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Abstract

In this work, we characterize a significant source of
software derating that we call instruction-level derating.
Instruction-level derating encompasses the mechanisms by
which computation on incorrect values can result in cor-
rect computation. We characterize the instruction-level
derating that occurs in the SPEC CPU2000 INT bench-
marks, classifying it (by source) into six categories: value
comparison, sub-word operations, logical operations, over-
flow/precision, lucky loads, and dynamically-dead values.
We also characterize the temporal nature of this derating,
demonstrating that the effects of a fault persist in archi-
tectural state long after the last time they are referenced.
Finally, we demonstrate how this characterization can be
used to avoid unnecessary error recoveries (when a fault
will be masked by software anyway) in the context of a dual
modular redundant (DMR) architecture.

Keywords: Dual modular redundancy, error detection, fault
injection, instruction-level derating, software derating.

1. Introduction

Transient faults are an important concern in modern mi-
croprocessor design. As we continue to scale transistors to
smaller dimensions and pack wires closer together, they be-
come increasingly susceptible to transient faults due to a
number of factors, including radiation [21], crosstalk [10],
parameter variation [5] and transistor wear-out [23]. Mech-
anisms to tolerate transient faults continue to be an active
area of research.

Recently, in light of the power constraint and the end of
the exponential growth in processor frequencies, there has
been a trend to unify reliability and performance/power op-
timization [3,9, 12, 17, 24]. With the goal of maximizing
clock frequency or minimizing power consumption, these
approaches eschew the timing and voltage safety margins
traditionally used to make systems robust to faults; a robust
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Figure 1: An example of instruction-level derating: value
comparison. Even with a bit flipped in r10, the value com-
parison in (b) has the same outcome as the error-free execu-
tion in (a).

error detection and correction mechanism is used to ensure
correct execution in the presence of the relatively frequent
occurance of transient faults (e.g., 1 per 104-10° clock cy-
cles) that occur when a design is just barely making timing.

One well documented aspect of transient faults is that
only a fraction that occur manifest themselves as errors;
the remaining faults are derated at various levels of the
hardware-software hierarchy. At the circuit and micro-
architectural level, previous work has both measured the
fraction of circuit-level fault injections that manifest in ar-
chitectural state [20, 28], as well as proposing an intuition
for why micro-architectural derating occurs in the form of
the Architectural Vulnerability Factor (AVF) metric [19],
which is derived in part by the fraction of time that various
state elements contain/contribute to producing architectural
state.

Researchers have also explored software derating by in-
jecting errors into architectural state and observing how
many result in incorrect execution [4, 13-15,25,26,28]. In
this way, the derating effect of software has been estimated
but there has been little work to understand these mecha-
nisms, perhaps in part because the mechanisms were viewed
to be application specific.

In particular, no work that we are aware of has
characterized the sources of instruction-level derating of



architecturally-visible faults, that is the mechanisms by
which an instruction can compute using incorrect data and
still produce correct results. An example of this instruction-
level derating is shown in Figure 1. The main goal of this
paper is to provide a characterization of instruction-level de-
rating, considering both its mechanisms and temporal be-
havior.

In our characterization in Section 4, we demonstrate the
following:

1. we demonstrate that there are six major mechanisms
leading to instruction-level derating,

2. we find in our experiments that, despite taking a rather
conservative view of the opportunity for instruction-
level derating, 36% of fault injections into architectural
state are derated,

3. we show that roughly half of the derated faults propa-
gate to other instructions before they are masked, and

4. we show that, even when a fault does not affect the pro-
gram’s outcome, incorrect temporary values can per-
sist in architectural registers significantly past the last
use of any incorrect value.

The practical relevance of these results is that they in-
dicate error detection schemes can be designed to avoid
reporting self-correcting architecturally-exposed faults,
thereby avoiding the performance and power penalties of
recovery for systems where recoveries are not uncommon.
We first quantitatively demonstrate the behavior difference
between error detection schemes (in Section 5): systems
that check architectural state at every instruction boundary
will always report architecturally-exposed faults as errors,
eliminating any opportunity for instruction-level derating,
whereas a periodic check will not. We continue by demon-
strating an optimization, which exploits the temporal be-
havior of instruction-level derating, to further reduce the
number of reported self-correcting errors by not checking
registers known by the compiler to contain dead values.

Before the characterization of instruction-level derating,
we first provide background/terminology on faults, errors,
and their derating that provides the context for this paper
(Section 2) and a description of the experimental method
employed in these studies (Section 3). We conclude in Sec-
tion 6 with a discussion of other potential opportunities for
exploiting knowledge of these derating mechanisms.

2. Background

In this section, we discuss the context for our study on
instruction-level derating. As illustrated in Figure 2, faults
occur at the circuit level but must reach the application level
by changing the program’s output or causing an unrecover-
able exception (e.g., a memory protection fault) to actually
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Figure 2: Scope of instruction-level derating. Error de-
rating can occur at many levels; in this work, we focus on
the software derating of faults that manifest at the archi-
tectural level, before they corrupt control flow or memory
state or propagate to the application-level to cause a crash
or silent data corruption.

be considered as an error. Along the way, there are many
points at which faults can be derated (i.e., used without pro-
ducing faulty output) and masked (i.e., eliminating faulty
state) before they cause an error.

Faults originate at the circuit level, either altering the re-
sult of combinational logic or flipping latched state [21]. If
left uncorrected by circuit- or logic-level techniques [18],
faults propagate to the micro-architectural level which
includes potential architectural state. At the micro-
architectural level, it has been shown that many injected
faults fail to reach architectural state. Two main mecha-
nisms lead to this result: 1) many bits of micro-architectural
state are dead, in that they will be written before being refer-
enced, and 2) some micro-architectural state affects perfor-
mance but not correctness, with predictor state being the ob-
vious example. Previous work has characterized the relative
error vulnerability of micro-architectural structures by ob-
serving what fraction of their bits are necessary for an archi-
tecturally correct execution (ACE, where architecturally-
visible state never contains an incorrect value) [27] and
by injecting micro-architectural faults and observing which
fraction lead to program crashes and incorrect program out-
puts [20,28].

There are discrepancies in the numbers computed by
these two approaches because an architecturally correct ex-
ecution is not explicitly required to compute the correct
program output without program crashes; some derating
can occur in the software itself. Previous work has mea-
sured the rates of software derating [4, 13—15, 25, 28], but
little work has demonstrated the mechanisms involved in
software derating. One notable exception, is the work of
Wang et al. that characterized y-branches: branches whose
outcome can be reversed without changing the program’s



outcome [26]; the only permanent change is in terms of the
program’s execution time. Y-branches typically result from
the structure of the program or its control-flow graph (e.g.,
taking early exits from loops that end up not having a side
effect, and if statements based on multiple predicates where
one predicate determines the overall control flow even if an-
other one is computed incorrectly). In addition, some ar-
chitectural state (like microarchitectural state) is dead and,
therefore, will not affect the program’s final results because
it is never read by future instructions.

These sources of derating, however, are difficult to ex-
ploit if our goal is providing high reliability. While previ-
ous work on software derating shows that a non-trivial num-
ber of architectural-level faults are masked, it provides little
consolation for the faults that lead to damaging situations
like silent data corruption. Generally, systems that provide
fault tolerance check control flow and values before they
are released to the memory system, because doing so sim-
plifies the checking and reduces the recovery effort, respec-
tively. For example, a commonly proposed approach for
a bandwidth efficient implementation of checking in dual
modular redundancy (DMR) is to compare three pieces of
information between the processors: the stream of branch
outcomes, a hash of the register values, and the store ad-
dresses and values [11].

For these reasons, we focus in this paper on the
instruction-level mechanisms of software error derating,
where faults potentially propagate through register state, but
are derated/masked before they affect control flow or are
exposed to the memory system. These sources of derating,
which occur within the dashed region in Figure 2, do not
rely on understanding the program’s control flow structure
or its memory access behavior to allow such faults to be
naturally masked without risking a silent data corruption.
In doing so, we consider an error model (described in Sec-
tion 3.3) that abstracts but closely resembles those proposed
for modern DMR systems.

3. Experimental Method

To study instruction-level derating, we performed a se-
ries of fault-injection experiments. Because we were con-
cerned with software derating, these experiments were per-
formed with a functional simulator that only models the ar-
chitectural behavior of the machine. In this section, we de-
scribe our simulation infrastructure (Section 3.1), how we
performed fault injection (Section 3.2), and the error model
that we used to decide whether an injected fault was derated
or not (Section 3.3).

3.1. Experimental Framework

We used a functional simulator derived from the Sim-
pleScalar tool set [2] that models the user-level architectural
state and ISA of the Alpha AXP architecture; system calls

are emulated. In this model, no micro-architectural or tim-
ing modeling is performed because it is not necessary to
observe software error derating.

Our experiments were performed using the SPEC
CINT2000 benchmark suite, running each benchmark with
its full reference inputs. To ensure that the behaviors that
we observed were not merely due to the idiosyncrasies of
a particular compiler, we performed our experiments us-
ing two compilers and three optimization levels: fully opti-
mized OSF binaries, and binaries generated with gcc with
no (-00), standard (-O2), and aggressive (-O3) optimiza-
tions. We used the OSF binaries that are provided with Sim-
pleScalar which were compiled using the DEC C compiler
under OSF/1 V4.0 operating system for peak performance,
using at least the -O4 optimization level. The gcc bina-
ries were compiled on Linux using gcc 4.0.2. Only nine
of the gcc-compiled benchmarks run to completion; gap,
perl, and vpr fail to complete due to unsupported system
calls invoked within GNU glibc. In Section 5, we use the
LLVM [1] compiler v1.8 in experiments where we add an
additional compiler pass to collect live register information.

3.2. Fault Injection

To achieve a representative set of fault injection experi-
ments without having to simulate the whole benchmark, we
selected 100 evenly distributed points in the program. At
each of these points we perform a series of fault injection
experiments in each of the first 100 instructions, giving us
10,000 dynamic instructions to study from each benchmark
input. For each of these 10,000 instructions, we perform
one fault injection trial for each bit of: the 32-bit instruction
word, each of the 64-bit input register values (up to two),
and the 64-bit output register value (if any), resulting in up
to 224 trials per dynamic instruction. Each trial consists of
flipping a single bit, as we assume architectural manifesta-
tion of faults to coincide with the results by Cha et al. [7].
Bit flips in the instruction change the opcode, register spec-
ifiers, and immediate values based on the instruction encod-
ing. Bit flips to register inputs are as if they were errors
in reading the value; the copy stored in the register file is
unchanged. In contrast, bit flips to the instruction output
directly affect the value stored in the register file.

To evaluate a fault injection trial, two parallel execu-
tions are run in the functional simulator. One of which, the
“golden” execution, simulates execution without any fault
present, and thus produces a correct execution to compare
against. In the parallel execution, the “tainted” execution
is simulated with the injected fault present. After execut-
ing each instruction in the trial, register state and control
flow from the golden execution are used to compare against
the tainted execution to determine if the fault (and possi-
ble transitive faults) are masked (a passing trial), fail (due
to compulsory events such as memory protection) or due to



l \ gee -03 gee -02 gee -00 osf subset H avg H osf
pass 35.8% 37.5% 28.4% 42.1% 35.9% || 40.0%
inconclusive 1.3% 1.3% 0.5% 1.1% 1.1% 0.9%

fail (error model) 41.0% 39.5% 44.4% 36.6% 40.4% 37.8%
fail (compulsory) 21.9% 21.7% 26.7% 20.2% 22.6% || 21.3%

Table 1: Results of fault injections as a function of optimization level. Results averaged across benchmark suite.

gcc -03 gee -02 gce -00 osf subset avg osf
inst word 28.2% 29.2% 21.3% 32.7% 27.9% || 31.5%
inputl val 49.0% 50.0% 40.5% 53.1% 48.1% || 51.5%
input2 val 26.5% 28.5% 17.9% 29.6% 25.6% || 27.5%
output val 39.6% 41.9% 34.7% 52.1% 421% || 47.4%

Table 2: Fraction of fault injections that PASS as a function of the fault injection site.

the artificial error model (described next in Section 3.3), or
is inconclusive (run for 10,000 dynamic instructions with-
out resolution).

3.3. Error Model

We use the following error model, fashioned after a
bandwidth efficient checker for a DMR system, to dictate
when an trial succeeds/fails. If any of the following invari-
ants are violated, we mark the trial as failing due to the error
model.

1. control flow must match

2. store address and value must match

3. load address (alignment) must not fault
4. system call inputs must match

In the context of our hypothetical DMR system, a failure
to match on one of these items would force a state rollback
to the most recent checkpoint (backwards error recovery).
As noted in Section 2, this error model is somewhat conser-
vative, in that there are faults that violate this error model
that may not affect the program’s outcome. It is our asser-
tion, however, that it would be quite expensive to exploit
this additional error derating without exposing the execu-
tion to silent data corruption.

In addition to these error model constraints, we define as
compulsory failures those exceptional behaviors that would
represent a program crash in a non-fault tolerant execution
(e.g., invalid opcode exception or memory protection fault).
We assume these would also invoke backward error recov-
ery and hence terminate any opportunity for a fault to be
derated. In our results, we distinguish these two class of
failures.

4. Characterization of Instruction-level Error
Derating

In this section, we present our observations about the er-
ror derating that occurs in software at the instruction level.

We begin by presenting the overall rates at which derating
occurs and explain how the degree of optimization impacts
the derating by software (Section 4.1). We then describe
in detail why derating occurs at the software level, demon-
strating the instruction-level mechanisms of fault derating
(Section 4.2). Finally, in Section 4.3 we characterize the
derated errors in the time domain, exploring how quickly
after the fault occurs are all traces of it eliminated from the
system (i.e., masked). In the following section, we explore
an application of this characterization.

4.1. Derating Rates

Averaging across all of the benchmarks and optimiza-
tion levels, we find that 35.9% of fault injection trials pass
without violating the conservative error model defined in
the previous section, as shown in Table 1. This promising
result means that over one third of faults that are exposed
architecturally are derated and masked by software before
they affect control flow, propagate to the memory system, or
cause an architectural exception. Of the 63.0% of architec-
tural fault injections that fail, roughly one-third are compul-
sory failures (22.6%) and two-thirds trigger our error model
(40.4%). A breakdown of fault injection trial outcomes is
described in Table 3 and can be seen in Figure 3.

Interestingly, the unoptimized code experiences about
8% fewer passing fault injections than the optimized ver-
sions. This is because register allocation of variables has
not been performed, significantly increasing (from 31.8%
to 44.5%) the fraction of loads and stores relative to the op-
timized code. These additional memory instructions have
two effects: first, a higher fraction of loads and stores
means that an error injection is more likely to hit an ad-
dress calculation, leading to a compulsory failure (i.e., seg-
mentation fault) or an error model-induced failure (i.e., un-
aligned access). Second, the rate of error model-induced
failures further increases because intermediate values are
stored to memory preventing opportunity for those faults
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Figure 3: Detailed fault injection failure-mode classification. Data presented on a per-benchmark basis. The outcome
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| RESULT | EXPLANATION \
pass-masked faulty state masked without violating error model
inconclusive trial ran for 10,000 instructions without violating error model or masking faulty state

error model
error model
error model
error model
error model
error model
compulsory
compulsory

fail-control
fail-store-value
fail-store-address
fail-mem-alignment
fail-syscall-inputs
fail-other-em
fail-mem-protection
fail-other-comp

program counter deviates from golden execution

incorrect store value

incorrect store address (although a valid address)

misaligned load/store address (would cause a PALcode trap fix up)
incorrect register inputs to syscall

store unexpected/missing, etc. due to instruction word injection
invalid load/store address causes memory protection exception
bad opcode, instruction word bit should be zero, etc.

Table 3: Description of fault injection trial outcomes. Failure modes are grouped by category: error model or compulsory.

to be masked by later instructions. While this effect is visi-
ble in most of the benchmarks, it is particularly pronounced
in eon and mcf, as shown in Figure 3; for eon, a C++
benchmark, this discrepancy is also likely due to the inher-
ent mechanisms of virtual function calls, as well as the use
of helper functions to access object state, as both signifi-
cantly increase the amount of control flow instructions in
unoptimized code.

4.2. Instruction-level Derating

In this subsection, we describe the main mechanisms that
lead to instruction-level derating. As shown in Table 2, the
instruction-level derating rates on output values and the first
input values significantly exceed those of injections into in-
struction words and second input values. For the instruction
word, the lower derating rate is easily attributed to intol-
erance in changing the opcode or input/output register in-
dices; whereas the second input value is more sensitive than
the first input value because it is primarily used for the base

address in loads and stores.

We can categorize the sources of instruction-level de-
rating into the six categories shown in Figure 4. The first
class, value comparison, results from the fact that the infor-
mation in the values being compared is being reduced down
to a single bit, meaning that there is a significant amount of
information that is being discarded by the comparison. This
category, which accounts for 35% of correct values gener-
ated by incorrect inputs, includes stand-alone comparisons
(e.g., cmpeq) as well as those belonging to branches.

The second class, sub-word operations, results from op-
erations that only utilize a fraction of the bits in the in-
coming values. The example shown in the figure is a
byte store, which considers only the bottom eight bits of
the register holding the data to store. In addition to sub-
word stores, this category (31%) includes derated errors
on the upper bits of the shift amount/selection operand for
shifts/extracts/inserts, of inserted sub-words, and of 32-bit
arithmetic (e.g., addl) for this 64-bit machine, as well as
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Figure 4: Examples of the six classes of mechanisms leading to instruction-level error derating. In each of these exam-
ples, the shaded bits of the inputs may be flipped without changing the instruction’s outcome.

copy sign, cpys, operations which only inspect the sign bit
of one of their floating point register inputs.

The third class, logical operations, derates errors that oc-
cur in AND operations when the corresponding bit in the
other operand is 0, as well as OR operations when the cor-
responding bit in the other operand is 1. In addition to AND
and OR operations (e.g., and and bis), the mask (e.g.,
mskgh) and extract (e.g., extb1l) operations fall into this
category, which represents 24% of the correct values pro-
duced by incorrect inputs.

The fourth class, overflow/precision, is the source of
roughly 5% of correct operations on incorrect values. As
shown in Figure 4(d), this class accounts for operations
where the faulty bit is shifted off one end of the word, such
that it is not part of the output; in the Alpha architecture
such shifts occur both in isolation (e.g., s11 and srl) as
well as those that are part of scaled adds and subtracts (e.g.,
s8addl and s4subq). In addition, we include in this cat-
egory the small number of cases when erroneous inputs do
not affect the output because they either overflow the output
register (e.g., if you flip the top bit of one operand in a mul-
tiplication, mul1l, and the other operand’s LSB is not set)
or, for floating point operations, there is no impact due to a
lack of precision (e.g., if the LSB of the mantissa of a FP
register is flipped and it is added to a much larger number).

The fifth class, representing less than 4% of instructions
that take erroneous values and produce correct values, is
lucky loads. These instructions take an erroneous base ad-
dress register (for example) and result in a load of the cor-

rect value in spite of this incorrect address. As is to be ex-
pected, this largely occurs when common values (e.g., zero)
are loaded.

In addition to these instructions that generate correct val-
ues, a major source of software error tolerance is dynam-
ically dead values [6]. These are values that are com-
puted but then not used before another instruction over-
writes them. Such values are generally computed for use
by a program path that doesn’t end up getting taken; they
result both from the way that the program is written and
from compiler scheduling — especially by the OSF com-
piler — when an instruction is hoisted above a branch. In
the GCC optimized code, about 15% of fault injections that
are derated are the result of dynamically dead code; in the
OSF optimized code this number increases to almost 30%.

4.3. Fault Propagation and Derating Time-scale

Each injection trial result can be classified not only by
whether the trial passed or failed, but also whether the fault
propagated beyond the injected instruction to subsequent in-
structions, as shown in Figure 5. As can be seen, even when
faults are masked, it often does not happen immediately.
Over half of the faults that are eventually masked propagate
to at least one other instruction.

When we measure how far faults propagate, we observe
that there are two events that mark the end of a derated
(passing) fault injection’s lifetime: 1) the point of the last
use of any erroneous value (either the fault injected value
or a value to which it propagated) and 2) the point at which
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all erroneous values have been expunged from architected
state, i.e., when they have been derated and masked, respec-
tively. While these points occur at the same time (because
the last use of an erroneous value overwrites the erroneous
value with a correct value) in 28.3% of derated fault injec-
tions, there is a substantial discrepancy between these points
in time in general.

As shown in Figure 6 (additional data in [8]), it is com-
mon to find that 90% of last uses occur within 20 instruc-
tions of the fault injection, yet the erroneous architectural
register values are not expunged until much later, with 25%
or more persisting for more than 50 dynamic instructions.
This data implies that most of the time a faulty value is
present in the register file, it is in fact dynamically dead.
As we discuss in Section 5, this can be exploited to reduce
the number of false positives reported by a error detection
mechanism used in dual modular redundancy.

As shown in the inset figure in Figure 6 (additional data
in [8]), most of the passing fault injections affect a relatively
small number of instructions (i.e., over 90% propagate to 4
or less instructions), but these instructions typically span
multiple basic blocks (data not shown). Perhaps it is un-
surprising that most of the passing fault injections are both
short lived and have only local impact to the program’s data
flow, as we find that over 85% have a linear data-flow graph
(i.e., the data-flow chain that propagates faulty values con-
sists entirely of nodes with out-degree of one).

In contrast, for fault injections that fail, there is a single
event that marks the end of the injection trial: when a faulty
value is used and an error occurs. As shown in Figure 6,
this point generally occurs a relatively short time after the
injection, but is generally later than the last use for passing
fault injections. In addition, failing injections tend to affect
a larger number of instructions on average which is likely
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time; here, error detection intervals are swept from 1, to 10, 100, and 1000 check-fence instructions. A second experiment
demonstrates that by using static register liveness information, the snapshot-periodic scheme can achieve most of the benefit
of instruction-level derating even when performing error detection every few instructions.

in part why those fault injections fail.

5. Implications for Error Detection

In the introduction, we mentioned a trend in research to-
ward processor designs that use robust fault tolerance tech-
niques (e.g., dual modular redundancy) to increase perfor-
mance and/or reduce power. At present, however, manufac-
turers intentionally under-clock and over-provision voltage
in processors to reduce the likelihood of processor faults.
This new research seeks to eliminate the inefficiencies intro-
duced by safety margins by running each part at the highest
frequency and lowest voltage it can without frequent faults.
By appropriately setting the clock and voltage, faults will
occasionally occur, but the performance and power cost of
recovering from them (using backward error recovery, for
example) will be outweighed by the benefits achieved from
higher frequency and lower power during the periods of cor-
rect execution.

Error derating plays an important role in these architec-
tures because faults that are masked before error detection
will not invoke a recovery nor incur the performance and
power costs associated. As a result, when a larger fraction
of faults can be masked, the result is a performance im-
provement because clock frequency may be scaled up fur-
ther for the same number of recoveries.

It would be easy to assume that all error detection tech-
niques that compare architected state would report the same
number of errors, but the data from the previous section sug-
gests that this is not the case, for two reasons: first, those
faults that propagate to other instructions have the poten-
tial to be masked before being observed, and, second, the
temporal separation between a faulty value’s last use and its

subsequent masking creates a time period where it would
be detected as an error but could not affect the program’s
outcome (a false positive).

To support these assertions, we evaluate three implemen-
tations of error detection techniques for use in dual modu-
lar redundant systems — lock-step, incremental periodic,
and snapshot periodic — which we describe below. Each
of these techniques ensures correct execution by compar-
ing the updates to architected state performed by the pair of
processors, relying on mechanisms like ECC to prevent er-
rors from being introduced into architected state by means
other than incorrect execution. While logically performing
the same comparisons, the granularity and mechanism of
the techniques differ.

The lock-step approach ensures that both processors per-
form the same operations each cycle and compares the up-
dates performed by each processor to architected state ev-
ery cycle. In the event of any deviation, an error is re-
ported. This scheme not only requires very high band-
width between the two processors, but also, in relation to
this work, will detect any propagating fault as an error to
be corrected. Thus, the derating rate resulting from this er-
ror detection technique corresponds precisely to the passing
no-propagate rates reported in Figure 5.

To reduce the required bandwidth between the two
processors, the other two techniques summarize the the
changes to the register file (which are most of the changes
to architectural state) in the form of a signature, and com-
pare these signatures periodically in addition to comparing
a trace of branch outcomes as well as store addresses and
data [22]. These techniques reduce the required bandwidth
at the cost of introducing a small possibility of false nega-



tives, but the rate of false negatives can be controlled by the
size of the signature.

The first periodic technique, incremental periodic, con-
structs the signature by incrementally folding into the signa-
ture the information relating to writes to the register file as
they retire from the processor. Because it includes the val-
ues produced by every instruction, incremental periodic’s
derating rate is identical to that of lock-step.

In contrast, snapshot periodic, constructs its signature
from a snapshot of the architected state. As the snapshot is
only taken periodically, faulty values have the opportunity
to be masked (overwritten) before the snapshot is created.
As a result, the software derating available includes both
that of the passing no-propagate as well as a fraction of the
passing propagate; as we show in the black bars in Figure 7,
the fraction depends on how frequently the comparisons are
performed. Therefore snapshot periodic is guaranteed to
achieve a derating rate that equals or exceeds that of the
other two techniques, supporting our assertion that error de-
tection rates can be different due to propagating errors that
are later masked.

The data shown in Figure 7 was collected using the
same fault injection methodology described in Section 3,
augmented with the error detection mechanisms described
above. The first bar in each graph (LS) denotes the error de-
rating of the lock-step and incremental periodic techniques.
For snapshot periodic, the error derating rate depends on
the frequency of the checking, so we plot this function of
frequency. In our implementation, we identify a subset of
instructions (control, store, and system call instructions),
which we will refer to as check-fence instructions. We only
generate snapshots after these instructions, because we have
found that doing so increases the number of masked errors
without significantly introducing complexity in checking.
We measure the derating rates that occur when checking at
every check-fence instruction and at intervals of 10, 100,
and 1000 checkfence instructions.! We show data for five
of the twelve SPEC CINT2000 benchmarks run at full op-
timization (-03), whose results we believe to be represen-
tative for the whole suite; in addition, we include the aver-
age results for these programs without optimization (-O0)
which result in the same basic trends with slightly higher
levels of masking.

As previously noted, the black bars demonstrate that
snapshot periodic error derating increases as we increase
the interval between checks. While increased derating is
beneficial, it is important that it not come at a huge increase
in the latency to detect errors. For example, if an error oc-
curs once every 10° instructions, then performing error de-
tection once every 5,000 instructions will result in roughly
2.5% loss in performance, plus the overhead for recovery, as

'In these experiments, we do not actually reduce the register state to a
signature, as doing so only adds the possibility of false negatives.

on average the faulting instruction will occur in the middle
of the error detection interval. With a check-fence instruc-
tion occurring roughly every 4 instructions in our experi-
ment, the intervals in Figure 7 correspond to checking for
errors every 4, 40, 400, and 4,000 instructions.

A significant factor leading to increased derating with
larger intervals is more temporal opportunity for a register
containing an incorrect, and usually dead, value to be over-
written (i.e., the average fraction of registers with faulty val-
ues decreases with time, as previously shown in Figure 6).
Clearly, comparing the entire architected state is sufficient
but not necessary for correctness; any values that are dead
(i.e., it is known that they will not be referenced again) need
not be checked, since they cannot affect further computa-
tion. To explore what further fraction of unnecessary er-
ror recoveries could be eliminated, we modified the LLVM
compiler to record static” register liveness information [16]
associated with each check-fence instruction. In a second
set of experiments shown in Figure 7, we show that by com-
paring only statically live register values between proces-
sors, almost 90% of the instruction-level error derating can
be achieved, even with very small error detection intervals.

6. Conclusion

In this work, we demonstrated the mechanisms that re-
sult in instruction-level error derating; that is, how incorrect
architectural state or incorrect instruction execution can re-
sult in correct program behavior. We classified the mech-
anisms into six categories: value comparison, sub-word
operations, logical operations, overflow/precision, lucky
loads, and dynamically dead values. Unlike previous work
on software derating that exploits the structure of the com-
putation (e.g., [26]) or the numerical properties of specific
applications (e.g., [15]), these are general-purpose instruc-
tion properties found in all of the programs that we stud-
ied. Even if we conservatively restrict the opportunity for
instruction-level derating by considering a fault as an er-
ror if it propagates to the memory system or affects control
flow, we find that 36% of architecturally visible faults are
derated and masked.

Knowledge of the mechanisms of software derating pro-
vides system builders the opportunity to exploit them. We
considered two instruction-level derating-motivated oppor-
tunities in the context of systems that exploit the presence of
error detection mechanisms to improve performance or re-
duce power consumption. First, we demonstrated that com-
paring architected state via periodic snapshots permits faults
to be masked that would otherwise lead to error recovery

2To be clear, static liveness information makes no assumptions about
the further path of execution, so some false positives will still occur for
values that are dynamically dead (will not be used on the control flow path
that ends up to be taken) and will later be recognized as statically dead at
some later point in the code.



actions if the result of every instruction were incorporated.
Second, we demonstrated that the rate of derating can be
further increased by excluding the contents of known dead
registers from the comparison.

Looking forward, we believe there are other applications
that are enabled by an understanding of the mechanism of
instruction-level derating. In particular, we are interested in
investigating the degree to which instruction-level derating
can be increased by the optimizations performed by a com-
piler and how it handles code generation.
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