

TCE specific custom lowering.

e LowerCallTo lowers function call instructions. First, the stack space required
by the function call arguments is calculated. The calculated space is set as
argument size for a CALLSEQ START pseudo instruction node which is
inserted to mark the start of a call sequence. Next, a sequence of stores are
inserted to store the call arguments to stack. Arguments of types il, i8 and
i16 are extended to 32 bits. The actual target call instruction is inserted after
the stores. The call instruction is followed by a move which copies the return
value from the return value register. Finally, a CALLSEQ END node with

the argument size operand is inserted to mark the end of the call sequence.

o LowerArguments lowers FORMAL ARGUMENTS nodes which have the in-
coming arguments of functions as operands. The node is lowered to a sequence
of loads which loads the function arguments from the stack. Arguments of type
i1, i8 and 116 are truncated to their original bit width from the extended 32-bit

value passed in the stack.

e LowerRET lowers LLVM return instructions in functions having a return
value. The instruction is lowered to a move which copies the return value
to the return value register followed by a target return instruction. Return in-
structions in functions that do not have a return value are instruction selected

in the TCEDAGToDAGISel phase.

e LowerSelect lowers SELECT instructions, which select result between true and
false value operands based on a boolean condition operand. The instruction
is lowered to a pseudo instruction node which is converted to guarded moves
in the LLVMPOMBuilder pass.

e LowerQOperation lowers global addresses and function constant pool entries to
target nodes that are handled by the LLVMPOMBuilder pass.

4. Implementation 39

...

'
LLVMBackend P P =

Target.adf H H H
9 EEER _Iﬁ: Backend.inc " GeneratedTCEPlugin H

E Generated Source Code E E ’ E

---------------------------- ' '

............................ H TCETargetLowering H

H H H H

' ' ' '

' ' '

' ' '

__ —

H TCEGenInstrNames.inc H H
' '
' ' '
' ' '
' ' '
' v ' '

TCEGenRegisterNames.inc

' '

i —

' '

' '

H w Native
'
'

H :
H H
: W :

e GCC compiler

' '

' ' '

H TCEGenRegisterinfo.h.inc H H

' ' '

' '

' == TCERegisterInfo '

' v '
H H H Plugin.so
H H

TCEGenRegisterinfo.inc
'
D S~—
'
'

Gen

T

D

TCEGenDAGISel.inc TCEDAGToDAGISel

' '
Generated Source Code E E Static Source Code E

Figure 4.5: Target Machine Plugin Generation.

4.8 Plugin Generation

The target machine plugins are generated by the backend when a new backend is
instantiated. Source code for a target machine plugin consists of static skeletons for
each LLVM target machine class. The skeletons contain all code generation methods
that can have the same implementation for each machine. The rest of the methods
are generated by the TDGen code generator which generates target descriptor files of
the target machine instruction and register sets. The descriptors files are processed
with the LLVM TableGen tool, which generates implementations for various code
generator callback functions and data structures. The code generated by TableGen
is added to the skeletons as preprocessor includes. The plugin generation phases
and intermediate files are illustrated in the Figure 4.5.

TDGen generates two target descriptor files: Genlnstrinfo.td, which contains
the instruction set descriptors and GenRegisterInfo.td which contains the register
descriptors. The generated files are processed by TableGen along with three static .td
files: TCFEInstrFormats.td contains the TCE instruction class records, TCFEInstrInfo
contains instruction records required by all target machines and a top level TCE.td
which includes all descriptor files and required LLVM header files to one entity.
In addition to the two .td files, TDGen generates source code for various helper
methods in Backend.inc.

The generated source code files are included in the class skeletons and compiled

with a native compiler to a plugin, which can be loaded by the TCETargetMachine.

4. Implementation 40

4.8.1 Register Set Descriptors

The whole register set description consists of one autogenerated GenRegisterInfo.td
file. Seven general purpose register classes are always defined: Ril, Ri8, Ri16, Ri32
and Ri64 for integers, and Rf32 and Rf64 for floating point values. The register
classes are divided to integer and floating point register types because LLVM does
not currently support declaring one register class for both integer and floating point
values of equal width. Only the Ri1, Ri32 and Rf32 register classes are added in
TCETargetLowering as register classes that are available for the code generator, rest
of the classes are currently unused. All TCE register classes are derived from the
TCEReg base class, which defines classes as a member of the TCFE name space, and
allows passing a list of register aliases.

The register set description is generated by first analyzing the register set of the
target machine. T'DGen iterates through all register files and registers in the target
machine architecture model. Registers are added to register classes of corresponding

width with the following exceptions.

e If a register has a guard on a target machine bus, it is added as a member of
the Ril register class so it can be used as a condition for conditional moves.

This is done even if the register file is wider than one bit.

e If the machine is not fully connected, the last register of each register file is

reserved for scheduler to route values between ports with missing connection.
The generated register classes have the following registers reserved for special use:

e One 32-bit register is reserved to be the stack pointer register.
e One 32-bit register is reserved to be the return value register.

e One 32-bit register is reserved to be always available for the code generator.
It is used for calculating absolute address values from memory operands with
base address and an offset operand. The register is also used when half of a
64-bit return value has to be returned in an additional register with the return

value register.

e One 64-bit register is reserved for 64-bit return values if a 64-bit register file

exists.

In addition to the general purpose register classes, a special register class is defined
containing one register for the return address port of the target machine control
unit. The register records do not have any TCE specific attributes. The records

are enumerated, and an external helper function is generated in the Backend.inc

4. Implementation 41

file, which maps the register enumerations to target machine register file names and

register indices.
4.8.2 Instruction Set Descriptors

The instruction set is defined in three target descriptor files. TCFEInstrFormats.td
and TCFElInstrinfo.td contain the static descriptors, which stay the same for each
target machine. TCFEInstrFormats.td contains the instruction format class tem-
plate of TCE instructions. TCFEInstrinfo.td contains descriptors for instructions
and operand types that are always required by the code generator. The two static
files are installed as source code files which are used when a backend plugin is com-
piled. The third file, GenInstrinfo.td which contains the target machine specific
instruction descriptors is generated at compiler runtime by the T'DGen code gener-
ator of the TCE backend library.

Instruction format. Since most of the instruction descriptors are automatically
generated, there is no need to utilize any complex instruction format structures
which reduce repetition of manually written patterns. A flat hierarchy of descrip-
tors is easier to generate automatically. Only one simple instruction format class
InstTCE is defined and used by all instructions. The class is defined in the static
TCEInstrFormats.td file to have the following structure:

class InstTCE<dag outOps, dag inOps, string asmstr,
list<dag> pattern> : Instruction {

let Namespace = "TCE";
dag InOperandlList = in0Ops;
dag OutOperandList = outOps;
let AsmString = asmstr;
let Pattern = pattern;

}

The InstTCFE instruction format has the usual input and output operand lists
and an instruction selection pattern. The assembly string is optional and only
used for debugging purposes because an assembler is not used. The instruction
format does not contain any TCE specific attributes. The mapping of instruction
enumerations to the OSAL instructions is handled by an external helper function,
which is generated in the TCEBackend.inc file.

The operation pattern is also optional. It is required by the instruction selector
to be able to automatically exploit the instruction, but can be omitted if automatic

instruction selection is not needed for the instruction. For example, an instruction

4. Implementation 42

which is only inserted by the code generation methods of TCETargetLowering does
not require a pattern.

The Instruction base class attributes of an instruction record that are not in the
instruction class template are defined by enclosing the instruction record in a let
block. The following example sets a conditional branch instruction record to have

the branch and terminator flags set to true:

let isTerminator = 1, isBranch = 1 in {
def TCEBRCOND : InstTCE<(outs), (ins I1Regs:$gr, i32imm:$dst),
"? $gr $dst -> jump.1;", [1>;

Static instruction descriptors. TCFElInstrinfo.td contains instruction records
which are always required for code generation, but cannot be easily generated au-
tomatically. The instruction records consist mainly of pseudo instructions that do
not have corresponding instructions in a target machine function unit. The pseudo
instructions are converted to target machine moves in the LLVMPOMBuilder pass.

The pseudo instructions include the following records:

e Move instruction records for all legal combinations of source and destination

operand types,
e Various control flow instructions of the target machine control unit,
e Pseudo instructions which adjust stack frame size, and

e SELECT pseudo instructions which select one of two operands conditionally,

based on a condition operand.

In addition to the pseudo instruction records, the file includes patterns which
select load and store instructions for operands that require extension or type con-
version. The static descriptors also include patterns for memory address operands.
The memory address operands are selected to target machine nodes, which are con-
verted to absolute addresses in the LLVMPOMBuilder pass after the program data

memory has been laid out.

Generated instruction descriptors. Genlnstrinfo.td contains the target
machine specific instruction descriptors which are generated by the TDGen
module. The machine specific instruction records consist of records for all target
machine instructions which have known semantics. The file also contains emulation

patterns for instructions that are required, but not supported by the target machine.

The instruction descriptor generation is done in the following main steps.

4. Implementation 43

1. The function units of the target machine are examined to create a list of

supported abstraction layer operations.

2. A list of required operations is initialized with a hard-coded set of abstraction

layer operation names.

3. Instruction records with all combinations of legal operand types are generated
for each target machine operation having known semantics. The operation is
removed from the list of required operations initialized in the previous step if

it is on the list.

4. The remaining operations in the required operation list are the missing oper-
ations which must be emulated. An emulation pattern is generated for each

missing operation.

5. A special instruction record is generated for the CALL instruction of the target

machine control unit.

Instruction records of the target machine operations are generated from OSAL
operation descriptions. The first step is to check if the operation has known seman-
tics. TDGen contains a hard-coded list of primitive OSAL operations which have
known semantics mapped to LLVM instruction patterns. In order to generate an
instruction record, the OSAL operation must be part of the hard-coded primitive
set, or the operation must have a data flow graph consisting of known primitive
operations. Operations with unknown semantics are skipped and cannot be used
automatically by the compiler. These custom operations can only be used explicitly
in the compiled program source code by invoking them with preprocessor macros as
will be described in Section 4.10.

The second step is to determine legal combinations of operand types. OSAL does
not define bit-width for integer operands, so additional logic is required to determine
the combinations of operand types that can be used in the instruction records.
Instruction patterns with an output operand in Ri32 register and input operands
in combinations of Ri32 registers and 32-bit immediates are always generated for
operations with integer operands. Instruction records with operands in Ril registers
and as 1-bit immediate values are restricted to a hard-coded set of operations, which
are known to work with 1-bit input and output operands.

The third and final step is to generate an instruction selection pattern and write
an instruction record for all combinations of legal operand types. The primitive
OSAL operations are mapped to corresponding LLVM instruction pattern tem-
plates. The templates are hard-coded strings which can be formatted by placing
operand strings in the template. The template strings can also be nested to gener-

ate instruction selection patterns from OSAL operation semantics DFGs.

4. Implementation 44

A simple example is the OSAL ADD operation, which is one of the primitive
operations with known semantics. The corresponding instruction pattern template

is
"add %1%, %2%"

where %1% and %2% mark the positions for the input operand strings. One of
the legal operand combinations for ADD has one input in Ri32 register and one
as a 32-bit immediate. The instruction pattern template is formatted with strings

corresponding to the operand types, resulting in the following pattern fragment:
"add I32Regs:$opl, (i32 imm:$op2)"

The result of the add operation is written in a Ri32 register, which has to be
defined in the instruction selection pattern. This is achieved by wrapping the gen-
erated pattern fragment in a pattern which sets the result in the correct type of
operand. The complete instruction selection pattern for ADD with the chosen types

of operands is:
"(set I32Regs:$op3, (add I32Regs:$opl, (i32 imm:$op2)))"

The instruction record input and output operand lists are generated according
to the operand types. The assembly string is not required and it is currently left
empty for all generated instruction records. Now the whole instruction record can

be written, taking the following form:

def ADDri : InstTCE<
(outs I32Regs:$op3), (ins I32Regs:$opl,i32imm:$op2), "",
[(set I32Regs:$o0p3, (add I32Regs:$opl, (i32 imm:$op2)))]1>;

The instruction record name ADDri is generated by combining the operation
name with a letter for each input operand type. The generated name is added to
a helper function in Backend.inc file, which maps the instruction records back to
OSAL operation names. The helper function is used by the LLVMPOMBuilder pass
to invoke correct OSAL operations when building a POM.

The same process is repeated for all operations with known semantics having
any combination of legal operand types, aiming to generate as effective instruction

selector from the instruction records as possible.

Emulation patterns. An instruction selection pattern must be generated for all
OSAL operations that are required, but not supported by the target machine. The
emulation patterns are generated as selection DAG patterns which match the LLVM

4. Implementation 45

Figure 4.6: An emulation DFG for the GE operation.

instruction corresponding to the missing operation to a combination supported op-
erations.

The generation of an emulation pattern is based on the OSAL semantics DFGs of
the missing operation. In order to write an emulation pattern, the missing operation
must have a DFG which defines the semantics of the operation with operations that
are supported by the target machine.

An emulation pattern is generated by first requesting an emulation DFG from
the OperationDAGSelector module. A list of supported operations and the name of
the missing operation are passed to the module. The module returns the semantics
DFG with the least number of operations that are supported by the target machine.

As an example, let us assume that a target machine is missing the required
greater-or-equal GF operation. A list of supported operations, including the sup-
ported exclusive-or XOR and greater-than G'T operations are passed to the Opera-
tionDAGSelector, which returns a DFG illustrated in Figure 4.6 (note the reversed
operands for GT).

Emulation patterns for all required operand type combinations are generated
from this DFG. The patterns to match the missing operation are generated using
the same method which is used when generating instruction patterns of supported
operations. The pattern of resulting instructions is generated from the DFG in a
similar manner, with the exception of using the generated names of the supported

operations instead of LLVM instruction names.

4. Implementation 46

One of the resulting emulation patterns, having both input operands in R:32 class

registers has the following final form:

def : Pat<(setge I32Regs:$opl, I32Regs:$op2),
(XORrr (GTrr I32Regs:$op2, I32Regs:$opl), 1)>;

A similar selection DAG pattern is generated for all required combinations of

operand types.

CALL Instruction. The calling convention described in Section 4.4 states that all
general purpose registers are caller-saved. The Instruction base class for instruction
records has a Defs attribute, which is a list of registers that the instruction may
modify. The register saving is achieved by enclosing all CALL instruction records
in a let block, which sets the Defs list to contain all general purpose registers. This
forces the code generator to save any live values in GPRs before invoking a call, and
to restore the values after the call. The register list is target machine dependent

and must be generated dynamically for each target machine.

4.9 LLVMPOMBuilder

LLVMPOMBuilder is a pass which converts LLVM target dependent representation
of a program to a TCE Program Object Model for scheduling. The pass is im-
plemented as an LLVM MachineFunctionPass. LLVM MachineFunctionPasses are
code generator passes that are executed on each function of the target dependent
representation of the compiled program. The passes are executed in three stages.
First the pass is initialized with a doInitialization() method. Next, runOnMachine-
Function() is called for each function of the program module. Finally, the pass
execution is finalized with the doFinalization() method.

The conversion process consists of laying out the program global variables in the
data memory, and converting the program instructions to a POM function by func-
tion. The converted representation is already using target machine instructions and
registers, so individual instructions and operands can be converted in a straight-
forward manner. The only problem building the POM are the references between
the program data, functions, basic blocks, instructions and operands. For example,
a global variable in the data memory might be initialized with a function pointer,
or an instruction might have a basic block label as an operand. For this reason,
the program is built using placeholders for the elements that can not be initialized
until the whole program is built. The placeholders are fixed to reference to correct
entities when the conversion is being finalized and all symbol locations are resolved.

The conversion is done in the following order:

4. Implementation 47

1. Global initialized data is laid out to data memory. Absolute location addresses

are added to bookkeeping.

2. Global uninitialized data is laid out to data memory and locations are added

to bookkeeping.

3. The program instructions are converted function by function to POM repre-
sentation. Instruction addresses of first instructions in functions and basic

blocks are added to bookkeeping.
4. POM data definitions are built for initialized and uninitialized global data.
5. An end symbol is generated at the end of the reserved data memory area.
6. References to the end symbol are fixed.
7. References to basic blocks are fixed according to bookkeeping.
8. References to code labels are fixed according to bookkeeping.

9. Stack pointer initialization code is inserted to the beginning of the program.

Phases 1 and 2 are done in the dolnitialization() method. Phase 3 is done by
the runOnMachineFunction() method. Phases 4-9 are done in the doFinalization()
method.

4.10 Operation Macros

An assembler is not part of the TCE compiler toolchain, and therefore inline-
assembly is not supported. However, low level programming is often required, es-
pecially when a programmer wants to use complex custom operations that cannot
be exploited automatically by the instruction selector. TCE circumvents the lack of
inline assembler by defining preprocessor macros, which allow hardware operations
to be invoked directly in C source code.

The operation macros can be used by including the fceops.h header file. The
header is automatically generated during compilation and contains macros for all

target machine operations. The syntax to invoke an operation is
_TCE_opname (tnput operand 1, ..., output operand 1, ...);

For example, some TCE test suite target machines contain an address generator
operation “AG” with four input operands i1, 2, i3, 74 and two output operands o1,

02. The operation can be invoked with the following syntax:

_TCE_AG(il, i2, i3, i4, ol, 02);

4. Implementation 48

The operation macros are defined as dummy inline-assembly blocks, where the
assembly string contains only the operation name. The macro parameters are set as
input and output variables for the inline assembly block according to OSAL descrip-
tion of the operation. The inline assembly is passed as an LLVM inline assembly
instruction to the LLVMPOMBuilder pass where it is converted to a sequence of

moves invoking the operation corresponding to the name in the assembly string.

49

5. VERIFICATION AND BENCHMARKING

The compiler was verified and benchmarked using the Embedded Microprocessor
Benchmark Consortium (EEMBC) Digital Entertainment Benchmark (DENBench)
software suite [24]. The benchmark suite consists mainly of video, audio, and image
decoding and encoding benchmarks written in the C programming language.

The benchmarks were run with several TTA machines, starting with a near-
minimal architecture configuration. The architecture was then expanded by adding
more registers and operations incrementally, to verify correct compilation and to

benchmark the ability of the compiler to exploit additional registers and operations.

5.1 Testing Setup

The testing was performed using a development version of the TCE toolchain with
a llvm-gce-4.2.1 -based compiler frontend and a LLVM-2.5 -based compiler backend.
The compiled programs were simulated using the compiled simulation engine of the
TCE architecture simulator.

The DENBench test programs produce output that can be verified for correct
compilation with two types of verification data. The programs that only use integer
arithmetic produce an easily verifiable checksum, but the tests that use floating
point arithmetic have results that depend on the floating point presentation and
precision of the target machine. The floating point tests were therefore verified by
calculating the peak signal-to-noise ratio (PSNR) of the output data compared to
the original data that was encoded and decoded. The results were compared to the
results of a native GCC-compilation.

A subset of the DENBench benchmark suite was chosen for benchmarking. The
whole benchmark contains multiple datasets for each test program, but due to the
long simulation and scheduling times, only one dataset of each test case was chosen

for the final benchmarking.

5.1.1 Test Machine Architectures

The first test machine architecture 8reg.adf contained the minimal operation set
required by the compiler to compile arbitrary C-programs. The number of registers
was nearly minimum, divided to two register files, one having eight 32-bit registers

and the other two 1-bit registers having transport bus guards to support conditional

5. Verification and Benchmarking 50

execution.

The first test machine is expanded to 16reg.adf, 2/reg.adf and 32req.adf by adding
one additional register file of each type on each increment. Consequently, the last
register set expansion test machine has 32 32-bit registers divided to four register
files and eight 1-bit registers divided to four register files.

The 32reg.adf was then expanded by incrementally adding operations and func-
tion units to the previous test machine configuration. The fifth test machine alu.adf
adds integer operations, such as half- and quarter-word sign-extension integer com-
parison operations. The sixth test machine mul.adf adds a function unit with MUL
integer multiplication operation. The seventh test machine div.adf adds a function
unit with signed and unsigned integer division and modulo operations. The eight
and final test machine configuration fpu.adf adds a single-precision floating-point
function unit for hardware floating-point arithmetic support.

The automatic utilization of custom operations was tested as a separate test case
with a mac.adf architecture. The architecture was based on the div.adf architecture,
with an addition of a MAC function unit. The function unit contains a custom
multiply-accumulate (MAC) operation, which computes the product of two integer

operands summed to a third integer operand.

5.1.2 Test Cases

The verified and benchmarked DENBench test suite is divided to the following mini-

suites:

MPEG The MPEG algorithm mini-suite includes a MP3 audio decoder, a MPEG-
2 video encoder and decoder and a MPEG-4 video encoder and decoder. The encod-
ing and decoding algorithms use fixed-point integer functions, except for a separate
MPEG-2 video encoding algorithm, which uses single-precision floating-point encod-

ing.

Cryptography The cryptography mini-suite includes the Advanced Encryption
Standard (AES) algorithm for public-key cryptography, and a Huffman data decom-

pression test.

Digital Image Processing The digital image processing mini suite includes color
space conversion tests and JPEG image compress and decompress tests. The color
space conversions tested are Red-Green-Blue to Cyan-Magenta-Yellow-Key (RGB-
CMYK), Red-Green-Blue to luminance-chrominance (RGB-YIQ), and Red-Green-
Blue high-pass grey-scale filter (RGB-HPG).

Verification and Benchmarking

Test Case 8reg.adf 16reg.adf 24reg.adf 32reg.adf
AES Encryption 6,264,499,994 | 4,466,047,052 | 4,486,888,618 | 4,281,280 926
Huffman decoder 17,171,346 13,237,365 12,074,356 11,999,862

MP3 Decoder

80,017,223,868

52,849,307,390

53,404,066,109

52,226,334 542

9,546,900,307

6,918,972,000

6,324,530,344

6,303,739,676

31,721,047,007

14,995,595,434

12,837,263,273

12,420,274,298

9,484,689,575

6,878,763,327

6,284,616,128

6,263,998,257

MPEG2 Fixed
Point Decoder
MPEG2 Fixed
Point Encoder
MPEG2 Floating
Point Decoder
MPEG2 Floating

Point Encoder

92,748,324,214

59,332,178,569

56,909,735 974

56,126,620,307

MPEG4 Decoder

7,899,586,664

5,840,422,082

5,259,561,810

5,260,183 293

MPEG4 Encoder

9,671,106,214

5,096,814,413

4,479,466,232

4,384,969 549

JPEG Decompress 70,237,028 47,393,649 46,715,535 46,430,077
JPEG Compress 92,048,335 57,095,334 54,867,017 53,941,416
RGB-CMYK Con- 81,920,332 63,978,956 61,688,361 61,934,927
version

RGB-HPG Conver- 42,399,960 28,952,858 28,723,261 28,729,041
sion

RGB-YIQ Conver- 144,035,421 102,770,795 101,462,594 101,080,386

sion

Table 5.1: Total cycle counts while extending the register set.

5.2 Results

The total cycle count results of register set extension test machines are shown in
Table 5.1, and the total cycle count results of operation set extension test machines
are shown in Table 5.2. All tests were run with full compiler optimizations (-O3).

The combined benchmark results of the register and operation set extension are
visualized in Figure 5.1. The cycle counts of each test are normalized to a percentage
of the cycle count of the first 8reg.adf test machine to give a comparative view of
the effects of expanding the processor architecture with different test cases.

The register set extension results of the 8reg.adf to 32reg.adf show that the
compiler was capable of utilizing the additional registers. However, the registers
were added in large increments and only the first step shows a major benefit in
the cycle counts, and only some test cases had decreased cycle counts with high
number of registers. This was an expected result since spilling of register values
to the memory with the tested programs becomes negligible after the addition of
the second register file of each type. With additional register files the compilation
becomes constrained by other factors limiting the program parallelization.

Some tests had even a slightly increased cycle count with additional registers.
This is due to the sensitivity of the TCE scheduling algorithm to the input program.
Even a minor modification to the input program can affect the schedule greatly,

sometimes worsening the results slightly.

5. Verification and Benchmarking 52
Test Case alu.adf mul.adf div.adf fpu.adf
AES Encryption 4,542.904,024 | 4,540,030,984 | 1,160,345,306 | 1,160,345 255
Huffman Decoder 11,642,552 8,825,467 9,052,383 8,985,644
MP3 Decoder 48,520,367,083 | 9,059,358,249 | 1,479,281,602 | 1,467,197,025
MPEG2 Fixed | 6,137,917,674 | 5,084,777,212 | 5,085,024,323 | 5,066,232,403
Point Decoder
MPEG?2 Fixed | 11,011,073,035 | 5,836,516,113 | 5,054,462,375 | 4,938,783,751
Point Encoder
MPEG2 Floating 6,101,594,728 5,080,679,371 5,081,818,369 | 5,062,126,469
Point Decoder
MPEG2 Floating | 52,457,356,242 | 24,456,512,313 | 23,701,803 525 | 5,245,135,767
Point Encoder
MPEG4 Decoder 5,111,721,660 | 4,766,445,482 | 4,762,085,052 | 4,752,243 766
MPEG4 Encoder 4,183,065,148 | 1,446,986,368 | 1,439,220,215 | 1,439,114 164
JPEG Compress 44,264,615 17,368,372 17,464,110 17,467,953
JPEG Decompress 50,905,910 16,753,591 15,646,123 15,646,056
RGB-CMYK Con- 58,911,880 48,194,394 48,424,460 48,147,588
version
RGB-HPG Conver- 26,920,175 9,715,088 9,637,959 9,637,905
s10n
RGB-YIQ Conver- 94,255,793 24,339,522 24,339,195 24,108,743
sion

Table 5.2: Total cycle counts while extending the operation set.
The first operation set extension step with the alu.adf test machine added op-

erations which can be emulated with simple patterns of operations existing in the
previous test machine. The compiler was able to utilize the new operations, but
most test cases showed only small improvements in the cycle counts.

The second operation set extension test machine added an integer multiplication
operation. The operation is used heavily by most of the test programs and the
emulation of it is slow. As expected, the effect of the compiler utilizing the operation
can be clearly seen from the diagram. For example, the MP3 test case had a cycle
count decreasing more than 80% compared to the previous test machine.

The

division operation is slow to emulate, but only the AES and MP3 test programs

The div.adf added a divisor function unit to the mul.adf architecture.

rely on it in their core algorithm loops. However, the results show that the compiler
utilized the divisor function unit operations and the two test cases relying on the
operations had major decreases in the cycle counts.

The final fpu.adf added floating point operations. The MPEG-2 floating point
encoder was the only test case that utilizes floating point values in the benchmarked
algorithm and consequently it was the only test case which had clearly decreased
cycle count. However, the test case proved that the compiler is capable of utilizing
floating point operations.

Utilization of the MAC operation in the mac.adf architecture was tested as a

5. Verification and Benchmarking 53

120%

100%

= AES
80% == Huffman decode
MP3
==MPEG-2 int decode
== MPEG-2 int encode
MPEG-2 fp decode
== MPEG-2 fp encode
60% \ *‘\ MPEG-4 decode
. == MPEG-4 encode
JPEG decompress
== JPEG compress
==RGB to CMYK
40% —RGB to HPG
==RGB to YIQ

20%

0%
8reg.adf 16reg.adf 24reg.adf 32reg.adf alu.adf mul.adf div.adf fpu.adf

Figure 5.1: Benchmark results normalized to the first test machine.

separate test case with a different version of the TCE toolchain. The results are
therefore only compared with the div.adf results with the same toolchain version.
The highest utilization of the operation was achieved with the MP3 decoder bench-
mark, where the instruction pattern matched operations in the main decoding loop.
Results for other test cases are omitted.

To analyze the effects of the addition of the MAC operation, the number of execu-
tions of each operation in the mac.adf was compared with the corresponding results
with the div.adf architecture. As expected, only the MUL and ADD operations had
significant differences in the execution counts. The number of these operations and
the total number of all executed operations are presented in the Table 5.3.

The comparison of the results shows that approximately 192 million multiply
accumulations were performed using the MAC operation. However, the total number
of operations executed decreased by less than 140 million operations, because part
of the matched multiply-accumulate patterns had an intermediate multiplication
result which was used as an input operand for more than one ADD operation.

The benefit of having the MAC operation was further diminished by the lesser
degree of parallelization achieved by the instruction scheduler. The program exe-
cution time decreased by approximately 2.1 %, from 1,576,173,008 to 1,543,460,040
clock cycles.

The purpose of this test was to demonstrate the ability of the compiler to auto-

5. Verification and Benchmarking 54

div.adf mac.adf difference
MUL 268,469,874 133,805,319 | -134,664,555
ADD 841,446,719 646,930,374 | -194,516,345
MAC - 191,858,218 | +191,858,218
Other operations 1,297,327,995 | 1,294,872,357 -2,455,638
Total 2,407,244,588 | 2,267,466,268 | -139,778,320

Table 5.3: Operation execution counts for the MP3 decoder test case with and
without the MAC operation.

matically utilize operations defined with custom operation patterns. The results of
the MP3 decoder test case show that the compiler backend can achieve relatively
high utilization of a simple operation pattern in realistic programs. In general, the
benchmark results show that the compiler is capable of adapting itself to architec-
tures with varying operation and register sets, and it can exploit additional resources

of the target machines.

%)

6. CONCLUSIONS

This thesis introduced a new compiler for the TCE toolchain, excluding the in-
struction scheduler which is designed and documented separately. The compiler was
implemented as a backend for the LLVM compiler infrastructure.

The thesis gave a brief introduction to the TTA concept and described the TCE
codesign toolchain for designing and programming TTA processors. The description
of the role of the compiler in the toolset was followed by a description of the relevant
compiler concepts and the introduction of the LLVM compiler infrastructure.

The main part of this thesis is the documentation of the implementation details
of the TCE-LLVM compiler backend. The backend differs from most compiler back-
ends by the compilation target machine, which is a processor architecture template
instead of a static processor design. The backend was required to adapt to different
TTA architectures derived from the TCE architecture template, which introduced
complex design problems having to be solved.

In addition to the retargetability, the requirements for the compiler were correct-
ness of compiled programs and the requirement of providing a reliable and extensible
base for further compiler development. The compiler design also aimed to provide
powerful modern compiler optimizations, which was achieved by choosing the LLVM
as the basis for the compiler.

The compiler was verified with various test cases and benchmarks. The results
for the most important benchmark, the EEMBC DENBench Digital Entertainment
Benchmark Suite are presented in this thesis. All test results were successfully
verified and produced either the correct checksum, or PSNR result similar to the
native benchmark results. The results also confirmed that the compiler was able to
adapt to different templated architectures and was able to utilize additional resources
in the processor architectures.

The successful benchmarks and correct results show that the compiler fulfills
the original requirements. However, the compiler leaves much room for further

improvements and optimizations.

26

BIBLIOGRAPHY

1]

2]

13l

4]

[5]

6]

17l

8]

19]

[10]

[11]

[12]

J. A. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools. Morgan Kaufmann, 2005.

H. Corporaal, Microprocessor Architectures: from VLIW to TTA. John Wiley
& Sons, 1997.

J. Hoogerbrugge, “Code generation for transport triggered architectures,” Ph.D.
dissertation, Delft University of Technology, The Netherlands, 1996.

Department of Computer Systems, Tampere Univ. Tech., “TCE project at
TUT,” http://tce.cs.tut.fi. [Online|. Available: http://tce.cs.tut.fi

T. U. T. Department of Computer Systems, “TTA codesign environment v1.0
user manual,” Project Document, Tampere University of Technology, Finland,
2008.

P. Jaaskeldinen, “Instruction Set Simulator for Transport Triggered Architec-
tures,” Master’s thesis, Department of Information Technology, Tampere Uni-
versity of Technology, Finland, Sep 2005, http://tce.cs.tut.fi/.

V. Korhonen, “Tools for Fast Design of Application-specific Processors,” Mas-
ter’s thesis, Department of Information Technology, Tampere University of
Technology, Finland, Jan 2009, See http://tce.cs.tut.fi/.

L. Laasonen, “Program Image and Processor Generator for Transport Trig-
gered Architectures,” Master’s thesis, Department of Information Tech-
nology, Tampere University of Technology, Finland, Apr 2007, See
http://tce.cs.tut.fi/.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Ef-
ficiently computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, pp. 451-490, 1991.

S. S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, August 1997.

A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., 1986.

J. Janssen, “Compiler strategies for transport triggered architectures,” Ph.D.
dissertation, Delft University of Technology, The Netherlands, 2001.

BIBLIOGRAPHY 57

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

P. Ienne and R. Leupers, Customizable Embedded Processors—Design Technolo-
gies and Applications, ser. Systems on Silicon Series. San Mateo, CA: Morgan
Kaufmann, 2006.

The LIVM Team, “The LILVM Compiler Infrastructure Project,”
http://llvm.org. [Online|. Available: http://llvm.org

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation,” in Proc. Int. Symp. Code Generation and
Optimization, Palo Alto, CA, March 20-24 2004, p. 75.

Free Software Foundation, “GCC, The GNU Compiler Collection,”
http://gec.gnu.org. [Online|. Available: http://gcc.gnu.org

Chris Lattner and Vikram Adve, “LLVM Language Refer-
ence Manual,” http://llvm.org/docs/LangRef.html. [Online|]. Available:
http://llvm.org/docs/LangRef.html

C. Lattner and V. Adve, “The LLVM Compiler Framework and Infrastructure
Tutorial,” in LCPC’04 Mini Workshop on Compiler Research Infrastructures,
West Lafayette, Indiana, Sep 2004.

Chris Lattner, “TableGen Fundamentals,”
http://www.llvm.org/docs/TableGenFundamentals.html. [Online]. Avail-
able: http://www.llvm.org/docs/TableGenFundamentals.html

Mason Woo and Misha Brukman, “Writing an LLVM Compiler Backend,”
http://www.llvm.org/docs/WritingAnLLVMBackend.html. [Online]. Available:
http://www.llvm.org/docs/WritingAnLLVMBackend.html

A. Oksman, “Machine Object Model,” Internal Project Document, Tampere
Univ. Tech., Finland, 2004-2005.

A. Cilio and A. Metsidhalme, “Program Object Model,” Internal Project Docu-
ment, Tampere Univ. of Tech., Tampere, Finland, 2004-2006.

A. Metsdhalme, “Instruction Scheduler Framework for Transport Trig-
gered Architectures,” Master’s thesis, Department of Information Technol-
ogy, Tampere University of Technology, Tampere, Finland, Apr 2008, See
http://tce.cs.tut.fi/.

EEMBC, “Denbench 1.0 software benchmark databook,” PDF,
http://www.eembc.org/TechLit/Datasheets/denbench _db.pdf.

