Understanding the Propagation of Hard Errors to Software and
Implications for Resilient System Design *

Man-Lap Li, Pradeep Ramachandran, Swarup K. Sahoo, Sarita V. Adve, Vikram S. Adve, Yuanyuan Zhou

Department of Computer Science
University of Illinois at Urbana-Champaign

swat@cs.uiuc.edu

Abstract

With continued CMOS scaling, future shipped hardware will be
increasingly vulnerable to in-the-field faults. To be broadly deploy-
able, the hardware reliability solution must incur low overheads,
precluding use of expensive redundancy. We explore a cooperative
hardware-software solution that watches for anomalous software
behavior to indicate the presence of hardware faults. Fundamental
to such a solution is a characterization of how hardware faults in
different microarchitectural structures of a modern processor prop-
agate through the application and OS.

This paper aims to provide such a characterization, resulting in
identifying low-cost detection methods and providing guidelines
for implementation of the recovery and diagnosis components of
such a reliability solution. We focus on hard faults because they are
increasingly important and have different system implications than
the much studied transients. We achieve our goals through fault
injection experiments with a microarchitecture-level full system
timing simulator. Our main results are: (1) we are able to detect
95% of the unmasked faults in 7 out of 8 studied microarchitectural
structures with simple detectors that incur zero to little hardware
overhead; (2) over 86% of these detections are within latencies
that existing hardware checkpointing schemes can handle, while
others require software checkpointing; and (3) a surprisingly large
fraction of the detected faults corrupt OS state, but almost all of
these are detected with latencies short enough to use hardware
checkpointing, thereby enabling OS recovery in virtually all such
cases.

Categories and Subject Descriptors
and Fault-Tolerance]

B.8.1 [Reliability, Testing

General Terms Reliability, Experimentation, Design

Keywords Error detection, Architecture, Permanent fault, Fault

injection

* This work is supported in part by an IBM faculty partnership award,
the Gigascale Systems Research Center (funded under FCRP, an SRC pro-
gram), the National Science Foundation under Grants NSF CCF 05-41383,
CNS 07-20743, and NGS 04-06351, and an equipment donation from
AMD.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’08. March 1-5, 2008, Seattle, Washington, USA.

Copyright © 2008 ACM 978-1-59593-958-6/08/03. . . $5.00

265

1.

As we move into the late CMOS era, hardware reliability will be
a major obstacle to reaping the benefits of increased integration
projected by Moore’s law. It is expected that components in shipped
chips will fail for many reasons including aging or wear-out, infant
mortality due to insufficient burn-in, soft errors due to radiation,
design defects, and so on [4]. Such a scenario requires mechanisms
to detect, diagnose, recover from, and possibly repair/reconfigure
around these failed components so that the system can provide
reliable and continuous operation.

The reliability challenge today pervades almost the entire com-
puting market. A reliability solution that can be effectively de-
ployed in the broad market must incur limited area, performance,
and power overhead. As an extreme upper bound, the cost of re-
liable operation cannot exceed the benefits of scaling. In a recent
workshop, an industry panel converged on a 10% area overhead tar-
get to handle all sources of chip errors as a guideline for academic
researchers [40]. In this context, traditional high-end solutions in-
volving excessive redundancy are no longer viable. For example,
the conventional popular solution of dual modular redundancy for
fault detection implies at least a 100% overhead in performance,
throughput and power. Solutions such as redundant multithreading
and its various flavors improve on this, but still incur significant
overheads in performance and/or power [38].

Two high-level observations motivate our work. First, the hard-
ware reliability solution needs to handle only the device faults that
propagate through higher levels of the system and become observ-
able to software. Second, despite the reliability threat, fault-free
operation remains the common case and must be optimized, pos-
sibly at the cost of increased overhead after a fault is detected (in
accordance with Amdahl’s law).

These observations motivate a strategy where faults are detected
by watching for anomalous software behavior, or symptoms of
faults, using zero to low-cost hardware and software monitors. Such
a strategy treats hardware faults analogous to software bugs, poten-
tially leveraging solutions for software reliability to further amor-
tize overhead. Detecting faults at the software level can incur a sig-
nificant delay from the point the fault was first activated, potentially
complicating the fault diagnosis process for repair/reconfiguration
for hard faults. We claim that this is the right tradeoff to enable low-
cost detection since diagnosis is required only in the infrequent case
of a fault.

Such a combination of simple high-level detection and poten-
tially more complex and low-level diagnosis assumes a check-
point/replay mechanism for recovery, which is also required for
various other proposals for reliability as well as for other functions
(e.g., transactional memory and speculative multithreading). This
mechanism can be leveraged by the diagnosis process to repeatedly
rollback and replay the execution trace that produced the detected

Introduction

symptom to iteratively narrow down the source of the fault. Al-
though we use software symptoms to detect hardware errors, the
diagnosis and recovery components prevent these symptoms from
becoming visible externally (providing external observers the illu-
sion of near-perfect hardware). We rely on a thin firmware layer to
control the coordination of and among the detection, diagnosis, and
recovery components of the system.

Our cooperative hardware-software approach naturally extends
to incorporate backup detection techniques (e.g., hardware check-
ers, selective redundancy, online test) for the cases where the high-
level symptom-based detection coverage is determined to be in-
sufficient; e.g., for some mission-critical applications or in case of
some faults in some structures that may not easily reveal detectable
symptoms at the required cost. Compared to any one such tech-
nique used in isolation, the potential advantages of our approach
are:

Generality. High-level symptom-based detection techniques are
largely oblivious to specific low-level failure modes or microarchi-
tectural/circuit details. Thus, in contrast to detection methods that
are driven by specific device-level fault models (e.g., wear-out de-
tectors), high-level detection techniques are more general and ex-
tensible to numerous failure mechanisms and microarchitectures.
Ignoring masked faults. Previous work has shown that a large
number of faults are masked by higher levels of the system such as
circuit, microarchitecture, architecture, and application levels [9,
18, 20, 28, 48]. High-level detection techniques naturally ignore
faults that are masked at any of these levels, avoiding the corre-
sponding overheads.

Optimizing for the common case. Total system overhead is poten-
tially reduced by emphasizing minimal detection overhead (which
is paid all the time), possibly at the cost of higher diagnosis over-
head (which is paid only in the case of a fault).

Customizability. A software (firmware) controlled system with de-
tection mechanisms driven by software behavior provides a natural
way for application-specific and system-specific customization of
the reliability vs. overhead tradeoff. For example, when a fault is
detected in a video application, the system may consider dropping
the current frame computation rather than recovering it. Further,
the approach is amenable to selective cost-conscious use of differ-
ent symptom-based and backup detection techniques.

Amortizing overhead across other system functions. Our view
of monitoring for software symptoms of hardware bugs is inspired
by work on on-line software bug detection [11, 15, 22, 51, 52, 53].
Our approach can leverage software bug detection techniques for
hardware fault detection and vice versa, amortizing overheads for
full system reliability.

Is such a cooperative hardware-software solution that detects
hardware faults through anomalous software behavior feasible for
hardware reliability? And how should it work? Those answers
fundamentally depend on the answers to several key questions,
which we investigate in this work:

e For which microarchitectural structures do hardware faults pro-
duce detectable anomalous software behavior with very high
probability? Others may need specialized hardware protection.

e How long does it take to detect the fault from the time it cor-
rupts the architectural state? This detection latency impacts the
recovery strategy: short latencies allow simple hardware check-
point/recovery, long latencies may require more complex hard-
ware and/or software checkpointing/recovery, and excessively
long detection latencies may not be recoverable.

e How frequently do hardware faults corrupt operating system
state? What is the detection coverage and latency for such
faults? The OS typically needs a very high level of reliability.
Further, software checkpointing and recovery of the OS is com-

266

plex and therefore low-latency detection will be important to
make hardware checkpointing and recovery of OS state feasi-
ble.

The bulk of our experiments here focus on permanent hardware
faults (vs. transients) because of the increasing importance of such
faults due to phenomena such as wear-out and insufficient burn-
in (Section 2), because transients have already been the subject
of much recent study, and because permanent faults pose signif-
icant challenges different from transients. For example, a perma-
nent fault may manifest to software faster than a transient (because
it lasts longer), but for the same reason, it is less likely to be masked
and more likely to corrupt the OS with an irrecoverable system fail-
ure (unless intercepted quickly). Further, after a permanent fault
is exposed, the system must diagnose its source and repair or re-
configure around the faulty unit. This is generally expensive, limit-
ing the number of affordable false positives (unlike some detection
techniques for transients [49]). Nevertheless, for completeness, we
summarize the main results of our experiments for transients.

To answer the above questions, we inject a total of 12,800 per-
manent faults (stuck-at and bridging faults) in several microarchi-
tectural structures in a modern processor running SPEC bench-
marks. We use a full system microarchitecture-level simulator and
simulate the faulty hardware for about 10 million instructions after
the fault is injected (one fault at a time). We monitor for symptoms
indicating anomalous software behavior in this window. Faults that
are not detected within this window are functionally simulated to
completion to identify additional masking effects and Silent Data
Corruptions. Ideally, we would use a lower-level simulator for fault
injections (e.g., gate level); however, this was not possible due to
our requirement of modeling the operating system and following
the fault for a very large number of execution cycles. Our primary
findings are as follows:

e Detection coverage: Across 7 of the 8 microarchitectural struc-
tures studied, 95% of the unmasked faults are detected via sim-
ple symptoms (such as fatal hardware traps, hangs, high OS ac-
tivity, and abnormal application aborts that can be intercepted
by the OS) within the 10-million-instruction detailed simulation
window. For the remaining faults, functional simulation to com-
pletion showed that only 0.8% result in silent data corruptions
(SDC) (the rest eventually produce one of our symptoms, al-
though we do not count them as “detected” for coverage). Over-
all, these results show that most permanent faults that propagate
to software are easily detectable through simple symptoms.

Detection latency for applications: The latency from the time
that application state is corrupted to the time the fault is detected
is < 100K instructions (microseconds range for GHz proces-
sors) for 86% of the detected cases — this can be handled with
hardware checkpointing schemes [29, 43], using simple buffer-
ing of persistent state output (input) to solve the output (input)
commit problems. The higher latency cases can be handled us-
ing software checkpointing and recovery.

Impact on OS: Surprisingly, a large fraction of the faults cor-
rupt operating system state even for SPEC applications. Al-
though in fault-free mode, SPEC applications spend negligible
time in the OS, a fault often invokes the OS (e.g., by causing
a TLB miss) and, because it is persistent, subsequently cor-
rupts OS state, making it important to understand the impact of
faults on the OS. We find the latency from an OS architectural
state corruption to a fault detection is within 100K OS instruc-
tions for virtually all detected faults. This implies that hardware
checkpointing of OS state is feasible to recover the OS from
nearly all faults — this is important since it is difficult to recover
the OS using mechanisms that involve external software.

This work is part of a larger project called SWAT (SoftWare
Anomaly Treatment), where we are investigating the design of a
resilient system driven by high-level detection as motivated above.
The results in this paper clearly establish the feasibility of such an
approach and provide key guidelines for implementing the SWAT
system and future resilient systems (Section 6).

2. Related Work

Software-centric detection and fault injection and propagation
studies.

There is a large body of literature on detecting hardware faults
through monitoring software behavior [12, 30, 31, 33, 34, 36, 46,
49]. The majority of this work focuses on control flow signatures,
crashes, and hangs. Recent work has also examined value based
invariants extracted in hardware [33] and invariants in software
that are extracted ahead-of-time [31] for detecting errors; these
schemes are analogous to our preliminary work on such invariants
in software discussed in Section 6. There is also a large body
of work that performs hardware (and software) fault injections to
characterize the fault tolerant behavior of a system [1, 14, 16, 17].
Both these classes of work perform fault injections and follow the
propagation of the fault through software much like our work.

Our work differs from the above work in several ways. First,
we take a microarchitectural view since our goal is to understand
which hardware structures could be adequately covered by inex-
pensive software-centric techniques, and which would require more
expensive hardware support. We therefore perform fault injections
into explicit microarchitectural structures in modern out-of-order
superscalar processors; e.g., the register alias table and the reorder
buffer. Our use of a microarchitecture level simulator allows such
experiments. Much (but not all) prior work on fault injection is in
the context of real systems (or high level simulations), where pro-
cessor microarchitectural units are not exposed.

Second, most prior work injects transient or intermittent faults,
where intermittents are usually modeled like transients except that
they last a small number of cycles (e.g., up to 4 cycles). We focus
on permanent faults (and only summarize our results for transients)
because they are predicted to become increasingly important with
growing concern from phenomena such as aging and inadequate
burn-in [4, 44, 50]. Permanent faults are significantly different from
transients and intermittents that last a few cycles because of their
lower masking rate, consequently higher potential to impact the
OS, and higher complexity of diagnosis (and consequent require-
ment of low number of false positives) as described in Section 1.

Third, while there have been fault injection studies at the mi-
croarchitecture or lower levels (e.g., Wang et al.’s study of soft
errors at the Verilog level [49]), our work is distinguished by our
study of both the application and OS through using a full system
simulator. Many of the results from this work would not be possi-
ble from user-only architecture or lower level simulators. For ex-
ample, corruptions of the OS state are difficult to recover from —
our work models such corruptions and shows that in many cases,
the detection latencies are small enough to use efficient hardware
checkpointing for recovery.

Concurrent with this work, Meixner et al. have proposed the use
of data flow checkers for transient and permanent faults [26]. Sub-
sequently, they proposed the use of these and previous checkers
(e.g., control flow checkers) to detect all faults in simple single-
issue, in-order pipelines, with no interrupts [25]. Our symptom-
based detectors work at a much higher level — they are largely
oblivious to the microarchitecture and require very little hardware
overhead. In the future, it will be interesting to compare the cover-
age and detection latencies of these classes of checkers.

267

Fault tolerant systems.

There is a vast amount of literature on fault tolerant architec-
tures. High-end commercial systems often provide fault tolerance
through system-level or coarse-grain redundancy (e.g., replicating
an entire processor or a major portion of the pipeline) [3, 27].
Unfortunately, this approach incurs significant area, performance,
and power overheads. As mentioned in Section 1, our focus is
on low-cost reliability for a broader market, where some parts of
the market may even be willing to trade off some coverage for
cost. There has been substantial microarchitecture level work in
this context, where redundancy is exploited at a finer microar-
chitectural granularity. While much of that work handles tran-
sients [2, 12, 13, 35, 36, 38, 49], recently, there has been substantial
work on handling hard errors. We focus on that work here.

Austin proposed DIVA, an efficient checker processor that is
tightly coupled with the main processor’s pipeline to check every
committed instruction for errors [2]. While DIVA can be used to
provide detection of hard errors, it does not provide mechanisms for
diagnosis or repair. Bower et al. incorporated hard error diagnosis
with DIVA checkers [6], using hardware counters that identify hard
faults through heuristics based on the usage of different structures.

Shyam et al. recently proposed online testing of certain struc-
tures in the microprocessor for hard faults and recover by disabling
them and rolling back to a hardware checkpoint [41]. Since these
tests are run only when the structures are idle, the performance
loss incurred is rather small. Constantinides et al. enhanced this
scheme further in [8] by adding hardware support so that the soft-
ware can control the online testing process, adding flexibility for
choosing test vectors. However, the performance penalty incurred
by software-controlled online testing is high for reasonable hard-
ware checkpointing intervals. Furthermore, the continuous testing
of hardware can accelerate the wear-out process.

All of the above schemes incur significant overhead in area, per-
formance, power, and/or wear-out that is paid almost all the time;
further, these are customized solutions for hardware reliability. In
contrast to the above, we seek a reliability solution that pays min-
imal cost in the common case where there are no errors, and po-
tentially higher cost in the uncommon case when an error is de-
tected. For example, using fatal traps as a detection mechanism has
zero detection overhead until there is actually an error. We also re-
quire checkpoint/rollback support; however, analogous support is
assumed by previous schemes as well [7, 8, 25, 41]. Additionally,
we allow for the possibility of checkpoint support in software and
leveraging such support that may be already present for software
reliability. Finally, since we detect at the software level, we only
detect errors that are not masked by the hardware or the software.

3. SWAT System Assumptions

There are a few essential properties of the SWAT system that
provide the context necessary to understand this work:

e As noted in Section 1, we assume that the firmware-controlled
diagnosis and recovery (of OS and applications) prevents symp-
toms of hardware errors from becoming visible externally. The
goal is to give the illusion that hardware is near-perfect.

e The diagnosis component assumes a multicore system where a
fault-free core is always available, and also assumes a check-
point/replay mechanism.

When a symptom is detected, the diagnosis process re-executes
the program from the last checkpoint on the same core. If the
symptom does not recur, it is diagnosed as a transient and ex-
ecution continues. If the symptom recurs, execution is rolled
back and restarted on a different core. If no symptom is ob-
served, the problem is identified as either a permanent fault in

the original core or a non-deterministic software fault. We then
rollback and re-execute on the original core and if the fault re-
curs, we assume it is a hardware fault. To further diagnose this
fault, we run more special-purpose diagnostics and use these to
select appropriate repair/reconfiguration actions, e.g., either at
the level of the entire core or specific microarchitectural struc-
tures (with appropriate hardware hooks, the diagnosis proce-
dure can narrow a permanent fault to within a structure inside
the core). If the symptom persists on the new core, it is consid-
ered likely a software fault and is left to external software as
usual.

The overall diagnosis latency will depend on the symptom
detection latency, consequent checkpoint/replay mechanisms
used, and context migration latency. While this latency could
potentially be large, it is only paid in the infrequent event of
a fault, and we believe it to be an appropriate trade-off in ex-
change for the low-cost “always on” symptom-based detection.

For recovery, the SWAT system again assumes some form of
checkpoint/replay mechanism is available. Depending on the
system and application requirements (e.g. cost, detection la-
tency, etc.), hardware checkpointing, software checkpointing,
or a hybrid of hardware/software checkpoint/replay can be
used. Hardware checkpoint/replay has been proposed for many
purposes apart from reliability (e.g., transaction memory, spec-
ulative parallelism). SafetyNet [43] and ReVive [29, 32] claim
reasonably low overhead for fairly long windows for hardware
checkpoint/replay. We therefore believe that hardware recovery
overhead will be acceptable, especially as it is amortized for
many causes. Similarly, many software reliability schemes al-
ready rely on software checkpointing, and we can leverage this
technology by incorporating it as a transparent OS service [45].
Furthermore, the combination of recovery method can be cus-
tomized to suit the system requirements.

As with any system that tolerates permanent faults, we assume
hardware with the ability to repair or reconfigure around such
faults.

‘We emphasize that some of the above are design choices that are
neither exhaustive (i.e., alternative designs are possible) nor defini-
tive. Investigating the actual design for such a system is outside the
scope of this work. The experimental results we present will pro-
vide valuable guidance in deciding these eventual design choices.

4. Methodology
4.1 Simulation Environment

Ideally, for fault injection experiments, we would like to use a
real system or a low-level (e.g., gate level) simulator. However,
modern processors do not provide enough observability and control
to perform the microarchitecture level fault injections that are of
interest to us. We therefore use simulation. Although low-level
simulators would provide the ability to use more accurate fault
models, they present a trade-off in speed and the ability to model
long running workloads with OS activity. Given our emphasis on
understanding the impact of faults on the OS and the need to
simulate for long periods, gate level simulation was not feasible.
We therefore chose to use a microarchitecture level simulator.

We use a full system simulation environment comprising the
Wisconsin GEMS microarchitectural and memory timing simu-
lators [23] in conjunction with the Virtutech Simics full system
simulator [47]. Together, these simulators provide cycle-by-cycle
microarchitecture level timing simulation of a real workload (6
SpecInt2000 and 4 SpecFP2000) running on a real operating sys-
tem (full Solaris-9 on SPARC V9 ISA) on a modern out-of-order
superscalar processor and memory hierarchy (Table 1). Although in

268

Base Processor Parameters

2.0GHz

4 per cycle

2 Int add/mul, 1 Int div

2 Load, 2 Store, 1 Branch

2 FP add, 1 FP mul, 1 FP div/Sqrt
1 add, 4 mul, 24 divide

4 default, 7 mul, 12 divide

Frequency
Fetch/decode/execute/retire rate
Functional units

Integer FU latencies
FP FU latencies

Reorder buffer size 128
Register file size 256 integer, 256 FP
Unified Load-Store Queue Size 64 entries

Base Memory Hierarchy Parameters

Data L1/Instruction L1 16KB each
L1 hit latency 1 cycle

L2 (Unified) IMB

L2 hit/miss latency 6/80 cycles

Table 1. Parameters of the simulated processor.

the fault-free case, our simulated applications are not OS-intensive
(< 1% OS activity in our simulated window), we show later that
fault injection significantly increases OS activity. Thus, it is critical
to model the OS and its interaction with the applications in our sim-
ulations. (More complex OS-intensive workloads such as databases
would provide additional insight, and are part of our future work.)

To inject faults, we leverage the timing-first approach [24] used
in the GEMS+Simics infrastructure. In this approach, an instruction
is first executed by the cycle-accurate GEMS timing simulator. On
retirement, the Simics functional simulator is invoked to execute
the same instruction again and to compare the full architecture state
in GEMS and Simics. This comparison allows GEMS the flexibility
to not fully implement a small (complex and infrequent) subset of
the SPARC ISA — GEMS uses the comparison to make its state
consistent with that of Simics in case of a mismatch that would
occur with such an instruction.

We modified this checking mechanism for the purposes of mi-
croarchitectural fault injection. We inject a fault into the timing
simulator’s microarchitectural state and track its propagation as the
faulty values are read through the system. When a mismatch in the
architectural state of the functional and the timing simulator is de-
tected, we check if it is due to the injected fault. If not, we read in
the value from Simics to correct GEMS’ architectural state. How-
ever, if the mismatch is because of an injected fault, we corrupt the
corresponding state in Simics (register and memory) with the faulty
state from GEMS, ensuring that Simics continues to follow GEMS’
execution trace, upholding the timing-first paradigm.

We say an injected fault is activated when it results in corrupting
the architectural state, as above. If the fault is never activated, we
say the fault is architecturally masked (e.g., a stuck-at-0 fault in
a bit that is already O or a fault in a misspeculated instruction
are trivially masked). Since we know the privilege mode of the
retiring instruction that corrupts the state, we can determine if a
fault leads to any corruption in the architectural state of the OS or
the application. As discussed later, this information has important
implications for recovery.

4.2 Fault Model

The focus of this study is on permanent or hard faults, with the
goal of modeling increasingly important phenomena such as wear-
out or infant mortality due to incomplete burn-in [4, 5, 50]. Precise
fault models for wear-out are still a subject of research [41]. In this
paper, we use the well established stuck-at-0 and stuck-at-1 fault
models as well as the dominant-O0 and dominant-1 bridging fault
models. While the stuck-at fault models apply to faults that affect a
single bit, the bridging fault models concern faults that affect adja-
cent bits. The dominant-0 bridging fault acts like a logical-AND be-
tween the adjacent bits that are marked faulty, while the dominant-1
bridging fault acts like a logical-OR. Prior work has suggested that

Fault location
Input latch of one of the decoders

parch structure
Instruction decoder

Integer ALU Output latch of one of the Int ALUs
Register bus Bus on the write port to the Int reg file
Physical integer reg file A physical reg in the Int reg file
Reorder buffer (ROB) Src/dest reg num of instr in ROB entry

Register alias table (RAT)
Address gen unit (AGEN)
FP ALU

Logical — phys map of a logical reg
Virtual address generated by the unit
Output latch of one of the FP ALUs

Table 2. Microarchitectural structures in which faults are in-
jected. In each run, either a stuck-at fault is injected in a ran-
dom bit or a bridging fault is injected in a pair of adjacent bits
in the given structure.

some wear-out faults may initially manifest as (intermittent) timing
violations before resulting in hard breakdown [37]. Modeling such
faults requires lower level simulation than our current infrastruc-
ture, along with its attendant trade-offs (Section 4.1). For future
work, we are exploring a hybrid simulation model to get both fi-
delity and speed, but that is outside the scope of this paper.

Table 2 lists the microarchitectural structures and locations
where we inject faults. For each structure, we inject a fault in each
of 40 random points in each application (after initialization), one
injection per simulation run. For each application injection point,
we perform an injection for each of the 4 fault models (two stuck-
at and two bridging). The injections are performed in a randomly
chosen bit in the given structure for stuck-at faults. For bridging
faults, the randomly chosen pair of adjacent bits are injected. This
gives a total of 1600 fault injection simulation runs per microarchi-
tectural structure (10 applications x 40 points per application x 4
fault models) and 12,800 total injections across all 8 structures.

After a fault is injected, we run for 10 million instructions in
the detailed simulator, where we watch for software symptoms
indicating the presence of a hardware fault. If a symptom does not
occur in the detailed simulation, the potentially corrupted execution
is functionally simulated to completion. Section 4.4 describes these
cases in more detail.

For completeness, we also performed a total of 6400 transient
fault injections (single bit flips) in the same microarchitectural
structures. (The number of injections is fewer than for permanent
faults because of fewer fault models.)

4.3 Fault Detection

We focus here on simple detection mechanisms that require little
new hardware or software support. Our detection mechanisms look
for four abnormal application or OS behaviors as symptoms of pos-
sible hardware faults: (1) fatal traps that would normally lead to
application or OS crashes, (2) abnormal application exit indicated
by the OS, (3) application or OS hangs, and (4) abnormally exces-
sive OS activity. Each of these is discussed below. Note that detect-
ing these symptoms implies that they are made transparent to the
user. For example, on a fatal trap, the user will not see the crash;
rather, the trap invokes the diagnosis and recovery components of
the SWAT system as described in Section 3. We also note that faults
injected in the application may be detected either in the application
or OS since we consider permanent faults. Figure 1 summarizes the
various outcomes of an injected fault in our study.

4.3.1 Fatal hardware traps

An easily detectable abnormal behavior due to a hardware fault
is a fatal hardware trap in either the application or the operating
system. A fatal trap is typically not thrown during a correct program
execution. On Solaris, the following traps are denoted as fatal traps
— RED (Recover Error and Debug) state trap (thrown when there
are too many nested traps), Data Access Exception trap, Division
by zero trap, Illegal instruction trap, Memory misaligned trap,

269

Fatal Trap (FatalTrap)

Abnormal app exit (Abort-App)

Symptom
detected Hang
Architecture
Fault < state corrupted No symptom High contiguous OS activity
injected No arch re d d (HighOS)
state corruption ~ Functional simulation
to completion
FAULT MASKED »
by architecture App or OS Same Different
crash output output
Symptom l \

FAULT MASKED Silent data
corruption

detected
(maybe too late) by application

Figure 1. Outcomes of an injected fault. If the injected fault is
not detected within 10M instructions, the fault is simulated to
completion to identify its effect on the application’s outputs.

and Watchdog reset trap (thrown when no instruction retires in
the last 26 ticks). Using these traps as symptoms of hardware
faults requires no additional hardware overhead — in our proposed
framework, such a trap would simply invoke a firmware routine that
performs further diagnosis and recovery as needed (Section 3).

4.3.2 Abnormal application exit, indicated by the OS

Many application crashes are not visible through a hardware trap.
For example, since the SPARC TLB is software-managed, hard-
ware is unaware when the OS terminates an application due to a
segmentation fault. However, the OS clearly knows this outcome.
Similarly, an application may perform a graceful abort; e.g., it may
exit after checking that the divisor is zero or the argument to a
square root function is negative, or in general, after an assertion
fires. Again, hardware is not informed of this abort, but the OS
may know of the erroneous exit condition. In all of these cases, it is
possible to modify the OS to first invoke the firmware routine that
can diagnose the situation for a possible hardware fault and invoke
recovery if needed.

Our simulation infrastructure is not yet set up to directly catch
such OS invocations. Instead, for simulation purposes, once a state
corruption is detected, we look for the OS idle loop - this indicates
that the application was aborted as no other processes are running
in the simulated system. We flag such an entry into the idle loop as
a detected abnormal application exit (we verified that none of these
were normal application exits).

4.3.3 Hangs

Another possible abnormal behavior due to a fault is a hang in the
application or OS. Previous work has proposed hardware support
to detect hangs with high fidelity, but with some area and power
overhead [30]. Several optimizations to that work are possible. For
example, a detector based on a simpler heuristic can initially be
used (e.g., based on the frequency of branches) — if that heuristic is
satisfied, then a more complex mechanism involving hardware or
software can be invoked.

For our simulations, we use a heuristic based on monitoring
all executed branches. A table of counters, indexed by the PC of
the branch instruction, is accessed every time a branch is executed
and the corresponding counter is incremented. Once any counter
exceeds 100,000 (this implies the corresponding branch constitutes
1% of the total executed instructions), the detector flags a hang.
The hang is in the OS if the detector flags a privileged branch
instruction. We identified the threshold for flagging hangs through
profiling the fault-free executions of the applications and masking
out a handful of branches that did not satisfy this threshold. We
did not optimize the threshold or the heuristic further because our
results showed that hangs provided limited coverage.

4.3.4 High OS activity

An additional symptom we monitor is the amount of time the exe-
cution remains in the OS, without returning to the application. We
profiled our applications and found that in a typical invocation of
the OS, control returns back to the application after the OS exe-
cutes for a few 10s of instructions, since trap handling routines are
typically small pieces of code. We found two exceptions to this ob-
servation. First, on a timer interrupt after the allocated time quan-
tum for the application expires, the OS scheduler may execute for
much longer. Nevertheless, this duration did not exceed 10,000 in-
structions in any of our experiments, and we expect this number
to be relatively application-independent (so it can be easily deter-
mined by profiling the OS). Second, for system calls (e.g., I/O),
we observed that the OS may execute for much longer (10° or 10°
instructions) before returning to the application.

Thus, as a symptom of abnormal behavior, we look for a thresh-
old of over 30,000 contiguous OS instructions, excluding cases
where the OS is invoked via a system call trap. This threshold cor-
responds to a conservative latency which is 3 times the maximum
observed scheduler latency. This mechanism incurs low hardware
overhead since it primarily uses a hardware instruction counter and
can leverage already existing performance counters.

4.3.5 False positives

After a symptom is detected, if diagnosis (described in Section 3)
determines that the symptom was not caused by a hardware fault,
this symptom is deemed a false positive of the presence of a hard-
ware fault. In these cases, symptoms such as fatal traps and appli-
cation aborts are essentially software bugs and will simply be prop-
agated to the appropriate software layer as usual. The additional
diagnosis latency in these cases is acceptable since it is incurred in
the case of a fault, albeit in software.

However, for symptoms such as hangs and high OS activity, the
detection mechanisms themselves are prone to false positives as
they are based on heuristics. When the diagnosis determines that
one of these symptoms is determined to be a false positive of the
presence of a hardware fault, the execution will simply continue
(the diagnosis process may adjust the threshold for these detectors).
In this case, the diagnosis latency is an overhead for fault-free
execution and such cases must be reduced to an acceptable level.
In general, there is a tradeoff between how aggressive the symptom
detectors can get and the false positive rate.

4.4 Application Masking and Undetected Faults

A fault that corrupts the architectural state and does not invoke a de-
tectable symptom in the 10M instruction detailed simulation win-
dow may be benign if it is masked by the application. Our detection
mechanisms correctly do not detect such benign faults. To quantify
these cases, we use functional (full-system) simulation to run the
application to completion after 10M instructions (detailed simu-
lation is too slow to run to completion). Note that the functional
simulation does not inject any faults, and so the net effect for these
cases is similar to an intermittent fault that lasts 10M instructions.

At the end of functional simulation, there are three eventual
outcomes (for faults that are not architecturally masked or detected
within 10M instructions) — the fault is masked by the application,
causes a symptom with a latency >10M instructions, or results in
a silent data corruption. We determine that a fault is masked by
the application if the execution terminates gracefully and generates
an output matching that of a correct (fault-free) execution. On
the other hand, a fault could cause the application to abort or the
system to crash during the functional simulation. These faults are
categorized as symptom-causing faults with high latencies. Since
we do not know the latencies and they may (or may not) be too long
for recovery, we conservatively consider these faults as undetected

270

1009 2% 99% 95%84% 98%85% 96%82% 99%99% 95%95% 96%93% 45%18% 95%
o] == ™ m
80% A N
12} —
c
.S 60% L AN
= [
3
= 7
£ % - L
5 40% 4 | 2 e
o L [
e
20% A 88|
o R
0%
HERHERHERHEREERHEREERHERE
siB| (3|8 [sI2] |s18| [s(2] (|2 |518| |s|B| |g
alal |6lal |6lal |6lal |6lal [6lal |6lal |6lal |<
Decoder |INT ALU |[Reg Dbus| Intreg ROB RAT AGEN FPU Excl.
FPU
O Arch-Mask [App-Masked S FatalTrap-App [FatalTrap-OS [Abort-App

Hang-App B Hang-0S M High-0S [Symptom>10M ESDC

Figure 2. For each microarchitectural structure and fault
model, the figure shows the impact of the injected faults. An
injected fault may be masked by the architecture or the appli-
cation. An unmasked fault may result in a Fatal Trap (from
the application or the OS), Application Abort, Hang (of the
application or the OS), or High-OS symptom. An unmasked
fault not detected within 10M instructions is categorized as
either Symptom>10M if it eventually exhibits a symptom or
SDC if otherwise. The number above each bar is the coverage
of our symptom-based detection scheme, conservatively assum-
ing that the Symptom>10M faults are undetected. Our simple
detectors show high coverage for permanent faults with only
0.8% of the injected faults resulting in SDCs.

when computing coverage (Section 4.5). In the worst case, the
faulty execution terminates gracefully but generates a different
outcome than that of a correct execution. We refer to this as silent
data corruption or SDC.

4.5 Metrics

Coverage: The coverage of a detection mechanism is the percent-
age of non-masked faults it detects:

Total faults detected
Total injections — Masked faults

Coverage

where the Masked faults are faults masked by either the architecture
or the application.
Detection latency: We report fault detection latency as the total
number of instructions retired from the first architecture state cor-
ruption (of either OS or application) until the fault is detected.

As mentioned above, we consider only the faults that invoke
our symptoms within the 10M instructions of detailed simulation
as detected faults.

5. Results
5.1 How do Faults Manifest in Software?

We first show how the modeled permanent faults manifest in soft-
ware, and the feasibility of detecting them with our simple detec-
tion mechanisms.

5.1.1 Overall Results

Figure 2 shows how permanent faults manifest in software for a
given microarchitectural structure under each fault model. Stuck-
at-0 and stuck-at-1 fault injections are combined under the Stuck-at
bars and the dominant-O and dominant-1 bridging faults are com-
bined under the Bridging bars. The rightmost bar shows the average

data across all fault models in 7 of the 8 structures (excluding FPU).
In each bar, the bottom two stacks represent the percentage of fault
injections that are masked (by the architecture and the application,
respectively), while the top-most (black) stack is the percentage of
injections that result in SDCs. The Symptom>10M stack repre-
sents faults that result in symptoms (from either the application or
the OS) after the detailed simulation window of 10M instructions.

The remaining stacks represent injections detected within 10M
instructions using the symptoms discussed in Section 4.3. The fig-
ure separates the fatal hardware traps category into two, depend-
ing on whether the fatal trap was thrown by an application or OS
instruction (FatalTrap-App and FatalTrap-OS, respectively). Simi-
larly, it separates the hang category into Hang-App and Hang-OS,
depending on whether the hang detector saw a hang in the applica-
tion or OS code (determined by the privilege status of the instruc-
tions).

The number above each bar indicates the coverage for that struc-
ture under the given fault model. As mentioned in Section 4.4, we
conservatively assume that the Symptom>10M stack is undetected
for the coverage computation.

The key high-level results are:

e For the cases studied, permanent faults in most structures of
the processor are highly software visible. 95% of faults that are
not masked (except for the FPU) are detected using our simple
detection mechanisms, demonstrating the feasibility of using
high-level software symptoms to detect permanent hardware
faults.

e For the FPU, 65% of the activated faults are not detected, sug-
gesting that alternate techniques may be needed (e.g., redun-
dancy in space, time, or information) for the FPU.

e Many of the faults are detected when running the OS code (the
FatalTrap-OS, Abort-App, Hang-OS, and High-OS categories),
even though the fault-free applications themselves are not OS
intensive.

e The FatalTrap and High-OS categories make up the majority
of the detections (66% and 30% respectively of all detected
faults) while the Abort-App and Hang categories are the small-
est (<2% each).

e For the faults not detected within the 10M instruction win-
dow, except for FPU, only 0.8% of the original injections result
in silent data corruptions. The rest eventually lead to applica-
tion/OS crashes or are masked by the application.

The rest of this section provides deeper analysis to understand
the above results.

5.1.2 Analysis of Masked Faults

For stuck-at faults, Figure 2 shows a low architectural masking
rate for many structures. This is because the injected fault is a
permanent fault that potentially affects every instruction that uses
these faulty structures during its execution. Exceptions are the
integer register file, the RAT, and the FPU, where the architectural
masking rate for stuck-at faults is about 25% to 50%. Architectural
masking for an integer (physical) register occurs if it is not allocated
in the simulated window of 10M instructions. Similarly, a RAT
fault is masked if it affects the physical mapping of a logical register
that is not used in this window. The high FPU masking rate occurs
because of the integer applications.

Bridging faults also see the above phenomena for architectural
masking. Additionally, most structures on the 64 bit wide data path
(INT ALU, register DBus, integer register file, and AGEN) see a
significantly higher architectural masking rate for bridging faults
than for stuck-at faults. This difference stems from faults injected

271

100% 1

- Red_State_Exception
- Mem_Address_Not_Aligned

- Watchdog_Reset
- lllegal_Instruction
80% D0S-Other
@ App - Mem_Address_Not_Aligned
App - Watchdog_Reset

App - lllegal_Instruction

60% < E App - Other

Total injections

40% 4

20% 4

0% <

T T T
Decoder INTALU RegDbus Intreg ROB

AGEN

FPU

Figure 3. Distribution of detections by fatal traps. The Other
category constitutes Data Access Exception, Protection Viola-
tion and Division by Zero traps, which make <8% of detec-
tions by fatal traps. The total height of a bar is the percentage
of the total faults in the corresponding structure that caused
fatal hardware traps.

in the upper 32 bits of the 64 bit fields (roughly half of total fault
injections in those structures). Since many computations only use
the lower 32 bits, the higher order bits are primarily sign extensions,
with either all Os (for positive numbers) or all 1s (for negative
numbers). In either case, since adjacent bits are identical, bridging
faults are rarely activated for higher order bits, resulting in a higher
masking rate for these faults.

Relative to architectural masking, application masking is small
but significant (6% of total injections). Many of these cases stem
from faults injected in the higher order bits of the 64 bit data
path — in some cases, these appear as architecture state corruptions
(because the full 64 bit field is examined), but are actually masked
at the application level due to smaller program level data sizes.
These faults illustrate a benefit of our symptom-based detection
approach since these benign faults are correctly ignored by our
detectors.

5.1.3 Analysis of Detected Faults

Unmasked faults in many structures are highly visible as they are
permanent in nature and are highly intrusive to the program’s exe-
cution. Consequently, they often directly affect the control flow and
memory access behavior of the program, which leads to detectable
abnormal program behavior.

Large number of detections in the OS.

Surprisingly, in spite of the low OS activity for the fault-
free runs of the simulated benchmarks, over 65% of the detected
faults are detected through symptoms from the OS (Abort-App,
FatalTrap-OS, Hang-OS and High-OS). Although the injected fault
first corrupts the application, a common result of the fault is a
memory access to an incorrectly generated virtual address. Since
the address has not been accessed in the past, it invokes a TLB miss
that would not have otherwise occurred. Because the SPARC TLB
is software managed, this results in a trap invoking the OS. As the
OS is executing on the same faulty hardware and, in general, is
more control and memory intensive, the fault often will corrupt the
OS state and result in a detectable symptom.

Fatal Hardware Traps.

66% of the fault detections are from fatal hardware traps. Fig-
ure 3 shows the distribution of the different types of these fatal
traps. The height of a bar is the percentage of fault injections in the

corresponding structure that causes fatal traps. Fatal traps caused
by the application are shown in the bottom (hatched portions) and
those caused by the OS are shown on top (non-hatched portions).

lllegal instruction traps result when a fault changes the opcode
bit in the instruction to an illegal opcode. As expected, these traps
result mostly for decoder faults. However, they account for <16%
of the fatal traps seen on decoder faults. This is because many in-
jected faults in the instruction word either do not affect the opcode
bits, or when they do affect opcode bits, they change the instruction
into another valid instruction.

The watchdog timer reset trap is thrown when no instruction re-
tires for more than 2'¢ ticks. These mostly occur in the ROB and
RAT (over 90% and 59% of detected faults, respectively). ROB
faults may change an instruction’s source or destination register.
If the source is changed to a free physical register, the instruction
waits for data indefinitely. If the destination is changed, the depen-
dent instructions indefinitely wait for their source operand. Faults
in the RAT could also cause similar behavior. For example, the
corrupted logical-to-physical register mapping could result in map-
ping a non-free physical register (say pregas). Now that pregss is
mapped to two logical registers (say r2 and r5), any subsequent in-
struction that writes to r2 (r5) will free pregss and instructions that
read r5 (r2) wait for pregas indefinitely (since pregas is freed and
marked not ready). However, since the ROB is a circular buffer and
is heavily used, faults in the ROB are highly intrusive, frequently
resulting in this trap. The RAT, however, is an array structure, some
entries of which are never used in the simulated execution window.
Hence, the number of such resulting watchdog timer reset traps are
fewer from the RAT than from the ROB.

Misaligned accesses are common in all structures, accounting
for over 44% of all the fatal traps thrown. Faults in most structures
naturally affect the computation of memory addresses (e.g., all
cases where a fault may affect the data or identity of a register used
to compute an address). This often results in misaligned addresses,
causing a misaligned access trap (Solaris requires addresses to be
word aligned).

Red state exception is thrown when there are too many nested
traps. The SPARC V9 architecture throws this exception when a
trap at (maximum_trap_level - 1) occurs. The simulated processor
has a maximum_trap_level of 5; i.e., at most four nested traps are al-
lowed. This fatal trap situation constitutes roughly 15% of the fatal
traps. The injected fault results in invoking the OS through a trap.
When this trap handler executes, it re-activates the fault resulting
in a nested trap, eventually leading to a RED state exception.

High OS.

The High-OS symptom has the next highest detection coverage
after fatal traps (30%). In the majority of these cases, the applica-
tion computes a faulty address invoking the OS on a TLB miss. The
persistent hardware fault corrupts the TLB handler, resulting in the
code never returning to the application.

This symptom has significant coverage overlap with fatal traps
and hangs — removing this detector reduces the total coverage for
all structures except FPU by about 15% (instead of the 30% if there
were no overlap). This is because most of these cases eventually
also lead to fatal traps and hangs. However, even for these cases,
detection using the High-OS symptom significantly brings down
detection latency (Section 5.3).

Hangs and application aborts.

The Abort-App symptom provides only 1% coverage. However,
for the FPU, this symptom detects a high fraction of the detected
faults (66%). In these cases, the application performs an illegal
operation due to the injected fault (e.g., square root of a negative
number), which causes the application to abort.

Hangs account for less than 3% coverage, with practically all
hangs in the application code. An example of a hang is when a loop

272

100% 1 ENone
W System and maybe app

App-only

80%

60% -

ions

40%

Total Inject

20% 1 1

0% -

[=

Decoder
INT ALU \
Reg Dbus |
Int re:

Figure 4. Application and system state integrity for the de-
tected faults. The height of each bar gives the percentage of in-
jected faults detected in that structure. We see that most faults
corrupt the system state.

index variable is computed erroneously and the loop termination
condition is never satisfied. While some hangs may result from the
OS, the High OS symptom catches these before the hang detector
can identify them as hangs. Thus, without the High-OS detector,
hangs would provide higher coverage (but at a higher latency).

5.1.4 Analysis of Undetected Faults

Faults that are not masked and are not detected within the 10M
instruction window of detailed simulation are divided into two cat-
egories — those that invoke a detectable symptom in the functional
simulation portion of the execution (Symptom>10M) and those
that terminate gracefully with a wrong output or silent data cor-
ruption (SDC). The detection latency for the former class of faults
may or may not be short enough for full recovery (e.g., by rolling
back to a software checkpoint). Nevertheless, eventual detection is
better than the latter class of SDC-causing faults.

Figure 2 shows that for faults in all structures but the FPU, only
0.8% of the injected faults result in SDCs. This is a rather low num-
ber given our simple fault detectors, and shows that our symptom-
based detection techniques are effective for these structures. Sec-
tion 6 describes future work on more sophisticated symptom detec-
tion that has the potential to reduce this number even further.

For the FPU, 10% of the injected faults result in SDCs, largely
because FPU computations less frequently affect memory ad-
dresses or program control (which are most responsible for de-
tectable symptoms). Thus, our results show that the FPU requires
alternate (potentially higher overhead) mechanisms to our simple
symptom-based detectors. Section 6 discusses this further.

5.2 Software Components Corrupted

We next focus on understanding which software components (ap-
plication or OS) are corrupted before a fault is detected (within the
10M instruction window of detailed simulation). This has clear im-
plications for recovery. If only the application state is corrupted,
it can likely be recovered through application-level checkpointing
(for which there is a rich body of literature). However, OS state
corruptions can potentially be difficult — software-driven OS check-
pointing has been proposed only for a virtual machine approach so
far [10] and the feasibility of hardware checkpointing would de-
pend on detection latency.

For each structure, Figure 4 shows the percentage of fault in-
jections that resulted in only application state corruption, OS (and

m>1M
N<1M
% < 500k
H< 100k
B < 50k
O< 10k
H<1k

100% 4

80%

Y

60%

-
G

40%

2222222

Total Injections

20%

0% -

INT ALU
eg Dbus
Int reg
ROB
RAT
AGEN

P
(7}
°
[<]
o
3
[=]

[
(a) Total number of instructions retired
from application state corruption to detection

100% 4

Total Injections

m>1M
N<1M
% < 500k
H < 100k
H < 50k
O< 10k
H<1k

80%

60%

40%

20%

0% -

Decoder
INT ALU
eg Dbus
Int reg
ROB
RAT
AGEN
FP ALU

o
(b) Number of privileged instructions retired
from OS state corruption to detection

Figure 5. Detection latencies for different structures, measured from (a) the first application state corruption and (b) the first OS
state corruption. The latency is within 100K for 86% of the detected application state corruptions and for virtually all OS state
corruptions, making hardware recovery feasible for the OS and for most application corruptions.

possibly application) state corruption, and corruption of neither the
application nor the OS. The total height of each bar gives the per-
centage of faults injected into the given structure that resulted in a
detected symptom.

Our main result here is that over 65% of detected faults corrupt
OS state before detection, motivating exploration of checkpointing
the OS and/or fault-tolerant strategies within the OS.

We note that whether the application/OS state was corrupted is
not necessarily correlated with whether the fault was detected at an
application/OS instruction (discussed in Section 5.1). A fault could
be detected at an OS instruction, but may have already corrupted
the application state. Similarly, a fault could be detected in applica-
tion code, but meanwhile the application may have invoked the OS
resulting in a (so far undetected) corruption in the OS state.

Additionally, there are a few detected fault cases where neither
the application nor the OS state is corrupted (58% of detected faults
in the ROB and 2% in the RAT). In all of these cases, the faults
cause watchdog reset fatal traps to be thrown — the instruction at the
head of the ROB never retires because its source physical register
(say pregreaqd) never becomes available. These cases usually in-
volve fairly complex interactions involving the ROB and the RAT.
For example, consider a fault in the ROB that corrupts the des-
tination field of a prior instruction that was supposed to write to
Pregread. Because of the fault, the prior instruction writes to an-
other physical register and never sets pregheqq as available. If the
corrupted destination was previously free, then this does not cor-
rupt the architectural state (our implementation of register renam-
ing records the corrupted destination name in the retirement RAT
(RRAT) when the corrupted instruction retires, thereby preserving
the architectural state).

5.3 Detection Latency

Detection latency is a crucial parameter since it affects the check-
pointing and recovery mechanisms. Specifically, it affects the
checkpointing interval, the amount of state that needs to be pre-
served for a checkpoint, and the cost of recovery. Small latencies
allow the use of frequent but efficient hardware checkpoints and
fast and complete recovery for both the application and the OS.
Large detection latencies potentially require (infrequent) software

273

checkpointing, longer restart on recovery, and dealing with the in-
put and output commit problems which could thwart full recovery.
We study the detection latencies for OS corruptions separately
from application corruptions because the two entail different trade-
offs. Software checkpointing of the OS is difficult and so far has
only been proposed for a virtual machine approach [10]. There-
fore, short detection latencies coupled with hardware support for
checkpointing are likely to be more effective for OS recovery.

5.3.1 Latency from Application State Corruptions

For each structure, Figure 5(a) shows histogram data for detection
latencies for fault injections that result in corrupting the applica-
tion state. The latency is measured in terms of the number of re-
tired instructions from the first application architecture state cor-
ruption to detection. The total height of each bar is the percent-
age of fault injections that corrupted the architecture state and were
detected for that structure (within the 10M instruction window).
Overall, about 39% of the detected faults that corrupt application
architecture state have a latency of <1K instructions. These cases
can be easily handled with simple hardware checkpoint and recov-
ery techniques [42]. Further, 86% of the cases have a detection la-
tency of <100K instructions (s range for GHz processors). These
cases can also be handled in hardware, albeit with more sophisti-
cated support; e.g., SafetyNet supports multiple checkpoints with a
checkpoint interval of 100K cycles [43]). Further, simple buffering
can be used to replay persistent state output and input to solve the
input/output commit problem.

On the other hand, the remaining application state corruptions
(with detection latencies reaching millions of instructions) are cur-
rently infeasible for hardware recovery and will likely require soft-
ware checkpointing techniques. These cases require considering a
trade-off between complete recovery by buffering persistent state
outputs and inputs for 100K to 10 million instructions (few 100’s
of microseconds to milliseconds for GHz processors) or risking
incomplete recovery while immediately committing external out-
puts. Nonetheless, milliseconds of delay for many output opera-
tions (e.g., disks) do not violate software semantics and so should
not pose a problem.

Hence, when the underlying hardware fault corrupts only the
application, hardware- and/or software-level checkpoint and recov-

60%

50% 5

40%

jections

30%

Total In|

20%

10%

0%

Figure 6. Number of times the OS-Application boundary is
crossed from the first OS architecture state corruption to de-
tection, for different detection latencies.

ery methods can be exploited, depending on the type of coverage
vs. overhead trade-off desired.

5.3.2 Latency from OS State Corruptions

Figure 5(b) shows histograms of detection latency from OS state
corruptions, measured as the number of OS instructions retired
from the first OS architectural state corruption to detection. This
is sufficient because an OS checkpoint/recovery mechanism need
only keep track of OS instructions since applications cannot di-
rectly affect OS state.

The figure shows that over 42% of the detected faults in all
structures are detected within 1K OS instructions, and virtually
all (over 99%) are detected within 100K OS instructions. Thus,
hardware checkpoint/recovery schemes (e.g., as in [29, 43]) can
provide efficient OS recovery for our framework.

Finally, while the number of OS instructions is a good metric
for guiding the design of an OS checkpointing scheme, the number
of switches between the application’s execution and the OS execu-
tion within this interval governs the complexity of the OS recovery
schemes. Figure 6 shows the histogram of the number of times the
Application-OS boundary is crossed from the OS state corruption
to detection. 80% of the detected OS corruptions were detected be-
fore the OS switched back to the application (zero crossings), sug-
gesting that a naive checkpointing scheme that does not consider
OS to application switches can provide system recovery for a large
fraction of the cases once the fault is detected. Additionally, check-
point/recovery hardware that handles a small number of OS-App
crossings (<10) can recover the system in most (92%) cases.

5.4 Transient Faults

For our transient fault injection experiments, we found that over
94% of the faults are architecturally masked within the 10M in-
struction window. Of the remaining faults, 56% are detected within
the 10M instruction window. We then simulated the rest of the cases
to completion. 47% of these cases are masked by the application
(bringing the overall masking rate to 96%) and 49% eventually
raise detectable symptoms before termination. Overall, only 0.1%
of the total injections result in SDCs. These results are consistent
with previous studies [39, 49], and have the same implications for
our approach as the results with permanent faults.

274

6. Implications for Resilient System Design

The findings in this paper provide several new and concrete guide-
lines for low-cost resilient system design.

Detection. Our results unequivocally show that for most mi-
croarchitectural structures, a large majority of permanent faults that
propagate to software are detectable through low-cost monitoring
of simple symptoms — 7 of 8 structures showed 95% coverage with
detailed simulation spanning 10M instructions, and only 0.8% of
injected faults result in Silent Data Corruptions (SDCs) (after run-
ning the applications to completion). The most powerful symptoms
were fatal hardware traps (needing zero hardware cost) and high OS
activity (needing a simple instruction counter). Further coverage
was achieved with a hang detector (needing modest hardware sup-
port) and through detecting application aborts (needing very simple
software support). These detection strategies would also be useful
to detect software bugs.

The coverage and latency of our detection schemes are likely to
improve further by using more sophisticated detectors. One power-
ful method is the use of program invariants, which have been previ-
ously studied for both (transient) hardware error detection [31, 33]
and software bug detection and diagnosis [15, 21, 51]. To this end,
we conducted preliminary experiments using sophisticated detec-
tors derived from value-based invariants. We considered simple
range-based invariants on integer function return values and val-
ues of integer loads and stores (i.e., invariants that specify con-
stant upper and lower bounds on these values) and used the LLVM
compiler infrastructure [19] to insert these invariants into the code.
These experiments were done for three benchmarks: mcf, gzip and
twolf. The results showed that value-based invariants significantly
strengthened our detection scheme by improving coverage, short-
ening the detection latency for a majority of the faults, and (most
importantly) eliminating all but one of the SDC cases for these 3
benchmarks. These results are encouraging for using more sophis-
ticated symptoms when additional fault coverage is required by cer-
tain classes of applications.

Finally, for some structures like the FPU where faults were
largely undetected, we will explore the alternatives above and clas-
sical mechanisms (e.g., residue codes, space/time redundancy).

Recovery and diagnosis. The relatively low detection latencies
shown here facilitate checkpoint/replay based recovery and diag-
nosis. A specific challenge is the recoverability of the OS. Our re-
sults show that even for SPEC applications, which have low OS
activity in fault-free runs, a large fraction of the faults corrupt the
OS; therefore, much care is needed to make our system recoverable
from OS failures. At the same time, we also see that the number of
OS instructions executed from the time that the OS state is actually
corrupted to the time of detection is less than 100K in virtually
all cases. These results suggest that hardware checkpoint/replay
techniques, such as ReVive [29] and SafetyNet [43] may be ad-
equate for OS recovery, in terms of hardware state required, per-
formance overhead, and simple solutions to the input and output
commit problems.

For application recovery/replay, we find that detection latency
is within the hardware recovery window for 86% of the cases. The
higher latency cases need to be handled using software checkpoint-
ing, with an application specific trade-off between buffering persis-
tent outputs/inputs (for ms) and full application recovery.

Other future work. Besides exploring the system implications
mentioned above, we plan to refine the fault models used here,
including studying intermittents and validating our insights with
lower level simulators. We also plan to explore more OS intensive
workloads, e.g., transaction processing and web servers.

Acknowledgments

We would like to thank Pradip Bose from IBM and Subhasish Mitra
from Stanford University for many discussions on this work and
insightful comments on previous versions of this paper. We also
thank Ulya Karpuzcu for help with our simulation infrastructure.

References

[1] J. Arlat et al. Fault Injection and Dependability Evaluation of Fault-
Tolerant Systems. /[EEE Computer, 42(8), 1993.

[2] Todd M. Austin. DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design. In International Symposium on Microar-
chitecture (MICRO), 1998.

[3] David Bernick et al. NonStop Advanced Architecture. In Inter-
national Conference on Dependable Systems and Networks (DSN),
2005.

[4] Shekhar Borkar. Designing Reliable Systems from Unreliable Com-
ponents: The Challenges of Transistor Variability and Degradation.
1EEE Micro, 25(6), 2005.

[5] Shekhar Borkar. Microarchitecture and Design Challenges for Gigas-
cale Integration. In International Symposium on Microarchitecture
(MICRO), 2005. Keynote Address.

[6] Fred Bower et al. A Mechanism for Online Diagnosis of Hard Faults
in Microprocessors. In International Symposium on Microarchitec-
ture (MICRO), 2005.

Fred A. Bower et al. Tolerating Hard Faults in Microprocessor Array
Structures. In International Conference on Dependable Systems and
Networks (DSN), 2004.

Kypros Constantinides et al. Software-Based On-Line Detection
of Hardware Defects: Mechanisms, Architectural Support, and
Evaluation. In International Symposium on Microarchitecture
(MICRO), 2007.

Edward W. Czeck and Daniel P. Siewiorek. Effects of Transient
Gate-Level Faults on Program Behavior. In International Symposium
on Fault-Tolerant Computing (FTCS), 1990.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Symposium on Operating
Systems Design and Implmentation (OSDI), 2002.

[7

—

[8

[t}

[9

—

[10]

[11] Michael D. Ernst et al. The Daikon System for Dynamic Detection of

Likely Invariants. Science of Computer Programming, 2007.

[12] O. Goloubeva et al. Soft-Error Detection Using Control Flow
Assertions. In Proc. of 18th IEEE Intl. Symp. on Defect and Fault
Tolerance in VLSI Systems, 2003.

[13] Mohamed Gomaa et al. Transient-Fault Recovery for Chip Multi-
processors. In International Symposium on Computer Architecture
(ISCA), 2003.

[14] Weining Gu et al. Error Sensitivity of the Linux Kernel Executing on
PowerPC G4 and Pentium 4 Processors. In International Conference
on Dependable Systems and Networks (DSN), 2004.

[15] Sudheendra Hangal and Monica S. Lam. Tracking Down Software
Bugs Using Automatic Anomaly Detection. In International
Conference on Software Engineering (ICSE), May 2002.

[16] Mei-Chen Hsueh et al. Fault Injection Techniques and Tools. /EEE
Computer, 30(4), 1997.

[17] G. Kanawati et al. FERRARI: A Flexible Software-based Fault and
Error Injection System. IEEE Computer, 44(2), 1995.

[18] Hue-Sung Kim, Arun K. Somani, and Akhilesh Tyagi. A Reconfig-
urable Multi-function Computing Cache Architecture. In Interna-
tional Symposium on Field Programmable Gate Arrays, 2000.

[19] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework

for Lifelong Program Analysis and Transformation. In Proc. Int’l
Symposium on Code Generation and Optimization (CGO), 2004.

275

[20] X. Li, S. V. Adve, P. Bose, and J. A. Rivers. SoftArch: An
Architecture-Level Tool for Modeling and Analyzing Soft Errors.
In International Conference on Dependable Systems and Networks
(DSN), June 2005.

Ben Liblit, Mayur Naik, Alice Zheng, Alex Aiken, and Micael Jordan.
Scalable Statistical Bug Isolation. In Conference on Programming
Language Design and Implementation (PLDI), 2005.

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO:
Detecting Atomicity Violations via Access Interleaving Invariants. In
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2006.

Milo Martin et al. Multifacet’s General Execution-Driven Multipro-
cessor Simulator (GEMS) Toolset. SIGARCH Computer Architecture
News, 33(4), 2005.

Carl J. Mauer, Mark D. Hill, and David A. Wood. Full-System
Timing-First Simulation. SIGMETRICS Performance Evaluation
Rev., 30(1), 2002.

Albert Meixner, Michael E. Bauer, and Daniel Sorin. Argus:
Low-Cost, Comprehensive Error Detection in Simple Cores. In
International Symposium on Microarchitecture (MICRO), 2007.

(21]

(22]

(23]

[24]

(25]

[26] Albert Meixner and Daniel Sorin. Error Detection Using Dynamic
Dataflow Verification. In Parallel Architecture and Compilation

Techniques (PACT), 2007.

[27] M. Mueller et al. RAS Strategy for IBM S/390 G5 and G6. IBM
Journal on Research and Development, 43(5/6), Sept/Nov 1999.

[28] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K.
Reinhardt, and Todd Austin. A Systematic Methodology to Compute
the Architectural Vulnerability Factors for a High-Performance
Microprocessor. In International Symposium on Microarchitecture
(MICRO), 2003.

Jun Nakano et al. ReVivel/O: Efficient Handling of I/O in Highly-
Available Rollback-Recovery Servers. In International Symposium
on High Performance Computer Architecture (HPCA), 2006.

Nithin Nakka et al. An Architectural Framework for Detecting
Process Hangs/Crashes. In European Dependable Computing
Conference (EDCC), 2005.

Karthik Pattabiraman et al. Dynamic Derivation of Application-
Specific Error Detectors and their Implementation in Hardware. In
European Dependable Computing Conference, 2006.

[29]

(30]

[31]

[32] Milos Prvulovic et al. ReVive: Cost-Effective Architectural Support
for Rollback Recovery in Shared-Memory Multiprocessors. In

International Symposium on Computer Architecture (ISCA), 2002.

[33] Paul Racunas et al. Perturbation-based Fault Screening. In Inter-
national Symposium on High Performance Computer Architecture
(HPCA), 2007.

[34] V. Reddy et al. Assertion-Based Microarchitecture Design for
Improved Fault Tolerance. In International Conference on Computer
Design , 2006.

[35] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient
Fault Detection via Simultaneous Multithreading. In International
Symposium on Computer Architecture (ISCA), 2000.

[36] George A. Reis et al. Software-Controlled Fault Tolerance. ACM
Transactions on Architectural Code Optimization, 2(4), 2005.

[37] R. Rodriguez et al. Modeling and Experimental Verification of the
Effect of Gate Oxide Breakdown on CMOS Inverters. In International
Reliability Physics Symposium (IRPS), 2003.

[38] Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors. In International Symposium on Fault-
Tolerant Computing (FTCS), 1999.

[39] Giacinto P. Saggese et al. An Experimental Study of Soft Errors in
Microprocessors. IEEE Micro, 25(6), 2005.

[40] Design Panel, SELSE II - Reverie, 2006. http://www.selse.org/
selse2.org/recap.pdf.

[41]

[42]

[43]

[44]

[45]

[40]

Smitha Shyam et al. Ultra Low-Cost Defect Protection for Micro-
processor Pipelines. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 2006.

Daniel Sorin et al. Fast Checkpoint/Recovery to Support Kilo-
Instruction Speculation and Hardware Fault Tolerance. Technical
Report 1420, Computer Sciences Department, University of Wiscon-
sin, Madison, 2000.

Daniel Sorin et al. SafetyNet: Improving the Availability of Shared
Memory Multiprocessors with Global Checkpoint/Recovery. In
International Symposium on Computer Architecture (ISCA), 2002.

Jayanth Srinivasan et al. The Impact of Scaling on Processor Lifetime
Reliability. In International Conference on Dependable Systems and
Networks (DSN), 2004.

Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews,
and Yuanyuan Zhou. Flashback: A Lightweight Extension for
Rollback and Deterministic Replay for Software Debugging. In
USENIX Annual Technical Conference, General Track, pages 29-44,
2004.

Rajesh Venkatasubramanian et al. Low-Cost On-Line Fault Detection
Using Control Flow Assertions. In International On-Line Test
Symposium, 2003.

276

(471

[48]

[49]

(50]

[51]

[52]

(53]

Virtutech. Simics Full System Simulator. Website, 2006. http:
//www.simics.net.

Nicholas Wang et al. Characterizing the Effects of Transient Faults on
a High-Performance Processor Pipeline. In International Conference
on Dependable Systems and Networks (DSN), 2004.

N.J. Wang and S.J. Patel. ReStore: Symptom-Based Soft Error
Detection in Microprocessors. IEEE Transactions on Dependable
and Secure Computing, 3(3), July-Sept 2006.

David Yen. Chip Multithreading Processors Enable Reliable
High Throughput Computing. In International Reliability Physics
Symposium (IRPS), 2005. Keynote Address.

Pin Zhou, Wei Liu, Fei Long, Shan Lu, Feng Qin, Yuanyuan Zhou,
Sam Midkiff, and Josep Torrellas. AccMon: Automatically Detecting
Memory-Related Bugs via Program Counter-based Invariants. In
International Symposium on Microarchitecture (MICRO), 2004.

Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.
iWatcher: Simple, General Architectural Support for Software
Debugging. IEEE Micro Special Issue: Micro’s Top Picks from
Computer Architecture Conferences, 2004.

Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. HARD: Hardware-
Assisted Lockset-based Race Detection. In International Symposium
on High Performance Computer Architecture (HPCA), 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

