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Abstract

Current transactifying compilers for unmanaged environments
(e.g., systems software written in C/C++) target only word-based
software transactional memories (STMs) because the compiler can-
not easily infer whether it is safe to transform a transactional access
to a certain memory location in an object-based way. To use object-
based STMs in these environments, programmers must use explicit
calls to the STM or use a restricted language dialect, both of which
are not practical.

In this paper, we show how an existing pointer analysis can
be used to let a transactifying compiler for C/C++ use object-
based accesses whenever this is possible and safe, while falling
back to word-based accesses otherwise. Programmers do not need
to provide any annotations and do not have to use a restricted
language. Our evaluation also shows that an object-based STM can
be significantly faster than a word-based STM with an otherwise
identical design and implementation, even if the parameters of the
latter have been tuned.

1. Introduction

Software Transactional Memory (STM) is supposed to make it
easier for programmers to harness parallelism in applications. One
important part of this goal is that to use transactions, programmers
should just have to declare where transactions start and commit
rather than having to explicitely delegate every memory access to
a STM runtime system. Instead, a compiler should transactify the
application (i.e., transform raw memory accesses to calls to STM
functions, for example).

Recent transactifying compilers in managed environments [/1}
14] assume an object-based STM (i.e., for concurrency control,
the granularity of an access is an object), whereas transactify-
ing compilers for unmanaged environments [[10, 3 [15} [11] target
word-based STMSE] However, there is no evidence that word-based
STMs are better than object-based STMs in unmanaged environ-
ments or vice versa. Instead, the choice taken by compilers for man-
aged enviroments suggests that object-based accesses could have
advantages over word-based accesses, and we would like to enable
systems software that often does not run in managed environments
to also benefit from potential object-based STM advantages. Sec-
tion 2] contains a description of these advantages.

* This is an updated version of the original paper with (1) an enhanced
description of the Red-Black Tree benchmark, (2) corrected labels for the
respective results, and (3) an updated version of FigureE}
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One reason why transactifying compilers for unmanaged envi-
ronments typically did require word-based STMs up to now is that
the information about which object a certain memory location be-
longs to is not easily available in unmanaged environments. In lan-
guages such as C and C++, type information is available in the
source code but accesses are not guaranteed to be type-safe at run-
time unless restricted language dialects are used.

In this paper, we show how a previously word-based transacti-
fying compiler for C/C++ can support object-based STMs by using
a compiler analysis that infers information about data structures in
a program. The compiler does not require programmers to add any
additional annotations to applications nor to use restricted language
dialects.

Transactional accesses are transformed to be object-based with
in-place or external STM metadata where possible; In cases where
the compiler does not know whether this would be safe, word-based
accesses are used. This compile-time decision is not fixed per data
type but can differ for different instances of a type. All accesses to
a certain instance are guaranteed to be either all word-based or all
object-based.

We give more background information and describe related
work in Section [2| The analysis and transformations executed by
the transactifying compiler are discussed in Section [3] We shortly
describe our object-based STM in Section [] evaluate the appli-
cability of the compiler and the performance of word-based vs.
object-based STM accesses in Section[5|and conclude in Section[f]

2. Background and Related Work

The granularity of a transactional access determines the size of
the entities that the transactional memory is composed of. It is an
important design choice for STMs. Currently, there are two basic
options: word-based and object-based accesses. The former divides
memory into blocks of a certain size (e.g., of word or cacheline
size), the latter assumes that memory consists of separate objects
of different sizes.

STMs maintain metadata needed for concurrency control (e.g.,
locks) for these entities. In word-based STMs, memory locations
are typically mapped to metadata using a hash function. In object-
based STMs, metadata is either external and associated with the
base address of the object (i.e., the smallest memory address that
is within the object) using a hash function, or it is kept in-place
by embedding it into every transactionally accessed object. De-
termining the base address is difficult in unmanaged environments
because there, accesses might target any memory location and not
only fields of a known object as is typically the case in managed en-
vironments. Likewise, word-based STM interfaces for accesses just
require the memory location as parameter, whereas object-based
STMs additionally require the base address of the object that is tar-
geted by an access.



Most of the STMs for unmanaged environments that we are
aware of are word-based [9, 3| [7]. Those that are object-based (8|
12]] only provide their service as a library and cannot be transpar-
ently used by programmers (i.e., transactional memory accesses
have to be explicitely requested), which unfortunately limits the
impact that they can have in practice. Also, a lot of recently pro-
posed STMs use a combination of invisible reads and locking for
writes to keep runtime overheads small.

2.1 Potential Advantages and Disadvantages of Object-Based
STMs

If object-based STMs use in-place metadata, they can potentially
benefit from the improved locality compared to when using external
metadata. If objects are not too large, the object data and metadata
will likely reside in the same cacheline, which reduces the cache
footprint of transactions. It can also result in fewer cache misses
when reading data modified by other transactions because there is
only one cache miss for both object data and metadata and not two.
Also, no indirection is necessary to access the metadata. Even with
external metadata, the implicit partitioning of objects can be useful,
for example to prevent having to get several locks to write to a
single object.

However, the very same properties can also decrease the perfor-
mance, depending on the workload. For example, if there is very lit-
tle contention, using only a few locks could yield the highest STM
performance but this kind of tuning is not possible with the fixed
object to metadata mapping in the case of in-place metadata. Simi-
larly, in-place metadata increases the size of objects and can thus in-
crease cache footprint. Another example is that to release memory,
it is for typical word-based STM designs sufficient to just update
all metadata that the object maps to; in case of an object-based de-
sign with in-place metadata, the metadata must remain type-stable
until other transactions cannot reach it anymore, so the STM can-
not release the memory immediately but must handle these cases
specially.

2.2 Related Work: Object-based STMs

Two object-based STMs [14, [1]] have been recently proposed for
managed environments and show that the overhead of these STMs
can be quite small. Both use invisible reads and locking for writes
but do not guarantee the consistency of a transaction’s readset at
runtime, which we believe is essential in unmanaged environments.

Recent proposals for object-based STMs suitable for unman-
aged environments include NZTM and RSTM. NZTM [8] tries
to exploit the performance advantages of blocking accesses while
switching to a nonblocking in case of contention. It uses four point-
ers of STM metadata per object but does not require any indirec-
tion if there is no contention. RSTM [12] is a nonblocking object-
based STM that contains implementations for different validation
and conflict detection strategies.

MCcRT-STM [2] supports object-based conflict detection for
small objects by using a custom memory allocator that allocates
small memory chunks in a special memory region. Chunks are
grouped in memory blocks together with other chunks of the same
size. The STM has to check at runtime whether a target address of
a transactional access is in the memory region reserved for small
objects. If it is, then it computes the base address of the object by
loading the size of objects in this memory block from the block’s
header. Compared to our approach, McRT-STM can support object-
based accesses without having to rely on a pointer analysis of the
source code. However, it has a higher runtime overhead because of
the additional load and address check, which have to be performed
for each transactional access in the worst case.

2.3 Related Work: Transactifying Compilers

A couple of transactifying compilers for unmanaged environments
have been introduced lately [[10} 3} [15}[11]. They all can transform
C/C++ programs, target word-based STMs, but expect different
styles of transaction declarations.

Tanger [10] uses the LLVM compiler infrastructure [6] to trans-
form applications at the level of LLVM’s intermediate represen-
tation, expects transaction begin and commit declarations in the
form of calls to special marker functions, and is available under
an open-source license. It reuses LLVM’s general purpose opti-
mization passes but does not perform STM-specific optimizations.
Wang et. al. present several STM optimizations for unmanaged en-
vironments in [3] and show that these reduce runtime overheads
significantly. OpenTM [15] is based on the GNU Compiler Col-
lection and transforms transactions that are declared with custom
OpenMP constructs. Damron et. al. briefly describe another com-
piler in [L1].

Recent compilers for managed environments [1}[14] use STM-
specific optimizations and target object-based STMs that are tightly
integrated with the already “object-based” managed runtime envi-
ronment. [1]] can select word-based or object-based accesses per
data type. Optimizations for strong isolation are desribed in [13].

3. Automatic Object-Based Transactification

To be able to automatically transform memory accesses to calls to
an object-based STM runtime, we need to know whether a certain
transactional access in the program targets an object. In our context,
an object is a continuous chunk of memory that can be defined and
identified by its size (most likely derived from its type) and its base
address in memory (i.e., the start of the memory chunk). We also
want to only consider objects that could correspond to user-defined
data structures in the program (e.g., ignore primitive types because
they seem too small to justify object-based accesses).

To make such transformations safe, the compiler must ensure
that during the lifetime of any memory chunk (either dynamically
allocated, on the stack, or global), all accesses to memory locations
in the chunk agree on whether such locations are part of an object,
and if so, which one.

However, this is not trivial in unmanaged environments. We
focus in what follows on C/C++ programs. In these, for example,
programmers can access every memory location, casts between
types are common, and pointers to fields in objects can be taken
and passed to other functions.

What we therefore need is an inter-procedural analysis that
computes points-to graphs for the complete program. We use the
Data Structure Analysis (DSA) [3]], a context-sensitive, unification-
based, and field sensitive pointer analysis that can identify in-
stances of data structures and important properties of those (e.g.,
type safety). Context sensitivity means that data structures get dis-
tinguished based on call graphs and not just allocation sites, for
example. Unification refers to pointers targeting at most one node
in the points-to graphs, which makes the analysis fast and scal-
able. Field sensitivity is distinguishing between the different fields
in data structures. DSA can handle calls to external functions, so
we do not need to analyze the complete program, although more
information of course yields better analysis results. DSA is imple-
mented as an analysis pass in the LLVM compiler framework.

In a nutshell, automatic object-based transactification takes the
following steps: we (1) compile the program using LLVM and link
all parts of it into a single module, (2) use DSA to analyze this
module and infer the information needed to decide between word-
based and object-based accesses, (3) enlarge allocations for data
structures that are potential targets of object-based accesses if the
STM uses in-place metadata, and (4) transform the transactional



parts of the application, choosing between word-based and object-
based accesses according to the DSA results for each data structure
instance.

We have implemented this on top of Tanger [10], which also
uses LLVM. We use Tanger’s word-based transformations as fall-
back for all accesses that cannot be safely transformed to be object-
based. The transformations target a typical STM interface that,
however, has functions for both word-based and object-based ac-
cesses. The STM implementation is discussed in Section E[ Next,
we describe the analysis and the transformations in more detail.

3.1 Analysis

DSA models points-to information as a graph of nodes that repre-
sent data structures (DS). It builds this DS graph incrementally by
first analyzing each function and determining properties of nodes
based on how pointers and data structures instances are used. For
example, if the program contains a load to an address calculated as
a pointer plus a field offset derived from a certain structure type,
then the pointer is assumed to point to a DS node with this type.
Besides type and points-to information for pointers, DS nodes also
contain a set of flags stating whether the data structure is on the
stack or on the heap (derived from where the pointer originated),
whether the information about the node is complete (i.e., all of its
uses have been analyzed), and a few other things.

After this function-local phase, DS graphs contain complete in-
formation about DS nodes that do not (transitively) escape from
the function. DSA then executes a bottom-up pass on the pro-
gram’s call graph and merges the DS graphs of callees into callers,
which results in complete information for nodes that do not escape
to callers. DS graphs are merged by merging the information in
aliasing DS nodes into a single node. Finally, DSA makes a top-
down pass on the call graph to propagate information from callers
to callees. Note that nodes that escape to non-analyzable functions
(e.g., external functions) or through external globals will remain
marked as incomplete. Also, nodes are merged in a way that pre-
serves uncertainty. For example, if a pointer with a DS node with
type A escapes to a calling function which uses the pointer as in-
compatible type B (i.e., the pointer would have to point to two
different nodes), then DSA will infer that the type for the pointer is
not known in any of the functions; the node’s information is “col-
lapsed” and A and B will point to a “collapsed” node. There exists
cases in which the current DSA implementation cannot ensure con-
sensus on node information with just the bottom-up and top-down
passes and should instead merge more often. However, we have not
observed this in the benchmarks we tried (see Section[3), and we
see this is as an implementation issue and not a conceptual limita-
tion.

Figure[T]shows a part of the DS graph for the main function of
STAMP’s [4] Vacation benchmarkﬂlt shows some of the important
data structures used in this benchmark. The small boxes in the
bottom of each node represent one field in the respective structure
types. Edges between the nodes represent points-to information
(e.g., the first and fourth field of structure manager_t point to two
separate red-black tree instances). The analysis of all shown nodes
is complete. All nodes except the one marked as “collapsed” have
a type, meaning that all memory locations associated with such a
node are accessed in a type-safe way in the program. Only the node
shown at the top is an array, meaning that all other nodes originate
from non-array allocations and uses.

We classify nodes as safe or not safe for object-based accesses
based on the DS graphs computed by top-down DSA. A node can
be accessed using object-based STM functions iff it is of known

2 The complete graph is significantly larger, and also contains more edges
starting at the nodes shown in the figure.
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Figure 1. A part of the DS graph for function main of STAMP’s
Vacation benchmark.

structure type and accessed in a type-safe way, has been completely
analyzed, is not external, and is not an array. We will discuss these
constraints again after describing the object-based transformations.

3.2 Transformation

Our compiler transformations rewrite transactional memory ac-
cesses into calls to STM functions with typical load/store interfaces
(i.e., function arguments are transaction descriptors, addresses, and
values). However, the object-based variants of these functions ad-
ditionally require the base address and the size of the object as ar-
guments.

When transforming a memory access, we determine the size
of the object based on the type of the DS node associated with
the target of the access. The base address is computed by either
reusing base pointers available in the prograni’| or based on the
offset information contained in the points-to edges in DS graphs
(pointers can target specific fields of objects).

To be able to support STMs that use in-place metadata (i.e.,
embed transactional metadata such as locks in each object), we
have to make sure that there is enough space for the metadata. We
currently append metadata to the end of the object (i.e., at base
address plus object size) but prefixing the object with metadata
would also be possible. To reserve sufficient space, we enlarge all
allocations (on stack and on heap) that could be used in an object-
based access by the size of the metadata and let the STM initialize
the metadata after the allocation. We also redirect calls that release
object-based memory in transactions to object-based variants of
the respective STM functions (we explain the reason for that in
Section ).

Safety The basis for the safety of these transformations are the
guarantees given by DSA and the properties that are required for

3 Address computations for pointers to structure fields are explicit instruc-
tions in LLVM’s intermediate representation for code. They start at a pointer
and navigate through the data structure definitions contained in the program.



DS nodes to be eligible for object-based accesses. We only consider
typed data structures with stable DS node information that all
parts of the program agree on. We make sure that there is no
unknown behavior, constraints or uses for each object-based node
by requiring complete node information. This also makes sure that
memory for objects was allocated by a function that our compiler
transformations know how to handle Data structure instances
that are part of an array are not considered as potentially object-
based accesses, so allocations reserve memory for only one object
and metadata does not need to be explicitely added to data type
definitions. We only treat data structures with structure types as
object-based to filter out primitive types.

4. STM Implementations

In this section, we briefly describe our object-based STM imple-
mentation. It is based on TinySTM [9], a time-based, word-based,
blocking STM. An array with L versioned locks is used for concur-
rency control, and memory addresses are mapped to locks based
on a hash function that first shifts off a certain number (S) of less
significant bits of the memory address and then uses the remaining
bits as offset into the array (modulo L).

The analysis used by our compiler ensures that object-based and
word-based memory accesses are separated at compile time, which
makes it easy to support both in an STM. We extended TinySTM to
support object-based accesses by adding functions for object-based
loads/stores to memory and for in-transaction release of memory.
To allow for a better comparison to the original TinySTM, we chose
to implement concurrency control for object-based accesses with
the same algorithm as used in TinySTM for word-based accesses
(time-based and blocking). Nevertheless, our approach should be
applicable to other word-based and object-based STMs because of
the compile-time separation between object-based and word-based
accesses. How much a particular word-based STM implementa-
tions would benefit from object-based accesses depends on many
different factors and is outside the scope of this paper. However,
TinySTM is similar to other current STMs such as TL2 [7]], so our
results give an indication how much these STMs could benefit.

We implemented two variants of support for object-based ac-
cesses. TinySTM—Obj uses in-place metadata appended to objects.
Metadata consists of a single lock word for each object (same lay-
out as locks in the lock array, see (9] for details). The address for the
lock is computed based on the base address and the size of the ob-
ject that is supplied by the compiler. TinySTM—-ObjE uses external
metadata, namely the same array of locks that are used for word-
based accesses and the same hash functions. However, it always
selects the lock that the base address of the object maps to. Note
that using the same set of locks for word-based and object-based
acccesses is possible in our implementation because object-based
accesses reuse the STM’s word-based logging and bookkeeping
functions, which eases the implementation significantly. Neverthe-
less, this is not necessary, and we could have also integrated other
existing object-based STMs.

When using in-place metadata, releasing object-based memory
needs to be treated specially by the STM. Current word-based,
time-based STMs update all locks (or version numbers) that are
associated with any location in the the memory chunk that is to
be released. This prevents concurrent readers and writers from
accessing this memory chunk unless they revalidate their readset,
which causes them to notice that, for example, the memory is
not reachable anymore through pointers. After updating the locks
and committing, the memory chunk can be immediately released.

4 External functions would result in external and incomplete information,
and manually forging memory chunks would either lead to nodes being part
of arrays or no type information being available.

This is not possible with in-place metadata because metadata needs
to be type-stable. The STM therefore keeps lists with to-be-freed
memory chunks per thread and only releases memory after all
other transactions that could still access the data have aborted or
committed. This holds in a time-based STM as soon as the start
timestamps of all other transactions are larger than the commit
timestamp of the transaction releasing the memory.

All three implementations try to avoid redundant entries in the
read set by logging an access only if the previous access targeted a
different lock.

5. Evaluation

We evaluate two aspects of our approach in this section. First, we
look at whether standard STM benchmarks contain object-based
accesses and whether our transactifying compiler can detect and
transform these accesses. Second, we evaluate the performance of
the benchmarks when using the new object-based STM implemen-
tation in comparison to the original word-based TinySTM imple-
mentation.

We use the Vacation, KMeans, and Genome benchmarks from
the STAMP benchmark distribution [4]], version 0.9.5. We also use
two classical microbenchmarks: integer sets implemented using (1)
a red-black tree or (2) a sorted linked list, in which transactions
repeatedly insert, remove, or look up elements (see [9]] for details).

5.1 Object-Based Transactification

Table [T] shows compile-time (static) and run-time transformation
results for the different benchmarks. Static loads and stores are
instructions in the program that access memory from within a
transaction and are replaced by the compiler with calls to the
STM. The number of loads and stores at runtime were counted by
instrumenting the STM and running the benchmark with a single
thread in the default configuration for at least 10 seconds. Thus, the
first columns give an indication of how many object-based accesses
are in programs, and the last column shows whether these are
important for the benchmark’s performance due to being executed
often.

Both the red-black tree and the linked list access a single logi-
caﬂ linked data structure transactionally, and our compiler detects
this and uses just object-based accesses.

STAMP’s Vacation benchmark simulates a reservation system.
Its transactions mostly operate on a couple of red-black trees and
linked lists. With the original source code of the benchmark, DSA
was not able to infer data structure information for the trees be-
cause the tree implementation uses keys and values of types integer
but the benchmark uses these value integers to store pointers. We
changed the implementation of the tree to be properly typed (void
pointers are sufficient) because the original code is likely to be
hardly portable and error-proneﬂ We also expect that production-
quality code does not contain such code. DSA could have infered
that the values are not integers but pointers by, for example, prov-
ing that the values are not modified by integer arithmetic but this is
not yet implemented. After this change, DSA detects the tree and
linked list data structures and only a few nodes with no informa-
tion remain (see Figure [T). The majority of transactional accesses
at runtime is object-based.

The KMeans benchmark mostly operates on arrays of primitive
types. DSA detects these arrays but they are not considered for
object-based transformations.

SDSA usually detects more data structures because it distinguishes, for
example, between the head of the red-black tree and its nodes (see FigureEp.

1n fact, STAMP includes a bug fix for 64-bit architectures that increases
the type of the integer from int to long.



Benchmark Number of static | Number of static Percentage of OB Percentage of OB

WB loads/stores OB loads/stores | loads/stores (static) | loads/stores at run-time
Red-Black Tree 0/0 84 /77 100% / 100% 100% / 100%
Linked List 0/0 16/6 100% / 100% 100% / 100%
STAMP Vacation 25/9 243/ 188 90% / 95% 97% | 84%
STAMP KMeans 9/17 0/0 0% / 0% 0% / 0%
STAMP Genome 47/19 32/18 40% / 48% 12% / 98%

Table 1. Applicability of object-based compiler transformations (OB is object-based, WB is word-based, single-threaded benchmark runs,

counting only transactional loads/stores).

The Genome benchmark’s transactions access a mix of linked
data structures and a large number of character strings. Unlike the
manual instrumentations in STAMP for STMs, our compiler also
treats the frequent string comparisons in the benchmark as trans-
actional accesses. Word-based accesses are used for the strings,
which leads to the low percentage of object-based accesses at run-
time compared to the percentage of static object-based accesses in
the program shown in Table[T]

Overall, our compiler is able to detect and transform the major-
ity of object-based accesses in these benchmarks with the excep-
tion of the integer-to-pointer casting tree in the original Vacation
benchmark. Special support for arrays could allow for further STM
optimizations in KMeans and Genome.

5.2 STM Performance

To evaluate the performance of object-based versus word-based ac-

cesses, we measured transaction throughput for TinySTM, TinySTM—

Obj, and TinySTM-ObjE on a two-way Intel quad-core machine.
We compiled all benchmarks as 32-bit executables using Tanger
with the object-based transformations being enabled only for
TinySTM-Obj (in-place metadata) and TinySTM-ObjE (external
metadata). Every benchmark uses eight threads to execute transac-
tions.

The performance of word-based accesses in TinySTM and
object-based accesses that use external metadata is influenced by
the parameters of the lock array and the hash function that maps
memory locations to locks. Therefore, we show results for different
numbers of locks and shifts (see Section ).

We first present results for the two microbenchmarks because
these do not use any word-based accesses. Figures [5] and [6] show
results for the red-black tree, update rate of 20% and 80%, and
trees with 512 and 64k elements on average. The integer elements
are randomly chosen from a range between 0 and 64k. In the red-
black tree, we initially add 256k elements but due to this range the
tree will not contain more than 64k elements. Figure [/| shows the
performance for the linked list with 20% or 80% updates and 512
or 16k elements. The figures also show isolated results for a few
interesting configurations (e.g., a varying number of locks together
with a fixed number of shifts).

The throughput results for TinySTM-Obj form a plane because
this STM doesn’t access the lock array but only the locks em-
bedded into the objects and is thus not affected by the number of
locks or shifts[g_-] In the red-black tree benchmark, TinySTM—-ObjE
is in general better than or equal to TinySTM and seems to be
less vulnerable to bad lock/shift settings. However, for small trees
TinySTM-ODbjE can only reach the performance of TinySTM-Obj

7 Inserting and removing elements are categorized as update transactions
but might not update the data structures if the element to be added already
exists or the element to be removed does not exist. Lookups are always
read-only transactions.

8 Note that both benchmarks only contain object-based transactional ac-
cesses.

by using one particular good lock/shift setting, but is slower than
TinySTM-Obj in all other cases. For large trees and a 20% up-
date rate, TinySTM-Obj performs much better than the other STMs
except when the number of locks is very high. With frequent up-
dates and large trees, TinySTM—Obj performs worse than the other
STMs unless the number of locks and shifts is completely disad-
vantageous; we cannot yet give a conclusive explanation for this
behavior. Figure [6] compares performance when varying the num-
ber of shifts. An interesting observation is that a low number of
shifts is required for small trees, whereas a higher number of shifts
increases performance for large trees. For example, a large tree with
20% updates requires eight shifts to be as good as TinySTM-Obj;
but if this setting is chosen, then small trees in the same application
will perform considerably worse.

In the four configurations of the linked list that we measured,
TinySTM-Obj has the highest throughput in almost all of the cases.
TinySTM-ObjE can handle a small number of shifts better than
TinySTM but overall, both require a specific lock/shifts setting to
reach maximum throughput. Performance drops considerably as
soon as parameters deviate from this setting. The peak for 228
locks (which corresponds to 1 GB of STM metadata in 32-bit
systems) is related to how the default memory allocatmﬂ on our
platform allocates memory. Every thread can allocate memory from
a per-thread region to avoid contention; however, these regions are
located very far away from the heap’s main region in the virtual
address space. When both the number of locks and the distance of
the beginnings of the regions are a power of two and the number of
locks times the lock granularity is smaller than the distance, false
conflicts can happen even if the number of locks seems to be large.
This could be avoided by either changing the memory allocator or
using a more advanced hash function. The former does not help if
applications use custom allocators or if transactions access other
data that is mapped to high memory addresses; the latter is difficult
because the hash function is on the fast—path of each transactional
access. Nevertheless, the number of shifts would have to be tuned
to reach the highest performance.

The results highlight that STMs need to tune the settings for
lock arrays to reach good performance. Furthermore, the red-black
tree results show that workload properties such as the frequency of
updates or the size of data structures can determine which lock/shift
settings allow for the best performance. Object-based accesses with
in-place metadata (TinySTM-Obj) are not affected by this and
reach the best throughput on average, even if the other STMs are
well-tuned. Better contention management could perhaps minimize
the throughput differences caused by false contention, but would
still not be sufficient to reach the same level of parallelism in every

case

9 We used the standard allocator of the GNU C library.

10 Advanced contention managers could schedule transactions proactively
to minimize the probability of conflicts, but they cannot avoid all possible
(false) conflicts.
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Figure 2. Red-black tree performance for different working set
sizes.

Figure [2] shows the performance of the STMs for differently
sized red-black trees with 10% and 80% update rateﬂ respec-
tively. For this benchmark, integer elements are randomly chosen
from [0, 23"). Note that the height of the balanced red-black trees
increases very slowly compared to the number of nodes, and thus
the number of transactional accesses also increases slowly while
the working set size gets much larger. With 80% updates, through-
put is limited by contention in the tree. Performance decreases for
all STMs as soon as the tree does not fit into caches anymore.
TinySTM-Obj outperforms the other STMs for 10% updates. How-
ever, we expected that the better locality due to in-place metadata
would lead to higher performance advantages of TinySTM-Obj for
larger working set size.

Figure [3] shows results for STAMP’s Vacation benchmark exe-
cuted with default parameters for one million transactions. In con-
trast to the two microbenchmarks, transactions in Vacation consist
of object-based and word-based accesses. This explains the sub-
stantially lower throughput of TinySTM-Obj with a few of the
lock/shift settings. The results suggest that the few word-based ac-
cesses suffer heavily from false sharing in the lock array if the
hash function does not cover the working set (i.e., the product of
the number of locks and two to the number of shifts is too small).
TinySTM-ODbjE is slightly faster than TinySTM but both are signif-
icantly slower than TinySTM-Obj. TinySTM-Obj reaches its max-
imum throughput with a much smaller number of locks and is able
to sustain this throughput, whereas the other STMs reach their per-
formance maxima in only some of the lock/shift settings. Further-
more, a very high number of locks such as 2% does not improve the
performance of TinySTM and TinySTM—ObjE. This indicates that
the better performance of TinySTM-Obj is not just caused by fewer
false conflicts. For example, the different data structure instances in
the benchmark could prefer different lock/shift settings when using
TinySTM or TinySTM-ObjE (see Figure [6), which prevents opti-
mal tuning for all data structures as there is only a single lock array.

! Inserting and removing elements are update transactions.

mmmm TinySTM-Obj mmmm TinySTM-ObJE

Maximum throughput relative to TinySTM

LL1 LL2 LL3 LL4 RB1 RB2 RB3 RB4 VA
experiments

Figure 4. Performance of object-based accesses relative to word-
based accesses (red-black tree configurations as in Figure 5] linked
list as in Figure[7} and Vacation).

In contrast, object-based accesses do not depend on this particular
tuning.

We also measured STM performance in the Genome bench-
mark. TinySTM-Obj often reaches the same transaction throughput
independently of the numbers of shifts and locks, although Table[T]
shows that the majority of loads are word-based. This indicates
that these loads target the large amount of character strings used
in the benchmark, and that conflicts usually only happen between
the object-based accesses to the linked data structures. In contrast,
the performance of TinySTM and TinySTM-ObjE (which both use
a single lock array for the strings and the data structures) depends
significantly on the number of locks and shifts. However, they are
as fast as TinySTM-Obj for several favorable lock/shift settings.
The variability of the performance is quite high in general and the
overall performance of Genome with these settings seems to de-
pend more on other factors such as contention management than
on whether object-based accesses are used. Nevertheless, this high-
lights that a single lock array that is too small or too coarse-grained
can easily lead to false conflicts, and that object-based accesses are
not affected by this.

We did not perform any measurements for KMeans because it
contains no object-based accesses.

Figure [4] summarizes the effect of object-based accesses on
performance. It compares the maximum throughput that each of the
STMs was able to reach when using the most favorable lock/shift
settinﬂ for the respective benchmark and STM. Thus, it considers
improvements due to tuning of the lock array parameters but also
shows limitations of tuning. One can see that object-based accesses
with in-place metadata (TinySTM-Obj) are, with two exceptions,
never worse than word-based accesses in our benchmarks and are
often more than 10% better.

6. Conclusion

We have shown how a transactifying compiler can use pointer
analysis to make object-based transactional accesses practical in
unmanaged environments. We believe that this is important because
STMs that just offer a library interface are only useful in a few
scenarios and will not be useful to most programmers; STMs that

12 The settings with 228 locks were not considered because the space over-
head would be too high for real applications.
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mark.

compilers cannot or do not generate code for are not practical and
might become extinct. Second, a lot of systems software and also
a large percentage of the typical desktop applications are executed
in unmanaged enviroments, which makes it important to support
these environments. Third, object-based accesses have a number of
potential performance advantages, and we showed in the evaluation
that these advantages enable significant performance improvements
in practice. Most importantly, STMs that can use object-based
accesses require less tuning and can still reach a better performance
than purely word-based STMs.

Although we only investigated STMs of one particular kind with
a limited number of benchmarks, we think that our results indicate
that STM designs should not limit themselves to only word-based
accesses, and that compilers for unmanaged environments are in-
deed capable of finding and transforming object-based accesses in
real programs.

We plan to release the object-based transformations in a future
release of Tanger (http://tinystm. org).
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