CoVaC: Compiler Validation by Program
Analysis of the Cross-Product

Anna Zaks and Amir Pnueli

New York University, New York, {ganna,amir}@cs.nyu.edu

Abstract. The paper presents a deductive framework for proving pro-
gram equivalence and its application to automatic verification of trans-
formations performed by optimizing compilers. To leverage existing pro-
gram analysis techniques, we reduce the equivalence checking problem to
analysis of one system - a cross-product of the two input programs. We
show how the approach can be effectively used for checking equivalence of
consonant (i.e., structurally similar) programs. Finally, we report on the
prototype tool that applies the developed methodology to verify that a
compiler optimization run preserves the program semantics. Unlike exist-
ing frameworks, CoVaC accommodates absence of compiler annotations
and handles most of the classical intraprocedural optimizations such as
constant folding, reassociation, common subexpression elimination, code
motion, dead code elimination, branch optimizations, and others.

1 Introduction

Compilers, especially optimizing compilers, are quite large applications, which
are bound to have bugs. At present, the GCC Bug Database contains over 3 thou-
sand reported bugs some of which may alter the behavior of programs being com-
piled. This is highly undesirable, especially in safety critical and high-assurance
software, where the effort of program correctness verification is extensive. First,
the developers manually examine code and test it. Then, numerous verifica-
tion tools and techniques are applied to verify that the source code satisfies the
desired properties. After all the rigorous checks are complete, the program is
compiled by an optimizing compiler and released. Clearly, the verification effort
should not stop here - it is highly advisable to ensure that the transformations
performed by a compiler preserve the semantics of a program.

That is precisely the goal of Translation Validation (TV) [16] - it ensures
that optimizing transformations preserve program semantics. In essence, instead
of attempting verification of a given compiler, each compiler run is followed by a
validation pass that automatically checks that the target code produced by the
compiler is semantically equivalent to the source code. A good question is: ” Can
this goal be achieved?” The problem of program equivalence is undecidable.
However, since the focus is only on compiler optimizations, the number of false
alarms can be drastically minimized or even eliminated, intuitively, due to the
fact that we are aware of the analyses used by the optimizing compilers, and
since those analyses are mechanical in nature.

In this paper, we present a Compiler Verification by Program Analysis of the
Cross-Product framework (CoVaC) - a novel translation validation approach,
in which one constructs a comparison system - a cross-product of the source
and target programs. The input programs are equivalent if and only if the com-
parison system satisfies a certain specification. This allows us to leverage the
existing methods of proving properties of a single program instead of relying on
program analysis and proof rules specialized to translation validation, used by
the existing frameworks [21,13,18]. CoVaC is not tailored to validation of com-
piler transformations - it targets program equivalence in general; for example, it
can be applied to validation of language-based security properties [4].

The CoVaC framework can be used in various settings, and, while the check
for specification conformance is expected to be the same, the construction of the
comparison system may diverge. For example, compiler writers may use trans-
lation validation for creation of a self-certifying compiler and, thus, may assume
full knowledge of the inner workings of a particular compiler. In this case, the
compiler itself may output the comparison system. The second part of this paper
pursues the other extreme - it describes a method for automatic generation of
the comparison system, and thus, a translation validation algorithm, which ac-
commodates no compiler cooperation. To the best of our knowledge, the existing
translation validation frameworks which handle a comparable set of optimiza-
tions at least to some degree rely on compiler assistance. The lack of compiler
dependency makes it possible to develop a general purpose verification tool that
can be used to verify the transformations performed by different compilers. Such
tool would be especially useful to compiler users who may have to work with a
particular existing compiler. Additionally, this methodology can be of service to
compiler developers to facilitate testing of immature compilers.

In order to make the validator of non-cooperative compilers feasible and ef-
fective, we currently restrict the set of transformations under consideration to
intraprocedural optimizations in which each loop in the target program corre-
sponds to a loop in the source program; we refer to such input systems as conso-
nant. Many of the classical compiler optimizations such as constant folding, reas-
sociation, induction variable optimizations, common subexpression elimination,
code motion, branch optimizations, register allocation, instruction scheduling,
and others fall into this category. These optimizations are usually referred to as
structure preserving [21]. Finally, this paper reports on a prototype tool CoVaC
that applies the developed framework to verification of optimizing transforma-
tions performed by LLVM 1.9 [12,2] - a very aggressive open-source compiler.

In summary, this paper makes the following contributions. First, it presents
a novel deductive framework for checking equivalence of infinite state programs.
Second, it defines the notion of consonance and shows how the method can be
effectively applied to consonant programs. The presented algorithm does not
rely on any additional input; thus, it can be used to verify compilations while
treating the compiler as a black-box. Due to lack of space, the paper does not
contain proofs and only briefly discusses the implementation details. For a full
version, the reader is referred to our technical report [20].

The rest of the paper is organized as follows. Section 2 introduces our formal
model and defines the notion of correct translation. We describe the general
framework for establishing program equivalence in Section 3. Section 4 presents
the algorithm for comparison system construction, which requires no compiler
cooperation. An example is presented in Section 5; and Section 6 focuses on the
experimental results. We discuss the related work and conclude in Section 7.

2 Formal Model and the Notion of Correct Translation

2.1 Transition Graphs

Our model is similar to that presented in [15] for verification of procedural

programs.
A program (application) A consists of m + 1 procedures: main, fi, ..., fm,
where main represents the main procedure, and f1, ..., f, are procedures which

may be called from main or from other procedures. We use f;(#, &%) to denote
the signature of a procedure. Here, call-by-value parameter passing method is
used for Z, and call-by-reference is used for Z. A procedure may return a result
by means of 2’ variables. We use ¢ to denote the typed variables of a module.
¥ = (&; Z; W), i.e. the variables in ¢ are partitioned into , Z, and @, where &
and Z are the input parameters and w denotes the local variables of the module.

Each procedure is presented as a transition graph f; := (¢, N;, &) with
variables 7, nodes (locations) N; = {r’ = n{, ni, n}, ..., ni =t'} and a set of
labeled edges &. It must have a distinct root node r* as its only entry point, a
distinct tail node ¢* as its only exit point, and every other node must be on a path
from 7° to t*. Nodes of the graph are connected by directed edges labeled by in-
structions. There are four types of instructions: guarded assignments, procedure
calls, reads, and writes. Consider a procedure f;(%; &2) with § = (&, Z,). Let
@ include variables from ¢; and E(¢) be a list of expressions over .

e A guarded assignment is an instruction of the form ¢ — [d := E(¥)], where
guard c is a boolean expression. When the assignment part is empty, we
abbreviate the label to a pure condition c?.

e Procedure call instruction fi(E(Y), @) denotes a call to module fi(Z; &Zf),
passing input parameters E(g) by value and u by reference.

e Read and write instructions are denoted by read(w) and write(w). They are
used to express the interaction of the procedure with the outside world; e.g.
I/0O instructions.

The guards of read, write, and procedure call instructions always evaluate to
true. A transition graph is deterministic when, for every node n, the guards of
all edges departing from n are mutually exclusive. A transition graph is non-
blocking when, for every node, the disjunction of the guards evaluates to true.
In this work, we only consider deterministic non-blocking systems.

Transition graphs can be used to model programs written in procedural lan-
guages. In order to construct a formal model of a program, we first choose a set
of program locations 1" such that:

e At least one location in each loop belongs to 1.
e For every procedure, both procedure entry and exit belong to 7.
e The locations before and after read, write, and procedure call belong to 1.

The choice of 7 can be generalized not to require at least one location per each
loop as long as we can ensure that the transitions between every pair of locations
are computable [10]. Each procedure (or function) whose implementation is given
is represented by a transition graph. We choose the set 7" of a procedure f; to
be the set of nodes for the corresponding transition graph. For every pair of
locations n, m in T, if there exists a path m from n to m, which does not pass
through any other location from 7", we add edge (n,m) to the graph and label
it by the instruction that summarizes the effect of executing the path .

2.2 States and Computations

We denote by d= (d_“’a; dz; cﬁ’) a tuple of values, which represents an interpreta-
tion (i.e., an assignment of values) of the module variables § = (¥; Z;). A state
of a module f is a pair (n; CZ; consisting of a node n and a data interpretation d.
A (E, 5)-computation of module f is a maximal sequence of states and labeled
transitions: L . .
o (ECT) 25 (s di) 22 (ng) ..

The tuple T denotes uninitialized values. At the first state of the computation,
the location is 7, the entry location of f; the values of input variables & and Z are
set to { and 5, respectively, and the local variables @ are not initialized. Labels
of the transitions are either labels of edges in the program or the special label
ret. Each transition must be justified by either an intra-procedural transition,
a call transition, or a return transition such that the call and return transitions
are balanced. See our technical report [20] for the formal definition.

We use Cmp(f) to denote the computations of a transition graph f. We
define a set of computations of a procedural program A, denoted Cmp(A), to
be the set of computations Cmp(main).

2.3 Correct Translation

In this work, we are only concerned with intraprocedural optimizations, so for
simplicity, we are going to assume that the corresponding procedures of S and
7T have the same names; we are going to use a superscript notation to differ-
entiate between the source and target procedures. We define the correctness of
translation via equivalence of program behaviors that can be observed by the
user. Intuitively, given the same input both, the source program S and the target
program 7, must produce the same output; we also observe the values of input
and output parameters of every procedure.
Given a computation, we define V - the set of observable variables at a state

s = {n,d), to be the minimal set satisfying the following conditions:

e If 5 is a state immediately after transition read(@), Vs 2 .

e If s is a state immediately before transition write(@), Vi 2 4.

e If n = r is the entry node of procedure f(7, &2), (V5 2 Z) A (Vs D 2).
e If n =t is the exit node of procedure f(Z, &2), Vi D Z.

Above, we use Vi D @ to denote Vi D {v : Vo in u}.

We associate observation function O with each program, mapping the source
and target states and transition labels into a common domain. The observation
function needs to ensure that read and write transitions of the source and target
computations match. Formally, given a state s = (n, d), an observation function
O(s) is defined as following. Let Vi be the set of observable variables at s. If
Vi = 0 then O(s) = L, else O(s) = dy,. We obtain dy, by restricting d only
to the values that correspond to the variables in V. Given a transition label A,
an observation function O(A) is defined as follows. If X is a label of a transition
that is a read, a write, a call to procedure g, or a return from procedure g, O(\)
is equal to read, write, call,, or rety, respectively. Otherwise, O(\) = L.

An observation of a computation o, denoted o(o), is obtained by applying

the observation function O to each state and each transition label in o. That is,

for o181 25 sy 2% 5. , we get 0(0’):0(31)%) (s2) 203) (s3)....

Definition 1 Computations o and o’ are stuttering equivalent, denoted o ~g

o', if their observations o(c), o(c’) only differ from each other by finite sequences
. 1L 1

of pairs L. — or — 1.

Stuttering equivalence is used to ensure that even though the programs may have

to execute a different number of instructions to get to an observable state, the

difference is always finite. Our assumption is that the user is not time-sensitive

so this finite delta cannot be observed. For example, 8 ~g 3':
write

o) : L™ (5,22) = 1L 5 1 = (110) 2 o

o) L™ (5,22) = L 5 (110) 5% 15
In both computations, first two numbers: 5 and 22, are read; and then, after a
finite number of steps, their product: 110, is written out.

Definition 2 We say that procedure fr is a correct translation of proce-
dure fs if, for every (5, 5)—computation o7 in Cmp(fr), there exists a (f_: 5)—
computation os in Cmp(fs) such that o7 ~4 os, and vice versa. Program T is
a correct translation of program S if maing is a correct translation of maing.

3 Equivalence Checking by Program Analysis of the
Cross-Product SX 7.

In this section, we show that the problem of establishing correct translation is
equivalent to construction of a cross-product (comparison) system C = SX7 and
checking if C satisfies a set of correctness conditions. Our framework is general
enough for establishing translation correctness of deterministic systems in pres-
ence of a wide set of intraprocedural transformations and can be easily extended
to cope with interprocedural optimizations as well. Later in the paper, we present
application of the method to proving translation of consonant systems. However,

the general framework can be used to reason about translation correctness in
presence of structure modifying optimizations such as loop transformations [22].

3.1 Comparison Graphs

Assume we are given two programs, S and 7. For each pair of the corresponding
source and target procedures, f° = (7°, N9, £%) and [T = (57, NT, &T),
the comparison transition graph f = (i, N, £) = 9K fT is defined by the
set of rules below. f represents a simultaneous execution of f° and f7. The
collection of comparison graphs for all procedures constitutes the comparison
program C = SKX 7.

Rule 1 (Structural Requirement)

1. The variables of the comparison graph § = (&,Z,4) are defined as follows:
T=2%3"; 7= 72%2"; and & = w° ow”, where Uoil denotes concatenation
of two vectors.

2. Each node of f is a pair of source and target nodes: N C N° x NT. Let
%, t% and T, tT denote the exit and entry nodes of f5 and fT respectively.
Then v = (r°,rT) and t = (t°,tT) are the entry and exit nodes of f.

3. Each edge of the graph e = ((n°,nT), (m%,mT)) € &, labeled by a pair of
instructions {(op®; op™), should be justified by one of the following:

o (n°,m%) € €% and it is labeled by op®; (nT,mT) € ET and it is labeled
by op™'; and op® and op” are instructions of the same type (either both
reads, writes, assignments, or calls to procedures with the same name).

o (n%,m%) € &9, labeled by assignment op®; nT =m7T; and op” =
o (nT,mT) c T, labeled by assignment op” ; n® = m®; and op® =

Where, € stands for assignment true?, which represents an idle transition.

Since the edges of a comparison graph are labeled by the same type instructions,
reads and writes of the two systems are performed in sync.

; €

A composed transition (n; d_B A (n; c?) is interpreted as a sequential
composition of the source and target transitions with one exception. Let ¢ and
el be labeled by read(i¥) and read(@"). Then, the transition is enabled only
if d’ s = =d. ' v, Where d’ ! s and . ' ¢ are obtalned from d by restricting it to the
Values that correspond to the Varlables @° and @”. Thus, we require that the
values fed into the source and target reads are equal. Given o in Cmp(f), we use
o0Ts to denote a path obtained by projection of o onto the states and transitions
related to module f5.

Rule 2 There does not exist o in Cmp(f) such that g or ol contains an
infinite sequence of e-transitions.

The following claim follows directly from Rule 1 and Rule 2: Vo € Cmp(f)
(30° € Cmp(f°) : 0% ~gq0ls) A (FoT € Cmp(fT) : oT ~g ol7); ie. every
computation of the comparison graph has the corresponding computations in
both source and target.

In addition, we should ensure the reverse of the previous claim: the compu-
tations of the comparison graph represent all the computations of the input sys-
tems. We say that computations of an input system, say Cmp(f*), are covered by
Cmp(f) when the following condition holds: Yo¥ € Cmp(f°), 3o € Cmp(f)
o differs from o Tg, by only finite sequences of (padding) e-transitions. The
notion of coverage is stronger then stuttering equivalence, so it follows that
0% ~g ols.

Rule 3 Computations of f° and computations of fT are covered by Cmp(f).

Note that following Rule 3, not all edges of the input graphs have to be in the
comparison graph, which allows us to disregard the unreachable states of the
input systems. Now as we have defined a comparison graph, let’s consider what
properties it should satisfy in order to guarantee the correctness of translation.

Definition 3 A comparison graph f = fS R fT, is a witness of correct transla-
tion if for every ((.fof), (505))—computation of f, its target and source projections
have equal observations. Note, we restrict the computations under consideration
to those in which the input parameters are initialized with the same values.

Theorem 1 Target function fT is a correct translation of source function f°
if and only if there exists a witness comparison graph f = fS R fT. In addition,
if fT is a correct translation of f° then every comparison graph f = f5 & fT is
a witness of correct translation. (Refer to [20] for the proof of the theorem.)

Thus, in order to determine the correctness of translation, it is sufficient to
construct a comparison graph and check if it is, indeed, a witness. Fig. 1 depicts
an example of a witness comparison graph. For example, let o be the (T;(5,5))-

computation of f(&(Y,y)) defined by user input 10 then

o(ols) =o(olr) = L L, read (10) L (300) write |

Y = Y +12+413; read(X); € write(Y * X);
€ read(x) y = y+25 write(y * x)
0,0 1,0 2,1 2,2 3,3

Fig.1. A comparison transition graph for f(&(Y,y)) = f°(&Y) K f7(&y). We use
capital variables to denote the variables of the source and their lower case counterparts
for the target.

3.2 Witness Verification Conditions

An assertion network @ = {,|n € locations of C} for a program C is said to
be invariant if for every execution a state (n; ci} occurring in a computation,
d E p,. That is, on every visit of a computation of node n, the visiting data
state satisfies the corresponding assertion ,, associated with n.

Suppose a comparison program C = S K7 and its invariant network have
been constructed. The rules presented below can be used to generate Witness
Verification Conditions for C. Whenever the verification conditions are valid,

all the transition graphs that constitute C are witnesses of correct translation,

so we can apply Theorem 1 to safely conclude that the translation is correct;
otherwise, we report that the translation is erroneous.

e For a write edge (n, m) labeled by (write(@®); write(d’)):

on — (@5 =al).

e For a call edge e = (n,m) labeled by (¢°(E®,@%); ¢gT(ET,d")), we check
that the call arguments are equal:

on — (BES = ET) A (a° =aT)

e If n is the exit node of the comparison transition graph f° & f7, where
(7% &2%) and fT(2T; &27T), we check if the values of the variables passed
by reference are equal:

on — (2%9=2T).

Claim 1 Let main® and main” be the main procedures of S and T respec-
tively. A comparison graph main = main® X main® is a witness of correct
translation and, consequently, S is a correct translation of T if all the Witness
Verification Conditions associated with C are valid.

Note that since we are checking that the procedure input parameters are equiva-
lent, the invariant generation algorithm can be intraprocedural. Essentially, one
can apply an assume-guarantee reasoning, where f is checked to be a a witness,
assuming that all the callees of a procedure f are witnesses themselves.

The presented conditions do not constitute an inductive proof of translation
correctness: it is assumed that the assertions in @ are indeed system invariants.
The extra requirement that has to be satisfied in case such a proof is desirable
is that the invariant assertion network should be inductive [8,20]. The avail-
ability of such a proof increases the level of confidence and allows third-party
verification. In addition, it is required if one is to employ invariant generation
techniques that may introduce false positives, such as probabilistic algorithms
[9]. Automatic theorem provers such as YICES[3], CVC3|[1], can be utilized to
independently check the validity of the proof.

The rest of this paper describes a method for comparison system construc-
tion. However, generation of program invariants and checking their correctness
are essential ingredients for solving a translation validation problem. Here, one
of the main advantages of our approach comes into play. Since we have reduced
the translation validation problem to analysis of a single system, any existing
technique out of a vast body of work on invariant generation can be used. From
our experiments, we found that, among others, global value numbering [19] and
assertion checking - a static program verification technique based on computa-
tion of weakest-precondition [6], are quite effective in this setting. Refer to our
technical report [20] for a detailed discussion.

4 Comparison Graph Construction

We have developed a construction algorithm for consonant input programs (i.e.,
structurally similar programs). This restriction allows for effective application
of our methodology to verification of optimizing compilers even in absence of

compiler annotations. The comparison system C = S X 7 is just a collection of
all graphs f = f¥X f7, where f° and f7 are the corresponding procedures from
S and 7. Thus, it suffices to present a construction algorithm for a procedure f.

4.1 Consonant Transition Graphs

We are going to use a transition graph f° = (7, N°, &%) with entry and
exit nodes r° and t° to define several notions, which apply to both f° and
fT. Each node of f° belongs to one of the following categories: read, write,
call, branch, unconditional assignment, and exit; denoted rd, wt, cl, br, ua, tl
respectively. Specifically, we say that a node n € N5 is a read node, written
7(n®) = rd, if 3 (n®,m%) € £° and (n®,m?) is labeled by a read instruction.
Similarly, we define write, call, branch, and unconditional assignment nodes;
7(t%) = tl. Intuitively, the type of node n depends on the type of the edges
outgoing from n. The node types are well defined due to the fact that the graphs
are deterministic and read, write, and call edges are implicitly conditioned on
true. Given a transition graph f°, we define a set of cut points, denoted P*, to
be a subset of graph nodes such that P% = { n° : n% € N'¥ A 7(n®) # ua }.
Adding all branch nodes, not only loop heads, to the cut point set allows us
to have different granularity, depending on the choice of the transition graph
nodes (see Section 2.1). Finer granularity improves efficiency; but it is not always
applicable: the input programs have to be consonant modulo the chosen cut point
set. Every computation o defines a corresponding sequence of cut points, which
can be obtained from o° by first selecting the nodes of each subsequent state
and then removing nodes that are not in P from that sequence.

Definition 4 We say that graphs f° and fT are consonant if there exists a
partial map k : P° +— PT such thatV 0,07 : 0% € Cmp(f?), o7 € Cmp(fT)
the following holds: if 0° and o are defined by the same input sequence, and
ng,ny, ... and nt' ,nT, ... are the cut point sequences defined by o° and o', then
(k(nf) =nI) A (1(nf) = 7(n])). Such map is called a control abstraction.

Our comparison graph construction is going to discover the control abstrac-
tion by composing the corresponding nodes. Surprisingly many compiler opti-
mizations preserve consonance of programs. For example, code motion, constant
folding, reassociation, common subexpression elimination, dead code elimina-
tion, instruction scheduling, branch optimizations all fall into this category. On
the other hand, loop reordering transformations such as tiling and interchange

are not covered by the method presented below.

4.2 Algorithm compose

Fig. 2 presents pseudocode for the compose algorithm that iteratively constructs
a comparison graph f = f¥ K f7T for consonant input transition graphs f° and
fT. We start the construction with a node ng = (ng, nd’), where n§ and nl are
the entry nodes of f° and f7, respectively. The new node ng is added to the
WorkList, which is our discovery frontier: if a node n is placed into WorkList, it

means that, potentially, more edges outgoing from n may be discovered. At each
iteration, we remove a node n from the WorkList and apply matchEdges function
to construct a list of newly discovered outgoing edges. The end nodes of the edges,
denoted n., are placed into WorkList. Even though we always discover a new
edge, n, could have been added to f at some previous iteration and may also
have successors in f. In that case, all its eventual successors must also be added
to WorkList. Intuitively, if a new path leading to a node is added, that node
has to be processed again since more outgoing edges could be discovered. The
function matchEdges may fail, returning NULL. This happens when we cannot
construct a comparison system satisfying the requirements from Section 3.1.

//Initialization:
no :=CompNode (n§, nl); C.Nodes:={no}; C.Edges:={}; WorkList := {no};

//Iteration:
while(! WorkList.isEmpty()) {
n := WorkList.removeElement();

MatchList := matchEdges(n,S,7);
if (MatchList == NULL) ABORT;
while(! MatchList.isEmpty()){
enew := MatchList.removeElement();
n. = NewCEdge.toNode();
C.Nodes.add(n.); //unlike the edge, n. may not be new”
C .Edges.insert (encw) ;
WorkList.add(ne) ;
WorkList.add(getDescendants(n.)) ;

}

Fig. 2. Algorithm compose that constructs the comparison transition graph f = f° X
fT. * Procedure add does not add duplicate items to a collection.

Matching the source and target edges (matchEdges): Below is a set of
rules used to add new edges to the comparison graph:

e Matching edges of the same type: Given a node (n°,n”), we match the
outgoing edges if and only if 7(n%) = 7(n7).

e Adding e-transitions: If n® ¢ P9 (implying 7(n°) = ua), we match the
source assignment edge with an e-transition on the target. The case of n’ ¢
PT is handled analogously.

e Raising error: If none of the rules are applicable to a node (n°,n™)
Edges returns NULL, and the construction of C is aborted.

,match-

We always match read, write, and function call edges if both systems can take
such a step. Guarded assignment edges can also be composed with each other;
but we require that either both systems are currently at a branch node (or a loop
head depending on the desired granularity) or none. Since the input systems are
consonant, this condition allows to align the corresponding source and target cut
points. The case when only one of systems has reached a cut point is covered

10

via e-transitions, so that it can wait for the other system to catch up. Note
that since € is only composed with unconditional assignments, it is guaranteed
that the comparison system does not contain an e-cycle, so the wait always is
finite. Finally, we fail when both systems are at cut point nodes n°, n” but
7(n%) # 7(n"). For example, one system is ready to read while the other is
about to execute a procedure call.

Branch Alignment: Consider the case when 7(n°) = 7(n”) = br. By the first
rule of matchEdges, the outgoing edges should be matched. However, there is
an obvious efficiency problem with simply taking all possibilities (i.e., carte-
sian product) when we consider two nodes with multiple outgoing assignment
edges. Such straightforward approach may lead to a number of edges in f being
quadratic in the number of edges in the input graphs. More importantly, if we
mismatch the branches, unreachable nodes could be introduced into the graph,
which may lead to further misalignment down the road. In particular, read,
write, and function call edges may get out of sync. Consider the example in the
figure below. Suppose C = ¢, X =z, and Y = y. Then f7 is a correct transla-
tion of . However, if we compose edges (0, 1) and (4,6) just relying on the fact
that they are both conditional assignments (7(0) = 7(4) = br), the algorithm
presented so far will raise an error when examining the newly added unreachable
node (1,6). Thus, there is a need for comprehensive branch matching. One such
method is presented below; in addition to resolving the misalignment issue, it
usually constructs a comparison graph linear in the size of the input graphs.

Assume that we have an algorithm InvGen(fy) that, given a partially con-
structed graph fi, obtained after the k*" iteration of compose, outputs a set of
invariants { ok | n € locations of fi}. We will use these invariants to facilitate
the edge matching at iteration k 4+ 1 so that the composed edges that would
introduce infeasible paths are ruled out. Let Ef represent the set of source edges
outgoing from n s.t. each edge e € £5 is labeled by ¢ — [u¥ = ES ().
Similarly, we define £

A pair (e%,eT) € £3 x ET is matched if and only if

- 1t does not yet belong to the comparison graph and

- (kA S A CT) is satisfiable.
We only want to add an edge if there exists an execution through fj in which
e and e’ are enabled simultaneously. An important question to ask is how
the decision made using a partially constructed graph f; relates to the fully
constructed graph f. Let ¢f™ be the invariant which can be obtained by running
InvGen on the fully constructed comparison graph f. Invariant ¢ is an under-

approximation of ¢, meaning, for some assertion ®F, ok = (ol A k).

11

Lemma 1 No spurious predictions are possible: if the match (e°,eT) is made

with ¥ | it also complies with ¢l . As a practical consequence, algorithm compose
never has to remove any of the previously added edges; thus, it never backtracks.

The converse does not hold: we may discover more matches with invariant ¢!,

where [: [> k is a later iteration of algorithm compose. For this reason, the

algorithm adds n. and its decedents to the WorkList (see Fig. 2).

Theorem 2 The following are properties of algorithm compose:

o Termination: algorithm compose terminates.

e Soundness: if algorithm compose succeeds, the resulting graph f = f5 X f7
satisfies all of the requirements presented in Section 3.1.

o Completeness: if fT and f* are consonant, compose succeeds in construction
of a comparison graph f = f5 X f7 given a strong enough InvGen.

Note that the completeness of the algorithm is conditional on strength of InvGen
algorithm used for branch matching. As we show in [20], even for consonant
graphs the invariant may need to be strong enough to express reachability, which
is undecidable for infinite state systems. All hope is not lost: it is usually feasible
to construct the invariants sufficient for our particular application - verification
of compiler transformations, intuitively, due to the fact that compilers base their
decisions on automated reasoning. The proof of the theorem and the discussion
on the InvGen used in practice can be found in [20].

5 Example

In this section, we present an example that demonstrates application of compose
algorithm to comparison system construction along with the generated invariants
and Witness Verification Conditions. Consider Fig. 3. The first two graphs
depict the source transition graph and the target obtained from the source after
constant copy propagation, if simplification, loop invariant code motion, reas-
sociation, and instruction scheduling. Cut point nodes are denoted by double
circles. We use capital letters to denote the source variables and their lowercase
counterparts for the target. M EM and mem denote the memory heaps. The
procedure first reads in two elements - one is stored in register K and the other
one in memory at address A. Then, ten elements of the array, stored starting at
address P, are being assigned to. Finally, the first element of the array is printed
out. We assume that the addresses of the array elements do not overlap with A.

After the third iteration of the algorithm compose (from Section 4), we obtain
graph C3 (Comparison 3), which is constructed as following. On the first iteration,
an assignment of the source is matched up with an e-transition on the target.
On the second iteration, node (1,0) is considered, and since both procedures
are ready to execute reads, the composed read edge is added. Next, we examine
node (2, 1). Since only the source procedure has reached a cut point, it waits for
the target system to catch up by taking an e-transition. On the fourth iteration,
node (2,2) is considered for the first time and the algorithm InvGen(Cs) returns
30?2@ : (I =i =1), which is used to align the branches of the loop and obtain

12

C* (Comparison 4). However, 90%22) A (I >10) A (i > 10) is unsatisfiable.
Thus, the matching of the loop exit edges is ruled out by the invariant. At the
end of the fourth iteration, node (2,2) is added to the WorkList again. Notice
that goi)’2,2> does not hold in system C* since I and i are updated in the loop,
so InvGen(C*) widens the invariant, resulting in <p‘<12 9 (I = 1), which allows
to match up the loop exit edges (<p‘<1272> A (I >10) A (i > 10) is satisfiable).
Finally, we match the write edges and obtain C = C4 (Comparison 6).

After the comparison system is constructed, we generate the Witness Veri-
fication Condition to check that both systems write out the same values
(following the rules from Section 3.2):

90{;3 — (M EMI[P] = memlp)).
An inductive invariant network for the comparison program is presented below.

The validity of the verification condition directly follows from (p{;%.

Ploy : (MEM =mem) A (A=a) A (P=p) A (A¢[P.P+9))
elity s (I=1) A (C=5) A olgh)
oty (K=k) A olfn

eyt (I=1) A (u=(MEM[A]+C) = K) A (C=5) A ols!

. (0,0
9083 : (MEM =mem) A (P=p)

@{3,%) asserts our assumptions that at the entry to the programs, the memory
heaps of the source and target are the same; the corresponding address variables
of the two systems are equal; and the address variable A(a) does not overlap with
the addresses of the elements of the source(target) array. The most interesting
invariant is 90{52)? which asserts that, after each loop iteration, the source and
target heaps stay equivalent. It’s validity is ensured by the following facts: the
addresses at which memory is updated are equal (due to I =i A P = p); the
expressions stored at those addresses are equal (since u = (MEM[A] + C) x K
A I =1); MEM[A] is not altered by the loop (because A ¢ [P..P + 10]).

6 CoVaC Tool

We have developed a prototype tool CoVaC based on the presented methodology
and used it to verify the optimizations performed by LLVM compiler [2]. The
tool has been developed in C++ and uses LLVM data structures for program
representation and parsing. It’s current line count is at approximately 7,000.
One of the main focuses of the tool is balancing precision and efficiency. To
achieve this balance, CoVaC generally utilizes a two-phase strategy: first, it ap-
plies fast lightweight analyses, and then, resorts to deep and precise analyses.
A good illustration of the two-phase approach is expression equivalence check-
ing, which is one of the central subgoals of our framework. We employ a fast
but imprecise value numbering algorithm during the first phase. When value
numbering is inconclusive, we resort to assertion checking - a static program
verification technique based on computation of weakest-precondition [6].

13

We have tested the tool performance on a set of C programs compiled from
the CoVaC feature tests, the LLVM test suite, and third party implementation
of several algorithms (such as in-place heapsort, binary search, print first N
primes, etc.), with the total line count of approximately 1K, which corresponds
to 2K lines of LLVM bytecode. On average, when validating highly optimized
code: 0.53 optimizations per line, CoVaC spends 1 second per every 41 lines,
assuming no compiler collaboration. The most time is spent on calls to assertion
checker, which is dispatched once per every 8 lines. The prototype’s performance
provides a strong evidence that a practical validator can be constructed, espe-
cially taking into account that, unlike compiler, the tool is used few times per
program’s lifetime. The most notable exception is application of the framework
to compiler testing. However, in such a case, CoVaC can be called after every
optimization path rather then after a complete run, and verification of lightly
optimized code is much faster since value numbering is sufficient for resolving
most of the equivalence checks.

7 Related Work and Conclusion

Our approach can be seen as application of bisimulation equivalence [14] to
translation validation and checking equivalence of infinite state programs. Good
examples of existing general translation validation frameworks are [7,22,17],
[18], and [13]; all present program analysis and proof rules specialized to pro-
gram equivalence checking. [7, 22, 17] and [18] rely on compiler debug information
to guide their effort. [13] attempts to eliminate the dependency; however, the
compiler annotations are the essential part of its heuristics for branch match-
ing. Even though CoVaC can benefit from compiler annotations in the same
way as the existing approaches, it does not require any. [17] focuses on handling
interprocedural optimizations; and tools presented in [22] and [18] provide ad-
ditional rules for loop reordering optimizations (loop interchange, fusion, etc.),
which do not preserve consonance. Similar extentions can be incorporated into
our general framework; however, their application to non-cooperative compilers
is a topic of future research. [11] describes a complete method (no false alarms)
for translation validation specialized to register allocation and spilling. For a
comprehensive survey on compiler verification in general, refer to [5].

We presented a framework for checking program equivalence based on con-
struction of a cross-product system, which reduces the problem to verification of
a single program and allows for utilization of the existing of-the-shelf program
analyses and tools. In particular, we have shown how the CoVaC framework can
be applied to verification of non-cooperative compilers and used it on practice
to validate a wide range of optimizations performed by an aggressive modern
compiler, LLVM[2]. Many interesting questions remain. For example, we plan to
extend our method to support interprocedural optimizations. We are also inter-
ested in investigating application of the CoVaC framework to development of
a self-certifying compiler and validation of language-based security properties,
specifically, checking conformance with information flow policies [4].

14

References

1.
2.

3.
4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

CVC3: An Automatic Theorem Prover for Satisfiability Modulo Theories (SMT).
http://www.cs.nyu.edu/acsys/cve3/.

The LLVM Compiler Infrastructure Project. http://llvm.org/.

The yices smt solver.

G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-composition.
In Computer Security Foundations Workshop (CSFW), 2004.

Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT Softw. Eng.
Notes, 2003.

E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

Y. Fang. Translation Validation of Optimizing Compilers. PhD thesis, New York
University, 2005.

R.W. Floyd. Assigning meanings to programs. In Symposia in Applied Mathemat-
ics, volume 19:19-32, 1967.

S. Gulwani and G. Necula. Global value numbering using random interpretation.
In POPL, pages 342-352. ACM, January 2004.

Y. Hu, C. Barrett, B. Goldberg, and A. Pnueli. Validating more loop optimizations.
In Proceedings of the 4" International Workshop on Compiler Optimization meets
Compiler Verificaiton, 2005.

Y. Huang, B. R. Childers, and M. Soffa. Catching and identifying bugs in register
allocation. In SAS, 2006.

C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization, 2004.

G. Necula. Translation validation for an optimizing compiler. In PLDI. ACM
Press, 2000.

D. Park. Concurrency and automata on infinite sequences. In Theoretical Computer
Science, pages 167-183, 1981.

A. Pnueli. Verification of procedural programs. In We Will Show Them! Essays in
Honour of Dov Gabbay, Volume Two, pages 543-590. College Publications, 2005.
A. Pnueli, M. Siegel, and E. Singerman. Translation validation. Lecture Notes in
Computer Science, 1384:151+, 1998.

A. Pnueli and A. Zaks. Translation validation of interprocedural optimizations.
In Proceedings of the 4th International Workshop on Software Verification and
Validation (SVV 2006).

X. Rival. Symbolic transfer function-based approaches to certified compilation. In
POPL, 2004.

L. Simpson. Value-Driven Redundancy Elimination. PhD thesis, Rice University,
1996.

A. Zaks and A. Pnueli. Covac: Compiler validation by program analysis of the cross-
product. Technical report, NYU, 2007. http://cs.nyu.edu/acsys/publications.html.
L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. Voc: A methodology for the transla-
tion validation of optimizing compilers. In Journal of Universal Computer Science,
2003.

L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation and
run-time validation of loop tranformations. In Formal Methods in System Design,
volume 27(3), pages 335-360, 2005.

15

(I<10AK >0) — (MEM[P+1], I) := (Ix(MEM[A]+C)*K, T+1)

, C) := (0, 5) read (K, MEM][A]) (I >10)? write (MEM][P])

(=) 3

Source
()=
U

(I<10AK<0) — (MEM[P+1], I) := (I«+(MEM[A]+5) %K, I+1)

read (k,memla]) (i, u) := (0, k* (memla] + 5)) (i > 10)? write (mem|p])

3
gl@} .J &) CJ

(i < 10) — (mem[p+1i],i) = (i*u, i+1)

® (@ —
& read (K, MEM[A])
5 read (k, mem[a])
=%
E
-]
8]
(I<10AK >0) — (MEM[P+1], I) := (I+(MEM[A] +C)* K, I +1)
(i < 10) — (mem[p+1i],i) = (i*u, i+1)
(I,) = (0, 5)
€
-
.g read (K, MEMI|A])
; read (k, mem[a])
=%
E
8 (i, u) := (0, k* (mem[a] + 5))

(I<10AK<0) — (MEM[P+1], I) := (I+(MEM[A]+5) K, I+1)
(i < 10) — (memlp+i],i) = (i%u, i+1)

(I<10AK >0) — (MEM[P+1], I) := (I+(MEM[A]+C)+K, I+1)
(i < 10) — (mem[p+il,i) = (i*xu, i+1)

(I, ©) = (0, 5)
€

(I >10)? write (M EM|P])
(i >10)7 write (mem[p])

(2) (e

read (K, MEM]|[A])

read (k, mem[a])

Comparison 6

(i, u) := (0, k* (mem[a] + 5))

(I<10AK<0) — (MEM[P+1), I) := (I+(MEM[A]+5)«K, I+1)
(i < 10) — (mem[p+1i],i) = (i*xu, i+ 1)

Fig. 3. Source and Target are the input transition graphs: the programs before and
after the optimization, respectively. Next, we depict the comparison graphs obtained
at the three stages of the comparison graph construction.

16

