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Abstract:

Security vulnerabilities are software bugs that are exploited by an attacker. Systems software
is at high risk of exploitation: attackers commonly exploit security vulnerabilities to gain control
over a system, remotely, over the internet. Bug-checking tools have been used with fair suc-
cess in recent years to automatically find bugs in software. However, for finding software bugs
that can cause security vulnerabilities, a bug checking tool must determine whether the soft-
ware bug can be controlled by user-input.

In this paper we introduce a static program analysis for computing user-input dependencies.
This analysis is used as a pre-processing filter to our static bug checking tool, currently under
development, to identify bugs that can be exploited as security vulnerabilities. Runtime speed
and scalability of the user-input dependence analysis is of key importance if the analysis is
used for large commercial systems software.

Our user-input dependency analysis takes both data and control dependencies into account.
We extend Static Single Assignment (SSA) form by augmenting phi-nodes with control depen-
dencies of its arguments. A formal definition of user-input dependency is expressed in a data-
flow analysis framework as a Meet-Over-all-Paths (MOP) solution. We reduce the equation
system to a sparse equation system exploiting the properties of SSA. The sparse equation
system is solved as a reachability problem that results in a fast algorithm for computing user-
input dependencies. We have implemented a call-insensitive and a call-sensitive version of the
analysis. The paper compares their efficiency and effectiveness for various systems codes.
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Abstract. Security vulnerabilities are software bugs that can be exploited
by an attacker. Systems software is at high risk of exploitation: attackers
commonly exploit security vulnerabilities to gain control over a system, re-
motely, over the internet. Bug-checking tools have been used with fair success
in recent years to automatically find bugs in software. However, for finding
software bugs that can cause security vulnerabilities, a bug checking tool
must determine whether the software bug can be controlled by user-input.

In this paper we introduce a static program analysis for computing user-
input dependencies. This analysis is used as a pre-processing filter to our
static bug checking tool, currently under development, to identify bugs that
can be exploited as security vulnerabilities. Runtime speed and scalability
of the user-input dependence analysis is of key importance if the analysis is
used for large commercial systems software.

Our user-input dependency analysis takes both data and control depen-
dencies into account. We extend Static Single Assignment (SSA) form by
augmenting phi-nodes with the control dependencies of their arguments. A
formal definition of user-input dependency is expressed in a dataflow anal-
ysis framework as a Meet-Over-all-Paths (MOP) solution. We reduce the
equation system to a sparse equation system exploiting the properties of
SSA. The sparse equation system is solved as a reachability problem that
results in a fast algorithm for computing user-input dependencies. We have
implemented a call-insensitive and a call-sensitive version of the analysis.
The paper compares their efficiency and effectiveness for various systems
applications.

1 Introduction

Systems software is at high risk of exploitation. A security vulnerability is a software
bug that can be exploited by malicious input to gain control over a system. Worms,
including the Microsoft SQL server Slammer [1] and the Sun Telnet worm [2], exploit
security vulnerabilities in software and can compromise hundreds of thousands of
computers in the Internet within minutes, causing millions of dollars damage. Man-
ual code inspection is current industry practice to find security vulnerabilities in
code. An auditor analyzes the code for bugs that can be controlled by user-input.
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These inspections are time-consuming, repetitive and tedious. In recent years, bug
checking tools that use static program analysis have successfully found bugs in soft-
ware [3–7]. For classifying bugs as potential security vulnerabilities, a bug checking
tool needs to test whether a detected bug is dependent on user-input.

The dynamic scripting language Perl [8] implements a user-input dependence test
as a security feature called taint mode. Data from an untrusted source is tracked
and marked as “tainted”, dynamically, as the program is executed. A variable on
the left-hand side of an assignment becomes tainted if there is a tainted value on
the right-hand side, i.e., the variable on the left-hand side is data dependent on
the variables on the right-hand side. At runtime Perl checks the arguments of a
system call. If the arguments are tainted, a security error is raised. In Perl’s taint
mode, data dependencies are considered but control dependencies are not taken into
account. However, data dependencies are insufficient to track data from an untrusted
source. For example, the Perl program $a=<>;$b=$a;system("echo $b"); reads in
a value, stores the value in $a, assigns the value of $a to $b, and outputs the content
of variable $b. If this program is executed in taint mode, variable $b becomes tainted
and the program terminates with an “insecure” error. Let’s assume that variable $a
can only read the values 0 and 1. Then, the statement $b=$a; can be rewritten to
if($a==1){$b=1;}else{$b=0;} and Perl’s taint mode cannot capture this implicit
data dependency.

Static program analysis has been used to compute user-input dependencies for
security vulnerabilities [9, 10]. The advantage of static program analysis is that it can
take control dependencies into account and the analysis can consider all paths in the
program, not just those paths exercised at run-time. In this paper we propose a new
static program analysis technique for locating user-input dependencies in programs
based on SSA form [11]. This analysis is used as a pre-processing pass to our static
bug checking tool for finding the relevant statements in a program that are prone
for vulnerabilities. Runtime speed and scalability of the analysis is of importance
when used for large commercial systems software. The contributions of this work
are as follows: (1) the solution of user-input dependency as a Meet Over all Paths
problem, (2) the introduction of Augmented Static Single Assignment (aSSA) form,
that makes control dependencies upon the values in phi-nodes explicit, and (3) a
fast algorithm for computing user-input dependencies that reduces the data flow
equation system to a sparse equation system that is solved via a graph reachability
problem in a rooted directed graph, and (4) an inter-procedural call-sensitive and
call-insensitive extension of the analysis.

The rest of this paper is organized as follows. Sec. 2 demonstrates our approach
based on a motivating example, Sec. 3 introduces the notation used throughout the
paper, Sec. 4 presents the user-input dependence analysis, and Sec. 5 describes the
implementation and the experiments. In Sec. 6 we survey related work. In the last
section we draw our conclusions.
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2 Motivating Example

To illustrate our approach to user-input dependence analysis, we present the C-code
fragment for copy to utf in Fig. 1(a), a function that copies a character-string to a
Unicode Transformation Format (UTF) array. The function declares two character
arrays x and y of the same fixed size (BUFSIZ). The variable n has value zero before
entering the code fragment and is passed on to the function in(). Function in()

reads a single character from standard input. If the character is a digit, then the
value of the character will be added to argument a and returned by the function in.
The result of in() is assigned to variable n and checked to be greater than 0. Inside
the then-branch, the for-loop controls variable i that ranges from 0 to n-1. Inside
the loop body, the content of array x is copied to array y, character by character,
with an interleaving 0, creating the UTF representation of the character.

In the example, a buffer overflow may occur on line 13 if the length of array
y is too small to hold twice the number of characters of array x, i.e., when index
j is greater or equal to BUFSIZ—the size of array y. Index j is control dependent
on variable n, which in turn is dependent on the result of function in(). In the
in() function, the return value of the library function getchar is user-input de-
pendent because the user provides the input. Hence, the result of the function in()

is dependent on user-input. The buffer overflow poses a potential security vulnera-
bility because it can be exercised via user-input. In the example, a read outside

the bounds of an array may occur in line 14 if the index i is greater or equal
to BUFSIZ—the size of array x. Since i is dependent on user-input, it too poses a
potential security vulnerability.

The aSSA form of our motivating example is given in Fig. 1(b). All variables
have a single assignment, higher-level control-flow constructs are reduced to if-gotos,
and at confluence points we introduce augmented phi-nodes which incorporate both
control and data dependencies (see Sec. 4). Note that the example makes use of load
and store instructions to denote the load of a value from memory and a store of a
value to memory, including all address computation that needs to be performed to
reach the particular memory location of interest.

To intuitively illustrate the augmented phi-nodes, consider the assignments to
i1 and j1. Both nodes are augmented phi-nodes that decide whether the variable
values are taken from inside or outside the loop depending on predicate p1. Note
that predicate p0 of the outer if-statement is not involved in the selection, though
both statements are only executable if p0 holds. Similarly, the augmented phi-node
a2 selects between the value a0 and a1 depending on predicate p2.

We map the user-input dependency test to a graph reachability problem in a
rooted directed graph. The graph reachability problem checks whether there exists
a path from the root node to a node in the graph. A simple graph traversal can com-
pute this problem in O(n+m) where n is the number of nodes and m is the number
of edges in the directed graph. Nodes in the reachability graph represent results of
instructions (i.e., local variables in SSA form), functions, function arguments, and
global variables. The root node is special and represents input that is controlled
by the user. Edges in the rooted directed graph represent either data or control
dependencies between the nodes. If a node is reachable from the root node, the user
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1 void copy_to_utf()

2 {

3 int n,

4 i,

5 j;

6 char x[BUFSIZ],

7 y[BUFSIZ];

8 ...

9 n = in(n);

10 if (n > 0) {

11 j = 0;

12 for (i=0;i<n;i++){

13 y[j++] = x[i];

14 y[j++] = 0;

15 }

16 }

17 ...

18 }

19 int in(int a)

20 {

21 int c = getchar();

22 if (isdigit(c)) {

23 a = a + c - ’0’;

24 }

25 return a;

26 }

...

n1:=in(n0);

p0:=(n1>0);

if(¬p0) goto ex;

j0:=0;

i0:=0;

for: i1:=φ
′(i0,i2;p1);

j1:=φ
′(j0,j3;p1);

p1:=(i1<n1);

if(¬p1) goto ex;

t0:=load x(i1);

store y(j1),t0;

j2:=j1+1;

store y(j2),0;

j3:=j2+1;

i2:=i1+1;

goto for;

ex: ...

int in(int a0){

c0:=getchar();

p2:=isdigit(c0);

if(¬p2) goto br;

a1:=a0+c0-10;

br: a2:=φ
′(a0,a1;p2);

return a2;

}
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(a) Input Program (b) aSSA (c) Reachability Graph

Fig. 1. Motivating example

may control the value of the node and the value becomes user-input dependent. In
Fig. 1(c) the reachability graph of our example is depicted. The unreachable nodes
are depicted in gray whereas the reachable nodes are depicted in black. All aSSA
variables and the two arrays x and y are each represented by a node. Consider the
value i2:=i1+1 that has a single data dependency on its right-hand side, i.e., i1.
There is an edge between i1 and i2. For an augmented phi-node we have two kinds
of incoming edges: (1) edges representing data dependencies and (2) edges repre-
senting control dependencies. For instance, the value i1:=φ

′(i0,i2;p1) depends on
i0 and i2 by data dependencies but also on p1 by control dependency. Therefore,
node i1 has incoming edges from i0, i2 and p1. Function calls are mapped to the
reachability graph as follows: the nodes of the actual arguments are connected to
their associated nodes representing the formal arguments of the function. The func-
tion node itself is connected to the left-hand side of the assignment for the return
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value, and a return expression inside a function is linked to its function node. For
example, the actual argument n0 is connected to the formal argument a0 and the
return value a2 is connected to the function node in. Variable n1 that is assigned
the result of the function in has the in-coming edge from in. Furthermore, we have
two library calls in our example. The call to getchar returns a value controlled by
the user. Therefore, we connect c0 directly with the root node r. The library call to
isdigit checks whether the argument is a digit, and, therefore, connects the actual
argument with its result.

As shown in Fig. 1(c) the array indices i1 and j1 are dependent on user-input.
Hence, any bugs in the C-code dependent on these values can be potentially ex-
ploited as a security vulnerability, in particular, lines 13 and 14 of the C-code in
Fig. 1(a).

3 Background

A flowgraph is a directed graph (N, E, s, e), where N is the set of nodes and E ⊆
N × N the set of edges. If (u, v) ∈ E, v is a successor of u, and u is a predecessor
of v, we write preds(v) for the set {u ∈ N | (u, v) ∈ E}. We assume that there is
a distinguished start node s with in-degree zero (i.e., no predecessors) and an exit
node e with out-degree zero (i.e., no successors). The source of edge (u, v) is node
u, written src(u, v). The source src(E′) of a set of edges E′ ⊆ E is {u | (u, v) ∈ E′}.
A path of length k is a sequence of nodes (u0, . . . , uk) such that (ui, ui+1) is an edge
for all 0 ≤ i ≤ k − 1. An empty path is a path of length zero. We write α : u ∗→ v

for a path α = (u, ..., v) from node u to node v. We also write v ∈ (u0, . . . , uk)
if v = ui for some i = 0 . . . k. The set of paths from node u to v is denoted by
Path(u, v). For path α = (u0, . . . , uk) and β = (v0, . . . , vl), we write α ◦ β for the
path (u0, . . . , uk, v1, . . . vl) if uk = v0. Given Π , Π ′ as two sets of paths, we write
Π ◦ Π ′ for the set {α ◦ β | α ∈ Π ∧ β ∈ Π ′}.

A node u dominates a node v, written as u dom v, if all paths from the start
node s to v include u. The dominators dom(u) of node u is the set of nodes that
dominate u. A node u strictly dominates a node v, written u sdom v, if u dominates
v and u 6= v, and we write sdom(u) for the set of nodes that strictly dominate u. The
immediate dominator idom(u) of a node u is the unique node that strictly dominates
u but does not strictly dominate any other strict dominator of u. The dominance

frontier DF(u) of node u is a set of nodes N ′ ⊆ N such that for all v ∈ N ′,
u dominates a predecessor of v but does not strictly dominate v; i.e., DF(u) =
{v | ∃w ∈ preds(v) : u dom w ∧ ¬(u sdom v)}. The dominance frontier of a set of
nodes N ′ ⊆ N is defined as DF(N ′) =

⋃
u∈N ′ DF (u), and the iterated dominance

frontier is defined as IDF(N ′) =
⋃

i∈N
DF i(N ′), where DF0(N ′) = DF(N ′) and

DF i+1(N ′) = DF(DF i(N ′)) for i ∈ N. We define the reverse graph of a flowgraph
where the edges are reversed, and the start and the end nodes swapped. A node u

post-dominates v, written as u pdom v, if u dominates v in the reversed flowgraph.
The post iterated dominance frontier PIDF(N ′) is the iterated dominance frontier
of N ′ ⊆ N in the reversed flowgraph [12].
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4 User-Input Dependence Analysis

4.1 Augmenting Phi-Nodes with Control Dependencies

SSA form provides an efficient representation of the def-use relation on data depen-
dencies. A program represented in SSA form does not have any false data depen-
dencies [11]. However, SSA form does not expose any control dependencies [12, 13].
To represent control dependencies, we extend SSA phi-nodes with control depen-
dencies,

x := φ′(y1, . . . , yk; p1, . . . , pl) (1)

where we write Yx (the selection set) for the set {y1, . . . , yk} and Px (the control
set) for {p1, . . . , pl}. Informally, Px are the set of nodes which contribute to the
selection of a value from the set Yx, but Px does not explicitly state how to make
the choice. Therefore an augmented phi-node is an abstracted gating function [14,
15].1

We define the set Px on arbitrary reducible flow graphs. The following definitions
are required for our definition of control dependencies. Let x = φ(y1, . . . , yk), we
say x selects yi ∈ Yx in a path α = (s, . . . , x) if yi ∈ α, and for all yj ∈ α with i 6= j,
we have yj ∈ α implies yj ≤α yi; where v ≤α v′ if the rightmost occurrence of v has
a smaller index than the rightmost occurrence of v′ in α. A path (u1, u2, . . . un) is
forward if for all ui, uj with 1 ≤ i < j ≤ n, we have ¬(uj dom ui).

There are two different control dependency relations that we need to explain
separately, as follows. If p is a controlling node that splits the flow into two different
nodes that define y1 and y2, which later merge at x = φ(y1, y2), we say p controls x

because the value of p decides whether the y1 or y2 is to be taken at x. However, if
it is the case that x dom p, then it is possible to allow p to join the selection by the
existence of a path from p to x, and consequently p and x are included in a loop.
We distinguish these two cases by using the term forward-control dependency and
loop-control dependency respectively.

Definition 1. A controlling node p with successors q and r forward-controls a phi-

node x, if for all path γ = (s, . . . , p), there exist forward paths α = (q, . . . , x) and

β = (r, . . . , x), such that α ∩ β = {x}, and x selects yi from γ · α and yj from γ · β
such that i 6= j.

Write FC(x) for the set of forward-controlling nodes of x. The intuition behind
this is that a controlling node p affects the value selection of x if and only if both
branches of p may reach x, and with different selection outcomes. If a phi-node x

is unreachable by either branch of a controlling node p by a forward path, p is not
regarded as forward controlling x. A typical forward-control dependency has been
sketched in Fig 2 where x2 is forward-control dependent on p, but not forward-
control dependent on q.

We adapt the classical loop definition for reducible graphs. An edge (u, v) is a
back edge if v dom u. Given a node u, define the set Bu = {v | (v, u) is a back edge}.

1 In Gated Single Assignment (GSA) form, a gating function explicitly decides a unique
y ∈ Yx from the value of members in Px together with switches.
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x0 = 0;

if (p > 1)

if(q < 0) x1 = 0;

x2 = φ (x0, x1);

...

Fig. 2. An example where p forward-controls x but q does not.

If Bu 6= ∅ we define Lu = {w | ∃α = (w, . . . , v) : v ∈ Bu ∧ u 6∈ α}, and u is the loop
header of Lu.

Definition 2. A controlling node p loop-controls a phi-node x, if there is a loop

L containing p and x, a definition node yi ∈ Yx ∩ L and another definition node

yj 6∈ L, x dom p, and there is a successor q of p with q 6∈ L.

Write LC(x) for the set of loop-controlling nodes of x. Since p partially decides the
number of iterations in the loop, it may induce the program execution to x via a
path in which x selects the definition y with a different value for each iteration.
In the example which is part of a reducible graph shown in Fig 3, the controlling
node q loop-controls x1, and the controlling node p forward-controls x3. Finally, we
combine the above two definitions as the set of controlling nodes Px.

Definition 3.

Px = FC(x) ∪ LC(x)

The definitions for forward- and loop-control dependencies are purely flow graph-
oriented. However, it is difficult to identify the set of controlling nodes given a
phi-node x. Therefore, we apply a conservative approach to calculate Px, which
simply takes the post iterated dominance frontier of the arguments of a phi-node x

less those that are not dominated by x’s immediate dominator. The correctness of
this approximation is guaranteed by the following proposition, and for structured
control flow the approximant coincides with the predicate set of an augmented phi-
node. The proof is presented in the appendix.

Proposition 1. For each phi-node x, we have

Px = FC(x) ∪ LC(x) ⊆ PIDF(Yx) ∩ dom−1( idom (x))
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x0 = 0;

x1 = φ(x0, x3);

if (p > 1)

x3 = φ(x1, x2); x2 = x1 + 1;

if(q < 0)

...

Fig. 3. An example where q loop-controls x1

4.2 Definition of Tainted Values

The user input dependence analysis obtains the information whether a variable in
a program is potentially tainted or strictly untainted. For a single variable this
information can be represented in a semi-lattice (L,⊓) that consists of element N

representing the tainted value and △ representing the untainted value. The meet
operation is defined by:

a ⊓ b =

{
△, if a =△ and b =△,

N, otherwise.
(2)

Semi-lattice (L,⊓) is isomorphic to the boolean semi-lattice (B,∨) assuming ele-
ment N is 1 and element △ is 0. Hence, the meet operation has the properties of
commutativity, associativity, and idempotence. We extend the meet operation tod

i∈I ai for any countable set I. If the index set I is empty, then the result of the
meet operation is △ by convention. The semi-lattice imposes a partial order ⊑, such
that a ⊑ b ⇔ a ⊓ b = a. In this partial order set L element △ is the top and N is
the bottom element.

We define an information lattice (Ln,⊓, Nn, △n) where n is the number of vari-
ables. An element c ∈ Ln is called configuration and represents the taint information
of variables that we may assume at a certain point in the flowgraph. We write Var
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for the set of variables in the program. We associate a unique index ix (ix = 1 . . . n)
to a variable x ∈ Var that denotes the position of x in a vector of size n. The result
of meet operation a ⊓ b is vector c with element ci = ai ⊓ bi for all i = 1 . . . n. The
top and bottom elements are △

n = 〈△, . . . , △〉 and N
n = 〈N, . . . , N〉, respectively.

For the sake of readability, we use the notation c(x) for element cix
, and c[x←a] is

a configuration identical to c except for c[x←a](x) = a.
We employ the notions of a distributive data flow analysis framework [16] to

describe taint information. We define the MOP solutions for a node u ∈ N by

mop(u) =
l

π∈Path(s,u)

M(π)(△n). (3)

Function M describes the transfer function of node u and is extended to paths, i.e.,
M(π) is the function composition M(uk)◦ · · · ◦M(u1) of path π = (u1, . . . , uk). If π

is the empty path, then function M(π) is the identity function. Note that we do not
differentiate between a statement of a node (as either an assignment or predicate
of a branch) and the node itself. The transfer functions M [[.]] : N → (Ln → Ln) are
defined in the following.

– Nop Statement: does not change the configuration, i.e., M [[nop]](c) = c.

– Read Operation: taints variable x, i.e., M [[x := read]](c) = c[x←N].

– Assignment: If the right-hand side of an assignment contains a tainted value,
then the variable on the left-hand side becomes tainted, i.e., M [[x := op(y1, . . . ,

yk)]](c) = c[x←
d

1≤i≤k c(yi)]; if there are no variables on the right-hand side, then

M [[x := op()]](c) = c[x←△].

– Augmented Phi-Node: If one of the arguments or one of the predicates is
tainted, then the result will be tainted, i.e., M [[x := φ′(y1, . . . , yk; p1, . . . , pl)]](c) =
c[x←

d
1≤i≤k c(yi)⊓

d
1≤i≤l c(pi)], where predicate pi (i = 1 . . . l) refers to a control-

ling if-statement of x. Note that if-statements are modeled as assignments that
have two successor nodes.

In aSSA form variables have a single assignment in the flowgraph. Therefore, a
variable can only become tainted at the node that contains its assignment.

Definition 4. Variable v ∈ V ar in aSSA form is untainted, if mop(v)(v) is △.

It is obvious that the information lattice (Ln,⊓, Nn, △n) with transfer function M [[.]]
is an instance of a monotone and distributive dataflow analysis framework, on which
we define a simultaneous equation system:

zu = M(u)


 l

v∈preds(u)

zv


 for all u ∈ N . (4)

Note that variable zu is a vector in Ln that has n elements in L, and there are |N |
equations. Hence, the equation system has O(n2) variables in L.

Let Z ∈ L|N |×n denote the vector of variables {zu}u∈N in the simultaneous
equation system, then a concise notation of this equation system is Z = F (Z),
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where F is the right-hand side of the equations. It can be shown that function F is
monotone and distributive, therefore, there exists a maximum fixed point mfp(F ).
We write mfp(u) for the maximum fixed-point of F on node u.

Theorem 1. mop(u)(x) = mfp(u)(x) for all u ∈ N and x ∈ Var.

Proof. It is easy to see that Ln is a semi-lattice and has finite height. The associated
function space of the data flow analysis framework is distributive, i.e., ∀c1, c2 ∈ Ln :
∀u ∈ N : M(u)(c1⊓c2) = M(u)(c1)⊓M(u)(c2), and closed under composition [16].

Since lattice Ln has finite height, the maximum fixed point is computed by a
finite number of applications of F on the top element, i.e., F ◦ · · · ◦ F (△|N |×n).

4.3 Compression of the Simultaneous Equation System

SSA form has specific properties that allow the compression of the simultaneous
equation system to O(n) variables in L. We make the following observations about
the structure of statements in aSSA form:

1. For each variable there exists a single assignment in the program, i.e., for all
x ∈ Var, there is a unique u ∈ N such that x is defined at u. We use u ∈ N as
a synonym for x ∈ Var if u defines x, and vice versa.

2. Every node x := op(y1, . . . , yk) is dominated by yi for all i = 1 . . . k, hence all
definitions yi reach node x.

3. Every augmented phi-node x := φ′(y1, . . . , yk; p1, . . . , pl) is not necessarily dom-
inated by elements in Yx, however, we still have statement x reachable from y

for all y ∈ Yx, i.e., there is a path α = (y ∗→ x) for all y ∈ Yx.

4. Every augmented phi-node x := φ′(y1, . . . , yk; p1, . . . , pl) is reachable by its pred-
icates pi for all pi ∈ Px.

We observe for each assignment x := op(y1, . . . , yk), each yi is equal to the value
mop(x)(yi) at yi’s definition node since node x is reachable from yi for all i = 1 . . . k.
For an augmented phi-node x it holds as well for all variables on its right-hand side
y ∈ Yx and all predicates p ∈ Px.

Lemma 1. Given nodes u, v ∈ N , and u ∗→ v,


 l

{π∈Path(u,v)|y 6∈π}

M(π)(c)


 (y) = c(y). (5)

Proof. By induction on the length of arbitrary paths that do not include y. ⊓⊔

Lemma 2. For all y ∈ V ar and u ∈ N , (y ∗→ u) implies mop(u)(y) = mop(y)(y).
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Proof. If y is equal to u, then Lemma is immediate. Otherwise, startnode s reaches
y, and y reaches u. Therefore, there exists a path from s to u via y.

mop(u)(y) =


 l

π∈Path(s,u)

M(π)(△n)


 (y) (6)

=


 l

{π∈Path(s,u)|y∈π}

M(π)(△n)


 (y) ⊓


 l

{π∈Path(s,u)|y 6∈π}

M(π)(△n)


 (y)

(7)

=


 l

π∈Path(s,y)◦Path♯(y,u)

M(π)(△n)


 (y) ⊓ [△n(y)] (8)

=


 l

π∈Path(s,y)◦Path♯(y,u)

M(π)(△n)


 (y) (9)

=


 l

π∈Path♯(y,u)

M(π)


 l

π′∈Path(s,y)

M(π′)(△n)





 (y) (10)

=


 l

π′∈Path(s,y)

M(π′)(△n)


 (y) (11)

= mop(y)(y) (12)

where Path(u, v)♯ is the set of paths from u to v with a single occurrence of u. From
step (7) to (8) and step (10) to (11) we apply Lemma 1. Note that if there is no path
in set {π ∈ Path(s, u) | y 6∈ π}, then the meet operation in (7) reduces to △

n. ⊓⊔

This observation allows us to construct a new simultaneous equation system
with variables ẑx ∈ L for all x ∈ Var.

ẑx =





N, if x := read,

△, if x := op(),d
1≤i≤k ẑyi

, if x := op(y1, . . . , yk),d
1≤i≤k ẑyi

⊓
d

1≤j≤l ẑpj
, if x := φ′(y1, . . . , yk; p1, . . . , pl).

(13)

Let ẑ ∈ Ln denote the vector of variables and F̂ the right-hand side of the equation
system. Since F̂ is monotone, there is a maximal fixed point mfp(F̂ ). We write

m̂fp(x) for the maximal solution of F̂ on variable x.

Lemma 3. Vector z = 〈mop(x1)(x1), . . . ,mop(xn)(xn)〉 is a fixed point of F̂ .

Proof. We show for each element x in vector z that F̂ (z) = z. For every x we have
four cases:

11



1. Read operation (x := read):

mop(x)(x) =


 l

π∈Path(s,u)

M(π)(△n)


 (x) (14)

=


M [[x := read]]


 l

u∈preds(x)

l

π∈Path(s,u)

M(π)(△n)





 (x) (15)

= N. (16)

2. Assignment without operands (x := op()): Similar to read operation as
above, i.e., mop(x)(x) =△.

3. Assignment with operands (x := op(y1, . . . , yk)):

mop(x)(x) =


 l

π∈Path(s,u)

M(π)(△n)


 (x) (17)

=


M [[x := op(y1, . . . , yk)]]


 l

u∈preds(x)

l

π∈Path(s,u)

M(π)(△n)





 (x)

(18)

=


M [[x := op(y1, . . . , yk)]]


 l

u∈preds(x)

mop(u)





 (x) (19)

=
l

1≤i≤k


 l

u∈preds(x)

mop(u)


 (yi) (20)

=
l

1≤i≤k

mop(yi)(yi) (21)

From step (20) to step (21), we have two conditions for predecessor u for a given
yi: (1) Node u is reachable from yi. Therefore, mop(u)(yi) is equal to mop(yi)(yi)
by Lemma 2. (2) Node u is not reachable from yi. Therefore, mop(u)(yi) =△ as a
consequence of Lemma 1. There is at least one predecessor u which is reachable
from yi, since x would not be reachable from yi otherwise.

4. Augmented phi-node (x := φ′(y1, . . . , yk; p1, . . . , pl)): Similar to assignment
with operands as above. All definitions and predicates reach node x, hence,
mop(x)(x) =

d
1≤i≤k mop(yi)(yi) ⊓

d
1≤j≤l mop(pj)(pj).

As a consequence of Lemma 3, for all x ∈ Var, mop(x)(x) ⊑ m̂fp(u). To show the

inverse, we define functions F i = F ◦ . . . F︸ ︷︷ ︸
i

(△|N |×n), and F̂ i = F̂ ◦ · · · ◦ F̂︸ ︷︷ ︸
i

(△n).

Lemma 4. For all x ∈ Var and for all i ≥ 0, F̂ i(x) ⊑ F i(x)(x).
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Proof. By a straightforward induction we show that F i(u)(y) ⊒ F i(y)(y) for all
u ∈ N , for all y ∈ Var, and i ≥ 0. We prove the lemma by induction. The base case
is immediate. For the induction step we have four different cases for x ∈ Var.

1. Read operation (x := read) : F̂ i(x) = F i(x)(x) = N for all i > 0.
2. Assignment without operands (x := op): Similar as above.
3. Assignment with operands (x := op(y1, . . . , yk)):

F i+1(x)(x) =


M(x)


 l

u∈preds(x)

F i(u)





 (x) (22)

=
l

y∈Yx




 l

u∈preds(x)

F i(u)


 (y)


 (23)

=
l

y∈Yx

l

u∈preds(x)

F i(u)(y) (24)

⊒
l

y∈Yx

l

u∈preds(x)

F i(y)(y) (25)

=
l

y∈Yx

F i(y)(y) (26)

⊒
l

y∈Yx

F̂ i(y) (27)

= F̂ i+1(x) (28)

From step (24) to step (25) we apply F i(u)(y) ⊒ F i(y)(y), and the induction
hypothesis is used from step (26) to step (27).

4. Augmented phi-node (x := φ′(y1, . . . , yk; p1, . . . , pl)) : Similar as above.

After a finite number of steps both function converge to a fixed point because the

lattice has finite height. Hence, m̂fp(x) ⊑ mfp(x)(x), for all x ∈ Var. Since, mfp(u)

coincides with mop(u) (cf. Theorem 1), m̂fp(x) ⊑ mop(x)(x). Combining this result
with Lemma 3, the following theorem is implied.

Theorem 2. For all x ∈ V ar, mop(x)(x) = m̂fp(x).

4.4 Linear Boolean Equation Systems and Reachability

The compressed equation system is solved by a reachability graph. To show that the
reachability solves the maximum fixed point of the compressed equation system, we
establish a relationship between a linear boolean equation system and the reacha-
bility graph. Later we show that any instance of the compressed equation system is
solvable by a linear boolean equation system. Note that the linear boolean equation
system is a theoretical vehicle. In the actual implementation the reachability graph
is constructed directly from the flowgraph.
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For the boolean lattice (B,∨,∧, 1, 0) we establish a partial order a ≤ b if a∨b = a.
In this partial order 0 is the top element and 1 is the bottom element. The partial
order ≤ is further extended to vectors, i.e., a, b ∈ B

n, a ≤ b, if ai ≤ bi, for all
i = 1, . . . , n.

Definition 5. Given A ∈ B
n×n and b ∈ B

n in the boolean lattice (B,∨,∧, 1, 0),
define x ∈ B

n the maximal solution of the boolean equation system

xi = (
n∨

j=1

aij ∧ xj) ∨ bi, for i = 1, . . . , n. (29)

where aij is the element of matrix A in row i and column j, and xi and bi are the

ith elements of vector x and b, respectively.

We associate to Eqs. (29) a reachability graph that is a rooted directed graph
G = (V,Arc, r) where V = {r, v1, . . . , vn}, r is the distinguished root node, and
Arc = {(vj , vi) ∈ V ×V |aij = 1}∪{(r, vi) ∈ V ×V |bi = 1}. We associate node vi in
G with variable xi in the linear boolean equation system. A node vi ∈ V is in the
set of reachable nodes R ⊆ V , if there exists a path from r to vi. We also say that
a node u is reachable if u ∈ R.

Theorem 3. In the maximal solution x, an element xi has value 1 iff vi ∈ R.

Proof. We restate the theorem as an element xi in the maximal solution has value
0 if vi 6∈ R, and value 1 if vi ∈ R. Hence, we define a vector with elements xi such
that

xi =

{
1, if vi ∈ R

0, otherwise
, for i = 1, . . . , n. (30)

for which we show that x is a fixed point. We make following observations showing
relations between the reachability graph and the linear boolean equation system:

(O1) If vi 6∈ R, then bi = 0.
(O2) If vi 6∈ R, then for all j (1 ≤ j ≤ n) with aij = 1, vj 6∈ R.
(O3) If vi ∈ R and bi = 0, then there exists a node vj ∈ R and aij = 1.

Let z = F (x). For i = 1, . . . , n, we have four cases,

zi =





1, if vi ∈ R ∧ bi = 1 (Case 1)∨
j aij ∧ xj , if vi ∈ R ∧ bi = 0 (Case 2)

0, if vi 6∈ R ∧ ∀j : aij = 0 (Case 3)∨
vj 6∈R aij ∧ xj , otherwise (Case 4)

(31)

Case 1: Immediate. Case 2: By Observation (O3) there exists vj ∈ R and aij = 1.
Therefore, xj reduces equation to 1. Case 3: By Observation (O1), bi = 0 and all
aij are 0 reducing Equation (29) to 0. Case 4 (if vi 6∈ R∧∃aij = 1) : By Observation
(O1), bi = 0. By Observation (O2) for all aij = 1, xj = 0 that reduces the equation
to 0. Hence, z = x.

In the sequel, we show that x is the maximum fixed point. Suppose there is a
fixed point z 6≤ x, then there exists an index i such that zi > xi. This is only the
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case if zi is 0 and xi is 1, and vi is reachable. Therefore, node vi ∈ R, then there
exists a simple path π = (r, uj1 , . . . , ujk

) with ujk
= vi. Given vector z as a solution

of equation (29), element zj1 in vector z associated to node uj1 has an edge (r, uj1)
and therefore, bj1 holds. If bj1 holds, then zj1 reduces to 1. We show that zi is 1.
For an edge (ujl

, uil+1
) ∈ Arc in π, ajl+1jl

is 1 in equation zjl+1
. Hence, Equation

zi = zjk
= · · · ∨ (ajl+1jl

∧ zjl
) ∨ . . . reduces to 1, contradicting our assumption. ⊓⊔

The next theorem connects the solution x of the linear boolean equation system
with the MOP solution, where we assume there is an one-to-one mapping from each
variable in the compressed equation system of Eqs. (13) to a unique variable in
the linear boolean equation system. Note that semi-lattice (B,∨) is isomorphic to
(L,⊓).

Theorem 4. Given the same index I = {1, . . . , n}, in the maximal solution x of

Eqs. (29), we have for all i = 1, . . . , n,

xi = 1 iff m̂fp(ui) = N

Proof. The boolean lattice and the taint lattice are isomorphic. The partial orders
⊑ and ≤ are isomorphic. By simple algebraic transformation of the linear boolean
equation system, the equivalence is established. ⊓⊔

4.5 Inter-procedure Analysis, Arrays, and Pointers

We have two approaches for the inter-procedural user-input dependence analysis: a
call-insensitive and a call-sensitive analysis. The insensitive analysis is less precise
but fast, whereas the sensitive analysis has more precision at the expense of longer
runtimes (cf. Sec. 5). The call-insensitive analysis maps the whole program to a
single reachability graph using the mapping as sketched in the motivating example
in Fig. 1. The following outlines the idea: For a function f we add a new variable
f to Var, that represents the return value of f . Value mop(u)(f) reflects whether
the return value of f is tainted at node u. The transfer function of a call-site is
M [[x := call f (y1, . . . , yk)]](c) = c[x←c(f),a1←c(y1),...,ak←c(yk)] where y1, . . . , yk are
actual arguments and a1, . . . , ak are formal arguments of function f . The result x

becomes tainted if f is tainted. A formal argument ai becomes tainted if the actual
argument yi is tainted.

The call-sensitive approach is performed in two phases. In the first phase the
call-graph of the input program is split into a set of topologically ordered strongly
connected components (SCC) containing functions that potentially invoke recur-
sively each other. Each SCC is analyzed in reverse topological order by constructing
a separate reachability graph for the SCC. For each function in the SCC a summary
function that expresses user input dependencies between global variables, arguments
and result values of functions is constructed. A call-site in the SCC invokes either a
function that is in the SCC, or a function for which there exists already a summary
function, or an external function (libraries, system calls, etc.). For the first case, we
use the connection scheme as used for the insensitive-analysis. In the second case,
we wire the dependencies as given in the summary function. For external functions,
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we rely on specifications as shown in Fig. 5. After constructing the reachability
graph we probe which arguments, globals, and results of function are user-input
dependent, and mark them user-input dependent in the summary functions of the
SCC. Dependencies to arguments and globals are computed by resetting the root
node of the reachability graph to either a global or an argument and probing the
connectivity for arguments, globals and result of functions again. The second phase
proceeds in the topological order, propagating tainted information from callers to
callees. Note for both the insensitive and the sensitive analysis we use a simple may-
alias analysis for indirect call-sites that gives a set of possibly invoked functions for
a call-site. If this set cannot be determined, we make the worst-case assumption
that the arguments and the result become user-input dependent.

For an array a we introduce a new variable in Var. The meaning of mop(u)(a)
reflects whether the contents of a are tainted in node u. We have a transfer function
for reading an element and a transfer function for writing an element in the array.
The transfer function for a read is M [[x := loada(y)]](c) = c[x←c(a)⊓c(y)], i.e., the
result of the read access becomes tainted if either the index is tainted or the contents
of the array is tainted. The transfer function for a write is M [[storea(y), x]](c) =
c[a←c(x)⊓c(y)], i.e., the array becomes tainted if either the index or the value is
tainted. Similar to functions, all write accesses are joined with a meet opera-
tion in the compressed equation system. For global variables we have two transfer
functions for the read and write access, i.e., M [[x := load g]](c) = c[x←c(g)] and
M [[store g, x]](c) = c[g←c(x)].

For pointers we encode a simple may-alias analysis in the reachability graph.
We consider the load and store operations for pointers separately. Both store and
load operations might taint data of the program, e.g., “store p, x” adds an edge
from x to p, and “x := load p” adds an edge from p to x. To handle the effect that
an address value is loaded into a variable, we add reverse edges to load operations
(and phi-nodes) such that all possible memory objects that might be referenced
in the store operations become connected. For pointer arguments the mapping of
call-sites needs to be extended as well. A reverse edge is added between the actual
and formal argument to ensure that taint information can traverse from the callee
to the caller through the pointer arguments. The Figure 4 shows the translation of
LLVM pointer primitives to the reachability graph. The LLVM framework is used
for the experimental results demonstrated in the next section of this paper.

5 Implementation and Experiments

We have implemented the call-insensitive and sensitive user-input dependence anal-
ysis in the LLVM framework [17] which is a low-level virtual machine for the C
programming language family. Its instruction set has been designed for a virtual ar-
chitecture that avoids machine specific constraints, and its instruction set is strictly
typed. Every value or memory location has an associated type and all instructions
obey strict type rules. LLVM code is represented in SSA form. LLVM provides sup-
port for alias analysis and assumes all clients to be flow-insensitive. Implementations
of Andersen’s and Steensgaard’s interprocedural alias analyses are in place. Function
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Fig. 4. Reachabilty Graph Mapping of Pointer Operations

_input_ stdin; /* user-input dependent vars or args/results */

_input_ int scanf(const char *, _input_ ...);

_input_ int getchar(void);

_input_ char *gets(_input_ char *);

int main(_input_ int argc, _input_ char *argv);

int isdigit(int n){ return n; } /* summary functions */

char *strcpy(char *str1, char *str2){ str1 = str2; return str2; }

void *malloc(size_t size){ return size; }

void *memset(void *s, int c, size_t n){ s = c + n; return c+n; }

Fig. 5. Excerpt of configuration file

alias analysis is not provided by LLVM; however, we implemented a may-function
alias analysis to better support the accuracy of our user-dependency analysis. The
user-input dependence analysis is a fundamental component of our security bug
checking tool for systems code that is built upon the LLVM framework, with its
implementation currently underway. In our bug checking tool, the inter-procedural
user-input dependence analysis is used as a pre-processing pass to identify poten-
tial security vulnerabilities. The result of the user-input dependence analysis are
annotations in the intermediate representation of LLVM, denoting which variables
and statements are user-input dependent. These annotations guide other program
analyses in our bug checking tool to find security bugs. For example, for checking
security relevant array accesses that are out of bound, the bug checking tool an-
alyzes only the array accesses that are dependent on user inputs. The user-input
dependence analysis not only identifies potential security vulnerabilities, but also
reduces the problem size, e.g., not all array accesses need to be checked only those
that are dependent on user input values.

The user-input dependence analysis reads the input program as an LLVM byte-
code file and a configuration file that specifies which external global variables, ar-
guments and results of functions are user-input dependent, as well as output de-
pendencies on inputs to a function. An excerpt of a configuration file for functions
and globals in the C library is listed in Fig. 5. The qualifier _input_ declares a
global variable, arguments or results of a function as user-input dependent. For ex-
ample, the main function has two user-input dependent arguments (argc and argv)
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Problem Size Dependence Array Access
Progs #loc #inst %uiii %uiis #cr #cw #ncr #ncw %uiri %uirs %uiwi %uiws

sendmail 179753 169166 75.5 66.5 15925 7300 4301 1152 92.9 90.3 81.8 77.1
httpd 103066 164162 85.1 77.7 11849 6610 3113 690 91.7 90.8 91.7 90.6
perlbmk 85464 176866 75.8 73.4 19333 9139 1823 1590 98.2 97.9 94.9 94.6
vortex 67220 65685 73.5 69.2 4512 2473 1106 398 93.9 90.9 95.2 95.0
pppd 27048 32540 60.7 42.1 1899 1409 1380 731 41.4 28.8 31.6 18.9
sshd 20729 18489 72.4 64.7 1644 736 273 123 83.2 63.7 74.8 54.5
mailx 14609 25717 72.8 56.5 880 713 843 254 91.9 83.0 83.5 75.6
zoneadmd 7485 7835 69.0 67.5 239 247 163 28 95.1 95.1 85.7 85.7
mail 6934 7286 60.0 52.0 272 148 220 73 92.7 87.7 79.5 78.1

Table 1. Experiment: problem size and percentages of user-input dependent instructions.
#loc is the number of lines of code, #fn is the number of functions, #glob is the number of
global variables, #inst is the number of instructions in LLVM’s IR, %uii is the percentages
of user-input dependent instructions, #cr is the number of constant read array accesses,
#cw is the number of constant write array accesses, #ncr is the number of non-constant
read array accesses, #ncw is the number of non-constant write array accesses, %uir and
%uiw are the percentages of user-input dependent read and write accesses as a percentage
of non-constant array accesses. Note the subscripts ‘i’ and ‘s’ indicate the call-insensitive
case and the call-sensitive case, respectively.

that are controlled by the user. Therefore, in the declaration, the qualifier _input_
is added. Summary functions express dependencies rather than operations per se.
For example, the strcpy summary function states that the argument str1 and the
result of the function depends on the argument str2, i.e., if str2 is user-input de-
pendent the result of strcpy and the actual argument str1 will become user-input
dependent.

To evaluate our user-input dependence analysis, we use benchmarks includ-
ing programs from the OpenSolarisTM operating system, the Apache httpd server
(v2.2.6), and programs from SPEC CINT2000. Tab. 1 gives the problem sizes and
a comparison with respect to the percentage of instructions that are user-input de-
pendent in the benchmarks. The percentage of user-input dependent instructions
ranges from 60% to 85%2 for the insensitive analysis and from 42% to 78% for the
sensitive analysis (see column %uiii and %uiis in Tab. 1). For array accesses, the
number of user-input dependent accesses is small for both analysis. Constant array
accesses cannot ever be dependent on user-input data, therefore, the security bug
checking tool will only analyze a small fraction of all array accesses in the program.
The results show that, on average, 83% of non-constant array accesses are user-input
dependent for the insensitive analysis and 78% for the context sensitive analysis.

The runtime of the insensitive and sensitive analysis varies significantly. As seen
in Tab. 2, the insensitive analysis is linear on the number of instructions in the

2 A portion of standard C library is not fully specified in the configuration file and worst-
case assumption were made. With a fully specified library, we expect smaller percentages
of user-input dependent instructions.
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Problem Size Insensitive Sensitive Runtime
Progs #inst #fn #glob #nodi #edgi #scc #nods #edgs τi τs

sendmail 169166 1002 4416 176242 499148 644 254541 4508623 6.51 71.01
httpd 164162 966 5348 172351 318029 792 186347 376830 5.02 8.95
perlbmk 176866 841 1964 180301 333772 520 492883 3154620 3.28 2018.19
vortex 65685 288 1342 68255 124067 218 87048 375277 0.43 2.42
pppd 32540 433 1714 35014 67045 272 44406 98754 0.24 0.64
sshd 18489 582 1105 20074 32805 165 22546 35851 0.12 0.29
mailx 25717 276 682 26820 61359 169 31331 77000 0.21 0.44
zoneadmd 7835 324 439 8396 16900 31 8773 17996 0.07 0.11
mail 7286 131 465 7860 40925 35 8321 42281 0.2 0.25

Table 2. Experiment: reachability graph size and the running time. #inst is the number
of instructions in the IR, #fn is the number of functions in the program, #glob is the
number of globals in the program, #scc is the number of strongly connected components
in the call-sensitive case (in the call-insensitive case it is always 1), #nod and #edg are the
numbers of nodes and edges in the reachability graph, and τ is the analysis time in seconds.
Note the subscripts ‘i’ and ‘s’ indicate the call-insensitive case and the call-sensitive case,
respectively.

intermediate representation (IR). The sensitive analysis uses significantly more time
since for each strongly connected component in the call graph the dependencies
between global variables, arguments and results need to be re-computed separately
(as shown in column τs in Tab. 2). The analysis was executed on a SUN Fire X4600
(16GB Ram, 4xOpteron 8220) under light load. For the perl benchmark it takes
the sensitive analysis more than 33 minutes, this is because the sensitive approach
considers too many global variables in different strongly connected components,
which results in a much longer runtime.

6 Related Work

User-Input Dependence Analysis. Static taint analysis [18–20] and user-input
dependence analysis [9, 10] are concerned with tracking user-input data in source
code. In contrast to static taint analysis, user-input dependence analysis does not
have any notion of sanitization, which is a mechanism used to untaint data after
it has been sanity checked. There are two mechanisms used for sanity checks: (1)
empirical assumptions and (2) user annotations. For example, in some static taint
analysis approaches it is assumed that data after a procedure call is sanitized and
therefore untainted. This assumption may introduce false negatives. User annota-
tions [18] overcome this issue, however, the programmer has to provide “correct”
annotations, which are expensive in terms of manpower in large systems. It is es-
timated [21], that approximately one hour is required to annotate 300-600 lines of
Java code. Hence, adding annotations to large legacy systems written in C (e.g. the
SolarisTM operating system has 20 millions of lines of code) is not viable.

Dynamic taint analysis [22–24] is related to testing and considers a single execu-
tion trace of a program. However, since dynamic analysis alone is inherently unable

19



to precisely apply control-dependencies, all these dynamic frameworks need static
means to sketch control-dependency, such as post-dominator tree applied in [22].
Since we need a user-input dependence analysis to serve as a pre-processing pass,
it is not viable to apply dynamic analysis to generate such a set of variables which
are potentially vulnerable to user-input by exhausting all possible paths.

Other static approaches for taint analysis or user-input dependence analysis in-
clude type systems [20], data flow analysis [19], and Program Dependence Graph
(PDG) [9, 10] with path conditions. Type checking is efficient, but in practice it
is potentially less precise than our approach. PDG represents control-dependencies
explicitly, but in practice their control relation is too strong for our purpose (in
our approach only those conditions that join the selection of a value at a conflu-
ence point are taken into account). The path conditions are helpful to eliminate
infeasible paths which makes the analysis more precise. However, since PDG does
not make the definition-use relation explicit, false data-dependencies still exist. Pro-
gram Dependence Web (PDW) [15, 14] achieves both control and data-dependencies,
but its construction and representation is more elaborate. Programs in PDW are
represented in Gated Single Assignment (GSA) form, where phi-nodes in SSA are
replaced by gating functions that explicitly decide how to make a selection from the
potential values. Phi-nodes in Augmented Static Single Assignment (aSSA) form
are abstractions of gating functions, resulting in a simpler and less expensive rep-
resentation. In general our aSSA-based approach is scalable because it is reduced
to a reachability problem exhibiting a linear complexity, so that large commercial
systems software can be handled. It is precise because it takes both def-use and
control dependencies into account, in an inter-procedural way. In our work, both
call-sensitive and call-insensitive approaches have been studied, and the results have
been analyzed in terms of a trade-off between speed and precision.

Taint Analysis and Information Flow. Information Flow is a notion concerned
with confidentiality that tracks information passage between variables or commu-
nication channels inside a program. By adopting the famous multi-level security
policies [25], a program is regarded as secure if there is no information from any
variable v to any other variables that are not dominated by v’s security level. Since
it was first proposed as a program analysis method in [26], various work has been
done to extend this notion, including by secure type systems, static program analy-
sis, or formal verification. Examples include [27, 9]. In these approaches information
flow is tracked by assignment, where the flow is formed from the right-hand side
of the assignment to the left-hand and from predicates of control structures (e.g.,
if, while, etc.) to the variables defined inside the control structures. The user-input
dependence analysis presented in this paper is closely related to Information Flow
Analysis, in that its methodologies are analogous to the ways of tracking informa-
tion flow, i.e., information is propagated from user-input (as high security level)
throughout a program via control- and data-dependencies. However, our control-
dependency is more strict than what has been applied on information flow analysis,
where a condition only contributing to the reachability of a phi-node x is not re-
garded as controlling x. (Note in Fig 1(b), i1 and j1 is not control-dependent on
p0, although they are enclosed in a big branch following p0.) Besides, our security
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concern is more safety-oriented than information-flow-oriented, as we are only inter-
ested in problems such as “whether an array access has its index value dependent
on user-input”. We do not take into account the notion of security policy, either.
Data Flow Analysis. The theory of monotone data flow analysis frameworks was
established in [16]. Reps et al. [28] maps an inter-procedural data flow analysis to
a reachability graph. The mapping requires an exploded control flowgraph, i.e., a
graph that encodes the data flow facts and the transfer functions as a reachability
graph. In this paper we compress the reachability graph by exploiting the properties
of SSA form resulting in a fast algorithm. In our approach we have O(n) nodes in
the reachability graph where n is the number of variables. In contrast, the approach
of Reps et al. has O(n × |N |) nodes in the reachability graph where |N | is the
number of basic blocks. Note that Reps’ et al. work is a general framework for
solving instances of separable data flow analysis problems.

7 Conclusion

In this paper we introduced a new user-input dependence analysis for programs,
which takes both data and control dependencies into account. The underlying pro-
gram representation for our analysis is Static Single Assignment form, which we
extend to Augmented Static Single Assignment (aSSA) form to capture control de-
pendencies. We exploit properties of aSSA form to reduce the classic Meet Over
all Paths solution into a simplified graph reachability problem. This reduction is
novel to our knowledge and results in a fast algorithm for solving the user-input
dependence analysis. The experiment result confirms that our approach is viable
for large-scale bug checking.
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A Appendix

Proposition 1. Given x := φ′(y1, . . . , yk; p1, . . . , pl), we have

Px ⊆ PIDF(Yx) ∩ dom
−1(idom(x))

Proof. – We first show FC(x) ⊆ PIDF(Yx)∩ dom −1(idom(x)), let p ∈ FC(x) with suc-
cessors q and r, then there exists α = (q, . . . , x), β = (r, . . . , x) and γ = (s, . . . , p) such
that γ ·α selects yi and γ ·β selects yj for some yi, yj ∈ Yx. Then either yi ∈ α or yj ∈ β,
otherwise we can not have the selection as defined. To show p ∈ dom −1(idom(x)), if
it is not the case, then there exists some γ = (s, . . . , p) with idom(x) 6∈ γ, then by the
existence of α and β we have idom(x) ∈ α and idom(x) ∈ β, contradicting the fact
that α ∩ β is a singleton x and idom(x) 6= x.

– To show LC(x) ⊆ PIDF(Yx)∩ dom −1(idom(x)), let p ∈ LC(x), then there is a loop L

containing p and x, a definition node yi ∈ Yx ∩ L, and there is a successor q of p with
q 6∈ L. It is obvious that p ∈ PIDF(yi) from p, yi both in loop L, so p ∈ PIDF(Yx).
Also from xdomp we have idom(x)domp, i.e., p ∈ dom −1(idom(x)).

⊓⊔
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B Glossary

Symbols Description

N Nodes of the control flowgraph
u, v, w Nodes of the control flowgraph
s Start node of control flowgraph
e End node of control flowgraph
(u, v) Edge from u to v in flowgraph
E Edges of flowgraph
preds(u) Set of predecessors of node u

src(u, v) Source u of edge (u, v)
src(E′) Source of a set of edges E′

α : u ∗→ v Path α from u to v

u ∈ α Node u occurs in path α

Path(u, v) Set of path from node u to node v

Path♯(u, v) Set of path from u to v with single occurrence of u

α ◦ β Path concatenation of path α and β

u dom v Node u dominates node v

dom (u) Dominators of u

idom (u) Immediate dominator of u

u sdom v Node u strictly dominates v

DF(u) Dominance frontier of node u

IDF(N ′) Iterated dominance frontier of set N ′

u pdom v Node u post dominates node v

PIDF(N ′) Post iterated dominance frontier of set N ′

(u, v) ≺≺ w Edge (u, v) is controlling node w

(u, v) ≺≺+ w Edge (u, v) is transitively controlling node w

ctrl∗(u) Set of controlling edges of node u

Var Set of variables
x, y Program variables
n Number of program variables
nop Statement with no side-effects
x := read Read statement
x := op(y1, . . . , yk) Assignment with operands
x := op() Assignment without operands
x := φ(y1, . . . , yk) Phi-node
x := φ′(y1, . . . , yk; p1, . . . , pl) Augmented phi-node
Yx Definitions {y1, . . . , yk} of a phi-node
Px Predicates {p1, . . . , pl} of an augmented phi-node
zu Vector of variables in the DFA equation system
Z Matrix of variables in the DFA equation system
zu Variable (a vector in L) of node u

bz Vector of variables in compressed DFA equations
bzx Variable of x in compressed DFA equations
F RHS of DFA equations
F i Repeated application of function F
bF RHS of compressed DFA equations
mfp(F ) Maximum fixed point of function F

mfp(u) MFP solution for node u of DFA equations
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dmfp(u) MFP solution for node u of bF

mfp(u)(x) MFP solution of variable x in node u

mop(u) Meet Over all Paths (MOP) solution of node u

mop(u)(x) MOP solution of variable x in node u

M(u)(c) Transfer function of node u

M(π)(c) Transfer function of path π

△ Untainted value
N Tainted value
L Simple semi-lattice containing △ and N

⊓ Meet operator in L and Ln

⊑ Partial order in L and Ln

Ln Information Lattice
N

n Bottom element in the information lattice
△

n Top element in the information lattice
c Configuration (element in Ln)
c(x) Value of x in configuration c

c[x→a] Changing value of x in c

B Boolean lattice
G Reachability graph
V Set of nodes in reachability graph
R Set of reachable nodes in reachability graph
r Root node in reachability graph
m Number of edges in the reachability graph
Arc Set of edges in reachability graph
a ≤ b Partial order a ∨ b = a in B
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